JP4346830B2 - Fluid measuring device and fluid measuring method - Google Patents

Fluid measuring device and fluid measuring method Download PDF

Info

Publication number
JP4346830B2
JP4346830B2 JP2001083285A JP2001083285A JP4346830B2 JP 4346830 B2 JP4346830 B2 JP 4346830B2 JP 2001083285 A JP2001083285 A JP 2001083285A JP 2001083285 A JP2001083285 A JP 2001083285A JP 4346830 B2 JP4346830 B2 JP 4346830B2
Authority
JP
Japan
Prior art keywords
fluid
pressure
wall surface
angle
columnar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001083285A
Other languages
Japanese (ja)
Other versions
JP2002286515A (en
Inventor
弘高 東森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001083285A priority Critical patent/JP4346830B2/en
Publication of JP2002286515A publication Critical patent/JP2002286515A/en
Application granted granted Critical
Publication of JP4346830B2 publication Critical patent/JP4346830B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、流体計測装置及び流体計測方法に関する。
【0002】
【従来の技術】
従来から、流体の流れの流速と圧力を計測する技術として、図11に開示したプローブ100が知られている。この技術は流体の流れに略直角に載置されたプローブ100をその軸心100aを中心として所定角度回動して圧力センサ2の受圧面2aが受ける圧力P〔Pa〕を測定し、(b)に示すように回動角度θに対して圧力センサ2が受ける圧力Pの圧力分布曲線Sを求めることができる。また、予め、前記流体計測用プローブを柱状軸心を中心として所定角度回動した際の角度θをパラメータとして、圧力分布特性を用意し、静圧Ps〔Pa〕を測定し、圧力分布曲線Sのピーク値を全圧Pzとし、全圧Pz−静圧Ps=動圧Pdを算出することができる。
【0003】
【発明が解決しようとする課題】
しかしながら、この従来の流体計測用プローブは全圧を測定するには、流体の流れに正対する面の淀み圧を測定する必要性から圧力センサ2の長さlを流体の流れ方向に対して平行に配置して測定するように構成されているので、流体計測用プローブを挿入する空隙が狭い場合は図示のようにプローブを屈曲して挿入する必要があり、プローブの支柱を軸心を中心として回動させるために狭い計測空間では測定が困難になるという問題があった。
【0004】
よって、図12に示すようにプローブを筒状に形成することが考えられる。この技術は、プローブ300を流体の流れ方向に対して直角に配置し、細路301から通路303を通って流体圧力を検出するものである。よって、細路301が僅かに傾斜しても細路301に印加される流体の圧力は影響し、正確な圧力を測定するのに高度な技術を必要とする。
【0005】
すなわち、プローブ300の中心軸300aのまわりを任意の基準角度に対してθの角度で、プローブ300の垂直方向である矢印A方向に流体が流れている場合、プローブ300を回動させてプローブ300のまわりの圧力分布を計測すると、(c)に示すように角度θで最大圧力となり、その角度に対して対称な圧力分布である曲線Sが描ける。この曲線Sに予め求めた静圧Psと、最大圧力である全圧Pzとの差から動圧を、そして最大圧力の方向から流れ角を求めることができ、流れの速さと方向を知ることができる。
【0006】
しかしながら、(a)に示すように、流体が上下方向にβの角度で流れる場合にも、矢印Aの場合の圧力分布と相似な圧力分布となり、AとBを区別できないという問題がある。
【0007】
本発明は上述の事情に鑑み、流速や流れの方向が非定常的に変化する流れ場においても、狭い計測空間でも容易に流体の圧力を測定することができる流体計測装置及び方法を提供することを目的とする。
また、本発明の他の目的は、流体の流れ方向が水平方向に対して上下方向に傾斜しても、流体の流れ方向が容易に計測される、流体計測装置及び方法を提供することである。
また、本発明の他の目的は、正確な圧力を測定可能な流体計測装置及び方法を提供することである。
【0008】
【課題を解決するための手段】
本装置発明は、柱状体に形成され、流体流通通路内に該柱状体の延設方向が流体流通方向と交差する方向に配置して流体を測定する流体計測装置において、
前記柱状体は柱状軸心を中心として所定角度回動可能に配置され、前記柱状体の外周に流体の流れ方向と対面して流体を取り込む流体取込開口と、奥側に該流体取込開口に対向した奥側壁面とを有した凹部を設け、前記奥側壁面は流体の流れ方向に対して正対した状態で、流体の流れに対向した最突出部と該最突出部から左右両側に分かれて流体を流れ方向下流側へ流出させる傾斜面を有し、前記左右両側に分かれて流出するところの前記凹部内に流体が充満する淀み空間を形成し、
該淀み空間の前記流体取込開口と前記奥側壁面との間の流体圧力を測定するように圧力センサの受圧面が前記凹部の上下壁面のうち、少なくとも一方の壁面に存在するようにまたは近接して存在するように配設したことを特徴とする。
【0009】
ここにおいて、「奥側壁面」とは、奥側に前記流体取込開口に対向して配置された壁面及び壁面と同じ作用を有する面状体を意味し、例えば、図2における湾曲面1Ac、図3(a)における面1Bd、1Bc、(b)、(c)、及び(d)の面1Cc、1Dc、1Ec、図4(b)の縁10Ad、図6(a)の10Ad、図7の縁11b、12b、図10(c)の面10Fd、(d)の10Gdなどを含む概念である。
【0010】
本発明は、奥側壁面が流体の流れ方向に対して正対した状態で、流体の流れに対向した最突出部と該最突出部から両側に傾斜面が流体の流れ方向に沿って対称に形成しているので、該奥側壁面によって衝突した流体は前記凹部内で淀み空間を形成し、後続する流体によって押される淀み空間の流体は、円柱に対して左右に分かれて流出する。
そして、流体圧力の測定に用いられる部分は淀み空間が形成され、前記淀み空間の前記流体取込開口と前記奥側壁面との間の流体圧力を測定するように圧力センサの受圧面が前記凹部の上下壁面のうち、少なくとも一方の壁面に存在するようにまたは近接して存在するように配設する。
【0011】
よって、本発明によれば、流体の流れ方向に対向して柱状体に前記凹部が形成されるので、流体流通通路内に該柱状体の延設方向が流体流通方向と交差する方向に配置して、該凹部の淀み空間によって流体を測定するために、狭い計測空間でも容易に、かつ正確に流体の圧力を測定することができる。
また、前記淀み空間により流体圧力測定面が流体の流れ方向から僅かに傾斜しても、正確な圧力を測定することができる。
【0012】
また、前記流体取込開口から前記奥側壁面に延設された上下壁面のうち、少なくとも前記流体取込開口から前記奥側壁面側に延設された一方壁面に開口部を設けるとともに、受圧面を前記一方の壁面に有した柱状の圧力センサを、前記開口部を介して前記柱状体内に配設することも本発明の有効な手段である。
【0013】
かかる技術手段によると、柱状に形成された圧力センサの前記一方の壁面に受圧面を有し、該受圧面を前記淀み空間に対面させ、柱状体に形成した流体計測装置内に前記センサの長手方向を流体計測装置に軸心に平行に起立して配置できるので、流体計測装置の柱状体内部の外周面の内側壁に前記センサの外周を近接、もしくは接触させて配置することが可能であり、狭い計測空間でも計測可能な小型な流体計測装置を提供することが可能である。
【0014】
また、前記流体取込開口から前記奥側壁面に延設された前記上下壁面に開口部を設けるとともに、受圧面を前記流体取込開口から前記奥側壁面側に延設された前記一方の壁面に有した柱状の圧力センサを、前記開口部を介してそれぞれ前記柱状体内の前記上壁面側及び下壁面側に配設することも本発明の有効な手段である。
【0015】
かかる技術手段によると、前記淀み空間に前記受圧面を対面させた状態で圧力センサをそれぞれ前記柱状体内の前記上壁面側及び下壁面側に配設しているので、流体計測装置を形成する柱状体の軸心方向に対して直交する方向からの流体圧力は前記上壁面側及び下壁面側に同じ圧力が作用するが、この直交方向から角度を有して流体が流れ込むと流体が流れ込む方向と対面する面側の圧力が上昇し、他方面側の圧力は低下する。よって、その関係を予め装置内にデータとして記憶しておくことによって、前記する流体が流れ込む方向と対面する面側の圧力とそのときの他方面側の圧力を得ることで、そのときの流体の流れる方向を計測することができる。
【0016】
また、流体計測方法に関する発明は、前記流体測定装置を用いて流体を測定する流体計測方法において、予め、前記柱状体の柱状軸心を中心として所定角度回動した際の角度θに対する圧力分布特性を用意し、前記柱状軸心を中心として所定角度回動しつつ前記淀み空間の流体圧力を測定し、該流体圧力のピーク値に基づいて流体の全圧、静圧及び流速を計測することを特徴とする。
【0017】
本発明は、前記流体計測用プローブに設けられた、流体取込開口と、柱状に形成した流体計測用プローブに対して左右に分かれて流出するところの凹部内に流体を充満して淀み空間を形成しているので、前記奥側壁面を正確に流体の流れ方向に対向して直角に配置しなくても前記淀み空間が存在しているので、淀み空間内の流体圧力を正確に測定することができる。
【0018】
また、他の方法発明は、前記流体測定装置を用いて流体を測定する流体計測方法において、予め、前記柱状体の柱状軸心を中心として所定角度回動した際の角度θをパラメータとして、前記流体取込開口に対する流体の流れ方向を軸心方向に角度β変化させた前記上壁面側及び下壁面側に配設した一対の流体圧力測定手段による圧力分布特性を用意し、 前記柱状体の柱状軸心を中心として前記角度θ時の淀み空間の前記一対の前記流体圧力測定手段による流体圧力を測定し、該流体圧力値に基づいて流体の全圧、静圧、流れ角θの他、前記角度βを計測することを特徴とする。
【0019】
本発明は、前記流体計測用プローブは、淀み空間を形成する前記凹部の前記流体取込開口から前記奥側壁面側に延設された一方側壁面と、該一方側壁面に対面して設けられた他方側壁面それぞれに流体圧力測定手段を一対配設して構成し、
予め、前記流体計測用プローブを用いて、柱状軸心を中心として所定角度回動した際の角度θをパラメータとして、前記流体取込開口に対する流体の流れ方向を、前記柱状軸心と直交する流体の流れ方向を0としたときに、軸心方向に角度β変化させた前記一対の流体圧力測定手段による圧力分布特性を用意しておき、
前記流体計測用プローブを柱状軸心を中心として前記角度θ時の淀み空間の前記一対の前記流体圧力測定手段による流体圧力を測定して、該流体圧力値に基づいて流体の全圧、静圧の他、前記角度βを計測することによって流体の流れ角度θを計測することができる。
【0020】
【発明の実施の形態】
以下、図面を参照して本発明の好適な実施の形態を例示的に詳しく説明する。但しこの実施の形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例にすぎない。
【0021】
図1(a)は、本発明の第1実施の形態にかかる流体計測装置の概略図であり、(b)は(a)のA−A断面図である。図11と同じ部材は同じ符号を用いる。
図1において、円柱状に形成されたプローブ1Aには凹部1Aaが設けられている。この凹部1Aaは、(b)に示すように、中心線20の上下方向に対称に三日月状に形成されている。
【0022】
図2に示すように、凹部1Aaの上面に圧力センサ2の受圧面2aが対面して配置されている。尚、受圧面2aは、面すべてが凹部1Aaに対面せずに一部欠けているが、前記圧力センサ2の受圧性能により、受圧面2a前面が対面していても、一部欠けていてもよい。そして、該圧力センサ2の筒面は支柱4Aの外周面4Abに出来る限り近接させるのがよい。そのように構成することにより、支柱4Aの外周4Abを小径に形成することができ、コンパクトになって狭い計測空間での測定に有利となるとともに、支柱4Aの外周面4Abと凹部1Aaの奥側の壁面1Acとの間の距離が短くなり、流体により発生するプローブ1Aの凹部1Aa内の上下壁面の固有振動数により発生する振動によって受圧面2aが受ける圧力変動による誤差を小さく押さえることができる。
【0023】
さて、本実施の形態による前記凹部1Aaの奥側の壁面1Acは、その存在により凹部1Aa内に流体の淀みを生じさせる。壁面1Acが存在しないと流体は矢印方向に流れ圧力センサ2は静圧を測定するが、この淀みにより該圧力センサ2は全圧を測定することができる。
【0024】
そして、この淀みにより、図2(a)において、矢印方向が上下に若干変動しても、また、(b)において、回動方向に若干変動しても、それらの変動量に対する流体圧力の変動率は小さい。よって、図2(a)に示すような状態にプローブ1Aを配置した状態で流れ方向に対して直角に配置されているかどうかは、支柱4を時計方向もしくは反時計方向に回動傾斜させて流体圧力を測定しそのピーク値を得ることにより知ることができる。
【0025】
また、図2(b)に示すように凹部1Aaの奥側壁面1Acは、中心線20に対して対称に流体の流れ方向に向かって湾曲している。よって、流体は該壁面1Acで反流れ方向に流体が反射されることはなく、該凹部1Aa内での流体の淀みが乱れることはなく、凹部1Aaの上面に存在する受圧面2aによって全圧の測定が可能である。
【0026】
図3に支柱4の他の形状(4B、4C、4D、4E)の形状を示す。図3(a)は、円筒状の支柱を有し、中心線20に直交して流体の流れ方向に対して対面する壁面1Bdと、中心線20に対して対称に流体の流れ方向に向かって湾曲している1Bc、1Bcを有している。そして、壁面1Bdは面積が少なく、該壁面1Bdで反流れ方向に反射される流体量は少ないので、凹部1Aa内での流体の淀みが乱れることはなく、全圧の測定が可能である。
【0027】
図3(b)の支柱は、流体の流れ方向と直角方向に肉薄に、流れ方向に肉厚に形成されているので、流体内に配置した場合は、流体によって支柱自体が流体の流れ方向に傾斜もしくは湾曲してセンサ受圧面の位置がずれることはなく、正確な圧力を測定することができる。
【0028】
図3(c)の支柱は、断面四角形状に形成され、(d)の支柱は断面三角形状に形成されている。これらの凹部奥側壁面1Dc、1Ecは中心線20に対して対称に流体の流れ方向に向かって湾曲している。そして、壁面1Dc、壁面1Ecで反流れ方向に反射される流体量は少ないので、凹部1Aa内での流体の淀みが乱れることはなく、全圧の測定が可能である。
【0029】
次に、このように構成された第1実施の形態の動作を図2を用いて説明する。図2において、流体の流れに略直角に配置されたプローブ1Aをその軸心4Aaを中心として所定角度回動して圧力センサ2の受圧面2aが受ける圧力P〔Pa〕を測定し、(c)に示すように回動角度θに対して圧力センサ2が受ける圧力Pの圧力分布曲線Sを求めることができる。その際に、予め用意した前記流体計測用プローブを柱状軸心を中心として所定角度回動した際の角度θの圧力分布特性から、静圧Ps〔Pa〕を測定し、圧力分布曲線Sのピーク値を全圧Pzとし、全圧Pz−静圧Ps=動圧Pdを算出することができる。
【0030】
本第1実施の形態は上述のように構成されているので、圧力を測定するセンサ2を小型に筒状に形成し、その中心軸2bが支柱4Aに平行に設けることができるので、支柱径を小径に形成でき、狭い空間に挿入することができる。
【0031】
また、円柱状のセンサ2を支柱4A内に該支柱4A内の軸心に沿って挿入配置できるので、センサ2の表面を支柱4Aの外周面4Abの内周面に接触もしくは近接して配置できるので、センサ2の受圧面2aを支柱4Aの外周面に隣接して配置でき、支柱外周面発生する圧力分布を測定できるので、予め支柱4Aと同じ径を有する圧力測定器に同じ性能のセンサ2を配置して外周支柱の外周面に相当する位置の静圧を測定しておくことによって、支柱まわりの圧力分布曲線Sに近い圧力分布を測定することが可能である。
【0032】
次に、第2実施の形態を説明する。図4(a)は、本発明の第2実施の形態にかかる流体計測装置の概略図であり、(b)は凹部10Aa部分の側面図、(c)は凹部10Aa部分の正面図である。第1実施の形態との相違点は、第1実施の形態は、凹部に対面して受圧面を配置したセンサを凹部の上方側に配置したのに対して、第2実施の形態は、センサを凹部の上側及び下側に配置し、上下方向からの流体圧力の影響を加味して圧力測定を行う点である。
【0033】
図4において、プローブ10AはV溝状に形成した凹部10Aaを設け、その上側面10Abに開口部13を、下側面10Acに開口部14を開設し、これらの開口部にセンサ2の受圧面が対向するように配置される。そして、上側面10Abと下側面10Acとの境界線10Adの形状は第1実施の形態において説明した図2の奥側の壁面1Ac、図3(a)の1Bd、1Bc、図3(b)の1Cc、図3(c)の1Dc、図3(d)の1Ecと同じ形状を用いることができる。
【0034】
次に、図5及び図6を用いて第2実施の形態の動作を説明する。図5(a)に示すように流体が、流れる方向が角度βで矢印方向に流れている状態で、かつ図6(a)に示すように角度θで矢印方向に流れている場合は、開口部13側のセンサ圧Pは開口部14側のセンサ圧Pより小さいので、図6(b)に示すように角度θ=0°から時計方向にプローブ10Aを回動すると、(b)に示すように開口部13側のセンサによって測定される流体圧力を用いて圧力変動曲線201が描かれ、開口部14側のセンサによって測定される流体圧力を用いて圧力変動曲線202が描かれる。
【0035】
一方、角度βが0°で流体の流れ方向が中心線30方向に向かうとすれば、開口部13側のセンサの検出圧力と開口部14側のセンサの検出圧力は等しいPを取る。このβ=0°を出発点として、流体の流れ方向角度βが時計方向に変わると、開口部14側のセンサの検出圧力による圧力変動曲線204は、圧力P点から上昇し、開口部14が流体の流れる方向と正対するあたりの角度をピークとして下降する。また、開口部13側のセンサの検出圧力による圧力変動曲線203は、圧力P点から下降する。
【0036】
そして、所定β角度において、圧力変動曲線204においては圧力P2xが、圧力変動曲線203においては圧力P1xが測定される。この流体の流れ方向における上下方向のβ角度の関係、すなわちβ角度に対する一対のセンサ2a、2Bの検出する値を予め測定しておくことによって流体の流れ角度を計測することができる。そして、流れ角度β=0°における圧力=Pをそのピーク値として計測され、全圧Pとして求めることができ、予め測定しておいた静圧Pと全圧Pとから動圧を求めることができる。
【0037】
また、流れ角度βからプローブ10Aの挿入角度を調整してセンサ2Aとセンサ2Bの測定圧力を等しい角度βに調整した後に、全圧、動圧、流体速度などを測定することもできる。
【0038】
図7及び図8は、本発明の第3実施の形態にかかる流体計測装置の概略図であり、図7(a)は側面図、(b)は正面図、図8(a)は図7(a)のI−I断面図であり、図8(b)は図7(b)のII−II断面図である。第2実施の形態との相違点は、第2実施の形態のV溝による淀み空間が支柱の外周に沿って軸心に直角に流体の流れる方向に平行に形成して、淀み空間の流体逃げ部を流体の流れる方向に平行に形成したのに対して、第3実施の形態は2本の溝部を支柱外周に軸心に対して角度を有して削設形成し、該2本の溝部が接触させてV溝による淀み空間を形成し、該淀み空間の逃げ部を2本の溝部に沿って流体の流れる方向に対して上下に角度を有して流体の逃げ部を形成した点である。
【0039】
本第3実施の形態を図7及び図8を用いて説明すると、上側溝部を形成する傾斜面11の上側縁11aはプローブ10Bの外周表面にあり、その上側縁11aから下側縁11bに向かって該傾斜面11が形成される。同じように、下側溝部を形成する傾斜面12の下側縁12aはプローブ10Bの外周表面にあり、その下側縁12aから下側縁12bに向かって該傾斜面12が形成される。これらの傾斜面11、及び12は、所定傾斜面角度を刃先端に有したフライス刃にて削設することができる。
【0040】
淀み空間10Baの流体圧力は参考例としての図8(b)に示すように通路16、17が連通する場所に設けられた図示しない圧力センサによって測定される。尚、圧力センサは図9に示すように、淀み空間10Caと近接してセンサ2A、2Bを配置してプローブ10Cとして構成してもよい。
【0041】
また、図10は、図4に示す第2実施の形態に適用可能は各種淀み空間形状を示す断面図である。図10(a)、(b)はV溝の代りに図2に示した第1実施の形態における角形凹部10Da、10Eaを用いたものである。また、(c)、(d)は前記角形凹部の上側面10Db、10Eb、下側面10Dc、10Ecを、上側面10Fb、10Gb、下側面10Fc、10Gcのように湾曲形状としたものである。尚、(b)、(d)は参考例であり通路16、17は図示しない圧力センサに連通している。
【0042】
【発明の効果】
以上詳述したように本発明は、柱状体に流体の流れ方向に対向して開口部と奥側壁面を有する凹部が設けられ、該凹部内に流体の淀み空間が形成されるので、流体流通通路内に該柱状体の延設方向が流体流通方向と交差する方向に配置して、該凹部の淀み空間によって流体を測定するために、狭い計測空間でも容易に、かつ正確に流体の圧力を測定することができる。
【図面の簡単な説明】
【図1】 本発明の第1実施の形態にかかる流体計測装置の概略図であり、(b)は(a)のA−A断面図である。
【図2】 第1実施の形態の動作説明図である。
【図3】 他の流体計測用プローブの断面形状を示す断面図である。
【図4】 本発明の第2実施の形態にかかる流体計測装置の概略図である。
【図5】 第2実施の形態の動作説明図1である。
【図6】 第2実施の形態の動作説明図2である。
【図7】 本発明の第3実施の形態にかかる流体計測装置の概略図である。
【図8】 (a)は図7のI−I断面図、(b)は図7のII−II断面図である。
【図9】 本発明の第3実施の形態の変形例にかかる概略断面構成図である。
【図10】 他の実施の形態にかかる概略断面構成図である。
【図11】 従来例にかかる流体計測用プローブ概略構成図である。
【図12】 開発先行例にかかる流体計測用プローブ概略構成図である。
【符号の説明】
1A 流体計測用プローブ(流体計測装置)
1Aa 凹部
1Ac 奥側壁面
1Ah 最突出部
2 圧力センサ(A、B)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fluid measuring device and a fluid measuring method.
[0002]
[Prior art]
Conventionally, the probe 100 disclosed in FIG. 11 is known as a technique for measuring the flow velocity and pressure of a fluid flow. This technique measures the pressure P [Pa] received by the pressure receiving surface 2a of the pressure sensor 2 by rotating the probe 100 mounted substantially at right angles to the fluid flow by a predetermined angle about the axis 100a. ), A pressure distribution curve S of the pressure P received by the pressure sensor 2 with respect to the rotation angle θ can be obtained. In addition, pressure distribution characteristics are prepared in advance using the angle θ when the fluid measurement probe is rotated by a predetermined angle about the columnar axis as a parameter, the static pressure Ps [Pa] is measured, and the pressure distribution curve S Is the total pressure Pz, and the total pressure Pz−static pressure Ps = dynamic pressure Pd can be calculated.
[0003]
[Problems to be solved by the invention]
However, in order to measure the total pressure, this conventional fluid measuring probe needs to measure the stagnation pressure of the surface directly facing the fluid flow, so that the length l of the pressure sensor 2 is parallel to the fluid flow direction. When the gap for inserting the fluid measurement probe is narrow, it is necessary to bend and insert the probe as shown in the figure. There is a problem that it is difficult to measure in a narrow measurement space due to rotation.
[0004]
Therefore, it is conceivable to form the probe in a cylindrical shape as shown in FIG. In this technique, the probe 300 is disposed at right angles to the fluid flow direction, and the fluid pressure is detected from the narrow passage 301 through the passage 303. Therefore, even if the narrow path 301 is slightly inclined, the pressure of the fluid applied to the narrow path 301 is affected, and advanced techniques are required to accurately measure the pressure.
[0005]
That is, when the fluid is flowing around the central axis 300a of the probe 300 at an angle θ with respect to an arbitrary reference angle in the direction of arrow A, which is the vertical direction of the probe 300, the probe 300 is rotated to rotate the probe 300. When the pressure distribution around is measured, as shown in (c), the maximum pressure is obtained at the angle θ, and a curve S which is a symmetric pressure distribution with respect to the angle can be drawn. The dynamic pressure can be obtained from the difference between the static pressure Ps obtained in advance in the curve S and the total pressure Pz which is the maximum pressure, and the flow angle can be obtained from the direction of the maximum pressure, and the flow speed and direction can be known. it can.
[0006]
However, as shown in (a), even when the fluid flows at an angle β in the vertical direction, the pressure distribution is similar to the pressure distribution in the case of arrow A, and there is a problem that A and B cannot be distinguished.
[0007]
In view of the above-described circumstances, the present invention provides a fluid measurement device and method that can easily measure the pressure of a fluid in a narrow measurement space even in a flow field in which the flow velocity and the direction of flow change unsteadily. With the goal.
Another object of the present invention is to provide a fluid measuring device and method that can easily measure the fluid flow direction even if the fluid flow direction is inclined in the vertical direction with respect to the horizontal direction. .
Another object of the present invention is to provide a fluid measuring device and method capable of measuring an accurate pressure.
[0008]
[Means for Solving the Problems]
The present invention is a fluid measuring device which is formed in a columnar body and measures the fluid by arranging the extending direction of the columnar body in the fluid circulation passage in a direction intersecting the fluid circulation direction.
The columnar body is disposed so as to be rotatable by a predetermined angle about a columnar axis, and has a fluid intake opening that takes in the fluid facing the fluid flow direction on the outer periphery of the columnar body, and the fluid intake opening on the back side. A recessed portion having a rear side wall surface facing the fluid flow direction, the rear wall surface surface facing the fluid flow direction and facing the fluid flow direction, and the left and right sides from the most projected portion. It has an inclined surface that separates and flows the fluid downstream in the flow direction, and forms a stagnation space where the fluid fills in the concave portion where the fluid flows separately on both the left and right sides,
Among pressure-receiving surface of the pressure sensor to measure the fluid pressure between the該淀said fluid intake opening of the viewed space and the inner side wall surface of the upper and lower walls of the recess, or to be present in at least one wall surface It arrange | positions so that it may adjoin.
[0009]
Here, the “back side wall surface” means a wall surface disposed opposite to the fluid intake opening on the back side and a planar body having the same action as the wall surface, for example, the curved surface 1Ac in FIG. 3A, the surfaces 1Cc, 1Dc, and 1Ec of the surfaces 1Bd, 1Bc, (b), (c), and (d), the edge 10Ad of FIG. 4B, the 10Ad of FIG. 6A, and FIG. This includes the edges 11b and 12b, the surface 10Fd in FIG. 10C, 10Gd in FIG.
[0010]
In the present invention, with the back side wall surface facing the fluid flow direction, the most projecting portion facing the fluid flow and the inclined surfaces on both sides from the most projecting portion are symmetrical along the fluid flow direction. As a result, the fluid collided by the back wall surface forms a stagnation space in the recess, and the fluid in the stagnation space pushed by the subsequent fluid flows separately to the left and right with respect to the cylinder.
The portion used for measuring the fluid pressure has a stagnation space, and the pressure receiving surface of the pressure sensor is the concave portion so as to measure the fluid pressure between the fluid intake opening and the back side wall surface of the stagnation space. of the upper and lower wall surfaces are arranged to present in or close as present in at least one wall surface.
[0011]
Therefore, according to the present invention, since the concave portion is formed in the columnar body so as to face the fluid flow direction, the columnar body extending direction is disposed in the fluid circulation passage so as to intersect the fluid circulation direction. Since the fluid is measured by the stagnation space of the recess, the pressure of the fluid can be measured easily and accurately even in a narrow measurement space.
Moreover, even if the fluid pressure measuring surface is slightly inclined from the fluid flow direction due to the stagnation space, it is possible to measure an accurate pressure.
[0012]
Further, the one from the fluid intake opening of the extended by upper and lower walls to said inner side wall, provided with an opening in one wall surface which extends at least from the fluid intake opening on the inner side wall surface, the pressure receiving It is also an effective means of the present invention that a columnar pressure sensor having a surface on the one wall surface is disposed in the columnar body through the opening.
[0013]
According to this technical means, the pressure sensor has a pressure receiving surface on the one wall surface of the pressure sensor formed in a columnar shape, the pressure receiving surface faces the stagnation space, and the longitudinal direction of the sensor is formed in the fluid measuring device formed in the columnar body. Since the direction can be arranged upright on the fluid measuring device parallel to the axis, the outer periphery of the sensor can be arranged close to or in contact with the inner wall of the outer peripheral surface inside the columnar body of the fluid measuring device. It is possible to provide a small fluid measuring device capable of measuring even in a narrow measurement space.
[0014]
In addition, an opening is provided in the upper and lower wall surfaces extending from the fluid intake opening to the back side wall surface, and the pressure receiving surface extends from the fluid intake opening to the back wall surface side. It is also an effective means of the present invention that the columnar pressure sensors included in the columnar body are respectively disposed on the upper wall surface side and the lower wall surface side in the columnar body through the opening.
[0015]
According to such technical means, since the pressure sensors are respectively disposed on the upper wall surface side and the lower wall surface side in the columnar body with the pressure receiving surface facing the stagnation space, the columnar shape forming the fluid measuring device The fluid pressure from the direction orthogonal to the axial direction of the body is the same pressure acting on the upper wall surface side and the lower wall surface side, but when the fluid flows at an angle from this orthogonal direction, the fluid flows The pressure on the facing side increases and the pressure on the other side decreases. Therefore, by storing the relationship as data in the apparatus in advance, by obtaining the pressure on the surface facing the direction in which the fluid flows and the pressure on the other surface at that time, the fluid at that time can be obtained. The direction of flow can be measured.
[0016]
Further, the invention relates to a fluid measurement method, using said fluid measuring device Te fluid measurement method odor measuring fluid, previously, the pressure distribution for an angle θ at which a predetermined angle rotates about the cylindrical axis of the columnar body providing a characteristic, pre-Symbol to measure the fluid pressure of a predetermined angle rotation and while the stagnation space around the columnar axis, measures the total pressure, static pressure and flow rate of the fluid based on the peak value of the fluid pressure It is characterized by that.
[0017]
According to the present invention, a fluid intake opening provided in the fluid measurement probe and a concave portion where the fluid measurement probe formed in a columnar shape is divided into left and right portions are filled with fluid to form a stagnation space. Since the stagnation space exists even if the back side wall surface is not disposed at a right angle so as to oppose the fluid flow direction accurately, the fluid pressure in the stagnation space is accurately measured. Can do.
[0018]
In another method invention, in the fluid measurement method for measuring a fluid using the fluid measurement device, the angle θ when rotating a predetermined angle around the columnar axis of the columnar body in advance as a parameter, A pressure distribution characteristic is prepared by a pair of fluid pressure measuring means arranged on the upper wall surface side and the lower wall surface side in which the fluid flow direction with respect to the fluid intake opening is changed by an angle β in the axial direction, and the columnar shape of the columnar body Measure the fluid pressure by the pair of fluid pressure measuring means in the stagnation space at the angle θ around the axis, and based on the fluid pressure value, in addition to the fluid total pressure, static pressure, flow angle θ, The angle β is measured.
[0019]
In the present invention, the fluid measurement probe is provided so as to face one side wall surface extending from the fluid intake opening of the recess forming the stagnation space toward the back side wall surface, and facing the one side wall surface. A pair of fluid pressure measuring means are arranged on each other side wall surface,
Fluid in which the flow direction of the fluid with respect to the fluid intake opening is orthogonal to the columnar axis by using the fluid measurement probe as a parameter and the angle θ when rotated by a predetermined angle around the columnar axis. When the flow direction is set to 0, a pressure distribution characteristic by the pair of fluid pressure measuring means changed by an angle β in the axial direction is prepared,
The fluid measuring probe measures the fluid pressure by the pair of fluid pressure measuring means in the stagnation space at the angle θ around the columnar axis, and based on the fluid pressure value, the total pressure of the fluid, the static pressure In addition, the flow angle θ of the fluid can be measured by measuring the angle β.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Only.
[0021]
Fig.1 (a) is the schematic of the fluid measuring device concerning 1st Embodiment of this invention, (b) is AA sectional drawing of (a). The same members as those in FIG.
In FIG. 1, the probe 1A formed in a columnar shape is provided with a recess 1Aa. The recess 1Aa is formed in a crescent shape symmetrically in the vertical direction of the center line 20 as shown in FIG.
[0022]
As shown in FIG. 2, the pressure receiving surface 2a of the pressure sensor 2 is disposed on the upper surface of the recess 1Aa. The pressure receiving surface 2a is partially missing without facing the recess 1Aa. However, depending on the pressure receiving performance of the pressure sensor 2, the pressure receiving surface 2a may face the front surface or may be partially missing. Good. The cylinder surface of the pressure sensor 2 should be as close as possible to the outer peripheral surface 4Ab of the support column 4A. With such a configuration, the outer periphery 4Ab of the support column 4A can be formed in a small diameter, which is compact and advantageous for measurement in a narrow measurement space, and the outer periphery surface 4Ab of the support column 4A and the back side of the recess 1Aa The distance to the wall surface 1Ac is shortened, and errors due to pressure fluctuations received by the pressure receiving surface 2a due to vibrations generated by the natural frequency of the upper and lower wall surfaces in the recess 1Aa of the probe 1A generated by the fluid can be reduced.
[0023]
The wall 1Ac on the back side of the recess 1Aa according to the present embodiment causes fluid stagnation in the recess 1Aa due to its presence. If the wall surface 1Ac is not present, the fluid flows in the direction of the arrow, and the pressure sensor 2 measures the static pressure. By this stagnation, the pressure sensor 2 can measure the total pressure.
[0024]
Due to this stagnation, even if the arrow direction slightly fluctuates up and down in FIG. 2 (a) or slightly in the rotation direction in FIG. The rate is small. Therefore, whether or not the probe 1A is arranged in a state as shown in FIG. 2A is arranged at a right angle to the flow direction is determined by rotating the column 4 in a clockwise or counterclockwise direction. It can be known by measuring the pressure and obtaining its peak value.
[0025]
Further, as shown in FIG. 2B, the back side wall surface 1Ac of the recess 1 </ b> Aa is curved toward the fluid flow direction symmetrically with respect to the center line 20. Therefore, the fluid is not reflected in the counter-flow direction by the wall surface 1Ac, the stagnation of the fluid in the recess 1Aa is not disturbed , and the total pressure is reduced by the pressure receiving surface 2a existing on the upper surface of the recess 1Aa. Measurement is possible.
[0026]
FIG. 3 shows another shape (4B, 4C, 4D, 4E) of the support 4. FIG. 3A shows a cylindrical column, a wall surface 1Bd that is orthogonal to the center line 20 and faces the fluid flow direction, and is symmetrical with respect to the center line 20 toward the fluid flow direction. 1Bc and 1Bc are curved. Since the wall surface 1Bd has a small area and the amount of fluid reflected in the counterflow direction by the wall surface 1Bd is small, the stagnation of the fluid in the recess 1Aa is not disturbed, and the total pressure can be measured.
[0027]
3B is thin in the direction perpendicular to the fluid flow direction and thick in the flow direction. Therefore, when it is placed in the fluid, the pillar itself is moved in the fluid flow direction by the fluid. The position of the sensor pressure-receiving surface is not shifted due to inclination or curvature, and an accurate pressure can be measured.
[0028]
The support column in FIG. 3C is formed in a quadrangular cross section, and the support column in FIG. 3D is formed in a triangular cross section. These recess back side wall surfaces 1Dc and 1Ec are curved symmetrically with respect to the center line 20 in the fluid flow direction. Since the amount of fluid reflected in the counterflow direction by the wall surface 1Dc and the wall surface 1Ec is small, the stagnation of the fluid in the recess 1Aa is not disturbed, and the total pressure can be measured.
[0029]
Next, the operation of the first embodiment configured as described above will be described with reference to FIG. In FIG. 2, the probe 1A arranged substantially perpendicular to the fluid flow is rotated by a predetermined angle about its axis 4Aa, and the pressure P [Pa] received by the pressure receiving surface 2a of the pressure sensor 2 is measured. ), A pressure distribution curve S of the pressure P received by the pressure sensor 2 with respect to the rotation angle θ can be obtained. At that time, the static pressure Ps [Pa] is measured from the pressure distribution characteristic of the angle θ when the fluid measurement probe prepared in advance is rotated by a predetermined angle around the columnar axis, and the peak of the pressure distribution curve S is measured. The value is the total pressure Pz, and the total pressure Pz−static pressure Ps = dynamic pressure Pd can be calculated.
[0030]
Since the first embodiment is configured as described above, the sensor 2 for measuring pressure can be formed in a small cylindrical shape, and its central axis 2b can be provided parallel to the column 4A. Can be formed in a small diameter and can be inserted into a narrow space.
[0031]
Further, since the columnar sensor 2 can be inserted and disposed in the support column 4A along the axis in the support column 4A, the surface of the sensor 2 can be disposed in contact with or close to the inner peripheral surface of the outer peripheral surface 4Ab of the support column 4A. Therefore, the pressure receiving surface 2a of the sensor 2 can be disposed adjacent to the outer peripheral surface of the support column 4A, and the pressure distribution generated on the outer peripheral surface of the support column can be measured. Therefore, the sensor 2 having the same performance as the pressure measuring instrument having the same diameter as the support column 4A in advance. by keeping measuring the static pressure at a position corresponding to the outer peripheral surface of the outer peripheral struts arranged, it is possible to measure the pressure distribution close to the pressure distribution curve S 0 around struts.
[0032]
Next, a second embodiment will be described. FIG. 4A is a schematic view of a fluid measuring device according to a second embodiment of the present invention, FIG. 4B is a side view of the recess 10Aa portion, and FIG. 4C is a front view of the recess 10Aa portion. The difference from the first embodiment is that, in the first embodiment, the sensor having the pressure-receiving surface facing the recess is arranged on the upper side of the recess, whereas the second embodiment is different from the sensor in the second embodiment. Is arranged on the upper side and the lower side of the recess, and the pressure is measured in consideration of the influence of the fluid pressure from the vertical direction.
[0033]
In FIG. 4, the probe 10A is provided with a recess 10Aa formed in a V-groove shape, an opening 13 is formed on the upper side surface 10Ab, and an opening 14 is formed on the lower side surface 10Ac. The pressure receiving surface of the sensor 2 is formed in these openings. It arrange | positions so that it may oppose. The shape of the boundary line 10Ad between the upper side surface 10Ab and the lower side surface 10Ac is the inner wall surface 1Ac in FIG. 2 described in the first embodiment, 1Bd, 1Bc in FIG. 3A, and FIG. 3B. The same shape as 1Cc, 1Dc in FIG. 3 (c), and 1Ec in FIG. 3 (d) can be used.
[0034]
Next, the operation of the second embodiment will be described with reference to FIGS. When the fluid flows in the direction of the arrow at an angle β as shown in FIG. 5A and flows in the direction of the arrow at the angle θ as shown in FIG. the sensor pressure P 1 parts 13 side is smaller than the sensor pressure P 2 of the opening 14 side, when rotating the probe 10A in the clockwise direction from the angle theta = 0 ° as shown in FIG. 6 (b), (b) The pressure fluctuation curve 201 is drawn using the fluid pressure measured by the sensor on the opening 13 side, and the pressure fluctuation curve 202 is drawn using the fluid pressure measured by the sensor on the opening 14 side.
[0035]
On the other hand, if the angle β is 0 ° and the fluid flow direction is in the direction of the center line 30, the detected pressure of the sensor on the opening 13 side and the detected pressure of the sensor on the opening 14 side are equal to Pn . When the fluid flow direction angle β changes clockwise from β = 0 ° as a starting point, the pressure fluctuation curve 204 due to the pressure detected by the sensor on the opening 14 side rises from the pressure P n point, and the opening 14 Descends with a peak at an angle that directly faces the direction in which the fluid flows. Further, the pressure fluctuation curve 203 due to the pressure detected by the sensor on the opening 13 side falls from the pressure Pn point.
[0036]
Then, at the predetermined β angle, the pressure P 2x is measured in the pressure fluctuation curve 204 and the pressure P 1x is measured in the pressure fluctuation curve 203. The fluid flow angle can be measured by measuring in advance the relationship between the β angle in the vertical direction in the fluid flow direction, that is, the values detected by the pair of sensors 2a and 2B with respect to the β angle. The measured pressure = P n in the flow angle beta = 0 ° as a peak value, can be calculated as the total pressure P z, dynamic pressure and a static pressure P s and the total pressure P z measured in advance Can be requested.
[0037]
Further, after adjusting the insertion angle of the probe 10A from the flow angle β and adjusting the measurement pressures of the sensors 2A and 2B to the same angle β, the total pressure, dynamic pressure, fluid velocity, and the like can be measured.
[0038]
7 and 8 are schematic views of a fluid measuring device according to a third embodiment of the present invention, in which FIG. 7 (a) is a side view, (b) is a front view, and FIG. 8 (a) is FIG. It is II sectional drawing of (a), FIG.8 (b) is II-II sectional drawing of FIG.7 (b). The difference from the second embodiment is that the stagnation space by the V-groove of the second embodiment is formed along the outer periphery of the support column in a direction perpendicular to the axis and parallel to the direction of fluid flow, so that the fluid escape of the stagnation space The third embodiment is formed in parallel with the fluid flow direction, whereas in the third embodiment, the two groove portions are cut and formed on the outer periphery of the support column at an angle with respect to the shaft center. In contact with each other to form a stagnation space by the V-groove, and the escaping portion of the stagnation space is formed at a vertical angle with respect to the direction of fluid flow along the two groove portions to form a fluid escaping portion. is there.
[0039]
The third embodiment will be described with reference to FIGS. 7 and 8. The upper edge 11a of the inclined surface 11 forming the upper groove portion is on the outer peripheral surface of the probe 10B, and the upper edge 11a extends from the lower edge 11b to the lower edge 11b. The inclined surface 11 is formed. Similarly, the lower edge 12a of the inclined surface 12 forming the lower groove portion is on the outer peripheral surface of the probe 10B, and the inclined surface 12 is formed from the lower edge 12a toward the lower edge 12b. These inclined surfaces 11 and 12 can be cut by a milling blade having a predetermined inclined surface angle at the blade tip.
[0040]
The fluid pressure in the stagnation space 10Ba is measured by a pressure sensor (not shown) provided at a place where the passages 16 and 17 communicate with each other as shown in FIG. 8B as a reference example . As shown in FIG. 9, the pressure sensor may be configured as a probe 10C by arranging the sensors 2A and 2B in the vicinity of the stagnation space 10Ca.
[0041]
FIG. 10 is a cross-sectional view showing various stagnation space shapes applicable to the second embodiment shown in FIG. FIGS. 10A and 10B use the square recesses 10Da and 10Ea in the first embodiment shown in FIG. 2 instead of the V-groove. Further, (c) and (d) are such that the upper side surfaces 10Db and 10Eb and the lower side surfaces 10Dc and 10Ec of the rectangular recess are curved like the upper side surfaces 10Fb and 10Gb and the lower side surfaces 10Fc and 10Gc. Incidentally, (b) and (d) are reference examples, and the passages 16 and 17 communicate with a pressure sensor (not shown).
[0042]
【The invention's effect】
As described above in detail, the present invention is provided with a recess having an opening and a back side wall surface facing the fluid flow direction in the columnar body, and a fluid stagnation space is formed in the recess. Since the extending direction of the columnar body is arranged in the passage in a direction crossing the fluid flow direction, and the fluid is measured by the stagnation space of the recess, the fluid pressure can be easily and accurately applied in a narrow measurement space. Can be measured.
[Brief description of the drawings]
FIG. 1 is a schematic view of a fluid measuring device according to a first embodiment of the present invention, and (b) is a cross-sectional view taken along the line AA in (a).
FIG. 2 is an operation explanatory diagram of the first embodiment.
FIG. 3 is a cross-sectional view showing a cross-sectional shape of another fluid measurement probe.
FIG. 4 is a schematic diagram of a fluid measuring device according to a second embodiment of the present invention.
FIG. 5 is an operation explanatory diagram 1 of the second embodiment.
FIG. 6 is an operation explanatory diagram 2 of the second embodiment.
FIG. 7 is a schematic view of a fluid measuring device according to a third embodiment of the present invention.
8A is a cross-sectional view taken along the line II in FIG. 7, and FIG. 8B is a cross-sectional view taken along the line II-II in FIG.
FIG. 9 is a schematic cross-sectional configuration diagram according to a modification of the third embodiment of the present invention.
FIG. 10 is a schematic cross-sectional configuration diagram according to another embodiment.
FIG. 11 is a schematic configuration diagram of a fluid measurement probe according to a conventional example.
FIG. 12 is a schematic configuration diagram of a fluid measurement probe according to a prior development example.
[Explanation of symbols]
1A Probe for fluid measurement (fluid measurement device)
1Aa Concave part 1Ac Back side wall surface 1Ah Most protruding part 2 Pressure sensor (A, B)

Claims (5)

柱状体に形成され、流体流通通路内に該柱状体の延設方向が流体流通方向と交差する方向に配置して流体を測定する流体計測装置において、
前記柱状体は柱状軸心を中心として所定角度回動可能に配置され、前記柱状体の外周に流体の流れ方向と対面して流体を取り込む流体取込開口と、奥側に該流体取込開口に対向した奥側壁面とを有した凹部を設け、前記奥側壁面は流体の流れ方向に対して正対した状態で、流体の流れに対向した最突出部と該最突出部から左右両側に分かれて流体を流れ方向下流側へ流出させる傾斜面を有し、前記左右両側に分かれて流出するところの前記凹部内に流体が充満する淀み空間を形成し、
該淀み空間の前記流体取込開口と前記奥側壁面との間の流体圧力を測定するように圧力センサの受圧面が前記凹部の上下壁面のうち、少なくとも一方の壁面に存在するようにまたは近接して存在するように配設したことを特徴とする流体計測装置。
In a fluid measuring device that is formed in a columnar body and measures the fluid by arranging the extending direction of the columnar body in the fluid circulation passage in a direction intersecting the fluid circulation direction,
The columnar body is disposed so as to be rotatable by a predetermined angle about a columnar axis, and has a fluid intake opening that takes in the fluid facing the fluid flow direction on the outer periphery of the columnar body, and the fluid intake opening on the back side. A recessed portion having a rear side wall surface facing the fluid flow direction, the rear wall surface surface facing the fluid flow direction and facing the fluid flow direction, and the left and right sides from the most projected portion. It has an inclined surface that separates and flows the fluid downstream in the flow direction, and forms a stagnation space where the fluid fills in the concave portion where the fluid flows separately on both the left and right sides,
Among pressure-receiving surface of the pressure sensor to measure the fluid pressure between the該淀said fluid intake opening of the viewed space and the inner side wall surface of the upper and lower walls of the recess, or to be present in at least one wall surface A fluid measuring device arranged so as to be close to each other.
前記上下壁面のうち、少なくとも前記流体取込開口から前記奥側壁面側に延設された一方壁面に開口部を設けるとともに、受圧面を前記一方の壁面に有した柱状の圧力センサを、前記開口部を介して前記柱状体内に配設したことを特徴とする請求項1記載の流体計測装置。Wherein one of the upper and lower wall surfaces, provided with at least the opening from the fluid intake opening on the wall of one that extends to the inner side wall surface, a columnar pressure sensor having a pressure receiving surface the one wall surface, said The fluid measuring device according to claim 1, wherein the fluid measuring device is disposed in the columnar body through an opening. 前記上下壁面に開口部を設けるとともに、受圧面を前記流体取込開口から前記奥側壁面側に延設された前記一方の壁面に有した柱状の圧力センサを、前記開口部を介してそれぞれ前記柱状体内の前記上壁面側及び下壁面側に配設したことを特徴とする請求項1記載の流体計測装置。While providing an opening in the upper and lower wall surfaces , a columnar pressure sensor having a pressure receiving surface on the one wall surface extending from the fluid intake opening to the back side wall surface side is provided through the opening, respectively. The fluid measuring device according to claim 1, wherein the fluid measuring device is disposed on the upper wall surface side and the lower wall surface side in the columnar body. 前記請求項1ないし3のいずれか1項に記載の流体計測装置を用いて流体を測定する流体計測方法において、
予め、前記柱状体の柱状軸心を中心として所定角度回動した際の角度θに対する圧力分布特性を用意し、
前記柱状軸心を中心として所定角度回動しつつ前記淀み空間の流体圧力を測定し、該流体圧力のピーク値に基づいて流体の全圧、静圧及び流速を計測することを特徴とする流体計測方法。
In the fluid measuring method of measuring fluid using the fluid measuring device according to any one of claims 1 to 3,
Prepare in advance a pressure distribution characteristic for the angle θ when the columnar body is rotated by a predetermined angle around the columnar axis of the columnar body,
The fluid is characterized in that the fluid pressure in the stagnation space is measured while rotating by a predetermined angle about the columnar axis, and the total pressure, static pressure and flow velocity of the fluid are measured based on the peak value of the fluid pressure. Measurement method.
前記請求項1または3のいずれか1項に記載の流体計測装置を用いて流体を測定する流体計測方法において、
予め、前記柱状体の柱状軸心を中心として所定角度回動した際の角度θをパラメータとして、前記流体取込開口に対する流体の流れ方向を軸心方向に角度β変化させた前記上壁面側及び下壁面側に配設した一対の流体圧力測定手段による圧力分布特性を用意し、
前記柱状体の柱状軸心を中心として前記角度θ時の淀み空間の前記一対の前記流体圧力測定手段による流体圧力を測定し、
該流体圧力値に基づいて流体の全圧、静圧、流れ角θの他、前記角度βを計測することを特徴とする流体計測方法。
In the fluid measuring method of measuring fluid using the fluid measuring device according to any one of claims 1 and 3,
The upper wall surface side in which the flow direction of the fluid with respect to the fluid intake opening is changed by an angle β in the axial direction with the angle θ when the column body is rotated by a predetermined angle about the columnar axis as a parameter in advance, and Prepare the pressure distribution characteristics by a pair of fluid pressure measuring means arranged on the lower wall side,
Measuring the fluid pressure by the pair of fluid pressure measuring means in the stagnation space at the angle θ around the columnar axis of the columnar body;
In addition to the total pressure, static pressure, and flow angle θ of the fluid, the angle β is measured based on the fluid pressure value.
JP2001083285A 2001-03-22 2001-03-22 Fluid measuring device and fluid measuring method Expired - Fee Related JP4346830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001083285A JP4346830B2 (en) 2001-03-22 2001-03-22 Fluid measuring device and fluid measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001083285A JP4346830B2 (en) 2001-03-22 2001-03-22 Fluid measuring device and fluid measuring method

Publications (2)

Publication Number Publication Date
JP2002286515A JP2002286515A (en) 2002-10-03
JP4346830B2 true JP4346830B2 (en) 2009-10-21

Family

ID=18939124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001083285A Expired - Fee Related JP4346830B2 (en) 2001-03-22 2001-03-22 Fluid measuring device and fluid measuring method

Country Status (1)

Country Link
JP (1) JP4346830B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5531609B2 (en) * 2009-06-23 2014-06-25 ダイキン工業株式会社 Refrigerant concentration detector
JP6767239B2 (en) * 2015-10-29 2020-10-14 セイコーインスツル株式会社 Information measurement device and information measurement system
KR101957214B1 (en) * 2017-06-09 2019-03-12 한국산업기술시험원 Pitot tube for improving Pitot coefficient and stability

Also Published As

Publication number Publication date
JP2002286515A (en) 2002-10-03

Similar Documents

Publication Publication Date Title
CA1111281A (en) Method and apparatus for stabilizing the flow coefficient for pitot-type flowmeters with a downstream-facing port
US6923055B2 (en) Positive displacement flow meter method and apparatus
JP4346830B2 (en) Fluid measuring device and fluid measuring method
US4173889A (en) Ultrasonic flowmeter
Higashitani et al. Hole Pressure Error Measurements in Pressure‐Generated Shear Flow
US20100122585A1 (en) Coriolis flow sensor with optically reflective motion sensor
JP2009092196A (en) Static pressure gas bearing
US11815381B2 (en) Ultrasonic flowmeter, use of an ultrasonic flowmeter in a shut-off device and shut-off device
JP2005527755A (en) Slotted flow restrictor for mass flow meters
US20210072013A1 (en) Boundary layer probe, measuring assembly, and method for determining a fluid flow
US20030089180A1 (en) Coriolis mass flow meter
US5287613A (en) Method of manufacturing an annular slit restrictor using a shrink fit operation
JP2002365147A (en) Load cell
JP3926465B2 (en) Mass flow controller shunt structure
JP3229429B2 (en) Micro volume flow meter
JP3743041B2 (en) Fuel pump impeller
KR20090024305A (en) Curtain coater with a porous curtain guide structure, curtain guide structure for a curtain coater and method of producing the curtain guide structure
US20160069721A1 (en) Porting configuration for a fluid flow meter
CN212254210U (en) Measuring section structure of ultrasonic measuring device
CN211668584U (en) Direct-insertion ultrasonic welding combined ultrasonic water meter sensor
JP2644247B2 (en) Hydrostatic gas bearing
KR960008499Y1 (en) Tube for measuring pressure
JPS601421Y2 (en) porous pitot tube
JP4048199B2 (en) Average bidirectional flow tube
US6508136B1 (en) High output differential pressure flow sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090715

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees