JP4346798B2 - HCV core antigen detection or quantification method and detection or quantification reagent used therefor. - Google Patents
HCV core antigen detection or quantification method and detection or quantification reagent used therefor. Download PDFInfo
- Publication number
- JP4346798B2 JP4346798B2 JP2000247146A JP2000247146A JP4346798B2 JP 4346798 B2 JP4346798 B2 JP 4346798B2 JP 2000247146 A JP2000247146 A JP 2000247146A JP 2000247146 A JP2000247146 A JP 2000247146A JP 4346798 B2 JP4346798 B2 JP 4346798B2
- Authority
- JP
- Japan
- Prior art keywords
- antibody
- hcv core
- ktm
- reagent
- core protein
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Peptides Or Proteins (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、検体中のC型肝炎ウイルス(以下、HCVと略記する)の検出または定量方法およびHCVの検出または定量試薬に関する。
【0002】
【従来の技術】
感染症の原因であるウイルスの検査は、抗体検査、抗原検査および遺伝子検査と種々の方法で行われている。
ウイルスに対する抗体検査およびウイルス自身の抗原検査は、免疫測定法が主流でウイルス感染の診断や輸血用血液のウイルススクリーニング検査、ウイルス治療におけるモニターなどに幅広く活用されている。また、遺伝子検査は遺伝子を増幅させるポリメラーゼ・チェイン・リアクション(polymerase chain reaction:PCR)法,リガーゼ・チェイン・リアクション(ligase chain reaction:LCR)法,ヌクレイック・アシド・シークエンス・ベースド・アンプリフィケーション(nucleic acid sequence based amplification:NASBA)法や標識化効率を上げたブランチド・ディーエヌエー(branched DNA:bDNA)法などが開発され、高感度な測定が可能となっている。
【0003】
遺伝子検査は確定診断といった目的とともに、前述の抗体検査や抗原検査では検出できない感度領域での検査や治療におけるウイルス排除評価などで活用されている。最近では、遺伝子増幅法を抗体検査や抗原検査では感度的に検出できないウイルス感染初期での輸血血液のスクリーニング検査に応用しようとしている。
【0004】
しかしながら、遺伝子検査は、操作が煩雑で特殊な装置を必要とすること、技術的な熟練を要すこと、高いコスト、再現性や測定精度が悪いこと、大量検体処理に向かないこと、検体中の阻害因子により偽陰性化すること、蛋白質に比べ核酸自体が検体中で不安定であること、遺伝子の増幅化効率が一定ではないことなどの問題点を抱えている。ウイルス由来の核酸がRNAである場合はさらに不安定で、操作の過程や検査検体の保存状態により値が大きく振れることが報告されている。
【0005】
ウイルスに対する抗体測定は生体内の免疫機構によって生成するウイルスに対する抗体を検出するもので、ウイルス感染の影響を観察する方法である。従って個体によっては抗原に対する抗体産生が異なり、高い抗体価を示すものや、全く抗体を産生しない個体が存在する。また抗体量は必ずしもウイルス量と相関しないことから実際の病態や体内のウイルス量を予測することが難しい。またウイルス感染初期では抗体が産生されておらず、感染初期での検出が不可能なこと、さらに抗体の非特異的な反応も認められることなどから正確な判定ができない問題点がある。
【0006】
抗原検査はウイルス由来の抗原を検出する方法で、各種ウイルス由来抗原測定系が発売されている。抗原検査はウイルス由来の抗原を認識する抗体を用いた免疫測定が中心であるが、遺伝子増幅法と比較すると感度が不足している。そのためウイルス量が少なくなると十分に検出できない問題点がある。また体内ではウイルスと共にウイルスに対する抗体が共存しており、この共存抗体が免疫測定の材料である抗体と競合反応するために感度良く抗原を測定することができない場合がある。HBVや他の肝炎ウイルス、HIVなどにおいても抗原測定法が存在するが、PCRといった遺伝子増幅法と比較して感度面で劣っており、診断や治療のマーカーとして十分と言えるものではない。
【0007】
最近になってHCVの内部抗原であるHCVコア蛋白質測定系が開発されている(特開平8−29427)。本法は遺伝子を測定する方法と比較して簡便でかつ安定に測定できHCVの確定診断や、治療における効果予測、治療効果判定に使えるキットである。しかし感度はPCR定量法と比較して不足しており、HCVコア蛋白質測定だけで診断や治療のモニターができる訳ではないという問題点を抱えている。実際該方法の検出限界は8pg/mL(PCRタイターに換算して104〜5ウイルス粒子/mL)であり、PCRに比べ検出限界は10倍以上高い。したがって治療効果を判定する際、8pg/mL以下になった検体は陰性と判定されてしまい、低値でのウイルス量を把握することはできない。
【0008】
一般的に抗原と抗体との反応において高濃度の塩を使用することは、抗原と抗体の反応を阻害すること、また抗原抗体反応物から抗原を解離させることが知られている。
例えば、超高感度酵素免疫測定法[石川栄治著、学会出版センター、(1993)]の第9章には、以下のように記載されている。
「タンパク質の固相への非特異吸着は種々の条件により増減するので、非特異的吸着が減少するような条件にすれば血清干渉は少なくなるはずである。インスリンのサンドイッチ法で、抗インスリンIgG不溶化ポリスチレンボールと血清のインキュベーション濃度を下げ、時間を短縮すると血清干渉は少なくなる(表IX−14)(Ruan et al.,1986)。また、無機塩の濃度を高くするとタンパク質の固相への非特異吸着が減少するので、血清干渉を減少させることができる。(表IX−15、図IX−18〜IX―21)(Hashida et al.,1983)。無機塩の種類により効果的な濃度が異なるが、あまり高い濃度では免疫反応そのものが阻害される。食塩では0.3〜0.4mol/lが上限であろう。」
【0009】
【発明が解決しようとする課題】
本発明の目的は、血液事業や健康診断におけるスクリーニング用途のように多数の検体を処理するのに適した、HCV陽性検体を簡便で高感度に検出または定量するHCV抗原検出または定量方法およびそれに用いる検出または定量試薬を提供することである。
【0010】
【課題を解決するための手段】
本発明者らは、意外にも、アルカリ性ホスファターゼ標識した抗HCVコア蛋白質抗体を用いることにより、高濃度の塩を含む水溶液中でHCVコア蛋白質と抗原抗体反応を行わせると、アルカリ性ホスファターゼ以外の標識物質で標識した抗HCVコア蛋白質抗体を用いる場合と異なり、免疫反応を阻害することなく該抗原をより高感度に検出することができることを見出し本発明を完成させた。
【0011】
本発明は、下記(1)〜(29)に関する。
(1) アルカリ性ホスファターゼ標識した抗HCVコア蛋白質抗体と検体中のHCVコア抗原とを、高濃度の塩を含む水溶液中で抗原抗体反応を行わせて免疫複合体を形成させ、該免疫複合体中のアルカリ性ホスファターゼ活性を測定することを特徴とする、検体中のHCVコア抗原を検出または定量する免疫測定方法。
(2) 塩がハロゲン化アルカリ金属塩類である(1)記載の方法。
【0012】
(3) 塩が塩化ナトリウムである(1)記載の方法。
(4) 塩濃度が0.5M〜飽和濃度である(1)〜(3)のいずれかに記載の方法。
(5) 抗HCVコア蛋白質抗体がHCVコア蛋白質のN末から11〜50番のアミノ酸配列の内、少なくとも5個の連続するアミノ酸配列を認識する抗体である(1)〜(4)のいずれかに記載の方法。
【0013】
(6) 抗HCVコア蛋白質抗体がKTM−145、KTM−153、KTM−157、KTM−163およびKTM−167からなる群から選択される抗体である(1)〜(4)のいずれかに記載の方法。
(7) 検体が抗原抗体反応前にカオトロピック物質および/またはアルカリ剤で処理されたものである(1)〜(6)のいずれかに記載の方法。
【0014】
(8) カオトロピック物質がグアニジン塩類である(7)記載の方法。
(9) アルカリ剤が、水酸化アルカリ金属塩である(7)または(8)記載の方法。
(10) カオトロピック物質が1M〜飽和濃度である(7)〜(9)のいずれかに記載の方法。
【0015】
(11) アルカリ剤の処理が、45〜55℃の温度で行われる(7)〜(10)のいずれかに記載の方法。
【0016】
(12) アルカリ性ホスファターゼ標識した抗HCVコア蛋白質抗体、0.5M〜飽和濃度の塩およびアルカリ性ホスファターゼ活性測定用試薬を含む、HCVコア抗原の検出または定量用試薬。
(13) 塩がハロゲン化アルカリ金属塩類である(12)記載の試薬。
【0017】
(14) 塩が塩化ナトリウムである(12)または(13)記載の試薬。
(15) 抗HCVコア蛋白質抗体がHCVコア蛋白質のN末から11〜50番のアミノ酸配列の内、少なくとも5個の連続するアミノ酸配列を認識する抗体である(12)〜(14)のいずれかに記載の試薬。
(16) 抗HCVコア蛋白質抗体がKTM−145、KTM−153、KTM−157、KTM−163およびKTM−167からなる群から選択される抗体である(12)〜(14)のいずれかに記載の試薬。
【0018】
(17) (12)〜(16)のいずれかに記載の試薬とカオトロピック物質および/またはアルカリ剤を含有する検体処理試薬とからなるHCVコア抗原の検出または定量用試薬キット。
(18) カオトロピック物質がグアニジン塩類である(17)記載のキット。
【0019】
(19) アルカリ剤が、水酸化アルカリ金属塩である(17)または(18)に記載のキット。
(20) カオトロピック物質が1M〜飽和濃度である(17)〜(19)のいずれかに記載のキット。
【0020】
(21) HCVコア蛋白質のN末から11〜50番のアミノ酸配列の内、少なくとも5個の連続するアミノ酸配列部位を認識するモノクローナル抗体。
(22) HCVコア蛋白質のN末から41〜50番のアミノ酸配列部位を認識するモノクローナル抗体。
(23) ハイブリドーマKTM‐145(FERM BP−6838)が産生する(22)記載のモノクローナル抗体。
(24) HCVコア蛋白質のN末から11〜30番のアミノ酸配列部位を認識するモノクローナル抗体。
(25) ハイブリドーマKTM‐153(FERM BP−6839)が産生する(24)記載のモノクローナル抗体。
(26) HCVコア蛋白質のN末から31〜50番のアミノ酸配列部位を認識するモノクローナル抗体。
(27) ハイブリドーマKTM‐157(FERM BP−6840)が産生する(26)記載のモノクローナル抗体。
(28) HCVコア蛋白質のN末から21〜40番のアミノ酸配列部位を認識するモノクローナル抗体。
(29) ハイブリドーマKTM‐163(FERM BP−6841)またはハイブリドーマKTM‐167(FERM BP−6842)が産生する(28)記載のモノクローナル抗体。
【0021】
【発明の実施の形態】
以下、本発明について詳細に説明する。
本発明のアルカリ性ホスファターゼ標識した抗HCVコア蛋白質抗体中のアルカリ性ホスファターゼとしては、いかなる起源のアルカリ性ホスファターゼも使用できる。例えば、大腸菌等の微生物および牛等の動物由来のアルカリ性ホスファターゼがあげられる。
【0022】
本発明のアルカリ性ホスファターゼ標識した抗HCVコア蛋白質抗体中の抗HCVコア蛋白質抗体としては、特開平7−145194号またはHepatology, 16, 886 (1992)に記載のHCVコア蛋白質に反応する抗体であればいずれでも使用できる。該HCVコア蛋白質は、特開平7−145194号、特開平8−29427号ならびにHepatology, 16, 886 (1992)に記載の遺伝子組換え方法を用いて調製することができる。該抗体は、前述の遺伝子組換えHCVコア蛋白質を免疫原として用い、公知のモノクローナル抗体の製造法に従い製造することができる。モノクローナル抗体の製造法としては、例えば「富山朔二編、単クローン抗体実験マニュアル、講談社」等に記載された方法により行うことができる。
【0023】
このようにして得られた免疫原を投与する動物としてはマウス、ラット、ハムスター、ウサギ、モルモット、ヤギ、ヒツジ、ニワトリなどがあげられ、モノクローナル抗体作製にはマウス、ラットを用いるのが好ましい。
免疫方法としては、例えば[西道、豊島、新生化学実験講座、1, 389 (1990)、東京化学同人]等に記載の方法を用いて行うことができる。例えば免疫原をフロイントの完全または不完全アジュバントにエマルジョン化し、腹腔内、皮下、筋肉内に投与することにより行われる。例えば、7ないし30日、好ましくは12ないし16日間隔の一定間隔をおいて2回以上好ましくは2回〜4回投与し、免疫を完成させることができる。
【0024】
抗体産生細胞の採取源としては免疫した動物の脾臓、リンパ節、末梢血液などがあげられる。また免疫を行っていない動物の脾臓、リンパ節、末梢血液等より抗体産生担当細胞を取り出し、これら細胞に対し直接免疫を行って抗体産生細胞とする所謂 in vitro 免疫[新井、太田、実験医学、 6, 43(1988)]を行った細胞を用いてもよい。
【0025】
抗体産生細胞と骨髄腫細胞との細胞融合を行う際に使用する骨髄腫細胞は特に限定はないが、抗体産生細胞と同種の動物由来の細胞株を使用するのが好ましい。また適切に細胞融合が行われた細胞のみを効率よく選択するために、特定の薬物マーカーを有する骨髄腫細胞が好ましい。例えば8−アザグアニン耐性の骨髄腫細胞はヒポキサンチン、アミノプテリン、およびチミジンを含有した培地(以下、HAT培地と称する。)中では生育できないが、この細胞と正常細胞とが融合した細胞はHAT培地中で生育できるようになり、未融合の骨髄腫細胞と区別できることから好んで使用される。具体的にはP3×63−Ag.8.653[ジャーナル・オブ・イムノロジー(J. Immunol.), 123, 1548 (1979)]やP3×63−Ag.8.U1[Curr. Topics. Microbiol. Immunol., 81, 1 (1978) ](以下、単にP3U1と略記する。)、Sp/O−Ag14[ネイチャー(Nature), 276, 269 (1978)]などがあげられる。
【0026】
細胞融合はケーラーとミルシュタイン[ネイチャー(Nature), 256, 495 (1975)]によって開発された方法ならびにその改良方法が応用できる。良く用いられる方法としては抗体産生細胞と骨髄腫細胞を10〜3:1の割合で混合し、30〜50%のポリエチレングリコール(平均分子量1,500〜6,000)を融合剤に用いて処理する方法である。また電気パルスにより融合することもできる[大河内ら、実験医学、 6, 50 (1988)]。
【0027】
細胞融合を終えた細胞は選択培地(例えばHAT培地)に浮遊し、96ウェル培養プレートのような後の目的細胞選択に有利な培養容器を用いて融合細胞のみを生育させる。融合細胞のみが選択的に生育した段階で、HCVコア蛋白質に対する抗体を産生している細胞のみを選択する。この選択は融合細胞の培養上清中の目的抗体の有無を、例えば酵素免疫測定や放射線免疫測定などの方法を用いて調べる。選択された細胞はたとえば限界希釈法や軟寒天培地法などの方法を用いて単クローン化し、HCVコア蛋白質特異的モノクローナル抗体産生ハイブリドーマ細胞株を樹立する。
【0028】
モノクローナル抗体は樹立したハイブリドーマ細胞株を適当な培地で培養してその培養液を回収し、あるいは細胞株を動物の腹腔内に移植して腹水中で増殖させて腹水を回収し、得られた培養液または腹水から得ることが出来る。培養液あるいは腹水中の抗体は必要に応じて精製して使用することができる。精製方法としては例えば硫酸アンモニウムを用いた塩析分画、イオン交換クロマトグラフィー法、ゲル濾過カラムクロマトグラフィー法、プロテインAやプロテインGを用いたアフィニティカラムクロマトグラフィー法、さらに抗原を固相化したゲルを用いるアフィニティカラムクロマトグラフィー法など様々な方法またはこれらの方法を組合わせた方法があげられる。また、本発明に使用する抗体としては上述の方法で得られた抗体をペプシン等の酵素処理および/または還元処理して得られるFab、Fab'、F(ab)2などの抗体フラグメントを用いてもよい。
【0029】
本発明の抗体としては、HCVコア蛋白質のN末から11〜50番目のアミノ酸配列の内、少なくとも5個の連続するアミノ酸配列を認識する抗体であるものが好ましい。
本発明のモノクローナル抗体を生産するハイブリドーマの具体例としては、ハイブリドーマKTM−145、ハイブリドーマKTM−153、ハイブリドーマKTM−157、ハイブリドーマKTM−163およびハイブリドーマKTM−167等があげられる。
【0030】
ハイブリドーマKTM−145、ハイブリドーマKTM−153、ハイブリドーマKTM−157、ハイブリドーマKTM−163およびハイブリドーマKTM−167は、平成11年8月12日付で、日本国茨城県つくば市東1丁目1番3号(郵便番号305−8566)通商産業省工業技術院生命工学工業技術研究所にFERM BP−6838、FERM BP−6839、FERM BP−6840、FERM BP−6841およびFERM BP−6842としてそれぞれ寄託されている。ハイブリドーマKTM−145、ハイブリドーマKTM−153、ハイブリドーマKTM−157、ハイブリドーマKTM−163およびハイブリドーマKTM−167の生産するモノクローナル抗体を、以下それぞれ単にKTM−145、KTM−153、KTM−157、KTM−163およびKTM−167と称する。
【0031】
本発明のアルカリ性ホスファターゼ標識した抗HCVコア蛋白質抗体は、該抗HCVコア蛋白質抗体と該アルカリ性ホスファターゼとの間に共有結合を作る方法を利用して結合させたものである。該方法としては、例えばグルタールアルデヒド法、過ヨウ素酸法、マレイミド法、ピリジル・ジスルフィド法、公知の架橋剤を用いる方法などをあげることができる(例えば石川栄治著「酵素免疫測定法」医学書院発行参照)。
【0032】
具体的調製方法としては、例えば、イミノチオラン等でスルフヒドリル化した抗体と、SMCC(succinimidyl 4-[N-maleimidomethyl]-cyclohexane-1-carboxylate)でマレイミド化したアルカリ性ホスファターゼを混合して調製することができる。
【0033】
本発明の高濃度の塩を含む水溶液とは、無機塩を0.5M以上含有する水溶液をいう。無機塩としては、ハロゲン化アルカリ金属塩があげられ、例えば塩化ナトリウム、塩化カリウム、塩化リチウム等があげられる。無機塩濃度としては0.5M〜飽和濃度が好ましく、1〜3Mがより好ましい。該高濃度の塩を含む溶液には、必要に応じて緩衝剤、塩化ナトリウム以外の塩、界面活性剤、血清、防腐剤、免疫反応における非特異的吸着阻害剤等を含有していてもよい。
【0034】
緩衝剤としては、特に制限がないが、トリス緩衝剤等があげられる。界面活性剤としては、例えばトリトンX−100、トリトンX−705、ツイーン20等があげられる。防腐剤としては、アジ化ナトリウム等があげられる。血清としては、正常マウス血清等があげられる。塩化ナトリウム以外の塩としては、塩化亜鉛、塩化マグネシウム等があげられる。免疫反応における非特異的吸着阻害剤としては、例えば牛血清アルブミン、カゼイン等の蛋白質があげられ、市販品としてはブロックエース(大日本製薬社製)等があげられる。
【0035】
本発明の対象となる検体としては、例えば全血、血清、血漿、尿、リンパ液などがあげられる。
HCV抗原の有無を検出すべき検体は、そのまま用いても良いが、ウイルス分画剤などを用いて濃縮処理したものを用いることができる。具体的分画剤としてはポリエチレングリコール(PEG)試薬,パーコールといった密度勾配用試薬などがあげられる。PEGの分子量および使用濃度は特に限定されないが、分子量1,000〜20,000のものが好ましく、使用濃度は3〜10%の範囲が好ましい。
【0036】
また検体は、蛋白質変性作用、蛋白質可溶化作用、蛋白質分散作用を有する試薬で処理することが好ましい。該試薬としては、例えばカオトロピック物質、アルカリ剤、酸性剤および界面活性剤などがあげられ、カオトロピック物質またはアルカリ剤が好ましい。
カオトロピック物質としてはウレア、塩酸グアニジン、グアニジウムチオシアン酸塩などがあげられ、ウレアや塩酸グアニジンが好ましい。塩酸グアニジンの濃度は1〜8Mが好ましい。
【0037】
アルカリ剤としては水溶液中でpH10以上のアルカリを示すアルカリ剤であれば良く、例えば水酸化アルカリ金属塩があげられ、好ましくは水酸化ナトリウム溶液があげられる。
酸性剤としては、塩酸、硫酸、酢酸、トリフルオロ酢酸、トリクロル酢酸等があげられる。
界面活性剤としては、非イオン性、陰イオン性、陽イオン性、両性界面活性剤があげられる。
【0038】
検体の処理としては、カオトロピック物質とアルカリ剤での併用処理が好ましい。アルカリ剤での処理は45〜55℃の温度で行うことが好ましい。
酸性剤またはアルカリ剤で処理した検体は中和処理した後抗原抗体反応に供するのが好ましい。中和には、酸性剤を使用した場合にはアルカリを、アルカリ剤を使用した場合には酸性剤をそれぞれ使用するが、いずれの場合にも高い緩衝能を持つ溶液も用いることができる。
【0039】
本発明の免疫測定方法には特に制限が無いが、例えばサンドイッチ法等のように免疫測定法で幅広く行われている方法があげられる。
具体的には、本発明の免疫測定方法は抗体結合固相およびアルカリ性ホスファターゼ標識されたHCVコア蛋白質抗体を用いて周知の1ステップ法、ディレイ1ステップ法、2ステップ法などのサンドイッチ法により行うことがでる。サンドイッチ法としては、2ステップ法が好ましい。例えば、抗体結合固相と抗原を含む検体とを水溶液中でインキュベーションした後、固相を洗浄液で洗浄する。次に標識抗体と高濃度の塩を含む水溶液を加え、さらにインキュベーションした後、固相を再び洗浄する。次いで、固相上に形成された免疫複合体のアルカリ性ホスファターゼ活性の測定を行う方法である。
【0040】
固相は従来の免疫測定に使用される各種固相を用いることができる。固相としては例えばプラスチック製の試験管、マイクロプレートウエル、ガラスビーズ、プラスチックビーズ、各種メンブレン、磁性粒子などをあげることができる(例えば石川栄治著「酵素免疫測定法」医学書院発行参照)。固相に結合させる抗体は、前述の抗HCVコア蛋白質モノクローナル抗体があげられ、アルカリ性ホスファターゼで標識された抗体とは異なるエピトープを認識する抗体を用いることが好ましい。固相と抗体との結合は、物理吸着、化学結合等公知の方法で行うことができる。
【0041】
アルカリ性ホスファターゼ活性は、色原体、蛍光試薬、発光試薬等を用いて常法(丸尾文治監修、酵素ハンドブック、朝倉書店)で測定することができる。色原体としては、様々なものが知られておりいずれも使用可能であるが、高感度な検出が可能である酵素サイクリング反応試薬、具体的には補酵素NADの酸化―還元をサイクルさせる酵素を用いる酵素サイクリング反応試薬[AmpliQ、ダコ(DAKO)社製]等があげられる。蛍光試薬としては、4−メチルウンベリフェロン誘導体、2−ヒドロキシビフェニル誘導体等があげられる。
【0042】
発光試薬としてはジオキセタン構造を持つ誘導体、具体的にはAMPPD[3−(2'−スピロアダマンタン)−4−メトキシ−4−(3''−ホスホリルオキシ)フェニル−1,2−ジオキセタン]、CDP−スター[4−クロロ−3−
(メトキシスピロ{1、2−ジオキセタン−3,2'−(5'−クロロ)トリシクロ[3.3.1.13,7]デカン}−4−イル)フェニル リン酸二ナトリウム]、CSPD[3−(4−メトキシスピロ{1,2−ジオキセタン−3,2'−(5'−クロロ)トリシクロ[3.3.1.13,7]デカン}−4−イル)フェニル リン酸二ナトリウム]などがあげられる。またジオキセタン構造を有さないルミゲン(Lumigen)誘導体APS化合物([10−メチル−9(10H)−アクリジニルイデン]フェノキシメチル リン酸二ナトリウム塩)などがあげられる。
【0043】
本発明の定量試薬は、アルカリ性ホスファターゼ標識した抗HCVコア蛋白質抗体、0.5M〜飽和濃度の塩およびアルカリ性ホスファターゼ活性測定用試薬を含む。該定量試薬は、また抗HCVコア蛋白質抗体を固定化した固相を含む試薬、HCVコア蛋白質標準品を含む試薬等を含む。本発明の定量試薬は前述の各試薬がキットの形態で構成されていてもよい。
【0044】
該キットは、さらに検体濃縮試薬を含む試薬、検体処理試薬を含む試薬等が組み込まれていてもよい。検体濃縮試薬としては、上述の分画剤があげられる。検体処理試薬としては前述の蛋白質変性作用、蛋白質可溶化作用、蛋白質分散作用を有する試薬があげられる。アルカリ性ホスファターゼ定量試薬とは、前述の色原体、蛍光試薬または発光試薬等を含有する試薬があげられる。抗HCVコア蛋白質抗体としては、例えば前述のモノクローナル抗体があげられる。
【0045】
以下の実施例は本発明を具体的に説明するものであるが、これによって本発明の範囲を制限するものではない。なお、血清検体は、ユニグローブ(Uniglobe)社またはボストン・バイオメディカ(Boston Biomedica, Inc.:BBI)社より購入したものを用いた。
【0046】
【実施例】
参考例1 HCVコア蛋白質の作製
特開平8−29427号公報に記載の方法に従い、HCVコア蛋白質のN末から125アミノ酸残基を有する遺伝子組換えHCVコア蛋白質を調製し精製した。
精製された遺伝子組換えHCVコア蛋白質はバイオラッド蛋白質定量キット(バイオラッド社製)およびBCA蛋白質定量キット(ピアス社製)で蛋白質濃度を算出した。
【0047】
参考例2 抗HCVコア蛋白質抗体の作製
参考例1で得られたHCVコア蛋白質25〜100μgを、フロイント完全アジュバンドでエマルジョン化しBALB/CマウスまたはSDラットに初回免疫を行った。2〜3週間後、HCVコア蛋白質25〜100μgをフロイント不完全アジュバンドでエマルジョン化し、追加免疫を行った。抗体価の上昇を確認後、HCVコア蛋白質25〜100μgを静脈内に投与し、その3〜4日後、マウスから脾臓を取り出し脾細胞を調製した。次に前もってRPMI−1640培地で培養したマウスミエローマ細胞(P3U1)と脾細胞を1:2〜1:5の比率で混合し、ポリエチレングリコールを用いて細胞融合を行った。融合した細胞はHAT培地に浮遊した後、96ウエル培養プレートに分注し37℃炭酸ガスインキュベーターで培養した。抗HCVコア蛋白質抗体のスクリーニングは以下のようにして実施した。
【0048】
HCVコア蛋白質を8M塩酸グアニジン溶液または10Mウレア溶液で2μg/mLに懸濁し、96ウエルELISAプレート(Nunc社製)に50μl/ウエル分注し、4℃一晩放置することによりHCVコア蛋白質をプレートに吸着させた。1%牛血清アルブミン(以下、BSAと略する)を含むリン酸緩衝液含有生理食塩水(以下、PBS溶液と略する)でブロッキングした後、融合した細胞の培養上清50μlを各ウエルに加えて室温で1時間反応させた。洗浄後パーオキシダーゼ標識抗マウスIgG抗体を加え、室温1時間反応させた。洗浄後基質ABTSを加え発色が見られるウエルを選択し、HCVコア蛋白質を認識する抗体を産生するハイブリドーマKTM−145、ハイブリドーマKTM−153、ハイブリドーマKTM−157、ハイブリドーマKTM−163およびハイブリドーマKTM−167を取得した。該ハイブリドーマをそれぞれプリスタン等で処理したマウス腹腔に移植し腹水中に産生されてくるモノクローナル抗体を取得した。該モノクローナル抗体の精製は常法(富山朔二編、単クローン性抗体実験マニュアル、講談社)に従いプロテインAカラムを用いて精製した。得られた抗体はそれぞれKTM−145,KTM−153、KTM−157、KTM−163およびKTM−167と命名した。
【0049】
参考例3 モノクローナル抗体の反応特異性
参考例2で得られたモノクローナル抗体の反応特異性はHCVコア蛋白質または大腸菌のライゼートを吸着させた96ウエルマイクロタイタープレートを用いて確認した。その結果、KTM−145、KTM−153、KTM−157、KTM−163およびKTM−167はHCVコア蛋白質と特異的に反応することが確認された。また同様にウエスタンブロットでも同様の反応性を確認した。さらにHCVコア蛋白質の部分ペプチドを用いて抗体の認識するHCVコア蛋白質のエピトープを解析した結果、KTM−145はHCVコア蛋白質のN末から41番目〜50番目を、KTM−153は11番目〜30番目を、KTM−157は31番目〜50番目を、KTM−163とKTM−167は21番目〜40番目をそれぞれ認識することが確認された。
【0050】
参考例4 アルカリ性ホスファターゼ標識モノクローナル抗体の作製法
参考例2で取得したモノクローナル抗体とアルカリ性ホスファターゼ(ベーリンガー・マンハイム社製)を常法(石川栄治著、酵素免疫測定法、医学書院発行)に従いマレイミド法によって結合させた。モノクローナル抗体5mgを50mMトリスバッファー(pH8)で透析し、イミノチオランを用いてスルフヒドリル化した。スルフヒドリル化した抗体はセファデックスG−25カラム(ファルマシア社製)でフリーのイミノチオランを除去した。アルカリ性ホスファターゼは、マレイミド試薬SMCC(ピアス社製)を用いてマレイミド化し、G−25カラムでフリーのSMCCを除去した。
【0051】
上述のスルフヒドリル化したモノクローナル抗体とマレイミド化したアルカリ性ホスファターゼを混合し、4℃で一晩反応させた。反応後生成したアルカリ性ホスファターゼで標識化されたモノクローナル抗体をセファクリルS−200カラム(ファルマシア社製)で精製した。
精製したアルカリ性ホスファターゼ標識抗体は標識抗体希釈液[50mMトリスバッファー(pH7.6)、10mM塩化マグネシウム、0.1mM塩化亜鉛、20%ブロックエース(大日本製薬社製)を含む水溶液]で所定濃度に希釈し酵素標識免疫測定法(ELISA)に用いた。
【0052】
参考例5 抗HCVコア蛋白質抗体を固定した固相の作製
参考例2で得られたモノクローナル抗体を終濃度5μg/mLになるように0.1%アジ化ナトリウムを含むPBSで希釈し、固相用の96穴マイクロタイタープレートの各ウエルに200μlずつ添加した。4℃で1晩静置後、PBSで洗浄し、0.1%BSAを含むPBSを300μl加え4℃で1晩静置しブロッキングした。
【0053】
参考例6 パーオキシダーゼ酵素標識モノクローナル抗体の作製
参考例2で得られたモノクローナル抗体とパーオキシダーゼ(東洋紡社製)とを常法(石川栄治著、酵素免疫測定法、医学書院発行)に従いマレイミド法によって結合させた。モノクローナル抗体5mgを50mMトリスバッファー(pH8)で透析し、イミノチオランを用いてスルフヒドリル化した。スルフヒドリル化した抗体はセファデックスG−25カラム(ファルマシア社製)でフリーのイミノチオランを除去した。パーオキシダーゼは、マレイミド試薬SMCC(ピアス社製)を用いてマレイミド化し、セファデックスG−25カラムでフリーのSMCCを除去した。
【0054】
上述のスルフヒドリル化したモノクローナル抗体とマレイミド化したパーオキシダーゼとを混合し、4℃で一晩反応させ、パーオキシダーゼで標識化されたモノクローナル抗体を取得し、セファクリルS−200カラム(ファルマシア社製)で精製した。
精製した標識抗体は標識抗体希釈液[50mMトリスバッファー(pH7.6)、10mM塩化マグネシウム、0.1mM塩化亜鉛、20%ブロックエース(大日本製薬社製)を含む水溶液]で所定濃度に希釈しELISAに用いた。
【0055】
実施例1 遺伝子組換えHCVコア蛋白質の測定
参考例1で得られた遺伝子組換えHCVコア蛋白質を0または100pg/mLとなるよう0.1%BSAを含むPBSで希釈した。
【0056】
希釈された遺伝子組換えHCVコア蛋白質溶液を参考例5で作製されたマイクロプレート上の各ウエルへ200μlずつ添加し、室温で1時間反応させた。洗浄液(AMPAK増感系試薬添付、ダコ社製)で洗浄後、参考例4で得られた標識抗体を添加した。標識抗体は50mMトリスバッファー(pH7.6)、10mM塩化マグネシウム、0.1mM塩化亜鉛、20%ブロックエース(大日本製薬社製)および0〜3Mの塩化ナトリウムを含む溶液で希釈して用い、各ウエルへ200μlずつ添加した。室温で1時間攪拌反応後、洗浄液で洗浄後、発色試薬である酵素サイクリング反応試薬(ダコ社製)200μLを添加し室温で攪拌しながら20分間反応させた。該試薬に添付されている停止液を100μl添加し、主波長490nm、副波長660nmで吸光度を測定した。本実験では固相用としてKTM−145をアルカリ性ホスファターゼ標識用としてKTM−163を用いた。
【0057】
結果を第1表に示す。第1表中、各抗原濃度に対する数字は吸光度(Abs)を示す。
【0058】
【表1】
【0059】
標識抗体を含む希釈液中の塩化ナトリウム濃度を高めることで、抗原のない試験区(0pg/mL)では、塩化ナトリウム濃度を高めても吸光度はほとんど変化しないのに対し、抗原が存在する試験区(100pg/mL)では、塩化ナトリウム濃度を高めることにより得られる吸光度が増加した。表中、S/N比とは、抗原非存在区(0pg/mL)での吸光度に対する抗原存在区(100pg/mL)での吸光度の比を示す。塩化ナトリウムを添加することで、S/N比が増加し、抗原をより高感度に検出することが可能となることが判る。すなわち、塩化ナトリウムを使用しない場合、抗原が存在しても吸光度の増加が抗原非存在検体に比べわずかしかなく、抗原陽性と判定できないサンプルでも、本発明の方法を適用することにより、抗原陽性と判定できることを示している。
【0060】
実施例2 遺伝子組換えHCVコア蛋白質の測定
参考例1で得られた遺伝子組換えHCVコア蛋白質を0〜20pg/mLの濃度範囲になるよう0.1%BSAを含むPBSで希釈した。
【0061】
希釈された遺伝子組換えHCVコア蛋白質溶液を参考例5で作製されたマイクロプレートの各ウエルへ200μlずつ添加し、室温で1時間反応させた。洗浄液(AMPAK増感系試薬添付、ダコ社製)で洗浄後、参考例4で得られた標識抗体を添加した。標識抗体は50mMトリスバッファー(pH7.6)、10mM塩化マグネシウム、0.1mM塩化亜鉛、20%ブロックエース(大日本製薬社製)および0〜2Mの塩化ナトリウムを含む溶液で希釈して用い、各ウエルへ200μlずつ添加した。室温で1時間攪拌反応後、洗浄液で洗浄後、発色試薬である酵素サイクリング反応試薬(ダコ社製)200μLを添加し室温で攪拌しながら40分間反応させた。該試薬に添付されている停止液を100μl添加し、主波長490nm、副波長660nmで吸光度を測定した。本実験では固相用としてKTM−145をアルカリ性ホスファターゼ標識用としてKTM−163を用いた。
【0062】
結果を第2表に示す。第2表中、各抗原濃度に対する数字は吸光度(Abs)を示す。
【0063】
【表2】
【0064】
標識抗体を含む希釈液中の塩化ナトリウム濃度を高めることで、抗原のない試験区では、塩化ナトリウム濃度を高めても吸光度はほとんど変化しないのに対し、抗原が存在する試験区では、塩化ナトリウム濃度を高めることにより得られる吸光度が増加した。このことは、塩化ナトリウムを使用しない場合、抗原が存在しても吸光度の増加が、抗原非存在検体に比べわずかしかなく、抗原陽性と判定できないサンプルでも、本発明の方法を適用することにより、抗原陽性と判定できることを示している。
【0065】
実施例3 検出限界
参考例1で取得された遺伝子組換えHCVコア蛋白質を0〜10pg/mLの濃度範囲になるよう0.1%BSAを含むPBSで希釈した。
【0066】
希釈された遺伝子組換えHCVコア蛋白質溶液を参考例5で得られたマイクロプレートの各ウエルへ200μlずつ添加し、室温で1時間反応させた。洗浄液(AMPAK増感系試薬添付、ダコ社製)で洗浄後、参考例4で得られた標識抗体を添加した。標識抗体は50mMトリスバッファー(pH7.6)、10mM塩化マグネシウム、0.1mM塩化亜鉛、20%ブロックエース(大日本製薬社製)および0または1Mの塩化ナトリウムを含む溶液で希釈して用い、各ウエルへ200μlずつ添加した。室温で1時間攪拌反応後、洗浄液で洗浄後、発色試薬である酵素サイクリング反応試薬(ダコ社製)100μLを添加し室温で攪拌しながら30分間反応させた。該試薬に添付されている停止液を100μl添加し、主波長490nm、副波長660nmで吸光度を測定した。本実験では固相用としてKTM−145をアルカリ性ホスファターゼ標識用としてKTM−163を用いた。
【0067】
結果を第3表に示す。第3表中、各塩濃度に対する数字は吸光度(Abs)を示す。
【0068】
【表3】
【0069】
標識抗体を含む希釈液中の塩化ナトリウム濃度を高めることで、抗原の存在を検出できる抗原濃度が極めて低濃度となった。第3表に示すように、塩化ナトリウム無添加では1pg/mLで抗原0の吸光度と10mAbsオーダーの差が認められるのみであるのに対し、1Mの塩化ナトリウムを添加することにより、0.125pg/mLで抗原0の吸光度と10mAbsオーダーの差が認められ検出感度が向上した。
【0070】
比較例1
参考例1で取得された遺伝子組換えHCVコア蛋白質を0、10、100または1000pg/mLとなるよう0.1%BSAを含むPBSで希釈した。
【0071】
希釈された遺伝子組換えHCVコア蛋白質溶液を参考例5で作製されたマイクロプレートの各ウエルへ200μlずつ添加し、室温で1時間反応させた。洗浄液(AMPAK増感系試薬添付、ダコ社製)で洗浄後、参考例6で得られたパーオキシダーゼ標識抗体を添加した。標識抗体は50mMトリスバッファー(pH7.2)、0.1%BSAおよび0〜4Mの塩化ナトリウムを含む溶液で希釈して用い、各ウエルへ200μlずつ添加した。室温で1時間攪拌反応後、洗浄液で洗浄後、発色試薬であるTMB(テトラメチルベンジジン、インタージェン社製)200μLを添加し室温で攪拌しながら30分間反応させた。1N硫酸を100μl添加し発色反応を停止させ、主波長450nm、副波長660nmで吸光度を測定した。本実験では固相用としてKTM−145をパーオキシダーゼ標識用としてKTM−163を用いた。
【0072】
結果を第4表に示す。第4表中、各抗原濃度に対する数字は吸光度(Abs)を示す。
【0073】
【表4】
【0074】
パーオキシダーゼ標識抗体を用いた場合、抗原が存在しない反応系では塩化ナトリウムを添加すると反応特異性が低下した。また、抗原の存在する反応系で塩化ナトリウム濃度を上げても反応特異性の向上は認められなかった。
【0075】
実施例4 ヒト検体の測定
特開平8−29427号公報記載の方法でヒト血清を処理した。すなわち、血清検体200μlに20%のPEG4000を50μl加え、氷上で1時間静置した。4000×g,5分間,4℃の条件で遠心分離後、沈殿画分を50mMトリス緩衝液(pH8.0)50μlで懸濁し、さらに0.5Mの水酸化ナトリウム溶液を50μl加え37℃,30分間処理した。その後0.3%のトリトンX−100を含む0.5Mのリン酸水素ナトリウム溶液50μLで中和した。最後に0.1%BSA−PBS溶液300μLを加えて3倍に希釈し測定用の溶液とした。測定対象は抗HCV抗体陽性の血清検体(Uni−2および0401)と対照として正常人の血清検体を用い、実施例1と同様に試験し吸光度(Abs)を測定した。
結果を第5表に示す。
【0076】
【表5】
【0077】
第5表に示すように、正常人血清検体を用いたときは標識抗体を含む溶液中の塩化ナトリウム濃度を高めても吸光度がわずかにしか増加しないが、抗HCV抗体陽性血清検体を用いたときは、標識抗体を含む溶液中の塩化ナトリウム濃度を高めることにより、得られる吸光度が増加した。これによりより低濃度の抗原を含む検体でも抗原陽性判定が可能となる。またS/N比より、塩化ナトリウム濃度は、0.5〜3M、特に1〜3Mで感度が大幅に上昇することがわかる。
【0078】
実施例5 検体の塩酸グアニジンとアルカリ処理
血清検体200μlに20%のPEG4000を50μl加え、氷上で1時間静置した。4000×g,5分間,4℃の条件で遠心分離後、沈殿を0〜8Mの塩酸グアニジンを含む50mMトリス緩衝液(pH8.0)50μlで懸濁し変性させた。さらに0.5Mの水酸化ナトリウム溶液を50μl加え37℃,30分間処理後、0.5Mのリン酸水素ナトリウム溶液で中和した。その後0.1%BSA−PBS溶液で3倍に希釈し測定用の溶液とした。測定は、塩化ナトリウム濃度を1Mとする以外は実施例4と同様の方法で行った。測定対象は正常人血清検体、抗HCV抗体陽性の3血清検体(U−19、U−21およびU−29)を用いた。結果を第6表に示す。第6表中、各検体に対する数字は吸光度(Abs)を示す。
【0079】
【表6】
【0080】
第6表に示されるように塩酸グアニジンの濃度依存的に吸光度が上昇することがわかる。
【0081】
実施例6
ウレアと塩酸グアニジンを用いて、実施例5と同様な手法で試験した。ウレアの濃度は10Mとし塩酸グアニジンの濃度は8Mとした。検体は正常人血清検体と抗HCV抗体陽性の4血清検体(104,106、187および197)を用いた。結果を第7表に示す。第7表中、各処理試薬に対する数字は吸光度(Abs)を示す。
【0082】
【表7】
【0083】
第7表に示すように、検体104および検体197では、ウレア処理した場合は正常人血清と吸光度の顕著な差は認められず、陽性を判定できなかったが、塩酸グアニジンで血清を処理することで陽性と判定できた。
【0084】
実施例7 アルカリ処理における温度検討
実施例6においてアルカリ処理における温度条件を代える以外は実施例6と同様に試験した。血清検体は、6、9および138を用い、アルカリ処理における温度は37℃、50℃、70℃、100℃とした。結果を第8表に示す。
第8表中、各検体に対する数字は吸光度(Abs)を示す。
【0085】
【表8】
【0086】
第8表に示すように、血清のアルカリ処理温度は50℃近傍が好ましいことがわかる。
【0087】
実施例8 各種検出方法との比較
本発明による測定は以下の通り行った。各種血清検体200μlに20%のPEG4000を50μl加え、氷上で1時間静置した。4000×g,5分間,4℃で遠心分離後、沈殿を8Mの塩酸グアニジンを含む50mMトリス緩衝液(pH8.0)50μlで懸濁し変性させた。さらに0.5Mの水酸化ナトリウム溶液を50μl加え50℃,30分間処理後、0.3%トリトンX−100を含む0.5Mのリン酸水素ナトリウム溶液で中和した。その後0.1%BSA−PBS溶液で3倍に希釈し測定用の溶液とした。測定は、標識抗体溶液中に塩化ナトリウムを2M使用する以外は実施例4記載の方法と同様にして行った。
【0088】
また、HCVコア蛋白質を測定するキットであるイムノチェック,F−HCVAgコア(国際試薬社製、以下単にHCVコア蛋白質測定キットという)、抗HCV抗体を測定するキットである第III世代抗HCV抗体(オーソ社製、以下単に抗HCV抗体測定キットという)およびPCR法によりHCVのRNAを測定するキットであるアンプリコア定性(ロッシュ社製、以下単にRNA測定キットという)の各市販試薬を用いて同一検体を測定し本発明方法と感度を比較した。結果を第9表に示す。第9表中、判定欄の「−」は検出できないことを、判定欄の「+」は検出できることを示す。
【0089】
【表9】
【0090】
第9表に示すように、本発明方法によればHCVコア蛋白質測定キット(国際試薬社製)では検出できない検体まで検出可能である。正常人を除くこれら血清検体は抗HCV抗体陽性であり、RNA測定キット(ロッシュ社製)で検査した検体はHCV陽性と判定されている。
血清検体での感度はHCVコア蛋白質測定キット(国際試薬社製)では104ウイルス/mLであるが、本発明方法を用いるとRNA測定キット(ロッシュ社製)と同等の103ウイルス/mLが検出可能となる。
【0091】
実施例9 抗体の組合わせ
固相に使用する抗体と、アルカリ性ホスファターゼ標識する抗体の種類を代え、検体として、HCV非感染血清とHCV感染血清を用い、標識抗体を希釈する水溶液の塩化ナトリウム濃度を0または1Mとする以外は実施例6と同様に試験しそれぞれ吸光度を測定し、S/N比を求めた。結果を第10表に示す。第10表中、各塩化ナトリウム濃度に対する数字はS/N比を示す。
【0092】
【表10】
【0093】
第10表に示すように、固相に使用する抗体と標識抗体いずれの組合わせにおいても、標識抗体を希釈する溶液中に塩化ナトリウムを添加することで、S/N比
が増加した。このことは、HCV感染検体がより感度良く検出できることを示している。
【0094】
実施例10 検出限界
検体(U14およびU19)溶液を1倍とし、正常血清溶液で系列希釈した検体を調製した。系列希釈した検体200μlに20%のPEG4000を50μl加え、氷上で1時間静置した。4000×g,5分間,4℃で遠心分離後、沈殿を8Mの塩酸グアニジンを含む50mMトリス緩衝液(pH8.0)50μlで懸濁し変性させた。さらに0.5Mの水酸化ナトリウム溶液を50μl加え50℃,30分間処理後、0.3%トリトンX−100を含む0.5Mのリン酸水素ナトリウム溶液で中和した。その後0.1%BSA−PBS溶液で3倍に希釈し測定用の溶液とした。各希釈検体を実施例4記載の方法で測定した。標識抗体溶液中の塩化ナトリウムの濃度は2Mとした。
【0095】
参考例1で得られた既知濃度のHCVコア蛋白質を標準物質としてそれぞれ検量線を作成し、各検体の吸光度(Abs)からHCVコア蛋白質量を求めた。
U14検体を用いた結果を第11表に、U19検体を用いた結果を第12表にそれぞれ示す。
【0096】
【表11】
【0097】
【表12】
【0098】
第11表および第12表に示すように、本発明の定量方法は、HCVコア蛋白質を0.1pg/mLオーダーまで検出することが可能である。
【0099】
実施例11 セロコンバージョンパネル検体でのHCVコア抗原の検出
市販セロコンバージョンパネルPHV908(BBI社)を検体として実施例8記載の方法でHCVコア抗原を測定した。HCVコア抗原は正常人の吸光度を1.0としてそれに対する比率(S/N)で表した。
【0100】
また、該検体を抗HCV抗体測定キット(オルソ社製)でも測定した。抗体価はカットオフインデックス(S/CO)で表され、1.0以上が陽性と判定される。
結果を第13表に示す。
【0101】
【表13】
【0102】
第13表に示すように、本願発明の方法によれば、抗HCV抗体が陽性になる前にコア抗原を検出することができ感染初期で検出が可能であった。
【0103】
実施例12 HCVコア蛋白質定量用試薬キット
下記の各試薬からなる試薬キットを構成した。
抗体コートプレート(参考例2で得られたKTM−145を用いて参考例5と同様に調製したもの)
検体希釈液
(0.1%BSAを含有するPBSおよび1%正常マウス血清を含む水溶液)
酵素標識抗体
(参考例2で得られたKTM−163を参考例4と同様に調製したもの)
標準抗原 0pg/mLおよび10pg/mL
(参考例1で得られたHCVコア蛋白質を、0.067%BSA含有PBS、0.89M 塩酸グアニジン、5.56mM トリス緩衝液(pH8)、0.056M 水酸化ナトリウム、0.056M リン酸二水素ナトリウム、0.005% トリトンX−100を含む溶液に、0または10pg/mLとなるように溶解したもの)
標識抗体希釈液
[50mM トリス緩衝液(pH7.6)、10mM 塩化マグネシウム、0.2mM 塩化亜鉛、20% ブロックエース、2M 塩化ナトリウム、0.1%アジ化ナトリウム、0.1% トリトンX−705および1% 正常マウス血清を含む]
発色試薬
[酵素サイクリング反応試薬(AmpliQ、ダコ社製)に含まれる発色試薬]
停止液
[酵素サイクリング反応試薬(AmpliQ、ダコ社製)に含まれる停止液]
【0104】
沈殿試薬
(20%PEG4000)
分散試薬
[8M塩酸グアニジンおよび50mMトリス緩衝液(pH8)]
アルカリ試薬
(0.5M 水酸化ナトリウム溶液)
中和試薬
(0.5Mリン酸二水素ナトリウムおよび0.3%トリトンX−100)
【0105】
【発明の効果】
本発明はC型肝炎の原因であるHCV由来の抗原を感度良く検出するための免疫測定方法と免疫測定方法に用いる試薬およびキットを提供する。本発明により、従来のHCVコア抗原測定系では検出できない検体を感度良く検出することができ、HCVの抗原検査に幅広く活用できる。またPCRによる高感度な遺伝子測定法と同等な感度を有する免疫測定を簡便に構築でき、医学分野へ幅広く貢献できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for detecting or quantifying hepatitis C virus (hereinafter abbreviated as HCV) in a specimen, and a reagent for detecting or quantifying HCV.
[0002]
[Prior art]
Testing of viruses that cause infectious diseases is performed by various methods such as antibody testing, antigen testing, and genetic testing.
Antibody tests against viruses and antigen tests of viruses themselves are widely used in immunoassays and are widely used for diagnosis of virus infection, virus screening tests for blood for blood transfusion, monitoring in virus therapy, and the like. Genetic testing includes polymerase chain reaction (PCR) method, ligase chain reaction (LCR) method, nucleic acid sequence based amplification (nucleic) The acid sequence based amplification (NASBA) method and the branched DNA (bDNA) method with improved labeling efficiency have been developed to enable highly sensitive measurement.
[0003]
Genetic testing is used for purposes such as definitive diagnosis, testing in sensitivity regions that cannot be detected by the above-described antibody testing and antigen testing, and virus exclusion evaluation in treatment. Recently, gene amplification has been applied to screening tests for blood transfusions in the early stages of virus infection, which cannot be detected with sensitivity by antibody tests or antigen tests.
[0004]
However, genetic testing is complicated and requires special equipment, requires technical skill, high cost, poor reproducibility and measurement accuracy, is not suitable for large-scale sample processing, It has the following problems: false negatives due to the inhibitory factor, that the nucleic acid itself is unstable in the sample compared to the protein, and that the efficiency of gene amplification is not constant. It has been reported that when a virus-derived nucleic acid is RNA, it is more unstable, and the value fluctuates greatly depending on the operation process and the storage state of the test sample.
[0005]
Antibody measurement against viruses detects antibodies against viruses generated by in vivo immune mechanisms, and is a method of observing the effects of virus infection. Accordingly, production of antibodies against antigens varies depending on the individual, and there are individuals that show high antibody titers and those that do not produce antibodies at all. In addition, since the amount of antibody does not necessarily correlate with the amount of virus, it is difficult to predict the actual disease state or the amount of virus in the body. In addition, there is a problem that accurate determination cannot be made because antibodies are not produced at the early stage of virus infection, detection at the early stage of infection is impossible, and nonspecific reactions of antibodies are also observed.
[0006]
Antigen testing is a method for detecting virus-derived antigens, and various virus-derived antigen measurement systems are on the market. Antigen tests are centered on immunoassays using antibodies that recognize virus-derived antigens, but are less sensitive than gene amplification methods. Therefore, there is a problem that it cannot be detected sufficiently when the amount of virus decreases. In addition, in the body, an antibody against the virus coexists with the virus, and this coexisting antibody may compete with an antibody that is a material for immunoassay, and thus the antigen may not be measured with high sensitivity. Antigen measurement methods exist for HBV, other hepatitis viruses, HIV, and the like, but they are inferior in sensitivity compared to gene amplification methods such as PCR, and are not sufficient as markers for diagnosis and treatment.
[0007]
Recently, an HCV core protein measuring system, which is an internal antigen of HCV, has been developed (Japanese Patent Laid-Open No. 8-29427). This method is a kit that can be measured more easily and stably than a method for measuring genes and can be used for definitive diagnosis of HCV, prediction of effects in treatment, and determination of treatment effects. However, the sensitivity is insufficient compared with the PCR quantification method, and there is a problem that diagnosis and treatment cannot be monitored only by measuring the HCV core protein. In fact, the detection limit of the method is 8 pg / mL (10 times in terms of PCR titer). Four ~ Five Virus particles / mL), and its detection limit is 10 times higher than PCR. Therefore, when determining the therapeutic effect, a sample that is 8 pg / mL or less is determined to be negative, and the amount of virus at a low value cannot be grasped.
[0008]
In general, it is known that the use of a high-concentration salt in the reaction between an antigen and an antibody inhibits the reaction between the antigen and the antibody, and dissociates the antigen from the antigen-antibody reaction product.
For example, Chapter 9 of the ultrasensitive enzyme immunoassay [Eiji Ishikawa, Academic Publishing Center, (1993)] describes as follows.
“Since nonspecific adsorption of protein to the solid phase increases and decreases depending on various conditions, serum interference should be reduced under conditions where nonspecific adsorption is reduced. Decreasing the incubation concentration of serum with insolubilized polystyrene balls and shortening the time results in less serum interference (Table IX-14) (Ruan et al., 1986). Serum interference can be reduced because non-specific adsorption is reduced (Table IX-15, Figures IX-18 to IX-21) (Hashida et al., 1983). However, at very high concentrations, the immune response itself is inhibited. For sodium chloride, the upper limit would be 0.3-0.4 mol / l. "
[0009]
[Problems to be solved by the invention]
An object of the present invention is to provide an HCV antigen detection or quantification method for detecting or quantifying an HCV positive sample easily and with high sensitivity, which is suitable for processing a large number of samples as in a screening use in a blood business or a medical examination, and to be used therefor To provide a detection or quantification reagent.
[0010]
[Means for Solving the Problems]
Surprisingly, the present inventors have used an anti-HCV core protein antibody labeled with alkaline phosphatase to cause an antigen-antibody reaction with an HCV core protein in an aqueous solution containing a high concentration of salt. Unlike the case of using an anti-HCV core protein antibody labeled with a substance, the present invention was completed by finding that the antigen can be detected with higher sensitivity without inhibiting the immune reaction.
[0011]
The present invention relates to the following (1) to (29).
(1) An anti-HCV core protein antibody labeled with alkaline phosphatase and an HCV core antigen in a specimen are subjected to an antigen-antibody reaction in an aqueous solution containing a high concentration of salt to form an immune complex, An immunoassay method for detecting or quantifying HCV core antigen in a specimen, comprising measuring the alkaline phosphatase activity of the HCV.
(2) The method according to (1), wherein the salt is an alkali metal halide salt.
[0012]
(3) The method according to (1), wherein the salt is sodium chloride.
(4) The method according to any one of (1) to (3), wherein the salt concentration is 0.5 M to a saturated concentration.
(5) Any of (1) to (4), wherein the anti-HCV core protein antibody recognizes at least 5 consecutive amino acid sequences among amino acid sequences 11 to 50 from the N-terminal of the HCV core protein The method described in 1.
[0013]
(6) The anti-HCV core protein antibody is an antibody selected from the group consisting of KTM-145, KTM-153, KTM-157, KTM-163 and KTM-167, according to any one of (1) to (4) the method of.
(7) The method according to any one of (1) to (6), wherein the specimen is treated with a chaotropic substance and / or an alkaline agent before the antigen-antibody reaction.
[0014]
(8) The method according to (7), wherein the chaotropic substance is a guanidine salt.
(9) The method according to (7) or (8), wherein the alkali agent is an alkali metal hydroxide salt.
(10) The method according to any one of (7) to (9), wherein the chaotropic substance is 1 M to a saturated concentration.
[0015]
(11) The method according to any one of (7) to (10), wherein the treatment with the alkali agent is performed at a temperature of 45 to 55 ° C.
[0016]
(12) A reagent for detection or quantification of HCV core antigen, comprising an alkaline phosphatase-labeled anti-HCV core protein antibody, a salt at a concentration of 0.5 M to a saturated concentration, and a reagent for measuring alkaline phosphatase activity.
(13) The reagent according to (12), wherein the salt is an alkali metal halide salt.
[0017]
(14) The reagent according to (12) or (13), wherein the salt is sodium chloride.
(15) Any of (12) to (14), wherein the anti-HCV core protein antibody recognizes at least 5 consecutive amino acid sequences among amino acid sequences 11 to 50 from the N-terminal of the HCV core protein The reagent according to 1.
(16) The anti-HCV core protein antibody is an antibody selected from the group consisting of KTM-145, KTM-153, KTM-157, KTM-163 and KTM-167, according to any one of (12) to (14) Reagent.
[0018]
(17) A reagent kit for detecting or quantifying an HCV core antigen comprising the reagent according to any one of (12) to (16) and a sample treatment reagent containing a chaotropic substance and / or an alkaline agent.
(18) The kit according to (17), wherein the chaotropic substance is a guanidine salt.
[0019]
(19) The alkali agent is an alkali metal hydroxide salt as described in (17) or (18) No ki That.
(20) The kit according to any one of (17) to (19), wherein the chaotropic substance is 1M to a saturated concentration.
[0020]
(21) A monoclonal antibody that recognizes at least 5 consecutive amino acid sequence sites in the 11 to 50th amino acid sequence from the N-terminus of the HCV core protein.
(22) A monoclonal antibody that recognizes the amino acid sequence of positions 41 to 50 from the N-terminus of the HCV core protein.
(23) The monoclonal antibody according to (22), which is produced by the hybridoma KTM-145 (FERM BP-6838).
(24) A monoclonal antibody that recognizes the amino acid sequence at positions 11 to 30 from the N-terminus of the HCV core protein.
(25) The monoclonal antibody according to (24), which is produced by a hybridoma KTM-153 (FERM BP-6839).
(26) A monoclonal antibody that recognizes the amino acid sequence of amino acids 31 to 50 from the N-terminal of the HCV core protein.
(27) The monoclonal antibody according to (26), which is produced by the hybridoma KTM-157 (FERM BP-6840).
(28) A monoclonal antibody that recognizes the amino acid sequence at positions 21 to 40 from the N-terminus of the HCV core protein.
(29) The monoclonal antibody according to (28), which is produced by hybridoma KTM-163 (FERM BP-6841) or hybridoma KTM-167 (FERM BP-6842).
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
Any alkaline phosphatase of any origin can be used as the alkaline phosphatase in the alkaline phosphatase labeled anti-HCV core protein antibody of the present invention. Examples include alkaline phosphatase derived from microorganisms such as E. coli and animals such as cattle.
[0022]
Examples of the anti-HCV core protein antibody in the alkaline phosphatase-labeled anti-HCV core protein antibody of the present invention include those disclosed in JP-A-7-145194 or Hepatology, 16 , 886 (1992), any antibody that reacts with the HCV core protein can be used. The HCV core protein is disclosed in JP-A-7-145194, JP-A-8-29427 and Hepatology, 16 , 886 (1992). The antibody can be produced according to a known monoclonal antibody production method using the aforementioned recombinant HCV core protein as an immunogen. As a method for producing a monoclonal antibody, for example, a method described in “Teiji Yamada, Monoclonal Antibody Experiment Manual, Kodansha” or the like can be used.
[0023]
Examples of animals to which the immunogen thus obtained is administered include mice, rats, hamsters, rabbits, guinea pigs, goats, sheep, chickens, etc., and it is preferable to use mice and rats for the production of monoclonal antibodies.
Examples of immunization methods include [Nishimichi, Toshima, New Chemistry Laboratory, 1 , 389 (1990), Tokyo Chemical Co., Ltd.] and the like. For example, the immunogen is emulsified in Freund's complete or incomplete adjuvant and administered intraperitoneally, subcutaneously or intramuscularly. For example, the immunization can be completed by administering 2 or more times, preferably 2 to 4 times at regular intervals of 7 to 30 days, preferably 12 to 16 days.
[0024]
Examples of the source for collecting antibody-producing cells include the spleen, lymph nodes, and peripheral blood of immunized animals. In addition, so-called in vitro immunization [Arai, Ota, experimental medicine, immunization of these cells directly from the spleen, lymph nodes, peripheral blood, etc. of animals not immunized, and direct immunization of these cells to produce antibody-producing cells. 6 , 43 (1988)] may be used.
[0025]
There is no particular limitation on the myeloma cells used for cell fusion between antibody-producing cells and myeloma cells, but it is preferable to use a cell line derived from the same animal as the antibody-producing cells. In addition, myeloma cells having a specific drug marker are preferred in order to efficiently select only cells that have been appropriately fused. For example, an 8-azaguanine-resistant myeloma cell cannot grow in a medium containing hypoxanthine, aminopterin, and thymidine (hereinafter referred to as HAT medium), but a cell in which this cell is fused with a normal cell is HAT medium. It is preferably used because it can grow in and is distinguishable from unfused myeloma cells. Specifically, P3 × 63-Ag. 8.653 [J. Immunol., one two Three , 1548 (1979)] and P3 × 63-Ag. 8). U1 [Curr. Topics. Microbiol. Immunol., 81 , 1 (1978)] (hereinafter simply abbreviated as P3U1), Sp / O-Ag14 [Nature, 276 , 269 (1978)].
[0026]
Cell fusion is by Kohler and Milstein [Nature, 256 , 495 (1975)], as well as improved methods thereof. As a commonly used method, antibody-producing cells and myeloma cells are mixed at a ratio of 10 to 3: 1 and treated with 30-50% polyethylene glycol (average molecular weight 1,500-6,000) as a fusion agent. It is a method to do. It can also be fused by electrical pulses [Okouchi et al., Experimental medicine, 6 , 50 (1988)].
[0027]
Cells that have undergone cell fusion float in a selective medium (for example, HAT medium), and only the fused cells are grown using a culture vessel that is advantageous for subsequent cell selection such as a 96-well culture plate. At the stage where only the fused cells have grown selectively, only those cells producing antibodies against the HCV core protein are selected. In this selection, the presence or absence of the target antibody in the culture supernatant of the fused cells is examined using a method such as enzyme immunoassay or radioimmunoassay. The selected cells are monocloned using a method such as a limiting dilution method or a soft agar medium method, and a hybridoma cell line producing an HCV core protein-specific monoclonal antibody is established.
[0028]
Monoclonal antibody is obtained by culturing the established hybridoma cell line in an appropriate medium and collecting the culture solution, or transplanting the cell line into the abdominal cavity of the animal and growing it in ascites to collect ascites, and the resulting culture It can be obtained from fluid or ascites. The antibody in the culture solution or ascites can be purified and used as necessary. Examples of purification methods include salting-out fractionation using ammonium sulfate, ion exchange chromatography, gel filtration column chromatography, affinity column chromatography using protein A and protein G, and gels on which antigens are immobilized. Various methods such as an affinity column chromatography method to be used or a combination of these methods can be used. Further, as an antibody used in the present invention, Fab, Fab ′, F (ab) obtained by subjecting the antibody obtained by the above-described method to an enzyme treatment such as pepsin and / or a reduction treatment. 2 Antibody fragments such as
[0029]
The antibody of the present invention is preferably an antibody that recognizes at least 5 consecutive amino acid sequences in the 11 to 50th amino acid sequence from the N-terminus of the HCV core protein.
Specific examples of the hybridoma producing the monoclonal antibody of the present invention include hybridoma KTM-145, hybridoma KTM-153, hybridoma KTM-157, hybridoma KTM-163, and hybridoma KTM-167.
[0030]
Hybridoma KTM-145, Hybridoma KTM-153, Hybridoma KTM-157, Hybridoma KTM-163, and Hybridoma KTM-167, dated August 12, 1999, 1-3-1 Higashi 1-chome Tsukuba, Ibaraki, Japan 305-8666) FERM BP-6835, FERM BP-6839, FERM BP-6840, FERM BP-6841 and FERM BP-6842 are deposited with the Institute of Biotechnology, Institute of Industrial Science and Technology, Ministry of International Trade and Industry. Monoclonal antibodies produced by hybridoma KTM-145, hybridoma KTM-153, hybridoma KTM-157, hybridoma KTM-163 and hybridoma KTM-167 are simply referred to as KTM-145, KTM-153, KTM-157, KTM-163 and It is called KTM-167.
[0031]
The alkaline phosphatase-labeled anti-HCV core protein antibody of the present invention is bound using a method for forming a covalent bond between the anti-HCV core protein antibody and the alkaline phosphatase. Examples of the method include a glutaraldehyde method, a periodic acid method, a maleimide method, a pyridyl disulfide method, and a method using a known cross-linking agent (for example, Eiji Ishikawa "Enzyme Immunoassay" Medical School). Issue reference).
[0032]
As a specific preparation method, for example, an antibody sulfhydrylated with iminothiolane or the like and alkaline phosphatase maleimidated with SMCC (succinimidyl 4- [N-maleimidomethyl] -cyclohexane-1-carboxylate) can be mixed and prepared. .
[0033]
The aqueous solution containing a high concentration salt of the present invention refers to an aqueous solution containing 0.5 M or more of an inorganic salt. Examples of the inorganic salt include alkali metal halide salts such as sodium chloride, potassium chloride, lithium chloride and the like. The inorganic salt concentration is preferably 0.5M to a saturated concentration, more preferably 1 to 3M. The solution containing a high-concentration salt may contain a buffer, a salt other than sodium chloride, a surfactant, serum, a preservative, a nonspecific adsorption inhibitor in an immune reaction, etc., if necessary. .
[0034]
Although there is no restriction | limiting in particular as a buffering agent, A tris buffering agent etc. are mention | raise | lifted. Examples of the surfactant include Triton X-100, Triton X-705, Tween 20 and the like. Examples of the preservative include sodium azide. Examples of serum include normal mouse serum. Examples of salts other than sodium chloride include zinc chloride and magnesium chloride. Examples of non-specific adsorption inhibitors in immune reactions include proteins such as bovine serum albumin and casein, and commercially available products include Block Ace (manufactured by Dainippon Pharmaceutical Co., Ltd.).
[0035]
Examples of specimens that are the subject of the present invention include whole blood, serum, plasma, urine, lymph and the like.
The sample to be detected for the presence or absence of HCV antigen may be used as it is, but a sample that has been concentrated using a virus fractionation agent or the like can be used. Specific examples of the fractionating agent include a polyethylene glycol (PEG) reagent and a density gradient reagent such as Percoll. The molecular weight and use concentration of PEG are not particularly limited, but those having a molecular weight of 1,000 to 20,000 are preferred, and the use concentration is preferably in the range of 3 to 10%.
[0036]
The specimen is preferably treated with a reagent having a protein denaturing action, a protein solubilizing action, and a protein dispersing action. Examples of the reagent include chaotropic substances, alkali agents, acid agents, and surfactants, and chaotropic substances or alkali agents are preferable.
Examples of chaotropic substances include urea, guanidine hydrochloride, guanidinium thiocyanate, and urea and guanidine hydrochloride are preferred. The concentration of guanidine hydrochloride is preferably 1 to 8M.
[0037]
The alkali agent may be any alkali agent that exhibits an alkali having a pH of 10 or more in an aqueous solution, and examples thereof include alkali metal hydroxide salts, and preferably a sodium hydroxide solution.
Examples of the acid agent include hydrochloric acid, sulfuric acid, acetic acid, trifluoroacetic acid, trichloroacetic acid and the like.
Examples of the surfactant include nonionic, anionic, cationic and amphoteric surfactants.
[0038]
The sample treatment is preferably a combined treatment with a chaotropic substance and an alkaline agent. The treatment with the alkaline agent is preferably performed at a temperature of 45 to 55 ° C.
It is preferable to subject the specimen treated with an acidic agent or an alkaline agent to an antigen-antibody reaction after neutralization. For neutralization, when an acid agent is used, an alkali is used, and when an alkali agent is used, an acid agent is used. In any case, a solution having a high buffer capacity can also be used.
[0039]
The immunoassay method of the present invention is not particularly limited, and examples thereof include methods widely used in immunoassay methods such as the sandwich method.
Specifically, the immunoassay method of the present invention is performed by a known sandwich method such as a one-step method, a delay one-step method, or a two-step method using an antibody-bound solid phase and an alkaline phosphatase-labeled HCV core protein antibody. I get out. As the sandwich method, a two-step method is preferable. For example, after the antibody-bound solid phase and the specimen containing the antigen are incubated in an aqueous solution, the solid phase is washed with a washing solution. Next, an aqueous solution containing a labeled antibody and a high concentration salt is added, and after further incubation, the solid phase is washed again. Next, it is a method for measuring the alkaline phosphatase activity of the immune complex formed on the solid phase.
[0040]
As the solid phase, various solid phases used in conventional immunoassay can be used. Examples of the solid phase include plastic test tubes, microplate wells, glass beads, plastic beads, various membranes, magnetic particles, and the like (for example, see Eiji Ishikawa's “Enzyme Immunoassay” published by Medical School). Examples of the antibody to be bound to the solid phase include the above-mentioned anti-HCV core protein monoclonal antibody, and it is preferable to use an antibody that recognizes an epitope different from the antibody labeled with alkaline phosphatase. The solid phase and the antibody can be bound by a known method such as physical adsorption or chemical bonding.
[0041]
alkalinity Ho The sulfatase activity can be measured by a conventional method (supervised by Bunji Maruo, Enzyme Handbook, Asakura Shoten) using a chromogen, a fluorescent reagent, a luminescent reagent and the like. Various chromogens are known and any of them can be used, but an enzyme cycling reaction reagent capable of highly sensitive detection, specifically an enzyme that cycles oxidation-reduction of coenzyme NAD. An enzyme cycling reaction reagent using [AmpliQ, manufactured by DAKO] and the like. Examples of the fluorescent reagent include 4-methylumbelliferone derivatives and 2-hydroxybiphenyl derivatives.
[0042]
As a luminescent reagent, a derivative having a dioxetane structure, specifically, AMPPD [3- (2′-spiroadamantane) -4-methoxy-4- (3 ″ -phosphoryloxy) phenyl-1,2-dioxetane], CDP -Star [4-Chloro-3-
(Methoxyspiro {1,2-dioxetane-3,2 ′-(5′-chloro) tricyclo [3.3.1.1 3,7 ] Decan} -4-yl) phenyl disodium phosphate], CSPD [3- (4-methoxyspiro {1,2-dioxetane-3,2 ′-(5′-chloro) tricyclo [3.3.1. 1 3,7 ] Decan} -4-yl) phenyl disodium phosphate] and the like. Moreover, the Lumigen derivative APS compound ([10-methyl-9 (10H) -acridinylidene] phenoxymethyl phosphate disodium salt) which does not have a dioxetane structure is mentioned.
[0043]
The quantitative reagent of the present invention includes an alkaline phosphatase-labeled anti-HCV core protein antibody, a salt having a concentration of 0.5 M to a saturated concentration, and a reagent for measuring alkaline phosphatase activity. The quantitative reagent also includes a reagent containing a solid phase on which an anti-HCV core protein antibody is immobilized, a reagent containing a standard HCV core protein, and the like. In the quantitative reagent of the present invention, each of the aforementioned reagents may be configured in the form of a kit.
[0044]
The kit may further incorporate a reagent containing a specimen concentration reagent, a reagent containing a specimen processing reagent, and the like. Examples of the sample concentration reagent include the above-described fractionating agents. Examples of the sample processing reagent include the reagents having the aforementioned protein denaturing action, protein solubilizing action, and protein dispersing action. Examples of the alkaline phosphatase quantification reagent include reagents containing the above-mentioned chromogen, fluorescent reagent or luminescent reagent. Examples of the anti-HCV core protein antibody include the monoclonal antibodies described above.
[0045]
The following examples are illustrative of the invention but are not intended to limit the scope of the invention. Serum samples purchased from Uniglobe or Boston Biomedica, Inc. (BBI) were used.
[0046]
【Example】
Reference Example 1 Preparation of HCV core protein
According to the method described in JP-A-8-29427, a recombinant HCV core protein having 125 amino acid residues from the N-terminus of the HCV core protein was prepared and purified.
The protein concentration of the purified recombinant HCV core protein was calculated using a Biorad protein quantification kit (Biorad) and a BCA protein quantification kit (Pierce).
[0047]
Reference Example 2 Preparation of anti-HCV core protein antibody
25-100 μg of the HCV core protein obtained in Reference Example 1 was emulsified with Freund's complete adjuvant, and BALB / C mice or SD rats were initially immunized. After 2-3 weeks, 25-100 μg of HCV core protein was emulsified with Freund's incomplete adjuvant and boosted. After confirming the increase in antibody titer, 25 to 100 μg of HCV core protein was intravenously administered, and 3 to 4 days later, the spleen was taken out of the mouse and splenocytes were prepared. Next, mouse myeloma cells (P3U1) previously cultured in RPMI-1640 medium and spleen cells were mixed at a ratio of 1: 2 to 1: 5, and cell fusion was performed using polyethylene glycol. The fused cells were suspended in a HAT medium, dispensed into a 96-well culture plate, and cultured in a 37 ° C. carbon dioxide incubator. Screening for anti-HCV core protein antibody was performed as follows.
[0048]
HCV core protein is suspended in 2 μg / mL with 8 M guanidine hydrochloride solution or 10 M urea solution, dispensed into a 96-well ELISA plate (Nunc) at 50 μl / well, and left overnight at 4 ° C. to plate the HCV core protein. It was made to adsorb to. After blocking with phosphate buffer-containing physiological saline (hereinafter abbreviated as PBS solution) containing 1% bovine serum albumin (hereinafter abbreviated as BSA), 50 μl of the culture supernatant of the fused cells was added to each well. And allowed to react at room temperature for 1 hour. After washing, a peroxidase-labeled anti-mouse IgG antibody was added and allowed to react for 1 hour at room temperature. After washing, the substrate ABTS is added to select wells that develop color, and hybridoma KTM-145, hybridoma KTM-153, hybridoma KTM-157, hybridoma KTM-163, and hybridoma KTM-167 producing antibodies that recognize the HCV core protein are selected. I got it. Each of the hybridomas was transplanted into the abdominal cavity of a mouse treated with pristane or the like to obtain a monoclonal antibody produced in ascites. The monoclonal antibody was purified using a protein A column according to a conventional method (Teiji Toyama, Monoclonal Antibody Experiment Manual, Kodansha). The obtained antibodies were named KTM-145, KTM-153, KTM-157, KTM-163 and KTM-167, respectively.
[0049]
Reference Example 3 Reaction specificity of monoclonal antibody
The reaction specificity of the monoclonal antibody obtained in Reference Example 2 was confirmed using a 96-well microtiter plate adsorbed with HCV core protein or E. coli lysate. As a result, it was confirmed that KTM-145, KTM-153, KTM-157, KTM-163 and KTM-167 react specifically with the HCV core protein. Similarly, the same reactivity was confirmed by Western blot. Furthermore, as a result of analyzing the epitope of the HCV core protein recognized by the antibody using a partial peptide of the HCV core protein, KTM-145 is 41st to 50th from the N-terminal of HCV core protein, and KTM-153 is 11th to 30th. It was confirmed that KTM-157 recognizes the 31st to 50th, and KTM-163 and KTM-167 recognize the 21st to 40th.
[0050]
Reference Example 4 Preparation method of alkaline phosphatase-labeled monoclonal antibody
The monoclonal antibody obtained in Reference Example 2 and alkaline phosphatase (manufactured by Boehringer Mannheim) were bound by the maleimide method according to a conventional method (Eiji Ishikawa, enzyme immunoassay, published by Medical School). 5 mg of the monoclonal antibody was dialyzed against 50 mM Tris buffer (pH 8), and sulfhydrylated using iminothiolane. Sulfhydryl Free iminothiolane was removed from the converted antibody using a Sephadex G-25 column (Pharmacia). Alkaline phosphatase was maleimidized using maleimide reagent SMCC (Pierce) and free SMCC was removed using a G-25 column.
[0051]
The above sulfhydrylated monoclonal antibody and maleimidated alkaline phosphatase were mixed and reacted overnight at 4 ° C. The monoclonal antibody labeled with alkaline phosphatase produced after the reaction was purified with Sephacryl S-200 column (Pharmacia).
The purified alkaline phosphatase-labeled antibody is adjusted to a predetermined concentration with a labeled antibody diluent [aqueous solution containing 50 mM Tris buffer (pH 7.6), 10 mM magnesium chloride, 0.1 mM zinc chloride, 20% Block Ace (manufactured by Dainippon Pharmaceutical Co., Ltd.)]. It diluted and used for the enzyme label | marker immunoassay (ELISA).
[0052]
Reference Example 5 Preparation of a solid phase on which an anti-HCV core protein antibody is immobilized
The monoclonal antibody obtained in Reference Example 2 was diluted with PBS containing 0.1% sodium azide to a final concentration of 5 μg / mL, and 200 μl was added to each well of a 96-well microtiter plate for solid phase. . After standing at 4 ° C. overnight, the plate was washed with PBS, added with 300 μl of PBS containing 0.1% BSA, and left at 4 ° C. overnight to block.
[0053]
Reference Example 6 Preparation of peroxidase enzyme-labeled monoclonal antibody
The monoclonal antibody obtained in Reference Example 2 and peroxidase (manufactured by Toyobo Co., Ltd.) were bound by the maleimide method according to a conventional method (written by Eiji Ishikawa, enzyme immunoassay, published by Medical School). 5 mg of the monoclonal antibody was dialyzed against 50 mM Tris buffer (pH 8), and sulfhydrylated using iminothiolane. Sulfhydryl Free iminothiolane was removed from the converted antibody using a Sephadex G-25 column (Pharmacia). Peroxidase was maleimidized using a maleimide reagent SMCC (Pierce), and free SMCC was removed using a Sephadex G-25 column.
[0054]
The above-mentioned sulfhydrylated monoclonal antibody and maleimidated peroxidase are mixed and reacted overnight at 4 ° C. to obtain a monoclonal antibody labeled with peroxidase, and a Sephacryl S-200 column (manufactured by Pharmacia) is used. Purified.
The purified labeled antibody is diluted to a predetermined concentration with a labeled antibody diluent [aqueous solution containing 50 mM Tris buffer (pH 7.6), 10 mM magnesium chloride, 0.1 mM zinc chloride, 20% Block Ace (Dainippon Pharmaceutical Co., Ltd.)]. Used for ELISA.
[0055]
Example 1 Measurement of recombinant HCV core protein
The recombinant HCV core protein obtained in Reference Example 1 was diluted with PBS containing 0.1% BSA so as to be 0 or 100 pg / mL.
[0056]
200 μl of the diluted recombinant HCV core protein solution was added to each well on the microplate prepared in Reference Example 5 and allowed to react at room temperature for 1 hour. After washing with a washing solution (AMPAK sensitizing reagent attached, manufactured by Dako), the labeled antibody obtained in Reference Example 4 was added. The labeled antibody is diluted with a solution containing 50 mM Tris buffer (pH 7.6), 10 mM magnesium chloride, 0.1 mM zinc chloride, 20% Block Ace (manufactured by Dainippon Pharmaceutical Co., Ltd.) and 0 to 3 M sodium chloride. 200 μl was added to each well. After stirring for 1 hour at room temperature, after washing with a washing solution, 200 μL of an enzyme cycling reaction reagent (manufactured by Dako) as a coloring reagent was added and allowed to react for 20 minutes with stirring at room temperature. 100 μl of a stop solution attached to the reagent was added, and the absorbance was measured at a main wavelength of 490 nm and a sub wavelength of 660 nm. In this experiment, KTM-145 was used for solid phase and KTM-163 was used for labeling alkaline phosphatase.
[0057]
The results are shown in Table 1. In Table 1, the numbers for each antigen concentration indicate absorbance (Abs).
[0058]
[Table 1]
[0059]
By increasing the sodium chloride concentration in the diluent containing the labeled antibody, the absorbance in the test group without antigen (0 pg / mL) hardly changes even when the sodium chloride concentration is increased, whereas the test group in which the antigen is present. At (100 pg / mL), the absorbance obtained by increasing the sodium chloride concentration increased. In the table, the S / N ratio indicates the ratio of the absorbance in the antigen-existing section (100 pg / mL) to the absorbance in the antigen-free section (0 pg / mL). It can be seen that the addition of sodium chloride increases the S / N ratio and makes it possible to detect the antigen with higher sensitivity. That is, when sodium chloride is not used, even if a sample has a slight increase in absorbance even in the presence of an antigen compared to a sample without an antigen and cannot be determined to be antigen-positive, by applying the method of the present invention, It shows that it can be judged.
[0060]
Example 2 Measurement of recombinant HCV core protein
The recombinant HCV core protein obtained in Reference Example 1 was diluted with PBS containing 0.1% BSA so that the concentration range was 0 to 20 pg / mL.
[0061]
200 μl of the diluted recombinant HCV core protein solution was added to each well of the microplate prepared in Reference Example 5 and allowed to react at room temperature for 1 hour. After washing with a washing solution (AMPAK sensitizing reagent attached, manufactured by Dako), the labeled antibody obtained in Reference Example 4 was added. The labeled antibody is diluted with a solution containing 50 mM Tris buffer (pH 7.6), 10 mM magnesium chloride, 0.1 mM zinc chloride, 20% Block Ace (manufactured by Dainippon Pharmaceutical Co., Ltd.) and 0 to 2 M sodium chloride. 200 μl was added to each well. After stirring for 1 hour at room temperature, after washing with a washing solution, 200 μL of an enzyme cycling reaction reagent (manufactured by Dako) as a coloring reagent was added and reacted for 40 minutes with stirring at room temperature. 100 μl of a stop solution attached to the reagent was added, and the absorbance was measured at a main wavelength of 490 nm and a sub wavelength of 660 nm. In this experiment, KTM-145 was used for solid phase and KTM-163 was used for labeling alkaline phosphatase.
[0062]
The results are shown in Table 2. In Table 2, the numbers for each antigen concentration indicate absorbance (Abs).
[0063]
[Table 2]
[0064]
By increasing the sodium chloride concentration in the diluted solution containing the labeled antibody, the absorbance hardly changes even when the sodium chloride concentration is increased in the test group without the antigen, whereas the sodium chloride concentration in the test group in which the antigen is present. The absorbance obtained by increasing the value increased. This means that when sodium chloride is not used, the absorbance of the present invention is slightly increased even in the presence of the antigen as compared to the non-antigen-existing sample, and the sample of the present invention can be determined to be positive by applying the method of the present invention. It shows that it can be determined that the antigen is positive.
[0065]
Example 3 Detection limit
The recombinant HCV core protein obtained in Reference Example 1 was diluted with PBS containing 0.1% BSA so that the concentration range was 0 to 10 pg / mL.
[0066]
200 μl of the diluted recombinant HCV core protein solution was added to each well of the microplate obtained in Reference Example 5 and allowed to react at room temperature for 1 hour. After washing with a washing solution (AMPAK sensitizing reagent attached, manufactured by Dako), the labeled antibody obtained in Reference Example 4 was added. The labeled antibody is diluted with a solution containing 50 mM Tris buffer (pH 7.6), 10 mM magnesium chloride, 0.1 mM zinc chloride, 20% Block Ace (Dainippon Pharmaceutical Co., Ltd.) and 0 or 1 M sodium chloride. 200 μl was added to each well. After stirring for 1 hour at room temperature, after washing with a washing solution, 100 μL of an enzyme cycling reaction reagent (manufactured by Dako) as a coloring reagent was added and reacted for 30 minutes with stirring at room temperature. 100 μl of a stop solution attached to the reagent was added, and the absorbance was measured at a main wavelength of 490 nm and a sub wavelength of 660 nm. In this experiment, KTM-145 was used for solid phase and KTM-163 was used for labeling alkaline phosphatase.
[0067]
The results are shown in Table 3. In Table 3, the numbers for each salt concentration indicate the absorbance (Abs).
[0068]
[Table 3]
[0069]
By increasing the sodium chloride concentration in the diluted solution containing the labeled antibody, the antigen concentration capable of detecting the presence of the antigen became extremely low. As shown in Table 3, in the absence of sodium chloride, only a difference of 10 mAbs order from the absorbance of antigen 0 was observed at 1 pg / mL, whereas by adding 1 M sodium chloride, 0.125 pg / mL The difference in absorbance between antigen 0 and 10 mAbs was observed in mL, and the detection sensitivity was improved.
[0070]
Comparative Example 1
The recombinant HCV core protein obtained in Reference Example 1 was diluted with PBS containing 0.1% BSA so as to be 0, 10, 100, or 1000 pg / mL.
[0071]
200 μl of the diluted recombinant HCV core protein solution was added to each well of the microplate prepared in Reference Example 5 and allowed to react at room temperature for 1 hour. The peroxidase-labeled antibody obtained in Reference Example 6 was added after washing with a washing liquid (AMPAK sensitizing reagent attached, manufactured by Dako). The labeled antibody was diluted with a solution containing 50 mM Tris buffer (pH 7.2), 0.1% BSA and 0 to 4 M sodium chloride, and 200 μl was added to each well. After stirring at room temperature for 1 hour, after washing with a washing solution, 200 μL of TMB (tetramethylbenzidine, manufactured by Intergen) as a coloring reagent was added and reacted at room temperature with stirring for 30 minutes. 100 μl of 1N sulfuric acid was added to stop the color reaction, and the absorbance was measured at a main wavelength of 450 nm and a sub wavelength of 660 nm. In this experiment, KTM-145 was used for solid phase and KTM-163 was used for peroxidase labeling.
[0072]
The results are shown in Table 4. In Table 4, the numbers for each antigen concentration indicate absorbance (Abs).
[0073]
[Table 4]
[0074]
When a peroxidase-labeled antibody was used, the reaction specificity decreased in the reaction system in which no antigen was present when sodium chloride was added. Further, even when the sodium chloride concentration was increased in the reaction system in which the antigen was present, the reaction specificity was not improved.
[0075]
Example 4 Measurement of human specimen
Human serum was treated by the method described in JP-A-8-29427. That is, 50 μl of 20% PEG4000 was added to 200 μl of a serum sample and allowed to stand on ice for 1 hour. After centrifugation at 4000 × g for 5 minutes at 4 ° C., the precipitate fraction was suspended in 50 μl of 50 mM Tris buffer (pH 8.0), and 50 μl of 0.5 M sodium hydroxide solution was further added at 37 ° C., 30 Treated for minutes. Thereafter, the mixture was neutralized with 50 μL of a 0.5 M sodium hydrogen phosphate solution containing 0.3% Triton X-100. Finally, 300 μL of 0.1% BSA-PBS solution was added and diluted 3 times to obtain a solution for measurement. The measurement target was an anti-HCV antibody positive serum sample (Uni-2 and 0401) and a normal human serum sample as a control, and the test was performed in the same manner as in Example 1 to measure the absorbance (Abs).
The results are shown in Table 5.
[0076]
[Table 5]
[0077]
As shown in Table 5, when a normal human serum sample is used, the absorbance increases only slightly even if the sodium chloride concentration in the solution containing the labeled antibody is increased, but when an anti-HCV antibody positive serum sample is used. The absorbance obtained was increased by increasing the sodium chloride concentration in the solution containing the labeled antibody. Thereby, antigen positive determination can be performed even for a sample containing a lower concentration of antigen. Moreover, it can be seen from the S / N ratio that the sensitivity greatly increases when the sodium chloride concentration is 0.5 to 3M, particularly 1 to 3M.
[0078]
Example 5 Sample treatment with guanidine hydrochloride and alkali treatment
50 μl of 20% PEG4000 was added to 200 μl of serum sample and allowed to stand on ice for 1 hour. After centrifugation at 4000 × g for 5 minutes at 4 ° C., the precipitate was suspended and denatured in 50 μl of 50 mM Tris buffer (pH 8.0) containing 0-8 M guanidine hydrochloride. Further, 50 μl of 0.5 M sodium hydroxide solution was added, treated at 37 ° C. for 30 minutes, and then neutralized with 0.5 M sodium hydrogen phosphate solution. Thereafter, the solution was diluted 3-fold with a 0.1% BSA-PBS solution to obtain a measurement solution. The measurement was performed in the same manner as in Example 4 except that the sodium chloride concentration was 1M. The measurement subjects were normal human serum samples and anti-HCV antibody positive 3 serum samples (U-19, U-21 and U-29). The results are shown in Table 6. In Table 6, the numbers for each specimen indicate absorbance (Abs).
[0079]
[Table 6]
[0080]
As shown in Table 6, it can be seen that the absorbance increases depending on the concentration of guanidine hydrochloride.
[0081]
Example 6
A test was conducted in the same manner as in Example 5 using urea and guanidine hydrochloride. The concentration of urea was 10M, and the concentration of guanidine hydrochloride was 8M. As specimens, normal serum specimens and anti-HCV antibody positive 4 serum specimens (104, 106, 187 and 197) were used. The results are shown in Table 7. In Table 7, the numbers for each treatment reagent indicate absorbance (Abs).
[0082]
[Table 7]
[0083]
As shown in Table 7, specimen 104 and specimen 197 showed no significant difference in absorbance from normal human serum when treated with urea, and could not be judged positive, but the serum was treated with guanidine hydrochloride. Was positive.
[0084]
Example 7 Temperature study in alkali treatment
The test was conducted in the same manner as in Example 6 except that the temperature conditions in the alkali treatment were changed in Example 6. Serum specimens were 6, 9 and 138, and the temperatures in the alkali treatment were 37 ° C, 50 ° C, 70 ° C and 100 ° C. The results are shown in Table 8.
In Table 8, the numbers for each specimen indicate absorbance (Abs).
[0085]
[Table 8]
[0086]
As shown in Table 8, it is understood that the serum alkali treatment temperature is preferably around 50 ° C.
[0087]
Example 8 Comparison with various detection methods
The measurement according to the present invention was performed as follows. 50 μl of 20% PEG4000 was added to 200 μl of various serum specimens and allowed to stand on ice for 1 hour. After centrifugation at 4000 × g for 5 minutes at 4 ° C., the precipitate was suspended in 50 μl of 50 mM Tris buffer (pH 8.0) containing 8 M guanidine hydrochloride and denatured. Further, 50 μl of 0.5 M sodium hydroxide solution was added, treated at 50 ° C. for 30 minutes, and then neutralized with 0.5 M sodium hydrogen phosphate solution containing 0.3% Triton X-100. Thereafter, the solution was diluted 3-fold with a 0.1% BSA-PBS solution to obtain a measurement solution. The measurement was performed in the same manner as described in Example 4 except that 2M sodium chloride was used in the labeled antibody solution.
[0088]
In addition, Immunocheck, F-HCVAg core (manufactured by Kokusai Reagent Co., Ltd., hereinafter simply referred to as HCV core protein measurement kit) which is a kit for measuring HCV core protein, and third generation anti-HCV antibody which is a kit for measuring anti-HCV antibody ( Using the commercially available reagents of Amplicore Qualitative (Roche, hereinafter simply referred to as RNA measurement kit), which are kits for measuring HCV RNA by PCR, and the same sample using Ortho (hereinafter referred to as anti-HCV antibody measurement kit) Measured and compared with the method of the present invention for sensitivity. The results are shown in Table 9. In Table 9, “−” in the determination column indicates that it cannot be detected, and “+” in the determination column indicates that it can be detected.
[0089]
[Table 9]
[0090]
As shown in Table 9, according to the method of the present invention, it is possible to detect even a sample that cannot be detected by the HCV core protein measurement kit (made by Kokusai Reagent Co., Ltd.). These serum samples excluding normal people are positive for anti-HCV antibodies, and samples examined with an RNA measurement kit (Roche) are determined to be HCV positive.
The sensitivity for serum samples is 10 for the HCV core protein measurement kit (made by Kokusai Reagent Co., Ltd.). Four Although it is virus / mL, when the method of the present invention is used, it is 10 equivalent to an RNA measurement kit (manufactured by Roche). Three Virus / mL can be detected.
[0091]
Example 9 Combination of antibodies
The antibody used for the solid phase is different from the antibody to be labeled with alkaline phosphatase, except that HCV non-infected serum and HCV infected serum are used as samples, and the sodium chloride concentration of the aqueous solution for diluting the labeled antibody is 0 or 1M. The test was conducted in the same manner as in Example 6, the absorbance was measured, and the S / N ratio was determined. The results are shown in Table 10. In Table 10, the numbers for each sodium chloride concentration indicate the S / N ratio.
[0092]
[Table 10]
[0093]
As shown in Table 10, in any combination of the antibody used for the solid phase and the labeled antibody, S / N ratio can be obtained by adding sodium chloride to the solution for diluting the labeled antibody.
increased. This indicates that the HCV-infected specimen can be detected with higher sensitivity.
[0094]
Example 10 Detection limit
The specimen (U14 and U19) solution was multiplied by 1, and specimens serially diluted with a normal serum solution were prepared. 50 μl of 20% PEG4000 was added to 200 μl of serially diluted specimens and left on ice for 1 hour. After centrifugation at 4000 × g for 5 minutes at 4 ° C., the precipitate was suspended in 50 μl of 50 mM Tris buffer (pH 8.0) containing 8 M guanidine hydrochloride and denatured. Further, 50 μl of 0.5 M sodium hydroxide solution was added, treated at 50 ° C. for 30 minutes, and then neutralized with 0.5 M sodium hydrogen phosphate solution containing 0.3% Triton X-100. Thereafter, the solution was diluted 3-fold with a 0.1% BSA-PBS solution to obtain a measurement solution. Each diluted specimen was measured by the method described in Example 4. The concentration of sodium chloride in the labeled antibody solution was 2M.
[0095]
A calibration curve was prepared using the HCV core protein of known concentration obtained in Reference Example 1 as a standard substance, and the amount of HCV core protein was determined from the absorbance (Abs) of each sample.
The results using U14 specimen are shown in Table 11, and the results using U19 specimen are shown in Table 12, respectively.
[0096]
[Table 11]
[0097]
[Table 12]
[0098]
As shown in Tables 11 and 12, the quantification method of the present invention can detect HCV core protein to the order of 0.1 pg / mL.
[0099]
Example 11 Detection of HCV core antigen in seroconversion panel specimen
HCV core antigen was measured by the method described in Example 8 using a commercially available seroconversion panel PHV908 (BBI) as a specimen. The HCV core antigen was expressed as a ratio (S / N) relative to the absorbance of a normal person as 1.0.
[0100]
The sample was also measured with an anti-HCV antibody measurement kit (manufactured by Ortho). The antibody titer is represented by a cut-off index (S / CO), and 1.0 or higher is determined as positive.
The results are shown in Table 13.
[0101]
[Table 13]
[0102]
As shown in Table 13, according to the method of the present invention, the core antigen could be detected before anti-HCV antibody became positive, and detection was possible at the early stage of infection.
[0103]
Example 12 Reagent Kit for Quantification of HCV Core Protein
A reagent kit comprising the following reagents was constructed.
Antibody coated plate (prepared in the same manner as in Reference Example 5 using KTM-145 obtained in Reference Example 2)
Sample diluent
(Aqueous solution containing PBS containing 0.1% BSA and 1% normal mouse serum)
Enzyme-labeled antibody
(KTM-163 obtained in Reference Example 2 prepared in the same manner as Reference Example 4)
Standard antigen 0 pg / mL and 10 pg / mL
(The HCV core protein obtained in Reference Example 1 was mixed with 0.067% BSA-containing PBS, 0.89 M guanidine hydrochloride, 5.56 mM Tris buffer (pH 8), 0.056 M sodium hydroxide, 0.056 M diphosphate. Dissolved in a solution containing sodium hydride, 0.005% Triton X-100 to be 0 or 10 pg / mL)
Labeled antibody diluent
[50 mM Tris buffer (pH 7.6), 10 mM magnesium chloride, 0.2 mM zinc chloride, 20% block ace, 2M sodium chloride, 0.1% sodium azide, 0.1% Triton X-705 and 1% normal Contains mouse serum]
Coloring reagent
[Coloring reagent contained in enzyme cycling reaction reagent (AmpliQ, manufactured by Dako)]
Stop solution
[Stop solution contained in enzyme cycling reaction reagent (AmpliQ, manufactured by Dako)]
[0104]
Precipitation reagent
(20% PEG 4000)
Dispersing reagent
[8M guanidine hydrochloride and 50 mM Tris buffer (pH 8)]
Alkaline reagent
(0.5M sodium hydroxide solution)
Neutralizing reagent
(0.5M sodium dihydrogen phosphate and 0.3% Triton X-100)
[0105]
【The invention's effect】
The present invention provides an immunoassay method for detecting an HCV-derived antigen causing hepatitis C with high sensitivity, and a reagent and kit for use in the immunoassay method. According to the present invention, a sample that cannot be detected by a conventional HCV core antigen measurement system can be detected with high sensitivity and can be widely used for HCV antigen testing. In addition, an immunoassay having the same sensitivity as a highly sensitive gene measurement method by PCR can be easily constructed, and can contribute widely to the medical field.
Claims (19)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000247146A JP4346798B2 (en) | 1999-08-19 | 2000-08-17 | HCV core antigen detection or quantification method and detection or quantification reagent used therefor. |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23317199 | 1999-08-19 | ||
JP11-233171 | 1999-08-19 | ||
JP2000247146A JP4346798B2 (en) | 1999-08-19 | 2000-08-17 | HCV core antigen detection or quantification method and detection or quantification reagent used therefor. |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009139869A Division JP4931963B2 (en) | 1999-08-19 | 2009-06-11 | Anti-HCV core protein monoclonal antibody |
JP2009139868A Division JP4931962B2 (en) | 1999-08-19 | 2009-06-11 | Anti-HCV core protein monoclonal antibody |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001124779A JP2001124779A (en) | 2001-05-11 |
JP4346798B2 true JP4346798B2 (en) | 2009-10-21 |
Family
ID=26530890
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000247146A Expired - Fee Related JP4346798B2 (en) | 1999-08-19 | 2000-08-17 | HCV core antigen detection or quantification method and detection or quantification reagent used therefor. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4346798B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4855126B2 (en) * | 2006-04-07 | 2012-01-18 | アボットジャパン株式会社 | Parvovirus B19 antigen measurement method |
JP5351724B2 (en) * | 2009-11-30 | 2013-11-27 | シスメックス株式会社 | Method for detecting core protein of hepatitis C virus and reagent kit for detection |
JP5618570B2 (en) * | 2010-02-26 | 2014-11-05 | シスメックス株式会社 | Method for immunoassay of hepatitis C virus and reagent kit used therefor |
JP6091158B2 (en) | 2012-10-23 | 2017-03-08 | デンカ生研株式会社 | Method to increase sensitivity of immunoassay system by pretreatment of urine with denaturant |
PT2948479T (en) | 2013-01-20 | 2018-11-14 | Dyax Corp | Evaluation and treatment of bradykinin-mediated disorders |
IL289514B2 (en) | 2013-10-21 | 2024-01-01 | Takeda Pharmaceuticals Co | Assays for determining plasma kallikrein system biomarkers |
WO2015061182A1 (en) | 2013-10-21 | 2015-04-30 | Dyax Corp. | Diagnosis and treatment of autoimmune diseases |
IL258637B2 (en) * | 2015-10-19 | 2024-10-01 | Dyax Corp | Immunoassay to detect cleaved high molecular weight kininogen |
CN109154616B (en) * | 2016-05-31 | 2022-07-12 | 豪夫迈·罗氏有限公司 | Method for serological detection of viral antigens |
CN111751544B (en) * | 2019-03-28 | 2023-06-09 | 北京九强生物技术股份有限公司 | Kit for detecting soluble growth hormone expressed gene 2 protein |
-
2000
- 2000-08-17 JP JP2000247146A patent/JP4346798B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001124779A (en) | 2001-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4931963B2 (en) | Anti-HCV core protein monoclonal antibody | |
EP2327987B1 (en) | Method and kit for detection of HCV core protein | |
JP3514729B2 (en) | Method for measuring hepatitis C virus | |
JP3623162B2 (en) | Virus detection or measurement method | |
US8546075B2 (en) | Method of detecting hepatitis C virus | |
WO2022193980A1 (en) | Antibody or antigen-binding fragment thereof for novel coronavirus nucleocapsid protein, and application thereof | |
JP3217600B2 (en) | Immunoassay for non-A non-B hepatitis virus-related antigen, monoclonal antibody used therein, and hybridoma producing this antibody | |
US20080138794A1 (en) | Method for detecting or measuring HBV | |
JP4346798B2 (en) | HCV core antigen detection or quantification method and detection or quantification reagent used therefor. | |
JPWO2019107279A1 (en) | Hepatitis B virus s antigen measurement method and measurement kit | |
JP6032470B2 (en) | PIVKA-II measuring method, measuring reagent and measuring kit | |
JP6048923B2 (en) | Detection method and detection kit for chronic hepatitis B | |
JP2019053060A (en) | Immunoassay method for hepatitis B virus core antibody | |
JPH04310861A (en) | Method and kit for measuring anti-ebna antibody | |
US10634676B2 (en) | Method and kit for simultaneously detecting human parvovirus B19 antigen and antibody | |
JP2867325B2 (en) | Anti-PIVKA-II antibody producing hybridoma and immunological assay method | |
WO2006113522A2 (en) | Methods of detecting hepatitis c virus | |
JP3176570B2 (en) | HCV detection or measurement method | |
JP4856381B2 (en) | Method for measuring human orotate phosphoribosyltransferase protein | |
AU664179B2 (en) | Immunoassay for detecting HCV IgM antibody | |
CN117890589A (en) | Multi-epitope HCV core antibody combination and detection kit | |
JP2001224371A (en) | Method of detecting or measuring hepatitis c virus (hcv) | |
WO2022244861A1 (en) | Anti-norovirus antibody | |
JPH02173569A (en) | Measuring method and measuring kit for human tissue plasminogen activator-human plasminogen activator inhibitor complex |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070502 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090421 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090428 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090611 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090708 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090715 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120724 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130724 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |