JP4345473B2 - Manufacturing method of surface acoustic wave device - Google Patents

Manufacturing method of surface acoustic wave device Download PDF

Info

Publication number
JP4345473B2
JP4345473B2 JP2003423322A JP2003423322A JP4345473B2 JP 4345473 B2 JP4345473 B2 JP 4345473B2 JP 2003423322 A JP2003423322 A JP 2003423322A JP 2003423322 A JP2003423322 A JP 2003423322A JP 4345473 B2 JP4345473 B2 JP 4345473B2
Authority
JP
Japan
Prior art keywords
polarization
piezoelectric substrate
acoustic wave
surface acoustic
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003423322A
Other languages
Japanese (ja)
Other versions
JP2005184541A (en
Inventor
晃司 松原
勝弘 堀川
晃司 小木曽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2003423322A priority Critical patent/JP4345473B2/en
Publication of JP2005184541A publication Critical patent/JP2005184541A/en
Application granted granted Critical
Publication of JP4345473B2 publication Critical patent/JP4345473B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

本発明は、バンドパスフィルタや共振子等に用いられる弾性表面波素子の製造方法に関し、より詳細には、圧電性基板のドメイン構造が改良された弾性表面波素子の製造方法に関する。 The present invention relates to a method of manufacturing a surface acoustic wave element used in the band-pass filter or resonator or the like, and more particularly, to a method of manufacturing a surface acoustic wave element in which the domain structure of the piezoelectric substrate is improved.

弾性表面波は、媒質の表面付近にそのエネルギーを集中して伝搬する波である。弾性表面波素子は、圧電基板に少なくとも1つのインターデジタルトランスデューサ(IDT)を形成した構造を有する。IDTは、少なくとも2つの櫛形の電極を有し、櫛形電極の電極指同士が互いに間挿し合うように配置された構造を有し、櫛形電極間に電気信号を印加することにより、表面波が励振される。   A surface acoustic wave is a wave that concentrates its energy and propagates near the surface of a medium. The surface acoustic wave element has a structure in which at least one interdigital transducer (IDT) is formed on a piezoelectric substrate. The IDT has a structure in which at least two comb-shaped electrodes are arranged so that the electrode fingers of the comb-shaped electrodes are interleaved with each other. By applying an electric signal between the comb-shaped electrodes, the surface wave is excited. Is done.

弾性表面波素子は、一般に小型化が可能であり、高周波領域において使用するのに適しているため、各種AV機器や通信機器のバンドパスフィルタ、信号源あるいは信号処理デバイスなどに広く利用されている。   A surface acoustic wave element can generally be reduced in size and is suitable for use in a high-frequency region, and is therefore widely used in bandpass filters, signal sources, signal processing devices, etc. for various AV equipment and communication equipment. .

従来、弾性表面波としては、主にレイリー波が用いられていたが、近年、BGS波やラブ波などのSHタイプの表面波も用いられてきている。   Conventionally, Rayleigh waves have been mainly used as surface acoustic waves, but recently, SH type surface waves such as BGS waves and Love waves have also been used.

弾性表面波素子の圧電基板材料としては、主に、水晶やLiTaO3やLiNbO3などの単結晶が用いられているが、その他、PbTiO3系(PT系)やPbZrO3−PbTiO3系(PZT系)の固溶体を主体とした圧電セラミックスも用いられている。また、絶縁性基板上に、ZnOやPZTなどの圧電膜を形成してなる圧電性基板も用いられている。 As the piezoelectric substrate material of the surface acoustic wave element, a single crystal such as quartz, LiTaO 3, or LiNbO 3 is mainly used. In addition, a PbTiO 3 system (PT system) or a PbZrO 3 -PbTiO 3 system (PZT) is used. Piezoelectric ceramics mainly composed of solid solution are also used. In addition, a piezoelectric substrate formed by forming a piezoelectric film such as ZnO or PZT on an insulating substrate is also used.

弾性表面波素子において所望の特性を得るには、IDTの設計、弾性表面波の振動モードや圧電基板材料の選択などにおいて最適な設計が必要であり、これまで種々の検討がなされてきている。   In order to obtain a desired characteristic in a surface acoustic wave device, an optimum design is necessary in designing an IDT, a surface acoustic wave vibration mode, and a piezoelectric substrate material, and various studies have been made so far.

一般的な弾性表面波であるレイリー波は、等方性及び異方性の各媒体表面において伝搬し、表面波は、進行方向(x方向)の変位成分であるP波(Primary Wave、縦波)と、深さ方向(z方向)に平行な変位成分であるSV波(Vertical Shear Wave、横波)とからなる。そして、基板表面から1波長以内に、振動エネルギーの90%以上が集中しており、弾性表面波として優れたエネルギー集中度を示す。   A Rayleigh wave, which is a general surface acoustic wave, propagates on each isotropic and anisotropic medium surface, and the surface wave is a P wave (Primary Wave, longitudinal wave) that is a displacement component in the traveling direction (x direction). ) And an SV wave (Vertical Shear Wave) which is a displacement component parallel to the depth direction (z direction). And 90% or more of the vibration energy is concentrated within one wavelength from the substrate surface, which shows an excellent energy concentration as a surface acoustic wave.

しかしながら、P波やSV波は境界面において複雑に反射されるので、反射時にモード変換が生じる。そのため、弾性表面波素子を共振子として利用するには、別途反射器を形成する必要があり、素子サイズが大きくなりがちであった。特に、周波数が低い領域においては、IDTの電極間ピッチも大きくなるので、素子サイズはさらに大きくなりがちであった。   However, since the P wave and the SV wave are complicatedly reflected at the boundary surface, mode conversion occurs at the time of reflection. Therefore, in order to use the surface acoustic wave element as a resonator, it is necessary to separately form a reflector, and the element size tends to be large. In particular, in the region where the frequency is low, the pitch between the electrodes of the IDT is increased, and thus the element size tends to be further increased.

また、表面波の振動エネルギーが表面に集中している欠点としては、基板表面の影響を受け易く、例えば信頼性試験などにおいて特性が悪化し易いという問題もあった。   Further, as a defect that the vibration energy of the surface wave is concentrated on the surface, there is a problem that the characteristic is easily deteriorated in a reliability test or the like because it is easily influenced by the surface of the substrate.

これに対して、波の進行方向(x方向成分)と基板深さ方向(z方向成分)に垂直な方向の変位成分(y方向成分)を有するSH波は、等方体では存在しない弾性表面波であり、圧電媒体や層状媒体などの異方性を有する媒体表面で伝搬することが知られている。   In contrast, an SH wave having a displacement component (y-direction component) in a direction perpendicular to the wave traveling direction (x-direction component) and the substrate depth direction (z-direction component) is an elastic surface that does not exist in an isotropic body. It is known that it is a wave and propagates on the surface of an anisotropic medium such as a piezoelectric medium or a layered medium.

BGS波は、SH波の1つであり、各種圧電単結晶、またはc軸もしくは分極軸が基板表面に平行な圧電セラミックス基板上を伝搬する。   A BGS wave is one of SH waves, and propagates on various piezoelectric single crystals or piezoelectric ceramic substrates whose c-axis or polarization axis is parallel to the substrate surface.

BGS波などのSH波は、レイリー波とは異なり、反射器を構成することなく共振子を構成することができるという利点を有する。これは、SH波が、xy面に平行なy方向の変位成分しか有しない波であり、高誘電率の基板の自由端面においてモード変換を引き起こすことなく完全に反射されるためである。そのため、圧電基板の端面を反射面として利用することができ、反射器を省略することができる。従って、レイリー波を利用した場合には素子サイズが大きくなりがちである数十〜数百MHzの周波数領域において、SH波を利用することにより弾性表面波素子のサイズを効果的に小さくすることができる。   Unlike a Rayleigh wave, an SH wave such as a BGS wave has an advantage that a resonator can be formed without forming a reflector. This is because the SH wave is a wave having only a displacement component in the y direction parallel to the xy plane, and is completely reflected without causing mode conversion on the free end face of the high dielectric constant substrate. Therefore, the end surface of the piezoelectric substrate can be used as a reflecting surface, and the reflector can be omitted. Therefore, in the frequency region of several tens to several hundreds MHz where the element size tends to be large when Rayleigh waves are used, the size of the surface acoustic wave element can be effectively reduced by using the SH wave. it can.

また、同一圧電性基板を用いた場合、電気機械結合係数(k)、温度特性あるいは伝搬速度などにおいて、SH波はレイリー波と異なった特性を示す。従って、その特徴を活かした応用も期待されている。   When the same piezoelectric substrate is used, the SH wave exhibits different characteristics from the Rayleigh wave in terms of electromechanical coupling coefficient (k), temperature characteristics, propagation speed, and the like. Therefore, application utilizing the characteristics is also expected.

しかしながら、SH波では、(1)表面波の振動エネルギーの表面集中度が低いこと、(2)伝搬の際にバルク波を内部に放射すること、並びに(3)端面で反射される際に、SH波が端面の影響を受け易いことなどにより、本質的に伝搬損失が大きいという問題もあった。そのため、SH波の応用に際しては、これらの伝搬損失の低減が必要であった。従来は、素子の加工精度、端面状態の向上、スプリアス要因となるバルク波の低減を目的とした基板底面及び端面の一部の粗面化(特許文献1)などにより、伝搬損失の低減が図られていた。   However, in the SH wave, (1) the surface concentration of the vibration energy of the surface wave is low, (2) the bulk wave is radiated inside during propagation, and (3) when reflected at the end face, There is also a problem that the propagation loss is essentially large due to the fact that the SH wave is easily affected by the end face. Therefore, it is necessary to reduce these propagation losses when applying SH waves. Conventionally, propagation loss is reduced by improving the processing accuracy of the element, improving the end face condition, and roughening the bottom surface of the substrate and part of the end face for the purpose of reducing bulk waves that cause spurious (Patent Document 1). It was done.

しかしながら、上記のように伝搬損失の低減を図ったとしても、SHタイプの表面波では、電気機械結合係数kが小さい圧電性基板を用いた場合、反共振周波数におけるインピーダンスZaと共振周波数におけるインピーダンスZrとの比、Za/Zrが小さく、狭帯域のフィルタ特性を得ることが困難であるという問題があった。   However, even if the propagation loss is reduced as described above, in the SH type surface wave, when a piezoelectric substrate having a small electromechanical coupling coefficient k is used, the impedance Za at the antiresonance frequency and the impedance Zr at the resonance frequency are used. The ratio Za / Zr is small, and it is difficult to obtain narrow band filter characteristics.

また、電気機械結合係数kが大きい基板を用いた場合には、インピーダンス比Za/Zrを大きくすることができ、広帯域のフィルタは形成し得るものの、耐
候性、特に湿中放置時の共振周波数のシフト量が増大するという問題があった。
In addition, when a substrate having a large electromechanical coupling coefficient k is used, the impedance ratio Za / Zr can be increased and a broadband filter can be formed. However, the weather resistance, particularly the resonance frequency when left in a humidity state, can be formed. There was a problem that the shift amount increased.

これに対し、特許文献2では、電極形成面と垂直な厚み方向について、その組成あるいは電気的及び機械的特性に関して異なる2層以上の多層構造を有する、またはその組成あるいは電気的及び機械的特性に関して傾斜構造を有することを特徴とする弾性表面波素子を用いることにより、弾性表面波の振動エネルギーの表面集中度を主とした制御を行い、電気機械結合係数kが小さい圧電性基板での表面集中度の低下に起因した損失を低減し、電気機械結合係数kが大きい圧電性基板では気温や湿度などの影響を受けにくくするために基板表面への振動エネルギーの過度の集中を抑えるなどして、Za/Zrや耐湿性を改善している。
特公平8−21830号公報 特開2003−51734号公報
On the other hand, Patent Document 2 has a multilayer structure of two or more layers that differ in composition or electrical and mechanical characteristics in the thickness direction perpendicular to the electrode formation surface, or in relation to the composition or electrical and mechanical characteristics. By using a surface acoustic wave element characterized by having an inclined structure, the surface concentration on a piezoelectric substrate having a small electromechanical coupling coefficient k is controlled by mainly controlling the surface concentration of vibration energy of the surface acoustic wave. In order to reduce the loss due to the lowering of the degree and to make the piezoelectric substrate with a large electromechanical coupling coefficient k less susceptible to the influence of temperature, humidity, etc., suppressing excessive concentration of vibration energy on the substrate surface, etc. Za / Zr and moisture resistance are improved.
Japanese Patent Publication No. 8-21830 JP 2003-51734 A

上記のように弾性表面波では振動姿態の制御によりその特性を改善することが可能である。しかしながら、弾性表面波の振動エネルギーの表面集中度に代表される振動姿態を制御するために特許文献2に記載されるような制御法を用いた場合、その加工工程が複雑となってしまい、また、コストの増加も懸念されるという問題があった。   As described above, the characteristics of the surface acoustic wave can be improved by controlling the vibration state. However, when a control method such as that described in Patent Document 2 is used to control the vibration state represented by the surface concentration of the vibrational energy of the surface acoustic wave, the processing process becomes complicated. There was a problem that the increase in cost was also a concern.

本発明の目的は、上述した従来のSH波を利用した弾性表面波素子の欠点を解消し、伝搬損失の低減、耐候性の改善が図られ得る弾性表面波素子を容易にかつ安価に得ることを可能とする製造方法を提供することにある。 An object of the present invention is to solve the drawbacks of the surface acoustic wave device using a conventional SH wave as described above, the reduction of propagation loss, improved weather resistance obtained easily and inexpensively that may be a surface acoustic wave element of reduced An object of the present invention is to provide a manufacturing method that makes it possible.

本発明は、上記課題を達成するためになされたものであり、本発明の弾性表面波素子の製造方法は、第1,第2の主面を有する圧電性基板を用意する工程と、前記圧電性基板の第1の主面と平行な方向に均一な分布の電界を印加し均一に分極を行う工程と、前記分極時とは電界印加方向が逆向きでかつ前記圧電性基板の厚み方向に対して電界強度が傾斜的に分布するように電界の回り込み現象を利用して分極を行う工程と、前記圧電性基板の第1の主面上にインターデジタルトランスデューサを形成する工程とを備えることを特徴とする。本発明によれば、第1,第2の主面を有する圧電性基板と、前記圧電性基板の第1の主面側に配置されたインターデジタルトランスデューサとを備え、前記圧電性基板の分極度が第1の主面と直交する厚み方向に対して、傾斜的に変化したドメイン構造を有する、SH波型弾性表面波素子が提供される。 The present invention has been made to achieve the above object, and a method of manufacturing a surface acoustic wave device according to the present invention includes a step of preparing a piezoelectric substrate having first and second main surfaces, and the piezoelectric device. Applying a uniformly distributed electric field in a direction parallel to the first main surface of the conductive substrate and uniformly polarizing the electric field application direction is opposite to that during the polarization and in the thickness direction of the piezoelectric substrate. In contrast, the method includes polarization using an electric field wrapping phenomenon so that the electric field strength is distributed in a gradient, and forming an interdigital transducer on the first main surface of the piezoelectric substrate. Features. According to the onset bright, first, a piezoelectric substrate having a second major surface, and an interdigital transducer disposed on the first main surface side of the piezoelectric substrate, the minute of the piezoelectric substrate extreme is the thickness direction perpendicular to the first major surface, that have a slope varying domain structure, SH wave type surface acoustic wave device is provided.

すなわち、弾性表面波の振動エネルギーの表面集中度に代表される弾性表面波の振動姿態は、圧電性基板の電気的特性や機械的特性により大きな影響を受ける。本発明では、この圧電性基板の電気的特性や機械的特性の制御が、上記のようにドメイン構造(分極度)を制御することにより果たされる。   That is, the vibration state of the surface acoustic wave represented by the surface concentration degree of the vibration energy of the surface acoustic wave is greatly influenced by the electrical characteristics and mechanical characteristics of the piezoelectric substrate. In the present invention, the electrical characteristics and mechanical characteristics of the piezoelectric substrate are controlled by controlling the domain structure (degree of polarization) as described above.

従来、弾性表面波素子のドメイン構造(分極度)を制御する例としては、任意の一方向へのドメインの配向処理を行う分極処理方法、あるいはドメイン構造を安定化させるために分極処理後にエージング処理を行う方法などがあった。これに対して、本発明では、上記のように圧電性基板の厚み方向において、傾斜的に分極度が変化するようにドメイン構造が制御されており、それによって後述の実施例から明らかなように、従来の弾性表面波素子の製造方法に煩雑な付加的な工程を加えることなく、圧電性基板の電気的特性や機械的特性の制御が安価にかつ容易に果たされる。   Conventionally, as an example of controlling the domain structure (polarization degree) of a surface acoustic wave device, a polarization processing method for performing domain orientation processing in an arbitrary direction, or an aging treatment after polarization processing to stabilize the domain structure There was a way to do. On the other hand, in the present invention, as described above, the domain structure is controlled so that the degree of polarization changes in an inclined manner in the thickness direction of the piezoelectric substrate, and as will be apparent from the examples described later. Therefore, the electrical characteristics and mechanical characteristics of the piezoelectric substrate can be controlled at low cost and easily without adding complicated additional steps to the conventional method of manufacturing the surface acoustic wave device.

従って、圧電性基板の電気的特性や機械的特性をドメイン構造(分極度)の制御により調整し得るので、所望の特性の弾性表面波素子を高精度にかつ安価に提供することができる。   Therefore, since the electrical characteristics and mechanical characteristics of the piezoelectric substrate can be adjusted by controlling the domain structure (degree of polarization), a surface acoustic wave element having desired characteristics can be provided with high accuracy and at low cost.

なお、エージングとは、圧電体などを温度を上げて一定時間保持することによって、その諸特性の経時変化を意図的に加速させることをいい、「枯化」ともいわれている。   Aging refers to intentionally accelerating changes over time in various characteristics by raising the temperature of a piezoelectric body or the like and holding it for a certain period of time, and is also referred to as “withering”.

本発明に係る弾性表面波素子の製造方法の特定の局面では、上記圧電性基板として、圧電セラミックスが用いられる。   In a specific aspect of the method for manufacturing a surface acoustic wave device according to the present invention, a piezoelectric ceramic is used as the piezoelectric substrate.

なお、上記SH波としては、BGS波、ラブ波、漏洩弾性波などの様々なSH波を用いることができる。   As the SH wave, various SH waves such as a BGS wave, a love wave, and a leaky elastic wave can be used.

本発明に係る弾性表面波素子では、インターデジタルトランスデューサが形成された第1の主面と直交する厚み方向において、圧電性基板の分極度が傾斜的に変化しているドメイン構造を有するので、圧電性基板の電気的特性や機械的特性を傾斜的に制御することができる。従って、弾性表面波の振動エネルギーの表面集中度に代表される振動姿態の制御を、分極構造の制御により容易にかつ高精度に、さらに安定に達成することができる。これは、分極構造の制御は、電界などの外部から印加されるエネルギーにより比較的容易にかつ高精度に行い得ることによる。   Since the surface acoustic wave device according to the present invention has a domain structure in which the degree of polarization of the piezoelectric substrate changes in the thickness direction perpendicular to the first main surface on which the interdigital transducer is formed, The electrical characteristics and mechanical characteristics of the conductive substrate can be controlled in a tilted manner. Therefore, the control of the vibration mode represented by the surface concentration degree of the vibrational energy of the surface acoustic wave can be easily and highly accurately achieved by controlling the polarization structure. This is because the polarization structure can be controlled relatively easily and with high accuracy by externally applied energy such as an electric field.

しかも、分極構造を制御するだけでよいため、製造に際し、煩雑な工程を必要としないため、コストの増加を招くことなく、機械的特性や電気的特性を改善することができるので、所望とする特性の弾性表面波素子を安価に提供することができる。   Moreover, since it is only necessary to control the polarization structure, a complicated process is not required in the production, and the mechanical characteristics and electrical characteristics can be improved without increasing the cost. A surface acoustic wave element having characteristics can be provided at low cost.

本発明において、上記圧電性基板としては、圧電セラミックスを用いた場合、本発明に従って所望とする機械的特性及び電気的特性を有するSH型弾性表面波素子を容易に構成することができる。   In the present invention, when a piezoelectric ceramic is used as the piezoelectric substrate, an SH type surface acoustic wave element having desired mechanical characteristics and electrical characteristics can be easily configured according to the present invention.

本発明に係る弾性表面波素子は、SH波を利用したものであるが、好ましくは、BGS波が用いられる。BGS波を利用した弾性表面波素子の場合、表面波のエネルギーの表面集中度が低いため、本発明に従って圧電性基板の分極構造を制御することにより、インピーダンス比Za/Zrを大きくして狭帯域のフィルタ特性などを容易に実現することができ、かつ耐候性も高め得る。   The surface acoustic wave device according to the present invention uses SH waves, but preferably BGS waves are used. In the case of a surface acoustic wave element using BGS waves, the surface concentration of surface wave energy is low. Therefore, by controlling the polarization structure of the piezoelectric substrate in accordance with the present invention, the impedance ratio Za / Zr is increased and narrow band is obtained. The filter characteristics can be easily realized and the weather resistance can be improved.

本発明に係る弾性表面波素子の製造方法では、前記圧電性基板の第1の主面と平行な方向に均一な分布の電界を印加し均一に分極を行った後、前記分極時とは電界印加方向が逆向きでかつ前記圧電性基板の厚み方向に対して電界強度が傾斜的に分布するように電界の回り込み現象を利用して分極を行うことにより圧電性基板が分極される。   In the method for manufacturing a surface acoustic wave device according to the present invention, an electric field having a uniform distribution is applied in a direction parallel to the first main surface of the piezoelectric substrate to uniformly polarize the electric field. The piezoelectric substrate is polarized by performing polarization using the wraparound phenomenon of the electric field so that the application direction is opposite and the electric field strength is distributed in a gradient with respect to the thickness direction of the piezoelectric substrate.

従って、上記のように厚み方向において傾斜的に変化しているドメイン構造を有するように分極処理が施されるので、本発明の弾性表面波素子と同様に、圧電性基板の電気的特性や機械的特性を容易に制御することができ、所望とする特性の弾性表面波素子を容易に得ることができる。また、上記分極に際しては、電界の印加等により容易に行い得るので、製造工程が煩雑化することもない。   Therefore, since the polarization treatment is performed so as to have a domain structure that changes in the thickness direction as described above, similarly to the surface acoustic wave element of the present invention, the electrical characteristics and mechanical properties of the piezoelectric substrate Therefore, the surface acoustic wave element having desired characteristics can be easily obtained. Further, since the polarization can be easily performed by applying an electric field or the like, the manufacturing process is not complicated.

以下、本発明の具体的な実施例を説明することにより、本発明をより詳細に説明する。   Hereinafter, the present invention will be described in more detail by describing specific examples of the present invention.

まず、図1及び図2を参照して、本発明の弾性表面波素子の具体的な実施形態を説明する。   First, with reference to FIG.1 and FIG.2, the specific embodiment of the surface acoustic wave element of this invention is described.

図1に示す弾性表面波素子1は、矩形板状の圧電性基板2を有する。圧電性基板2は、PbTiO3やPbZrO3−PbTiO3系の圧電セラミックスにより構成されている。圧電性基板2の第1の主面としての上面2a上には、インターデジタルトランスデューサ3が形成されている。インターデジタルトランスデューサ3は、一対の櫛形の電極3a,3bを有する。櫛形電極3a,3bの電極指は互いに間挿し合うように配置されている。弾性表面波素子1では、圧電性基板2が、図示の矢印P方向に分極処理されている。すなわち、櫛形電極3a,3bの電極指と平行な方向に分極されており、表面波伝搬方向Aは、電極指と直交する方向とされている。 A surface acoustic wave element 1 shown in FIG. 1 has a rectangular plate-shaped piezoelectric substrate 2. The piezoelectric substrate 2 is made of PbTiO 3 or PbZrO 3 —PbTiO 3 based piezoelectric ceramics. An interdigital transducer 3 is formed on the upper surface 2 a as the first main surface of the piezoelectric substrate 2. The interdigital transducer 3 has a pair of comb-shaped electrodes 3a and 3b. The electrode fingers of the comb-shaped electrodes 3a and 3b are disposed so as to be inserted into each other. In the surface acoustic wave element 1, the piezoelectric substrate 2 is polarized in the direction indicated by the arrow P. That is, it is polarized in a direction parallel to the electrode fingers of the comb-shaped electrodes 3a and 3b, and the surface wave propagation direction A is a direction orthogonal to the electrode fingers.

弾性表面波素子1では、櫛形電極3a,3b間に交流電圧を印加することによりBGS波が励振され、該BGS波が伝搬方向Aに沿って伝搬し、端面2b,2cで反射される。すなわち、向かい合う端面2b,2cは平行とされており、BGS波を利用した端面反射型表面波共振子の反射端面を構成している。   In the surface acoustic wave element 1, a BGS wave is excited by applying an alternating voltage between the comb electrodes 3a and 3b, and the BGS wave propagates along the propagation direction A and is reflected by the end faces 2b and 2c. That is, the facing end faces 2b and 2c are parallel to each other, and constitute a reflecting end face of an end face reflection type surface wave resonator using a BGS wave.

本実施形態の弾性表面波素子1の特徴は、圧電性基板2のドメイン構造(分極度)にある。これを、図2を参照して説明する。   The surface acoustic wave device 1 according to the present embodiment is characterized by the domain structure (polarization degree) of the piezoelectric substrate 2. This will be described with reference to FIG.

図2は、圧電性基板2を分極する方法を説明するための模式的断面図であり、図1の端面2c側から見た状態を示す。   FIG. 2 is a schematic cross-sectional view for explaining a method of polarizing the piezoelectric substrate 2, and shows a state seen from the end face 2c side of FIG.

圧電性基板2を分極するにあたっては、まず均一に分極を行う。すなわち、図2(a)に示すように、分極用電極6a,6b,7a,7bを形成し、分極用電極6aと分極用電極7aに同位の電圧を印加し、分極用電極6bと分極用電極7bにそれらと一定の電位差をもつ電圧を印加する(分極方法A)。   When the piezoelectric substrate 2 is polarized, the polarization is first performed uniformly. That is, as shown in FIG. 2A, polarization electrodes 6a, 6b, 7a, and 7b are formed, and a voltage of the same level is applied to the polarization electrode 6a and the polarization electrode 7a, so that the polarization electrode 6b and the polarization electrode 6b are polarized. A voltage having a certain potential difference from them is applied to the electrode 7b (polarization method A).

続いて、図2(b)に示すように、分極用電極6a,6bのみに分極方法Aとは逆方向に電圧を印加すること(分極方法B)で、基板の厚み方向に対し傾斜的に分極度が増加するドメイン構造を得ることができる。また、図2(c)に示すように、分極用電極7a,7bのみに分極方法Aとは逆方向に電圧を印加することで、基板の厚み方向に対し傾斜的に分極度が低下するドメイン構造を得ることもできる(分極方法C)。   Subsequently, as shown in FIG. 2 (b), a voltage is applied only to the polarization electrodes 6a and 6b in a direction opposite to the polarization method A (polarization method B), so as to be inclined with respect to the thickness direction of the substrate. A domain structure with an increased degree of polarization can be obtained. Further, as shown in FIG. 2 (c), a domain in which the degree of polarization is inclined with respect to the thickness direction of the substrate by applying a voltage to only the polarization electrodes 7a and 7b in the opposite direction to the polarization method A. A structure can also be obtained (polarization method C).

このように、“一度、均一に分極した後に傾斜型の逆分極をかける”ことで、分極時の歪みを小さくすることができ、従来例(特許公報第2508334号、特開平5−160463号)で発生していたような分極時の反り、割れを抑えることができる。これは、最初の均一分極で180°ドメイン及び非180°ドメインが基板厚み方向に対して均一に分極された後、逆電界の傾斜型分極で配向され易い180°ドメインのみを反転させて、歪みを発生させることなく、より安定に分極度を制御することができるためと考えられる。   In this manner, by applying "tilt type reverse polarization after uniform polarization once", distortion during polarization can be reduced. Conventional examples (Japanese Patent No. 2508334, Japanese Patent Laid-Open No. 5-160463) Warping and cracking during polarization, as occurred in This is because the 180 ° domain and the non-180 ° domain are uniformly polarized with respect to the thickness direction of the substrate in the first uniform polarization, and then only the 180 ° domain that is easily oriented by the gradient polarization of the reverse electric field is inverted. This is probably because the degree of polarization can be controlled more stably without generating.

本実施形態の弾性表面波素子1では、上記のように、圧電性基板2が、上面2aと直交する厚み方向において分極度が傾斜的に変化されているドメイン構造を有するため、均一に分極された圧電性基板を用いた場合に比べて、分極構造の制御により圧電性基板の電気的特性や機械的特性を制御することができる。この点については、具体的な実施例に基づき後述する。   In the surface acoustic wave device 1 of the present embodiment, as described above, the piezoelectric substrate 2 has a domain structure in which the degree of polarization is changed in an inclined manner in the thickness direction orthogonal to the upper surface 2a. Compared with the case where a piezoelectric substrate is used, the electrical characteristics and mechanical characteristics of the piezoelectric substrate can be controlled by controlling the polarization structure. This point will be described later based on a specific embodiment.

なお、図2(b)に示した分極方法Bにより得られた分極構造では、上面2aが下面2f側に比べて分極度が低くなるように傾斜的に分極度が変化されるが、図2(c)に示すように、逆に、分極度が上面2a側から下面2f側に行くにつれて低くなるようにドメイン構造を形成してもよい。   In the polarization structure obtained by the polarization method B shown in FIG. 2B, the degree of polarization is changed so that the degree of polarization is lower on the upper surface 2a than on the lower surface 2f side. Conversely, as shown in (c), the domain structure may be formed such that the degree of polarization decreases from the upper surface 2a side to the lower surface 2f side.

また、上記実施形態の弾性表面波素子1では、圧電性基板2として上記のように圧電セラミックスからなるものを用いたが、LiTaO3やLiNbO3などの単結晶であってもよい。 In the surface acoustic wave element 1 of the above embodiment, the piezoelectric substrate 2 is made of piezoelectric ceramics as described above, but may be a single crystal such as LiTaO 3 or LiNbO 3 .

また、BGS波に限らず、ラブ波などの他のSH波を利用した弾性表面波素子にも本発明を適用することができる。   In addition, the present invention can be applied not only to BGS waves but also to surface acoustic wave elements using other SH waves such as Love waves.

次に、具体的な実施例につき説明する。   Next, specific examples will be described.

下記の表1に示す磁器組成物α,βからなる、50mm×50mm×厚さ0.7mmの2種の圧電性基板を用意した。なお、磁器組成物αは、磁器組成物βに比べて電気機械結合係数kが小さい圧電セラミックスを与えている。   Two types of piezoelectric substrates of 50 mm × 50 mm × thickness 0.7 mm made of porcelain compositions α and β shown in Table 1 below were prepared. The porcelain composition α gives a piezoelectric ceramic having a smaller electromechanical coupling coefficient k than the porcelain composition β.

次に、下記の表2に示す基板組成物、分極方法にて試料(1)〜(4)を作製した。試料(1)〜(4)の詳細な作製手順は以下の通りである。   Next, samples (1) to (4) were prepared by the substrate composition and polarization method shown in Table 2 below. Detailed production procedures of the samples (1) to (4) are as follows.

〔試料(1)〕…磁器組成物αからなる圧電性基板を、図2(a)の分極方法Aに示すように圧電性基板2の上面に分極用電極6a,6bを、下面に分極用電極7a,7bを形成し、分極用電極6a,6b間及び分極用電極7a,7b間に、80℃〜200℃のオイル中で2.5〜4kV/mmの電界を10分間〜60分間印加し、圧電性基板2を均一にフル分極した。次に、図2(b)の分極方法Bに示すように圧電性基板の上面に形成されている分極用電極6a,6bのみを用いて、60℃〜100℃のオイルに圧電性基板を浸漬し、0.5〜3.0kV/mmの電界を図2(a)とは逆向きでパルス的に印加し、逆分極を行った。   [Sample (1)]... A piezoelectric substrate made of the porcelain composition α is polarized on the upper surface of the piezoelectric substrate 2 and polarized electrodes 6a and 6b on the lower surface as shown in the polarization method A of FIG. Electrodes 7a and 7b are formed, and an electric field of 2.5 to 4 kV / mm is applied for 10 minutes to 60 minutes between the polarizing electrodes 6a and 6b and between the polarizing electrodes 7a and 7b in oil at 80 ° C. to 200 ° C. Then, the piezoelectric substrate 2 was uniformly fully polarized. Next, as shown in the polarization method B in FIG. 2B, the piezoelectric substrate is immersed in oil at 60 ° C. to 100 ° C. using only the polarization electrodes 6a and 6b formed on the upper surface of the piezoelectric substrate. Then, an electric field of 0.5 to 3.0 kV / mm was applied in a pulse manner in the direction opposite to that shown in FIG.

〔試料(2)〕…磁器組成物βからなる圧電性基板を、図2(a)の分極方法Aに示すように圧電性基板2の上面に分極用電極6a,6bを、下面に分極用電極7a,7bを形成し、分極用電極6a,6b間及び分極用電極7a,7b間に、80℃〜200℃のオイル中で、2.5〜4kV/mmの電界を10分間〜60分間印加し、圧電性基板2を均一にフル分極した。次に、図2(c)の分極方法Cに示すように圧電性基板の下面に形成されている分極用電極7a,7bのみを用いて、60℃〜100℃のオイルに圧電性基板を浸漬し、0.5〜3.0kV/mmの電界を図2(a)とは逆向きでパルス的に印加し、逆分極を行った。   [Sample (2)]... A piezoelectric substrate made of the porcelain composition β is polarized on the upper surface of the piezoelectric substrate 2 and polarized electrodes 6a and 6b on the lower surface as shown in the polarization method A of FIG. Electrodes 7a and 7b are formed, and an electric field of 2.5 to 4 kV / mm is applied for 10 to 60 minutes in oil at 80 to 200 ° C. between the polarizing electrodes 6 a and 6 b and between the polarizing electrodes 7 a and 7 b. Applied, the piezoelectric substrate 2 was uniformly fully polarized. Next, as shown in the polarization method C in FIG. 2 (c), the piezoelectric substrate is immersed in oil at 60 ° C. to 100 ° C. using only the polarization electrodes 7a and 7b formed on the lower surface of the piezoelectric substrate. Then, an electric field of 0.5 to 3.0 kV / mm was applied in a pulse manner in the direction opposite to that shown in FIG.

〔試料(3)〕…磁器組成物αからなる圧電性基板を、図2(a)の分極方法Aに示すように圧電性基板2の上面に分極用電極6a,6bを、下面に分極用電極7a,7bを形成し、分極用電極6a,6b間及び分極用電極7a,7b間に、80℃〜150℃のオイル中で、2〜3.5kV/mmの電界を10分間〜60分間印加し、分極した(従来法)。   [Sample (3)] A piezoelectric substrate made of the porcelain composition α is polarized on the upper surface of the piezoelectric substrate 2 and the polarizing electrodes 6a and 6b on the lower surface as shown in the polarization method A of FIG. Electrodes 7a and 7b are formed, and an electric field of 2 to 3.5 kV / mm is applied for 10 minutes to 60 minutes in oil at 80 ° C. to 150 ° C. between the polarizing electrodes 6a and 6b and between the polarizing electrodes 7a and 7b. Applied and polarized (conventional method).

〔試料(4)〕…磁器組成物βからなる圧電性基板を、図2(a)の分極方法Aに示すように圧電性基板2の上面に分極用電極6a,6bを、下面に分極用電極7a,7bを形成し、分極用電極6a,6b間及び分極用電極7a,7b間に、80℃〜150℃のオイル中で、2〜3.5kV/mmの電界を10分間〜60分間印加し、分極した(従来法)。   [Sample (4)]... A piezoelectric substrate made of the porcelain composition β is polarized on the upper surface of the piezoelectric substrate 2 and the polarization electrodes 6a and 6b on the lower surface as shown in the polarization method A of FIG. Electrodes 7a and 7b are formed, and an electric field of 2 to 3.5 kV / mm is applied for 10 minutes to 60 minutes in oil at 80 ° C. to 150 ° C. between the polarizing electrodes 6a and 6b and between the polarizing electrodes 7a and 7b. Applied and polarized (conventional method).

上記のように作製された試料(1)〜(4)の各圧電性基板の分極用電極をエッチング液により除去し、超音波洗浄した。しかる後、150℃〜200℃の温度で10分間〜60分間エージングし、エージング済みの各圧電性基板を得た。   The polarizing electrodes of the piezoelectric substrates of the samples (1) to (4) produced as described above were removed with an etching solution and ultrasonically cleaned. Thereafter, aging was performed at a temperature of 150 ° C. to 200 ° C. for 10 minutes to 60 minutes to obtain each aged piezoelectric substrate.

なお、エージングによりドメイン構造の安定性が高められるが、エージングは本発明では必ずしも必須の工程ではない。   In addition, although the stability of a domain structure is improved by aging, aging is not necessarily an essential process in this invention.

次に、上記のようにして得られた圧電性基板の上面に、それぞれAlを蒸着し、フォトリソグラフィによりパターニングし、1つのインターデジタルトランスデューサ3を形成した。さらに、圧電性基板を約1mm×約2〜3mm×厚み0.7mの寸法に切り出し、4種類の圧電性基板を得た。   Next, Al was vapor-deposited on the upper surface of the piezoelectric substrate obtained as described above, and was patterned by photolithography to form one interdigital transducer 3. Furthermore, the piezoelectric substrate was cut into dimensions of about 1 mm × about 2 to 3 mm × thickness 0.7 m, and four types of piezoelectric substrates were obtained.

上記のようにして、試料(1)〜(4)の4種類の弾性表面波素子を作製し、インピーダンスアナライザーにより、BGS波の電気機械結合係数kBGSと、40、80、120及び160MHzにおける各共振周波数ごとの反共振点と共振点とのインピーダンス比Za/ZrBGSとを測定した。また、各弾性表面波素子を温度60℃・相対湿度95%の環境に1000時間放置する耐湿試験を行い、共振周波数シフト量ΔFrを測定した。結果を図3〜図6に示す。 As described above, four types of surface acoustic wave elements of Samples (1) to (4) were prepared, and the impedance analyzer k BGS wave electromechanical coupling coefficient k BGS and each of 40, 80, 120 and 160 MHz The impedance ratio Za / Zr BGS between the antiresonance point and the resonance point for each resonance frequency was measured. Further, a moisture resistance test was performed in which each surface acoustic wave element was left in an environment of a temperature of 60 ° C. and a relative humidity of 95% for 1000 hours, and the resonance frequency shift amount ΔFr was measured. The results are shown in FIGS.

また、上記評価とともに、図7に示すように、各共振周波数におけるBGS波の振動エネルギーを、各kBGS値ごとに有限要素法によりシミュレーションした。 In addition to the above evaluation, as shown in FIG. 7, the vibration energy of the BGS wave at each resonance frequency was simulated by the finite element method for each k BGS value.

図3及び図4から明らかなように、試料(1)の弾性表面波素子では、kBGSが約20%と非常に低いにも関わらず、40〜80MHzの低周波域においてインピーダンス比Za/Zrはフィルタを形成することが可能な値である45dB以上となっている。従って、従来法で作製した試料(3)に比べて、インピーダンス比Za/Zrを大幅に改善し得ることがわかる。 As apparent from FIGS. 3 and 4, the surface acoustic wave device of the sample (1) has an impedance ratio Za / Zr in a low frequency range of 40 to 80 MHz, even though k BGS is very low, about 20%. Is 45 dB or more, which is a value capable of forming a filter. Therefore, it can be seen that the impedance ratio Za / Zr can be greatly improved as compared with the sample (3) produced by the conventional method.

これは、試料(1)においては、分極度が傾斜的に変化したドメイン構造が実現されているので、BGS波の表面集中度が高められ、それによって伝搬損失が低減したためと考えられる。   This is presumably because, in the sample (1), the domain structure in which the polarization degree is changed in a gradient is realized, so that the degree of surface concentration of the BGS wave is increased, thereby reducing the propagation loss.

また、主に40〜80MHz帯において、インピーダンス比Za/Zrの改善が達成されているのは、図7に示されているように、電気機械結合係数kBGSが20%の場合、低周波域(40〜80MHz)における表面集中度が特に悪く、それが改善されたことにより伝搬損失が低減したためと考えられる。 Further, the improvement of the impedance ratio Za / Zr is mainly achieved in the 40 to 80 MHz band when the electromechanical coupling coefficient k BGS is 20% as shown in FIG. It is considered that the surface concentration at (40 to 80 MHz) is particularly bad and the propagation loss is reduced by improving the surface concentration.

さらに、試料(1)では、図7から明らかなように、高周波特性においても、従来法で作製した試料(3)とほぼ同等以上とされていることがわかる。なお、試料(1)は、耐湿性は幾分悪化しがちであるが、狭帯域バンドパスフィルタの信頼性に必要とされるレベルの耐湿性は確保されている。   Furthermore, as can be seen from FIG. 7, the sample (1) has a high frequency characteristic that is substantially equal to or higher than that of the sample (3) manufactured by the conventional method. The sample (1) tends to be somewhat deteriorated in moisture resistance, but the level of moisture resistance required for the reliability of the narrow-band bandpass filter is ensured.

図5及び図6から明らかなように、試料(2)では、電気機械結合係数kBGSが50%程度と大きく、インピーダンス比Za/Zrは、100MHz程度まで広帯域フィルタの形成が可能な45dB程度の値とされている。試料(2)は、過度の表面波の表面集中は緩和されている。従って、試料(2)は、40〜80MHz帯において、従来法で作製した試料(4)に比べて、インピーダンス比Za/Zrは幾分低下するものの、インピーダンス比は実用上支障をきたすレベルではないことがわかる。 As apparent from FIGS. 5 and 6, in the sample (2), the electromechanical coupling coefficient k BGS is as large as about 50%, and the impedance ratio Za / Zr is about 45 dB that can form a broadband filter up to about 100 MHz. Value. In the sample (2), the surface concentration of excessive surface waves is reduced. Therefore, in the sample (2), the impedance ratio Za / Zr is somewhat lower in the 40 to 80 MHz band than the sample (4) produced by the conventional method, but the impedance ratio is not at a level that causes practical problems. I understand that.

さらに、従来法で作製した試料(4)に比べ、試料(2)は耐湿試験後の共振周波数シフト量が小さく、従って耐湿性が高められることがわかる。   Furthermore, it can be seen that the sample (2) has a smaller resonance frequency shift after the moisture resistance test than the sample (4) produced by the conventional method, and therefore the moisture resistance is improved.

これは、試料(2)においては、分極度が傾斜的に変化したドメイン構造が実現されているので、気温や湿度などの影響を受け易い基板表面への過度の表面波の集中が緩和されて耐候性が高められているためと考えられる。   This is because the sample (2) has a domain structure in which the degree of polarization changes in an inclined manner, so that excessive concentration of surface waves on the substrate surface that is easily affected by temperature, humidity, etc. is alleviated. This is probably because the weather resistance is enhanced.

Figure 0004345473
Figure 0004345473

Figure 0004345473
Figure 0004345473

本発明の一実施形態に係る弾性表面波素子を示す斜視図。1 is a perspective view showing a surface acoustic wave element according to an embodiment of the present invention. (a)は、本発明の一実施形態の弾性表面波素子の製造方法に際して従来の分極処理を行う工程を説明するための模式的端面図であり、(b)及び(c)は、本発明の一実施形態の弾性表面波素子の製造方法に際して分極処理を行う工程を説明するための各模式的端面図。(A) is a typical end view for explaining the process of performing the conventional polarization process in the manufacturing method of the surface acoustic wave element of one embodiment of the present invention, and (b) and (c) are the present invention. Each typical end view for demonstrating the process of performing a polarization process in the manufacturing method of the surface acoustic wave element of one Embodiment. 種々の分極条件で分極処理された圧電性基板を用いた各弾性表面波素子の共振周波数とインピーダンス比との関係を示す図。The figure which shows the relationship between the resonant frequency and impedance ratio of each surface acoustic wave element using the piezoelectric substrate polarization-processed on various polarization conditions. 種々の分極条件で分極処理された圧電性基板を用いた弾性表面波素子の湿中放置時間と、共振周波数シフト量との関係を示す図。The figure which shows the relationship between the leaving time in the humidity of the surface acoustic wave element using the piezoelectric substrate polarization-processed on various polarization conditions, and the amount of resonance frequency shifts. 種々の分極条件で分極処理された圧電性基板を用いた各弾性表面波素子の共振周波数とインピーダンス比との関係を示す図。The figure which shows the relationship between the resonant frequency and impedance ratio of each surface acoustic wave element using the piezoelectric substrate polarization-processed on various polarization conditions. 種々の分極条件で分極処理された圧電性基板を用いた弾性表面波素子の湿中放置時間と、共振周波数シフト量との関係を示す図。The figure which shows the relationship between the leaving time in the humidity of the surface acoustic wave element using the piezoelectric substrate polarization-processed on various polarization conditions, and the amount of resonance frequency shifts. 種々の電気機械結合係数を有する圧電性基板を用いて構成される弾性表面波素子の共振周波数と振動エネルギー分布を示す侵入深さとの関係を示す図。The figure which shows the relationship between the penetration frequency which shows the resonant frequency of the surface acoustic wave element comprised using the piezoelectric substrate which has various electromechanical coupling coefficients, and vibration energy distribution.

符号の説明Explanation of symbols

1…弾性表面波素子
2…圧電性基板
2a…上面
2b,2c…端面
2f…下面
3…インターデジタルトランスデューサ
6a,6b,7a,7b…分極用電極
DESCRIPTION OF SYMBOLS 1 ... Surface acoustic wave element 2 ... Piezoelectric substrate 2a ... Upper surface 2b, 2c ... End surface 2f ... Lower surface 3 ... Interdigital transducer 6a, 6b, 7a, 7b ... Electrode for polarization

Claims (3)

第1,第2の主面を有する圧電性基板を用意する工程と、
前記圧電性基板の第1の主面と平行な方向に均一な分布の電界を印加し均一に分極を行う工程と、
前記分極時とは電界印加方向が逆向きでかつ前記圧電性基板の厚み方向に対して電界強度が傾斜的に分布するように電界の回り込み現象を利用して分極を行う工程と、
前記圧電性基板の第1の主面上にインターデジタルトランスデューサを形成する工程とを備えることを特徴とする、SH波型弾性表面波素子の製造方法。
Preparing a piezoelectric substrate having first and second main surfaces;
Applying a uniformly distributed electric field in a direction parallel to the first main surface of the piezoelectric substrate to perform polarization uniformly;
A step of performing polarization using an electric field wraparound phenomenon such that the electric field application direction is opposite to that during polarization and the electric field strength is distributed in a gradient with respect to the thickness direction of the piezoelectric substrate;
Forming an interdigital transducer on the first main surface of the piezoelectric substrate. A method of manufacturing an SH wave type surface acoustic wave element.
前記圧電性基板として、圧電セラミックスを用いる、請求項に記載のSH波型弾性表面波素子の製造方法。 As the piezoelectric substrate, a piezoelectric ceramics, a manufacturing method of the SH wave type surface acoustic wave device according to claim 1. BGS波が励振される、請求項またはに記載のSH波型弾性表面波素子の製造方法。 The manufacturing method of the SH wave type | mold surface acoustic wave element of Claim 1 or 2 with which a BGS wave is excited.
JP2003423322A 2003-12-19 2003-12-19 Manufacturing method of surface acoustic wave device Expired - Lifetime JP4345473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003423322A JP4345473B2 (en) 2003-12-19 2003-12-19 Manufacturing method of surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003423322A JP4345473B2 (en) 2003-12-19 2003-12-19 Manufacturing method of surface acoustic wave device

Publications (2)

Publication Number Publication Date
JP2005184541A JP2005184541A (en) 2005-07-07
JP4345473B2 true JP4345473B2 (en) 2009-10-14

Family

ID=34783898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003423322A Expired - Lifetime JP4345473B2 (en) 2003-12-19 2003-12-19 Manufacturing method of surface acoustic wave device

Country Status (1)

Country Link
JP (1) JP4345473B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110797419B (en) * 2019-10-29 2021-04-06 华中科技大学 Interdigital electrode structure polarization related narrow-band detector, preparation and application thereof

Also Published As

Publication number Publication date
JP2005184541A (en) 2005-07-07

Similar Documents

Publication Publication Date Title
JP7317068B2 (en) Surface acoustic wave device including piezoelectric layer on quartz substrate and manufacturing method thereof
US20230037734A1 (en) Elastic wave device and method for manufacturing the same
JP7051690B2 (en) Induced surface acoustic wave device that results in spurious mode removal
US5446330A (en) Surface acoustic wave device having a lamination structure
TWI597392B (en) Lithium tantalate single crystal substrate, bonding substrate and method for manufacturing the same, and elastic surface acoustic wave device using the same
US10270420B2 (en) Surface elastic wave device comprising a single-crystal piezoelectric film and a crystalline substrate with low visoelastic coefficients
Kimura et al. S0 mode lamb wave resonators using LiNbO3 thin plate on acoustic multilayer reflector
WO2017073425A1 (en) Acoustic wave resonator, acoustic wave filter, duplexer, communication device, and method for designing acoustic wave resonator
JP3717034B2 (en) Surface acoustic wave device
CN107404302B (en) Composite Surface Acoustic Wave (SAW) device having an absorption layer for suppressing spurious signal response
WO2017051747A1 (en) Bonded substrate, method for producing same and surface acoustic wave device using said bonded substrate
EP1940021A1 (en) Elastic surface wave device, module device, oscillation circuit, and elastic surface wave device fabrication method
JP7163249B2 (en) Composite substrate for surface acoustic wave device and manufacturing method thereof
He et al. Combination of tetragonal crystals with LiTaO 3 thin plate for transverse resonance suppression of surface acoustic wave devices
KR20200078571A (en) Joining body of piezoelectric material substrate and support substrate, manufacturing method thereof and seismic element
KR100676152B1 (en) Surface acoustic wave device
Hsu et al. Harnessing acoustic dispersions in YX-LN/SiO 2/Si SH-SAW resonators for electromechanical coupling optimization and Rayleigh mode suppression
KR20210141345A (en) Composite substrate for surface acoustic wave device and manufacturing method thereof
JP4345473B2 (en) Manufacturing method of surface acoustic wave device
KR20220024705A (en) Bonded body and acoustic wave element
Kim et al. P6G-4 high Q-factor STW-resonators on AT-cut of quartz
JP6432944B2 (en) Bonded substrate and surface acoustic wave device using the same
Hori et al. A hybrid substrate for a temperature-compensated surface acoustic wave filter
WO2010125940A1 (en) Elastic wave device
WO2022063231A1 (en) Surface acoustic wave devices with ultra-thin transducers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090706

R150 Certificate of patent or registration of utility model

Ref document number: 4345473

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

EXPY Cancellation because of completion of term