JP4345171B2 - Heat removal method using reflux condenser, polymerization method using the same, stirring tank and polymerization reactor used therefor - Google Patents

Heat removal method using reflux condenser, polymerization method using the same, stirring tank and polymerization reactor used therefor Download PDF

Info

Publication number
JP4345171B2
JP4345171B2 JP37397299A JP37397299A JP4345171B2 JP 4345171 B2 JP4345171 B2 JP 4345171B2 JP 37397299 A JP37397299 A JP 37397299A JP 37397299 A JP37397299 A JP 37397299A JP 4345171 B2 JP4345171 B2 JP 4345171B2
Authority
JP
Japan
Prior art keywords
liquid
tank
heat removal
reflux
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP37397299A
Other languages
Japanese (ja)
Other versions
JP2001187331A (en
Inventor
武 川村
龍二 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP37397299A priority Critical patent/JP4345171B2/en
Publication of JP2001187331A publication Critical patent/JP2001187331A/en
Application granted granted Critical
Publication of JP4345171B2 publication Critical patent/JP4345171B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polymerisation Methods In General (AREA)
  • Accessories For Mixers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば重合反応装置の反応槽など槽内にある反応液などの液状物質からの発生熱を除去し、その温度を制御するのために還流冷却操作を行う場合の効率的な除熱方法およびそれを用いた重合方法ならびにそれらに用いる撹拌槽および重合反応装置に関するものである。
【0002】
【従来の技術】
還流冷却器による除熱は、例えば、塩化ビニル樹脂などの重合反応装置における反応槽中の反応液などの処理液を冷却して重合温度を制御するといった場合などのように、槽内に処理液を含み、重合熱や反応熱などの系内で発生した熱を除去する手段として工業操作上頻繁に用いられる技術であり、実用例も多い。従来の還流冷却器は、例えば、特開平08−134107号公報、特開平07−025909号公報などに記載されているように、反応槽などの外側に主に短い直管を介して接続、設置されている。これは、装置の製作上および構造上、あるいはメンテナンス上、簡単なためと考えられる。
【0003】
上記のような還流冷却器による還流冷却操作は、槽内の処理液から発生する凝縮性蒸気を還流冷却器の冷媒で間接的に冷却して凝縮させるときに熱交換を行い、凝縮性蒸気の熱量を低減して、凝縮した液を槽内の液相部に還流することで除熱する手法である。このとき、冷却器内に非凝縮性気体が存在すると、著しく熱交換性能を低下させることが知られている。したがって、気相部に非凝縮性気体が存在する処理液の還流冷却操作を行う場合、還流冷却器内に非凝縮性気体が滞留して冷却性能が低下するのを防ぐため、還流冷却器から系外に非凝縮性気体を除かなければならない。また、例えば、液量変化を伴う半回分操作による重合反応においては、低温で供給されるモノマー液体が比較的高い温度で重合していくと、モノマー液中に溶存する非凝縮性気体、多くは窒素が槽内の気相部に放出され、これが還流冷却器内に混入し、還流冷却性能を低下させる。このように、一旦非凝縮性気体が還流冷却器内に混入すると、還流冷却器による冷却能力が低下してしまう。そこで、冷却能力を元に戻すために、前記のように還流冷却器から非凝縮性気体を系外にパージさせて対応していることが多い。しかし、この場合には、環境対策上、パージされた気体に共存する凝縮性蒸気、多くは有機溶剤あるいはモノマーを回収処理する必要がある。また、系内の圧力が大気圧以下の場合、減圧ポンプを使用する以外に非凝縮性気体をパージさせることはできず、設備負荷が大きい。
【0004】
また、還流冷却操作による飛沫同伴により還流冷却器にスケールを付着させる液体の還流冷却操作を行う場合、冷却面で生成あるいは付着したスケールが冷却性能を低下させてしまう。さらに、従来の還流冷却器では、蒸気の流入口と凝縮液の流下口とは別の位置に設けて効率的な流れを有していることが多いが、蒸気の流入口と凝縮液の流下口とが別に設けられた還流器では、付着したスケールにより凝縮性蒸気の流入口が閉塞してしまうことがある。また、蒸気の流入口と凝縮液の流下口とを1箇所にすると、上昇してきた蒸気と流下する凝縮液の流れがぶつかることで熱交換性能を低下させるので、効果的ではない。
【0005】
さらに、例えば、塩化ビニル樹脂の重合に際して、重合中の塩化ビニル樹脂が水溶液中に分散しているスラリー溶液あるいは重合中の塩化ビニルペースト(固体)が水溶液中にラテックス状で存在している場合などのように、液体中に固体の微粒子が微分散している固液混合物の存在下で還流冷却操作を行うと、液体の性質によっては、例えば、乳化剤や分散剤の影響が大きい場合などには、発泡が激しく、場合によっては飛沫同伴や液面上昇によって運ばれた固体が還流冷却器の蒸気の流入口を閉塞させてしまう場合がある。このように、還流操作に伴う発泡により液面が上昇する場合、還流量を抑えて液面上昇を制御する方法が多い。その結果、除熱量が制限され、生産効率が著しく低下する。破泡剤等を添加して対応する方法もあるが、コストアップは避けられず、品質低下の観点でも十分検討しなければならない。
【0006】
【発明が解決しようとする課題】
本発明は上記のような従来の還流冷却器による除熱における問題点に鑑み、重合反応装置の反応槽などの槽内にある処理液から還流冷却器により除熱を行うに際し、処理液が飛沫同伴により還流冷却器にスケールを発生させたり、槽内の液相部または気相部に冷却能力を低下させる非凝集性気体を含んでいたり、または槽内の処理液が還流冷却操作に伴う発泡により液面が上昇したり、さらには槽内の液量が変化する半回分式操作を伴う除熱操作の場合であっても、生産性を低下させたり、コストアップになったり、あるいは品質を低下させたりすることなく、還流冷却器による効率的な除熱を可能とすることを目的とするものである。
【0007】
【課題を解決するための手段】
上記の目的を達成するため、本発明に係る除熱方法は、処理液の入った槽内で発生した熱を還流冷却器により除熱する際に、槽内で発生する凝縮性蒸気を槽内に設けた還流冷却器により冷却、凝縮させて還流することにより除熱してなる除熱方法において、前記槽内の処理液量が増加して液相部の液面が上昇する半回分操作における除熱方法であって、半回分操作の前半においては還流冷却器の還流冷却作用により除熱を行うとともに、半回分操作の後半においては還流冷却器への処理液の接液伝熱により除熱することを特徴とするものである。この除熱方法は、槽内に存在する処理液が還流冷却操作による飛沫同伴により還流冷却器にスケールを付着させる液体または固液混合物である場合、槽内の気相部に非凝縮性気体が1vol%以上存在する状態で除熱を行う場合、還流冷却操作前および/または操作後の槽内の圧力が大気圧以下である場合、槽内にある液体または固液混合物が、還流冷却操作に伴う発泡により液面上昇する場合に有効である。
【0009】
上記のような本発明に係る除熱方法は、例えば塩化ビニル系樹脂の重合反応、エチレンオキシドあるいはプロピレンオキシドなどの重合反応を行う場合に好適である。
【0012】
【発明の実施の形態】
本発明に係る除熱方法は、例えば、塩化ビニル系樹脂、エチレンオキシド、プロピレンオキシドなどの重合反応に用いることができ、処理液としては、塩化ビニル系樹脂の重合用溶液、エチレンオキシド、プロピレンオキシドなどを含むポリマー溶液、さらに、それらにヘキサンなどの有機溶剤を含む溶液などの液体または固液混合物などが挙げられる。本発明の除熱方法は、槽内部の処理液が熱により凝縮性蒸気を発生させる程度に密閉された槽内で行われる。本発明では、還流冷却器は、例えば重合反応装置の反応槽などの密閉された撹拌槽の内部に設置しなければならない。反応槽などの通常の撹拌槽の場合、例えば円筒形の直胴部の下端に断面半楕円形状またはコーン形などの下向き凸状の底部を有し、この槽に槽外から回転可能な撹拌軸に撹拌翼を設けた撹拌機が配置されている。本発明における、還流冷却器の槽内での設置位置は、このような槽内であれば良いが、好ましくは直胴部が良く、さらに好ましくは、撹拌翼による気相流れが強いと予想される撹拌翼の近傍であることが望ましい。非凝縮性気体が存在する場合は、非凝縮性気体が還流対象蒸気より重い場合には還流冷却器は槽内の上方に設置される方が好ましいが、通常は、非凝縮性気体が還流対象蒸気より軽い場合が多く還流冷却器は液面より上でかつ槽内のなるべく下方に設置されるのが好ましい。
【0013】
本発明において槽内に設置される還流冷却器は、例えば、槽内に位置する冷却部と、該冷却部の両端のそれぞれに連結してなり、前記冷却部へ冷却液を供給する冷却液供給管と冷却部から冷却液を排出する冷却液排出管とよりなる還流冷却器を備えるものである。このように還流冷却器を槽内に設けた場合には、槽内で発生する凝縮性蒸気が前記還流冷却器の冷却部の外表面に接触することで該冷却部外表面において熱交換が行われ、凝集性蒸気が冷却、凝縮して還流されることで除熱が行われる。この場合の還流冷却器の冷却部としては、その両端に連結される冷却液供給管および冷却液排出管と一体の管状のものを用いることができ、さらには蛇管型のものを用いることで、効率的な熱交換による還流冷却操作が期待できる。
【0014】
槽内で扱う処理液が、例えば、塩化ビニル系樹脂の重合用溶液、エチレンオキシドモノマーまたはプロピレンオキシドモノマーを連続的に追加して重合させる重合用溶液などの液体または固液混合物のように、還流冷却操作による飛沫同伴により還流冷却器にスケールを付着させる液体もしくは固液混合物および/または気相部に非凝縮性気体を伴う液体もしくは固液混合物である場合などに特に本発明の効果が大きい。即ち、前記のように本発明では還流冷却器は槽内にあり、その外表面に凝縮性蒸気が接触して還流冷却を行うものであることから、還流冷却操作による飛沫同伴により還流冷却器にスケールを付着させる液体や固液混合物の場合であっても、凝縮液により冷却器の表面にスケールが生成する前に該冷却部の外表面が洗浄され、スケールの生成を防ぐことが出来る。また、気相部に非凝縮性気体を含む場合で、かつ、凝縮性蒸気(還流対象蒸気)より非凝縮性気体が軽い場合、槽の外部に設置される従来の還流冷却器では、還流冷却器内に非凝縮性気体が存在するために伝熱性能が著しく低下してしまい、パージ操作により非凝縮性気体を取り除かなければ伝熱性能は元に戻らず、しかもこのとき、環境対策として、パージされる気体の種類によっては、パージ気体中に共存する物質を除去する必要があり、さらに、槽内気相部圧力が大気圧以下の場合、減圧ポンプを使用するなどしてパージ操作を行わなければならず、設備負荷も大きい。これに対し、本発明のように、還流冷却器が槽内にあれば、パージ操作をする必要性が激減し、上記の問題を解決することができる。
【0015】
また、本発明においては、還流冷却操作に伴う発泡により液面が上昇する場合、槽の内部に設置された還流冷却器により凝縮された凝縮液の滴下により破泡を行うことが出来、液面上昇を問題とすることなく、さらに、還流量をほとんど制限する必要もないので重合反応などの生産効率を高く保つことができる。しかも、破泡剤を使用する必要がないため、コストアップおよび品質低下もおこらない。
【0016】
さらに、本発明においては、還流冷却器を槽内に設置することから、還流冷却器は還流操作の目的のためだけでなく、接液伝熱による除熱操作の目的にも用いることができる。例えば、槽内の液量変化を伴う半回分操作においては、還流冷却器として、例えば蛇管式内部コイルなどの管状内部コイルを、半回分操作の前半においては、該内部コイルの一部または全部が気相部に露出するように配置しておき、半回分操作の前半においては前記内部コイルにより還流冷却操作を行うとともに、半回分操作後半に前記内部コイルが液相部に位置するようになった状態では、該内部コイルに対する槽内液体の接液伝熱により除熱するようにしてもよい。この除熱方法は、特に、半回分操作後半において重合体の量が増加して、前半に比べて凝縮性蒸気量が減少して還流冷却による除熱が行い難くなる重合反応において、非常に有効である。
【0017】
【実施例】
次に実施例を挙げて本発明を具体的に説明するが、これらの実施例は何ら本発明を制限するものではない。
【0018】
(実施例1)
図1に示す内容積10Lで、その中央に槽外から回転可能な撹拌機5を備えた撹拌槽1内に、還流冷却器2として両端が外部に通じる冷却水供給管22と冷却水排出管23となる外径8mmのステンレス管の中間部を冷却部21として長さが40cm分だけ気相部上部に存在するように、前記撹拌機5の撹拌軸5aの周囲を取り巻くように設置した。最初に真空ライン3から槽1内を真空脱気した後、空気が漏れ込まないように処理液供給ライン4から処理液Aとしてヘキサンを1L仕込んだ。撹拌機5により槽1内のヘキサンを撹拌しながら昇温ジャケット6により70℃に加熱して槽内液(ヘキサン)を昇温することで蒸気を発生させ、還流冷却器2のステンレス管内に約15℃の水を流速100L/hrで流して槽1内に入る直前の冷却水供給管22の水温と、槽1を出た直後の冷却水排出管23の水温を測ったところ、水温上昇は約3℃で、除熱量は約1260kJ/hrであり、槽1内の気相部における冷却部21での還流冷却操作による熱交換が確認できた。また、サイトガラス7より槽1内にある還流冷却器2の冷却部21部分のステンレス管表面を観察したところ、多量の凝縮液が確認できた。
【0019】
(実施例2)
処理液Aとして、ヘキサンの代わりに分子量3000程度のポリプロピレングリコール1kgとテトラヒドロフラン200gを仕込んだ以外は実施例1と同様の操作を実施した。このときの槽内気相部圧力は、大気圧以下(約−5×104Pa)であった。その結果、実施例1と同様に、熱交換による約2.8℃の冷却水温上昇(除熱量約1170kJ/hr)が確認できた。また、サイトガラス7からの観察により凝縮液の確認ができた。
【0020】
(実施例3)
処理液の仕込み後、窒素を、初期槽内圧力に対して5Vol%、10Vol%仕込んだ以外は実施例2と同様の操作を実施した。除熱量は、窒素を入れない実施例2の場合に比べてそれぞれ約80%(除熱量約960kJ/hr)、約65%(除熱量約750kJ/hr)に低下した。
【0021】
(実施例4)
槽1内の気相部に位置する還流冷却器2の冷却部21を構成するステンレス管の外表面に分子量10000程度のポリプロピレングリコールを塗ったこと以外は実施例2と同様の操作を実施した。還流操作開始後、還流冷却器2の冷却部21の外表面に塗布したポリプロピレングリコールが凝縮液により洗浄される様子がサイトガラス7から観察され、また、除熱量も実施例2の場合と同様(約1170kJ/hr)であった。
【0022】
(比較例1)
図2に示すように、実施例1〜4で還流冷却器2として用いた外径8mmのステンレス管40cmの冷却部21の伝熱面積と等しい伝熱面積を有する冷却部21aへ冷却水供給ライン22aから供給した冷却水を冷却水排出ライン23aから排出するように構成した還流冷却器2aを用いた以外は、実施例3と同様の操作を行った。なお、冷却部21a先端のバルブは常時閉状態した。除熱量は、窒素を入れない実施例2の場合に比べて、初期槽内圧力に対して窒素を5vol%添加で約30%(約330kJ/hr)、10vol%添加で検出不可能なレべル(約10%以下、約120kJ/hr以下)まで低下した。
【0023】
【発明の効果】
以上のように、本発明によれば、槽内に設けた還流冷却器により還流冷却操作を行うようにしたことから、還流操作に伴う還流冷却器へのスケール付着を防止することができるとともに、非凝縮性気体の存在による伝熱性能の低下を低減でき、環境対策上、従来は必要であった非凝縮性パージ気体の処理や、槽内の圧力が大気圧以下の場合に減圧ポンプを必要としたパージ操作を行う必要がなく、さらに、発泡に伴う液面上昇によってもほとんど冷却性能の低下がなく、従来のように槽外側に設置した還流冷却器による除熱方法に較べてより優れた実用的な除熱方法である。また、この除熱方法を用いることで、良好な重合反応を行うことができる。
【図面の簡単な説明】
【図1】 槽内に設けた還流冷却器により除熱を行う実施例に用いた撹拌槽を示す説明図である。
【図2】 槽外に設けた還流冷却器により除熱を行う比較例に用いた撹拌槽を示す説明図である。
【符号の説明】
1:撹拌槽、2:還流冷却器、3:真空ライン、4:処理液供給ライン、5:撹拌機、6:昇温ジャケット、7:サイトガラス、21:冷却部、22:冷却水供給管、23:冷却水排出管。
[0001]
BACKGROUND OF THE INVENTION
The present invention removes heat generated from a liquid substance such as a reaction liquid in a reaction tank such as a reaction tank of a polymerization reaction apparatus, and efficiently removes heat when performing a reflux cooling operation to control the temperature. The present invention relates to a method, a polymerization method using the method, a stirring tank and a polymerization reaction apparatus used for the method.
[0002]
[Prior art]
The heat removal by the reflux condenser is performed by, for example, cooling the treatment liquid such as the reaction liquid in the reaction tank in the polymerization reaction apparatus such as vinyl chloride resin to control the polymerization temperature in the tank. And is a technique frequently used in industrial operations as means for removing heat generated in the system such as polymerization heat and reaction heat, and there are many practical examples. Conventional reflux condensers are connected and installed mainly outside via a short straight pipe, as described in, for example, Japanese Patent Application Laid-Open No. 08-134107 and Japanese Patent Application Laid-Open No. 07-025909. Has been. This is considered to be simple in terms of manufacturing and structure of the apparatus or maintenance.
[0003]
The reflux cooling operation by the reflux condenser as described above performs heat exchange when the condensable vapor generated from the processing liquid in the tank is indirectly cooled and condensed with the refrigerant of the reflux condenser, This is a technique for removing heat by reducing the amount of heat and returning the condensed liquid to the liquid phase part in the tank. At this time, it is known that if non-condensable gas exists in the cooler, the heat exchange performance is remarkably lowered. Therefore, when performing a reflux cooling operation of a treatment liquid in which a non-condensable gas exists in the gas phase part, in order to prevent the non-condensable gas from staying in the reflux cooler and reducing the cooling performance, The non-condensable gas must be removed from the system. Also, for example, in a polymerization reaction by semi-batch operation accompanied by a change in liquid volume, when a monomer liquid supplied at a low temperature is polymerized at a relatively high temperature, a non-condensable gas dissolved in the monomer liquid, Nitrogen is released into the gas phase part in the tank, and this is mixed into the reflux condenser, which lowers the reflux cooling performance. As described above, once the non-condensable gas is mixed into the reflux condenser, the cooling capacity of the reflux condenser is reduced. Therefore, in order to restore the cooling capacity, it is often the case that non-condensable gas is purged out of the system from the reflux condenser as described above. However, in this case, for environmental measures, it is necessary to recover the condensable vapor coexisting with the purged gas, most of which is an organic solvent or a monomer. Further, when the pressure in the system is equal to or lower than the atmospheric pressure, the non-condensable gas cannot be purged other than using a decompression pump, and the equipment load is large.
[0004]
In addition, when performing a reflux cooling operation of a liquid that causes a scale to adhere to the reflux cooler by entrainment of droplets due to the reflux cooling operation, the scale generated or attached on the cooling surface deteriorates the cooling performance. In addition, conventional reflux condensers often have an efficient flow by being provided at a position different from the steam inlet and the condensate flow outlet. In the reflux device provided separately from the mouth, the inlet of the condensable vapor may be blocked by the attached scale. Further, if the steam inlet and the condensate flow outlet are provided at one location, the heat exchange performance is lowered by the collision of the rising steam and the flow of the condensate flowing down, which is not effective.
[0005]
Furthermore, for example, when a vinyl chloride resin is polymerized, a slurry solution in which the vinyl chloride resin being polymerized is dispersed in an aqueous solution or a vinyl chloride paste (solid) being polymerized is present in a latex form in the aqueous solution. When the reflux cooling operation is performed in the presence of a solid-liquid mixture in which solid fine particles are finely dispersed in a liquid, for example, depending on the properties of the liquid, for example, when the influence of an emulsifier or a dispersant is large The foaming is intense, and in some cases, the solid conveyed by entrainment of droplets or rising of the liquid level may block the steam inlet of the reflux condenser. Thus, when the liquid level rises due to foaming associated with the reflux operation, there are many methods for controlling the rise of the liquid level by suppressing the reflux amount. As a result, the amount of heat removal is limited, and the production efficiency is significantly reduced. There is a method to cope with this by adding a foam breaker or the like, but an increase in cost is unavoidable, and it must be fully studied from the viewpoint of quality degradation.
[0006]
[Problems to be solved by the invention]
In view of the problems in heat removal by the conventional reflux condenser as described above, the present invention, when removing heat from the treatment liquid in the reaction tank of the polymerization reaction apparatus by the reflux condenser, the treatment liquid splashes. Entrainment generates scale in the reflux cooler, liquid phase or gas phase in the tank contains non-aggregating gas that lowers the cooling capacity, or treatment liquid in the tank foams due to reflux cooling operation Even in the case of a heat removal operation involving a semi-batch operation in which the liquid level rises due to the change in the liquid level in the tank, the productivity is reduced, the cost is increased, or the quality is reduced. The object is to enable efficient heat removal by the reflux condenser without lowering.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the heat removal method according to the present invention is configured to remove condensable vapor generated in the tank when the heat generated in the tank containing the treatment liquid is removed by the reflux condenser. In the heat removal method in which heat is removed by cooling, condensing and refluxing with a reflux condenser provided in the tank, the removal in the semi-batch operation in which the amount of the processing liquid in the tank increases and the liquid level in the liquid phase part rises. In the first half of the half-batch operation, heat is removed by the reflux cooling action of the reflux condenser, and in the second half of the half-batch operation, heat is removed by liquid contact heat transfer of the treatment liquid to the reflux condenser. It is characterized by this. In this heat removal method, when the treatment liquid present in the tank is a liquid or a solid-liquid mixture that causes the scale to adhere to the reflux condenser due to entrainment by the reflux cooling operation, a non-condensable gas is present in the gas phase portion in the tank. When removing heat in the presence of 1 vol% or more, when the pressure in the tank before and / or after the reflux cooling operation is below atmospheric pressure, the liquid or solid-liquid mixture in the tank is subjected to the reflux cooling operation. It is effective when the liquid level rises due to accompanying foaming .
[0009]
The heat removal method according to the present invention as described above is suitable, for example, when a polymerization reaction of a vinyl chloride resin or a polymerization reaction of ethylene oxide or propylene oxide is performed.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The heat removal method according to the present invention can be used, for example, for a polymerization reaction of vinyl chloride resin, ethylene oxide, propylene oxide, etc., and the treatment liquid includes a solution for polymerization of vinyl chloride resin, ethylene oxide, propylene oxide, and the like. Examples of the polymer solution include a liquid or a solid-liquid mixture such as a solution containing an organic solvent such as hexane. The heat removal method of the present invention is performed in a tank that is sealed to such an extent that the treatment liquid inside the tank generates condensable vapor by heat. In the present invention, the reflux condenser must be installed inside a sealed stirring tank such as a reaction tank of a polymerization reactor. In the case of a normal stirring tank such as a reaction tank, for example, the bottom of the cylindrical straight body has a bottom part with a downwardly convex shape such as a semi-elliptical section or a cone shape, and this tank can be rotated from the outside of the tank. A stirrer provided with a stirring blade is disposed. In the present invention, the installation position of the reflux condenser in the tank may be within such a tank, but preferably the straight body is good, and more preferably, the gas phase flow by the stirring blade is expected to be strong. In the vicinity of the stirring blade. When non-condensable gas is present, if the non-condensable gas is heavier than the reflux target vapor, the reflux cooler is preferably installed above the tank, but usually the non-condensable gas is the reflux target. In many cases, the reflux condenser is lighter than steam, and the reflux condenser is preferably installed above the liquid level and as low as possible in the tank.
[0013]
In the present invention, the reflux condenser installed in the tank is connected to, for example, a cooling unit located in the tank and both ends of the cooling unit, and a cooling liquid supply that supplies the cooling liquid to the cooling unit. A reflux condenser including a pipe and a cooling liquid discharge pipe for discharging the cooling liquid from the cooling unit is provided. When the reflux cooler is provided in the tank in this way, heat exchange is performed on the outer surface of the cooling section by the condensable vapor generated in the tank coming into contact with the outer surface of the cooling section of the reflux cooler. In addition, heat is removed by cooling, condensing, and refluxing the cohesive vapor. As a cooling part of the reflux condenser in this case, a tubular part integrated with a cooling liquid supply pipe and a cooling liquid discharge pipe connected to both ends thereof can be used, and further, by using a serpentine type, A reflux cooling operation by efficient heat exchange can be expected.
[0014]
The treatment liquid handled in the tank is reflux-cooled, such as a liquid or solid-liquid mixture such as a polymerization solution for polymerizing vinyl chloride resin, a polymerization solution for polymerizing by continuously adding ethylene oxide monomer or propylene oxide monomer. The effect of the present invention is particularly great when the liquid or solid-liquid mixture causes the scale to adhere to the reflux condenser by entrainment of droplets due to the operation and / or the liquid or solid-liquid mixture includes a non-condensable gas in the gas phase portion. That is, as described above, in the present invention, the reflux condenser is in the tank, and the outer surface of the reflux condenser is in contact with the condensable vapor to perform reflux cooling. Even in the case of a liquid or a solid / liquid mixture to which the scale is attached, the outer surface of the cooling unit is washed before the scale is generated on the surface of the cooler by the condensate, thereby preventing the generation of the scale. In addition, when a non-condensable gas is included in the gas phase and the non-condensable gas is lighter than the condensable vapor (return target vapor), the conventional reflux cooler installed outside the tank is reflux cooled. Since the non-condensable gas is present in the chamber, the heat transfer performance is significantly reduced.If the non-condensable gas is not removed by the purge operation, the heat transfer performance cannot be restored. Depending on the type of gas to be purged, it is necessary to remove the coexisting substances in the purge gas. Further, when the gas phase pressure in the tank is lower than the atmospheric pressure, the purge operation is performed by using a vacuum pump, etc. The equipment load is heavy. On the other hand, if the reflux cooler is in the tank as in the present invention, the need for a purge operation is greatly reduced, and the above problem can be solved.
[0015]
Further, in the present invention, when the liquid level rises due to foaming accompanying the reflux cooling operation, bubbles can be broken by dripping the condensate condensed by the reflux cooler installed inside the tank, It is possible to keep the production efficiency of the polymerization reaction and the like high because there is no need to limit the reflux amount without causing a rise. In addition, since it is not necessary to use a foam breaker, there is no increase in cost and quality.
[0016]
Further, in the present invention, since the reflux condenser is installed in the tank, the reflux condenser can be used not only for the purpose of the reflux operation but also for the purpose of the heat removal operation by the liquid contact heat transfer. For example, in a semi-batch operation accompanied by a change in the amount of liquid in the tank, a tubular internal coil such as a serpentine internal coil is used as a reflux condenser, and in the first half of the half-batch operation, a part or all of the internal coil is used. Arranged so as to be exposed to the gas phase part, in the first half of the half-batch operation, the internal coil was refluxed and cooled, and in the latter half of the half-batch operation, the internal coil was positioned in the liquid phase part In the state, heat may be removed by liquid contact heat transfer of the liquid in the tank to the internal coil. This heat removal method is particularly effective in polymerization reactions in which the amount of polymer increases in the latter half of the half-batch operation and the amount of condensable vapor decreases compared to the first half, making it difficult to remove heat by reflux cooling. It is.
[0017]
【Example】
EXAMPLES Next, although an Example is given and this invention is demonstrated concretely, these Examples do not restrict | limit this invention at all.
[0018]
Example 1
A cooling water supply pipe 22 and a cooling water discharge pipe whose both ends are connected to the outside as a reflux condenser 2 in an agitation tank 1 having an internal volume 10L shown in FIG. An intermediate portion of a stainless steel tube having an outer diameter of 8 mm, which is 23, is set as a cooling portion 21 so as to surround the stirring shaft 5a of the stirrer 5 so as to be 40 cm in length above the gas phase portion. First, the inside of the tank 1 was evacuated from the vacuum line 3, and then 1 L of hexane was charged as the processing liquid A from the processing liquid supply line 4 so that air did not leak. While stirring the hexane in the tank 1 with the stirrer 5, steam is generated by heating the liquid in the tank (hexane) to 70 ° C. with the temperature raising jacket 6 to raise the temperature in the tank (hexane). When the water temperature of the cooling water supply pipe 22 immediately before entering the tank 1 by flowing 15 ° C. water at a flow rate of 100 L / hr and the water temperature of the cooling water discharge pipe 23 immediately after leaving the tank 1 were measured, At about 3 ° C., the heat removal amount was about 1260 kJ / hr, and heat exchange by the reflux cooling operation in the cooling unit 21 in the gas phase part in the tank 1 was confirmed. Moreover, when the stainless steel tube surface of the cooling part 21 part of the reflux cooler 2 in the tank 1 was observed from the sight glass 7, a large amount of condensate was confirmed.
[0019]
(Example 2)
The same operation as in Example 1 was carried out except that 1 kg of polypropylene glycol having a molecular weight of about 3000 and 200 g of tetrahydrofuran were charged as the treatment liquid A instead of hexane. The gas phase pressure in the tank at this time was not more than atmospheric pressure (about −5 × 10 4 Pa). As a result, as in Example 1, an increase in cooling water temperature of about 2.8 ° C. (heat removal amount: about 1170 kJ / hr) due to heat exchange was confirmed. Further, the condensate was confirmed by observation from the sight glass 7.
[0020]
(Example 3)
After the treatment liquid was charged, the same operation as in Example 2 was performed except that nitrogen was charged at 5 Vol% and 10 Vol% with respect to the initial tank pressure. The amount of heat removal decreased to about 80% (heat removal amount of about 960 kJ / hr) and about 65% (heat removal amount of about 750 kJ / hr), respectively, as compared with Example 2 in which nitrogen was not added.
[0021]
(Example 4)
The same operation as in Example 2 was performed except that polypropylene glycol having a molecular weight of about 10,000 was applied to the outer surface of the stainless steel tube constituting the cooling part 21 of the reflux condenser 2 located in the gas phase part in the tank 1. After starting the reflux operation, it was observed from the sight glass 7 that the polypropylene glycol applied to the outer surface of the cooling unit 21 of the reflux cooler 2 was washed with the condensate, and the heat removal amount was the same as in Example 2 ( About 1170 kJ / hr).
[0022]
(Comparative Example 1)
As shown in FIG. 2, the cooling water supply line to the cooling unit 21a having the same heat transfer area as that of the cooling unit 21 of the stainless steel tube 40 cm having an outer diameter of 8 mm used as the reflux cooler 2 in Examples 1 to 4. The same operation as in Example 3 was performed except that the reflux condenser 2a configured to discharge the cooling water supplied from 22a from the cooling water discharge line 23a was used. Note that the valve at the tip of the cooling unit 21a was normally closed. Compared to the case of Example 2 in which nitrogen was not added, the heat removal amount was about 30% (about 330 kJ / hr) when nitrogen was added at 5 vol% with respect to the initial internal pressure, and a level that could not be detected when 10 vol% was added. (About 10% or less, about 120 kJ / hr or less).
[0023]
【The invention's effect】
As described above, according to the present invention, since the reflux cooling operation is performed by the reflux cooler provided in the tank, scale adhesion to the reflux cooler accompanying the reflux operation can be prevented, Reduced heat transfer performance due to the presence of non-condensable gas and reduced the heat transfer performance due to environmental measures There is no need to perform the purging operation, and there is almost no decrease in cooling performance due to the rise in liquid level due to foaming, which is superior to the conventional heat removal method using a reflux condenser installed outside the tank. This is a practical heat removal method. Moreover, a favorable polymerization reaction can be performed by using this heat removal method.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing an agitation tank used in an example in which heat is removed by a reflux condenser provided in the tank.
FIG. 2 is an explanatory view showing an agitation tank used in a comparative example in which heat is removed by a reflux condenser provided outside the tank.
[Explanation of symbols]
1: stirring tank, 2: reflux condenser, 3: vacuum line, 4: treatment liquid supply line, 5: stirrer, 6: temperature rising jacket, 7: sight glass, 21: cooling section, 22: cooling water supply pipe , 23: Cooling water discharge pipe.

Claims (6)

処理液の入った槽内で発生した熱を還流冷却器により除熱する際に、槽内で発生する凝縮性蒸気を槽内に設けた還流冷却器で冷却、凝縮させて還流することにより除熱してなる除熱方法において、前記槽内の処理液量が増加して液相部の液面が上昇する半回分操作における除熱方法であって、半回分操作の前半においては還流冷却器の還流冷却作用により除熱を行うとともに、半回分操作の後半においては還流冷却器への処理液の接液伝熱により除熱することを特徴とする除熱方法When the heat generated in the tank containing the treatment liquid is removed by the reflux cooler, the condensable vapor generated in the tank is cooled by the reflux cooler provided in the tank, condensed, and then removed by refluxing. In the heat removal method by heating, the heat removal method in a semi-batch operation in which the amount of the processing liquid in the tank increases and the liquid level in the liquid phase rises, and in the first half of the half-batch operation, A heat removal method wherein heat removal is performed by a reflux cooling action, and heat is removed by liquid contact heat transfer of the treatment liquid to the reflux condenser in the second half of the half-batch operation . 前記処理液が還流冷却操作による飛沫同伴により還流冷却器にスケールを付着させる液体または固液混合物である請求項1記載の除熱方法。  The heat removal method according to claim 1, wherein the treatment liquid is a liquid or a solid-liquid mixture in which scale is attached to the reflux condenser by entrainment with droplets by reflux cooling operation. 前記槽内の気相部に非凝縮性気体が1vol%以上存在する状態で行う請求項1記載の除熱方法。  The heat removal method of Claim 1 performed in the state in which the non-condensable gas exists in the gaseous-phase part in the said tank in 1 vol% or more. 還流冷却操作前および/または操作後の槽内の圧力が大気圧以下である請求項1記載の除熱方法。  The heat removal method according to claim 1, wherein the pressure in the tank before and / or after the reflux cooling operation is equal to or lower than the atmospheric pressure. 前記処理液が、還流冷却操作に伴う発泡により液面上昇する液体または固液混合物である請求項1記載の除熱方法。  The heat removal method according to claim 1, wherein the treatment liquid is a liquid or a solid-liquid mixture whose liquid level rises due to foaming associated with a reflux cooling operation. 請求項1〜5のいずれかに記載の除熱方法による除熱操作を伴って行う重合方法。The polymerization method performed with the heat removal operation by the heat removal method in any one of Claims 1-5 .
JP37397299A 1999-12-28 1999-12-28 Heat removal method using reflux condenser, polymerization method using the same, stirring tank and polymerization reactor used therefor Expired - Lifetime JP4345171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37397299A JP4345171B2 (en) 1999-12-28 1999-12-28 Heat removal method using reflux condenser, polymerization method using the same, stirring tank and polymerization reactor used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37397299A JP4345171B2 (en) 1999-12-28 1999-12-28 Heat removal method using reflux condenser, polymerization method using the same, stirring tank and polymerization reactor used therefor

Publications (2)

Publication Number Publication Date
JP2001187331A JP2001187331A (en) 2001-07-10
JP4345171B2 true JP4345171B2 (en) 2009-10-14

Family

ID=18503066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37397299A Expired - Lifetime JP4345171B2 (en) 1999-12-28 1999-12-28 Heat removal method using reflux condenser, polymerization method using the same, stirring tank and polymerization reactor used therefor

Country Status (1)

Country Link
JP (1) JP4345171B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009274018A (en) * 2008-05-15 2009-11-26 Tlv Co Ltd Heating/cooling device
JP5610948B2 (en) * 2010-09-21 2014-10-22 ポーラ化成工業株式会社 Cosmetic production equipment
CN104650265B (en) * 2013-11-19 2017-01-04 中国石油天然气股份有限公司 A kind of solution polymerization process synthetic rubber polyreaction removes by the use of thermal means

Also Published As

Publication number Publication date
JP2001187331A (en) 2001-07-10

Similar Documents

Publication Publication Date Title
JP6278569B2 (en) Process for continuous treatment of mixtures
US6644326B2 (en) Process for cleaning polymeric fouling from equipment
JP4345171B2 (en) Heat removal method using reflux condenser, polymerization method using the same, stirring tank and polymerization reactor used therefor
JPH07224109A (en) Method for removing residual monomer and residual monomer-removing column therefor
JPS647084B2 (en)
JP3978797B2 (en) Residual monomer removal method and apparatus
EP0558595A1 (en) Reactor with foam shearing means for solution polymerization process
CN111234077B (en) Production method and device of butyl rubber
KR101319234B1 (en) Process for preparing polybutadiene latex
US3841381A (en) Apparatus for producing and recovering rubbery or sticky polymers
US20160039950A1 (en) Apparatus for producing water-absorbent resin
JP2003080001A (en) Method for refining water-containing organic solvent
JP3958971B2 (en) Polymerization method and diene polymer production method
US2958684A (en) Method of processing hydrocarbon polymers to prevent agglomeration thereof
JP3742166B2 (en) Polymer adhesion prevention method
JPH08134107A (en) Production of vinyl chloride polymer
JP2005162967A (en) Method for removing polymerization heat in polymerizer and polymerizer
CN115106365B (en) Recovery method and recovery device for degradable medical supplies
EP3988589A1 (en) Method for preparing polymer
JP2000086704A (en) Method and apparatus for removing unreacted monomer
KR100458597B1 (en) Non-reacted monomer collection system for vinyl chloride based paste resin
JP6442925B2 (en) Method for concentrating polymer solution of hydrogenated NBR
JP2000212214A (en) Deformation of vinyl chloride resin for paste technique
JP3959908B2 (en) Monomer recovery device in vinyl chloride polymer slurry
WO2005007709A1 (en) Fluoropolymer aggregate and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090706

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4345171

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term