JP4345151B2 - Induction heating cooker - Google Patents

Induction heating cooker Download PDF

Info

Publication number
JP4345151B2
JP4345151B2 JP24109499A JP24109499A JP4345151B2 JP 4345151 B2 JP4345151 B2 JP 4345151B2 JP 24109499 A JP24109499 A JP 24109499A JP 24109499 A JP24109499 A JP 24109499A JP 4345151 B2 JP4345151 B2 JP 4345151B2
Authority
JP
Japan
Prior art keywords
pan
switching element
induction heating
current
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24109499A
Other languages
Japanese (ja)
Other versions
JP2001068260A (en
Inventor
武 北泉
貴宏 宮内
泉生 弘田
英樹 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP24109499A priority Critical patent/JP4345151B2/en
Publication of JP2001068260A publication Critical patent/JP2001068260A/en
Application granted granted Critical
Publication of JP4345151B2 publication Critical patent/JP4345151B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、高周波磁界による誘導加熱を利用して調理を行う誘導加熱調理器に関するものである。
【0002】
【従来の技術】
以下、従来の誘導加熱調理器について図面を参照しながら説明する。図13は従来から使用されている誘導加熱調理器の一例の構成を示すブロック図である。
【0003】
電源1は商用電源を整流した直流電源であり、商用周波数の2倍の脈流または平滑された電圧である。電源1は平滑コンデンサ2及びチョークコイル3に接続され、スイッチング素子4のスイッチング動作に従い高周波電力を加熱コイル6に供給することになる。加熱コイル6に供給された高周波電力は高周波磁界として鍋8に供給され、この高周波磁界により発生する渦電流により鍋自体が発熱することになる。ここで鍋8は通常磁性ステンレスや鉄などの固有抵抗が大きい材質でできており、アルミ鍋などは加熱できないものとして通常除外される。ここで、加熱コイル6の電流は、スイッチング素子4がオン状態の時に鍋8と磁気結合している加熱コイル6と共振コンデンサ7で決まる共振電流であり、制御手段15が共振電流が再び零電流になるまで、つまりダイオード5に電流が流れるまで供給されることになる。制御手段15は、設定された入力電力に従い決められるオフ時間だけスイッチング素子4をオフさせた後、再びスイッチング素子4をオンさせることになる。
【0004】
図12にスイッチング素子4の動作時の波形を示す。スイッチング素子4のゲートVGEはオン動作に入ると共振電流Icが再び零となり、ダイオード5に電流が流れるまでオン状態を維持する。またスイッチング素子4がオフすると、スイッチング素子4の両端に共振電圧Vceが発生するが、所定のオフ時間が経過した段階で再びオン状態に突入する。
【0005】
【発明が解決しようとする課題】
このような従来の誘導加熱調理器においては、アルミ鍋やアルミ材質が鍋底部の厚みの内多くの成分をしめる多層鍋などは、鍋自体の固有抵抗が低いために加熱が困難であった。
【0006】
また、アルミ鍋を誘導加熱する方法として有効な第1の方法は、加熱コイルのアンペアターンを大きくする、つまり加熱コイルの巻き数を多くする方法であり、第2の方法としては、加熱周波数を更に高周波化する方法である。しかし、加熱コイルの巻き数を大きくした場合には調理器が大きくなること、更に高周波化した場合にはスイッチング素子の損失が増大し、スイッチング素子の冷却が困難になるなどの二次的な課題が生じるものである。
【0007】
本発明は上記の課題を解決するもので、アルミ鍋及び多層鍋を加熱できる誘導加熱調理器を提供することを目的としている。
【0008】
【課題を解決するための手段】
上記課題を解決するために本発明は、電源に並列に接続された平滑コンデンサと、前記電源の正極に接続されたチョークコイルと、前記チョークコイルの逆端と前記電源の負極に接続されたスイッチング素子と、前記スイッチング素子に並列に接続され電流がスイッチング素子と逆方向に流れる場合に電流を環流するダイオードと、前記スイッチング素子に並列に配置され互いに直列に接続された加熱コイルと共振コンデンサからなる高周波インバータと、前記スイッチング素子を制御する制御手段を備え、アルミ鍋やアルミ材質が鍋底部の厚みの内多くの成分をしめる多層鍋を加熱する際に、前記スイッチング素子の駆動周波数に比べて、前記スイッチング素子がオン状態の時に前記加熱コイルと前記共振コンデンサで発生する共振電流の周波数が2倍以上高くなるべく、鍋と結合した加熱コイルのインダクタンスと共振コンデンサの容量を定めて2波形以上の共振電流が1回のスイッチング動作で流れる誘導加熱調理器である。
【0009】
これにより、スイッチング素子のスイッチング損失を増加させずに高周波電力を鍋に供給することが可能になり、アルミ鍋や多層鍋の加熱が可能な誘導加熱調理器を実現できるものである。
【0010】
【発明の実施の形態】
請求項1に係わる本発明は、電源に並列に接続された平滑コンデンサと、前記電源の正極に接続されたチョークコイルと、前記チョークコイルの逆端と前記電源の負極に接続されたスイッチング素子と、前記スイッチング素子に並列に接続され電流がスイッチング素子と逆方向に流れる場合に電流を環流するダイオードと、前記スイッチング素子に並列に配置され互いに直列に接続された加熱コイルと共振コンデンサからなる高周波インバータと、前記スイッチング素子を制御する制御手段を備え、アルミ鍋やアルミ材質が鍋底部の厚みの内多くの成分をしめる多層鍋を加熱する際に、前記スイッチング素子の駆動周波数に比べて、前記スイッチング素子がオン状態の時に前記加熱コイルと前記共振コンデンサで発生する共振電流の周波数が2倍以上高くなるべく、鍋と結合した加熱コイルのインダクタンスと共振コンデンサの容量を定めて2波形以上の共振電流が1回のスイッチング動作で流れる誘導加熱調理器である。
【0011】
これにより、スイッチング素子のスイッチング損失を増加させずに高周波電力を鍋に供給することが可能になり、アルミ鍋や多層鍋の加熱が可能な誘導加熱調理器を実現できるものである。
【0012】
請求項2に係わる本発明は、アルミ鍋やアルミ材質が鍋底部の厚みの内多くの成分をしめる多層鍋を加熱する際に、鍋と結合した加熱コイルのインダクタンスと共振コンデンサの容量で決まる共振電流周波数を100kHz以上とする請求項1に記載の誘導加熱調理器である。
【0013】
これにより、アルミ鍋などの重量が軽い場合でも鍋浮きが生じにくくなり、安全性の高い誘導加熱調理器を実現できるものである。
【0014】
請求項3に係わる本発明は、アルミ鍋やアルミ材質が鍋底部の厚みの内多くの成分をしめる多層鍋を加熱する際に、共振電流が正から負に移り変わった瞬間の零電流を検知する零電流検知手段と零電流通過の回数をカウントするカウンターを備え、あらかじめ定められた回数の零電流時にスイッチング素子をオフする請求項1または2に記載の誘導加熱調理器である。
【0015】
これにより、確実に必要な共振電流の個数でしかも零電流でのスイッチング動作が可能になり、スイッチング損失の少ない信頼性の高い誘導加熱調理器を実現できるものである。
【0016】
請求項4に係わる本発明は、アルミ鍋やアルミ材質が鍋底部の厚みの内多くの成分をしめる多層鍋を加熱する際に、入力電力の制御をスイッチング素子のオフ時間で行う請求項1または2に記載の誘導加熱調理器である。
【0017】
これにより、共振電流の個数を維持したままパワー調整が可能となり、制御性に優れた誘導加熱調理器を実現できるものである。
【0018】
請求項5に係わる本発明は、アルミ鍋やアルミ材質が鍋底部の厚みの内多くの成分をしめる多層鍋を加熱する際に、共振電流の零電流を通過する回数を変えることにより、入力電力を制御する請求項3に記載の誘導加熱調理器である。
【0019】
これにより、パワー調整の範囲が広くなり、制御性の優れた誘導加熱調理器を実現できるものである。
【0020】
請求項6に係わる本発明は、アルミ鍋やアルミ材質が鍋底部の厚みの内多くの成分をしめる多層鍋を加熱する際に、スイッチング素子の駆動周波数を一定とする請求項5に記載の誘導加熱調理器である。
【0021】
これにより、一定周波数でのパワー調整が可能になり、隣り合った誘導加熱調理器の駆動周波数の違いによる干渉音の発生を抑えることが可能になり、騒音の少ない誘導加熱調理器を実現できるものである一定周波数でのパワー調整が可能になり、隣り合った誘導加熱調理器の駆動周波数の違いによる干渉音の発生を抑えることが可能になり、騒音の少ない誘導加熱調理器を実現できるものである。
【0022】
請求項7に係わる本発明は、鍋の種類を検知する鍋判別手段と、複数の共振コンデンサと、前記共振コンデンサを切り替える切り替え手段を有し、前記鍋判別手段により判別された鍋が磁性ステンレスや鉄の場合は共振コンデンサの値は大きくし、前記鍋判別手段により判別された鍋がアルミの場合は共振コンデンサの値は小さくするように共振コンデンサを切り替え共振電流の周波数を変化させる請求項1から6のいずれか一項に記載の誘導加熱調理器である。
【0023】
これにより、一種類の加熱コイルで様々な鍋を有効に加熱することが可能になり、従来のアルミ鍋加熱兼用の誘導加熱調理器に比べ小型の誘導加熱調理器を提供できるものである。
【0024】
【実施例】
(実施例1)
本発明の第1の実施例について図面を参照しながら説明する。本実施例は請求項1に係わる。
【0025】
図1は本実施例の誘導加熱調理器の回路構成を示す図である。本実施例が従来例と異なるのはスイッチング素子4を制御している制御手段9の制御方法が異なる点である。電源1は商用電源を整流したものであり、非平滑で用いることや電解コンデンサなどで平滑した形で用いることがある。平滑コンデンサ2は電源1と並列に接続され、高周波電流を供給する供給源として働く。チョークコイル3は電源1の正極に接続されスイッチング素子4がターンオフ時に零電流スイッチングを行うことに使用されている。また、スイッチング素子4にはダイオード5が並列に接続されており、電流がスイッチング素子4と逆方向に流れる場合に電流を環流するために用いられる。スイッチング素子4はオン状態の時に加熱コイル6と共振コンデンサ7の共振周波数で共振する共振電流を発生させ、鍋8に高周波磁界を供給する。制御手段9は、マイクロコンピュータなどを用いて入力電力に応じた制御をスイッチング素子4に行わせている。ここで、スイッチング素子4の駆動はスイッチング損失などを考慮して通常20〜30kHzで行われてる。これに対して鍋8と結合した加熱コイル6のインダクタンスと共振コンデンサの容量で決まる共振周波数を、スイッチング素子4の動作周波数の2倍以上、すなわち2波形以上の共振電流が一回のスイッチング動作で流れるような定数としている。これは、アルミ鍋などの加熱を行う場合に鍋の表皮抵抗が周波数の平方根に比例する特徴を用いて発熱を起こすことを目的としているものであり、表皮抵抗を上昇させかつスイッチング損失を増加させないものである。また、この方式を用いることで、通常行われるアンペアターンすなわち加熱コイルの径を大きくすることで、鍋に入る磁束を増やし、加熱を行う方式で問題となる加熱コイル径の増大を抑えることも可能になる。
【0026】
上記構成における動作について説明する。図2は本実施例における各部波形を示す図である。波形(a)はスイッチング素子4及びダイオード5に流れる電流波形Icを示し、波形(b)はスイッチング素子4のコレクタ−エミッタ間に生じる電圧Vceを示し、波形(c)は加熱コイル6に流れる電流ILを示し、波形(d)は制御手段9からスイッチング素子4に与えられる駆動波形VGEを示している。制御手段9によりスイッチング素子4にゲート信号が与えられるとスイッチング素子4はオン状態となる。この時スイッチング素子4には加熱コイル6と共振コンデンサ7で生じた共振電流が流れることになる。ここで、共振電流の周波数は駆動周波数より2倍以上高いため、共振電流はやがて零になり、今度はダイオード5を通して電流は先ほどと逆方向に流れることになる。この間加熱コイル6には共振電流が流れ続けるため、鍋8には共振周波数で決まる高周波磁界が供給されることになる。つまり、通常の2倍以上の周波数で駆動している状態と同様な効果が得られることになる。この後、必要なパワーを供給した後、ダイオード5に電流が流れているタイミングでスイッチング素子4をオフし、一定周期後再びオン状態に移り、これを繰り返すことになる。
【0027】
以上のように本実施例によれば、スイッチング素子4のスイッチング損失を増加させずに高周波電力を鍋8に供給することが可能になり、アルミ鍋や多層鍋の加熱が可能な誘導加熱調理器を実現できるものである。
【0028】
(実施例2)
本発明の第2の実施例について図面を参照しながら説明する。本実施例は請求項2に係わる。
【0029】
図3は本実施例の動作を示す波形図である。本実施例の全体構成は実施例1と同様な構成を取るため省略する。
【0030】
上記構成における動作について説明する。本実施例では加熱コイル6と共振コンデンサ7で決まる共振電流の周波数を100kHz以上に設定している。ここで、アルミ鍋などの加熱を行う際、鍋で生じる逆位相の磁界と加熱コイル6からの磁界から反発力が生じこれに鍋自体の軽さの要素が加わって起こる現象であり、図4に示すように加熱コイル6へ供給される高周波磁界の周波数を上げるに従って、浮力が減少する性質がある。ここで、共振電流の共振周波数を100kHz以上に設定することにより、鍋浮きの問題を解決するものである。
【0031】
以上のように本実施例によれば、アルミ鍋などの重量が軽い場合でも鍋浮きが生じにくくなり、安全性の高い誘導加熱調理器を実現できるものである。
【0032】
(実施例3)
本発明の第3の実施例について図面を参照しながら説明する。本実施例は請求項3に係わる。
【0033】
図5は本実施例の回路構成を示す図である。本実施例で用いる回路構成が実施例1と異なる点はスイッチング素子4のターンオフのタイミングを検出するため、スイッチング素子4の零電流を検出する零電流検知手段10と共振電流の回数をカウントするカウンター11に従い、制御手段9がスイッチング素子4を制御していることである。
【0034】
上記構成における動作について説明する。零電流検知手段10はカレントトランスなどの電流検知手段とフリップフロップなどからなり、電流が正から負に移り変わった瞬間を検知してカウンター11及びAND回路などの論理回路に出力される。カウンター11では、あらかじめ設定された共振電流の個数に達するまでカウントを行い、設定値に達した段階で出力を行う。制御手段9はカウンター11からの出力と零電流検知手段10からの出力を受け、スイッチング素子4をオフさせに行く。
【0035】
以上の様に本実施例によれば、確実に必要な共振電流の個数でしかも零電流でのスイッチング動作が可能になり、スイッチング損失の少ない信頼性の高い誘導加熱調理器を実現できるものである。
【0036】
(実施例4)
本発明の第4の実施例について図面を参照しながら説明する。本実施例は請求項1に係わる。
【0037】
図6は本実施例の動作を示す波形図である。本実施例の全体構成は実施例1と同様な構成を取るため省略する。
【0038】
上記構成における動作を説明する。本実施例ではオフ時間には加熱コイル6への高周波電流の供給が止まるすなわち、パワーが入らないことを利用してオフ時間の長さでパワー調整を行う方式としている。この方式を用いることにより、オン時間がほぼ一定の制御を行うことが可能となり、共振電流の個数を数えることなしに、零電流検知だけでもパワー調整を行うことが可能となる。本実施例の方式ではオフ時間が短いすなわち周波数が高いほど入力電力は大きくなる。
【0039】
以上の様に本実施例によれば、共振電流の個数を維持したままパワー調整が可能となり、制御性に優れた誘導加熱調理器を実現できるものである。
【0040】
(実施例5)
本発明の第5の実施例について図面を参照しながら説明する。本実施例は請求項5に係わる。
【0041】
図7は本実施例の動作を示す波形図である。本実施例の全体構成は実施例5と同様な構成を取るため省略する。
【0042】
上記動作における動作を説明する。本実施例では、共振電流の数を制御することで、入力電力を制御する方式としている。この方式では、共振電流の数が小さいことすなわち周波数が低い程入力電力は大きくなることになる。また、この方式はフルパワーでの共振電流の数が多いほど制御性が良くなるため、共振電流が100kHzを越えるような場合に有効な制御方式である。
【0043】
以上の様に本実施例によれば、パワー調整の範囲が広くなり、制御性の優れた誘導加熱調理器を実現できるものである。
【0044】
(実施例6)
本発明の第6の実施例について図面を参照しながら説明する。本実施例は請求項6に係わる。
【0045】
図8は本実施例の動作を示す波形図である。本実施例の全体構成は実施例6と同様な構成を取るため省略する。
【0046】
上記動作における動作を説明する。本実施例では共振電流の数を制御すると共にオフ時間も変えることで、駆動周波数を一定にする方式としている。この方式では、共振電流の数でオフ時間も決まってしまうことから、制御性に劣るものの、駆動周波数が一定となるため、バーナが2つある場合などに生じる鍋同士の干渉音などを防止することが可能になる。
【0047】
以上の様に本実施例によれば、一定周波数でのパワー調整が可能になり、隣り合った誘導加熱調理器の駆動周波数の違いによる干渉音の発生を抑えることが可能になり、騒音の少ない誘導加熱調理器を実現できるものである一定周波数でのパワー調整が可能になり、隣り合った誘導加熱調理器の駆動周波数の違いによる干渉音の発生を抑えることが可能になり、騒音の少ない誘導加熱調理器を実現できるものである。
【0048】
(実施例7)
本発明の第7の実施例について図面を参照しながら説明する。本実施例は請求項7に係わる。
【0049】
図9は本実施例の回路構成を示す図である。本実施例で用いる回路構成が実施例1と異なる点は鍋の種類を判別する鍋判別手段13と、鍋判別手段13で判別された鍋の種類に応じて、共振コンデンサ7の容量を切り替える切り替え手段12を有している点である。
【0050】
上記構成における動作について説明する。鍋8が磁性ステンレスや鉄の場合には共振電流の周波数は従来例と同じく駆動周波数より低いことが望まれる。これは高周波電流を流した場合に、加熱コイル6で発生する損失が表皮効果のため増加するためで、鍋8が鉄などの場合を駆動周波数での固有抵抗で十分鍋を発熱させることが可能である。一方、鍋8がアルミ鍋や多層鍋の場合は、実施例1で述べたように駆動周波数に比べ数倍の共振電流を流す必要がある。そのため、鍋の材質により、共振電流の周波数を替えてやり、鍋8に応じた共振電流を作ることが効果的である。また、この方式の場合は従来のアルミ鍋加熱で行っていた加熱コイル6の切り替えがいらないことになる。なお、鍋8が鉄鍋などの場合は共振周波数が低くなることから共振コンデンサ7の値は大きくなり、アルミ鍋の場合は共振コンデンサ7の値は小さくなることになる。図10は、鍋が変わった場合の動作波形を示している。鍋の種類に応じて最適な共振コンデンサ7を選択することで、最も有効な共振電流を選択することができる。ここで、鍋判別手段13は、鍋の加熱コイル6からみたインピーダンスや共振電流の周波数の変化などから検出するなど様々な方式が考えられる。
【0051】
以上の様に本実施例によれば、一種類の加熱コイルで様々な鍋を有効に加熱することが可能になり、従来のアルミ鍋加熱兼用の誘導加熱調理器に比べ小型の誘導加熱調理器を実現するものである。
【0052】
(実施例8)
本発明の第8の実施例について図面を参照しながら説明する
【0053】
図11は本実施例の回路構成を示す図である。本実施例で用いる回路構成が実施例1と異なる点は鍋の重量を検出する鍋重量判別手段14と、鍋判別手段14で検出された鍋の重量に応じて、共振コンデンサ7の容量を切り替える切り替え手段12を有している点である。
【0054】
上記構成における動作について説明する。鍋8がアルミ鍋の場合には鍋で生じる逆位相の磁界と加熱コイル6からの磁界から反発力が生じこれに鍋自体の軽さの要素が加わって鍋浮き現象が生じる。これには図4に示すように加熱コイル6へ供給される高周波磁界の周波数を上げて浮力が減少させる方式が有効である。しかし、共振電流の周波数を上げることは加熱コイル6の損失を増加させることにつながる。そこで、鍋重量判別手段14により鍋の重量を検出し、一定以下の重量になった場合のみ、切り替え手段12により共振コンデンサ7の容量を替え、共振電流の周波数を上げてやり、鍋浮きを防止することが有効である。ここで、鍋重量判別手段は、重量センサや鍋浮きの瞬間の検出など様々な方式が考えられる。
【0055】
以上の様に本実施例によれば、鍋の重量が軽い時に発生する鍋が浮き上がる現象を抑えることが可能になり、安全性の高い誘導加熱調理器を実現するものである。
【0056】
【発明の効果】
上記実施例からも明らかなように、請求項1の発明によれば、スイッチング素子4のスイッチング損失を増加させずに高周波電力を鍋8に供給することが可能になり、アルミ鍋やアルミ材質が鍋底部の厚みの内多くの成分をしめる多層鍋の加熱が可能な誘導加熱調理器を実現できるものである。
【0057】
また、請求項2の本発明によれば、アルミ鍋などの重量が軽い場合でも鍋浮きが生じにくくなり、安全性の高い誘導加熱調理器を実現できるものである。
【0058】
また、請求項3の本発明によれば、確実に必要な共振電流の個数でしかも零電流でのスイッチング動作が可能になり、スイッチング損失の少ない信頼性の高い誘導加熱調理器を実現できるものである。
【0059】
また、請求項4の本発明によれば、共振電流の個数を維持したままパワー調整が可能となり、制御性に優れた誘導加熱調理器を実現できるものである。
【0060】
また、請求項5の本発明によれば、パワー調整の範囲が広くなり、制御性の優れた誘導加熱調理器を実現できるものである。
【0061】
また、請求項6の本発明によれば、一定周波数でのパワー調整が可能になり、隣り合った誘導加熱調理器の駆動周波数の違いによる干渉音の発生を抑えることが可能になり、騒音の少ない誘導加熱調理器を実現できるものである一定周波数でのパワー調整が可能になり、隣り合った誘導加熱調理器の駆動周波数の違いによる干渉音の発生を抑えることが可能になり、騒音の少ない誘導加熱調理器を実現できるものである。
【0062】
また、請求項7の本発明によれば、一種類の加熱コイルで様々な鍋を有効に加熱することが可能になり、従来のアルミ鍋加熱兼用の誘導加熱調理器に比べ小型の誘導加熱調理器を実現するものである。
【図面の簡単な説明】
【図1】 本発明の第1の実施例の誘導加熱調理器の回路構成を示す図
【図2】 本発明の第1の実施例の誘導加熱調理器の各部の動作を示す波形図
【図3】 本発明の第2の実施例の誘導加熱調理器の各部の動作を示す波形図
【図4】 本発明の第2の実施例の特性を示す図
【図5】 本発明の第3の実施例の誘導加熱調理器の回路構成を示す図
【図6】 (a)本発明の第4の実施例の誘導加熱調理器の入力電力が大きい場合の各部の動作を示す波形図
(b)本発明の第4の実施例の誘導加熱調理器の入力電力が小さい場合の各部の動作を示す波形図
【図7】 (a)本発明の第5の実施例の誘導加熱調理器の入力電力が大きい場合の各部の動作を示す波形図
(b)本発明の第5の実施例の誘導加熱調理器の入力電力が小さい場合の各部の動作を示す波形図
【図8】 (a)本発明の第6の実施例の誘導加熱調理器の入力電力が大きい場合の各部の動作を示す波形図
(b)本発明の第6の実施例の誘導加熱調理器の入力電力が小さい場合の各部の動作を示す波形図
【図9】 本発明の第7の実施例の誘導加熱調理器の回路構成を示す図
【図10】 (a)本発明の第7の実施例の誘導加熱調理器の第一の鍋を用いた場合の各部の動作を示す波形図
(b)本発明の第7の実施例の誘導加熱調理器の第二の鍋を用いた場合の各部の動作を示す波形図
【図11】 本発明の第8の実施例の誘導加熱調理器の回路構成を示す図
【図12】 従来の誘導加熱調理器の各部波形を示す図
【図13】 従来の誘導加熱調理器の回路構成の例を示す図
【符号の説明】
1 電源
2 平滑コンデンサ
3 チョークコイル
4 スイッチング素子
5 ダイオード
6 加熱コイル
7 共振コンデンサ
8 鍋
9 制御手段
10 零電流検知手段
11 カウンタ
12 切り替え手段
13 鍋判別中断手段
14 鍋重量判別手段
15 制御手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an induction heating cooker that performs cooking using induction heating by a high-frequency magnetic field.
[0002]
[Prior art]
Hereinafter, a conventional induction cooking device will be described with reference to the drawings. FIG. 13 is a block diagram showing a configuration of an example of an induction heating cooker conventionally used.
[0003]
The power source 1 is a DC power source obtained by rectifying a commercial power source, and has a pulsating current twice as smooth as a commercial frequency or a smoothed voltage. The power source 1 is connected to the smoothing capacitor 2 and the choke coil 3 and supplies high-frequency power to the heating coil 6 in accordance with the switching operation of the switching element 4. The high frequency power supplied to the heating coil 6 is supplied to the pan 8 as a high frequency magnetic field, and the pan itself generates heat due to the eddy current generated by the high frequency magnetic field. Here, the pan 8 is usually made of a material having a large specific resistance, such as magnetic stainless steel or iron, and an aluminum pan or the like is usually excluded as being unheatable. Here, the current of the heating coil 6 is a resonance current determined by the heating coil 6 and the resonance capacitor 7 that are magnetically coupled to the pan 8 when the switching element 4 is in the ON state, and the control means 15 causes the resonance current to become zero current again. Until the current flows through the diode 5. The control means 15 turns off the switching element 4 for an off time determined according to the set input power, and then turns on the switching element 4 again.
[0004]
FIG. 12 shows waveforms during operation of the switching element 4. When the gate VGE of the switching element 4 enters an on operation, the resonance current Ic becomes zero again, and remains on until the current flows through the diode 5. Further, when the switching element 4 is turned off, the resonance voltage Vce is generated at both ends of the switching element 4. However, the switching element 4 enters the on state again after a predetermined off time has elapsed.
[0005]
[Problems to be solved by the invention]
In such a conventional induction heating cooker, it is difficult to heat an aluminum pan or a multi-layer pan in which the aluminum material has many components within the thickness of the bottom of the pan because the specific resistance of the pan itself is low.
[0006]
The first effective method for induction heating of the aluminum pan is to increase the ampere turn of the heating coil, that is, to increase the number of turns of the heating coil. As the second method, the heating frequency is increased. Further, the frequency is increased. However, when the number of turns of the heating coil is increased, the cooker becomes larger, and when the frequency is further increased, the loss of the switching element increases, and the secondary problem such as the cooling of the switching element becomes difficult. Will occur.
[0007]
This invention solves said subject and it aims at providing the induction heating cooking appliance which can heat an aluminum pan and a multilayer pan.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a smoothing capacitor connected in parallel to a power supply, a choke coil connected to a positive electrode of the power supply, a switching connected to a reverse end of the choke coil and a negative electrode of the power supply. An element, a diode that is connected in parallel to the switching element and circulates current when the current flows in a direction opposite to the switching element, a heating coil that is arranged in parallel to the switching element and connected in series to each other, and a resonance capacitor A high-frequency inverter and a control means for controlling the switching element, when heating a multi-layer pan in which an aluminum pan or aluminum material shows many components of the thickness of the pan bottom , compared to the driving frequency of the switching element, Resonance current generated in the heating coil and the resonant capacitor when the switching element is on Wavenumbers high rather possible more than twice the induction heating cooker inductance and resonant current capacity determined two or more waveforms of the resonant capacitor of the heating coil coupled with the pot flows at a switching operation once.
[0009]
Thereby, it becomes possible to supply high frequency power to the pan without increasing the switching loss of the switching element, and an induction heating cooker capable of heating an aluminum pan or a multi-layer pan can be realized.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The present invention according to claim 1 includes a smoothing capacitor connected in parallel to a power source, a choke coil connected to the positive electrode of the power source, a switching element connected to the reverse end of the choke coil and the negative electrode of the power source. A high-frequency inverter comprising a diode connected in parallel to the switching element and circulating a current when the current flows in a direction opposite to the switching element; a heating coil arranged in parallel to the switching element and connected in series to each other; And a control means for controlling the switching element, and when heating a multi-layer pan in which an aluminum pan or an aluminum material shows a large amount of components in the thickness of the bottom of the pan, the switching frequency is compared with the driving frequency of the switching element. The frequency of the resonance current generated by the heating coil and the resonance capacitor when the element is on is More than doubled high rather as possible, an induction heating cooker inductance and resonant current capacity determined two or more waveforms of the resonant capacitor of the heating coil coupled with the pot flows at a switching operation once.
[0011]
Thereby, it becomes possible to supply high frequency power to the pan without increasing the switching loss of the switching element, and an induction heating cooker capable of heating an aluminum pan or a multi-layer pan can be realized.
[0012]
In the present invention according to claim 2, when heating an aluminum pan or a multi-layer pan in which the aluminum material has many components in the thickness of the bottom of the pan, the resonance determined by the inductance of the heating coil coupled to the pan and the capacity of the resonant capacitor. It is an induction heating cooking appliance of Claim 1 which makes an electric current frequency 100 kHz or more.
[0013]
Thereby, even when the weight of an aluminum pan or the like is light, the pan does not easily float, and a highly safe induction heating cooker can be realized.
[0014]
The present invention according to claim 3 detects the zero current at the moment when the resonance current changes from positive to negative when heating an aluminum pan or a multilayer pan in which the aluminum material has many components in the thickness of the bottom of the pan. The induction heating cooker according to claim 1 or 2, further comprising a zero current detecting means and a counter for counting the number of times the zero current passes, wherein the switching element is turned off at a predetermined number of times of zero current.
[0015]
As a result, the switching operation can be performed with the number of necessary resonance currents and zero current, and a highly reliable induction heating cooker with little switching loss can be realized.
[0016]
The present invention according to claim 4 controls the input power in the off time of the switching element when heating the aluminum pan or the multi-layer pan in which the aluminum material has many components in the thickness of the bottom of the pan. 2. The induction heating cooker according to 2.
[0017]
As a result, the power can be adjusted while maintaining the number of resonance currents, and an induction heating cooker excellent in controllability can be realized.
[0018]
The present invention according to claim 5 changes the number of times the zero current of the resonance current is passed when heating the aluminum pan or the multi-layer pan in which the aluminum material has many components within the thickness of the bottom of the pan, thereby changing the input power. It is an induction heating cooking appliance of Claim 3 which controls.
[0019]
Thereby, the range of power adjustment becomes wide and the induction heating cooking appliance excellent in controllability can be implement | achieved.
[0020]
The present invention according to claim 6 is the induction according to claim 5, wherein the driving frequency of the switching element is made constant when heating the aluminum pan or the multi-layer pan in which the aluminum material has many components in the thickness of the bottom of the pan. It is a heating cooker.
[0021]
This makes it possible to adjust the power at a certain frequency, to suppress the generation of interference sound due to the difference in drive frequency between adjacent induction heating cookers, and to realize an induction heating cooker with less noise It is possible to adjust the power at a certain frequency, to suppress the generation of interference sound due to the difference in driving frequency of adjacent induction heating cookers, and to realize an induction heating cooker with less noise is there.
[0022]
The present invention according to claim 7 has a pan discriminating means for detecting the kind of pan, a plurality of resonant capacitors, and a switching means for switching the resonant capacitor, wherein the pan discriminated by the pan discriminating means is made of magnetic stainless steel or The resonance capacitor is switched to change the frequency of the resonance current so that the value of the resonance capacitor is increased in the case of iron, and the resonance capacitor is decreased in the case where the pan determined by the pan determination means is aluminum. It is an induction heating cooking appliance as described in any one of 6.
[0023]
Thereby, it becomes possible to heat various pots effectively with one kind of heating coil, and a small induction heating cooker can be provided compared with the conventional induction heating cooker combined with aluminum pot heating.
[0024]
【Example】
Example 1
A first embodiment of the present invention will be described with reference to the drawings. This embodiment relates to claim 1.
[0025]
FIG. 1 is a diagram illustrating a circuit configuration of an induction heating cooker according to the present embodiment. This embodiment differs from the conventional example in that the control method of the control means 9 that controls the switching element 4 is different. The power source 1 is a rectified commercial power source, and may be used non-smooth or in a form smoothed by an electrolytic capacitor or the like. The smoothing capacitor 2 is connected in parallel with the power source 1 and functions as a supply source for supplying a high-frequency current. The choke coil 3 is connected to the positive electrode of the power supply 1 and is used to perform zero current switching when the switching element 4 is turned off. A diode 5 is connected to the switching element 4 in parallel, and is used to circulate the current when the current flows in the opposite direction to the switching element 4. The switching element 4 generates a resonance current that resonates at the resonance frequency of the heating coil 6 and the resonance capacitor 7 when in the ON state, and supplies a high-frequency magnetic field to the pan 8. The control means 9 causes the switching element 4 to perform control according to the input power using a microcomputer or the like. Here, the driving of the switching element 4 is normally performed at 20 to 30 kHz in consideration of switching loss and the like. On the other hand, the resonance frequency determined by the inductance of the heating coil 6 coupled to the pan 8 and the capacity of the resonance capacitor is more than twice the operation frequency of the switching element 4, that is, the resonance current having two or more waveforms is a single switching operation. It is a constant that flows. This is intended to generate heat using the feature that the skin resistance of the pan is proportional to the square root of the frequency when heating an aluminum pan, etc., and does not increase the skin resistance and increase the switching loss. Is. Also, by using this method, it is possible to increase the magnetic flux entering the pot by increasing the ampere turn that is normally performed, that is, the diameter of the heating coil, and to suppress the increase of the heating coil diameter that is a problem in the method of heating. become.
[0026]
The operation in the above configuration will be described. FIG. 2 is a diagram showing waveforms at various parts in the present embodiment. Waveform (a) shows current waveform Ic flowing through switching element 4 and diode 5, waveform (b) shows voltage Vce generated between the collector and emitter of switching element 4, and waveform (c) shows current flowing through heating coil 6. IL shows a waveform (d) shows a drive waveform VGE given from the control means 9 to the switching element 4. When a gate signal is given to the switching element 4 by the control means 9, the switching element 4 is turned on. At this time, the resonance current generated by the heating coil 6 and the resonance capacitor 7 flows through the switching element 4. Here, since the frequency of the resonance current is at least twice as high as the drive frequency, the resonance current eventually becomes zero, and this time the current flows through the diode 5 in the opposite direction. During this time, since a resonance current continues to flow through the heating coil 6, a high frequency magnetic field determined by the resonance frequency is supplied to the pan 8. That is, the same effect as that in the state of driving at a frequency that is twice or more the normal frequency can be obtained. Thereafter, after supplying the necessary power, the switching element 4 is turned off at the timing when the current flows through the diode 5, and after a certain period, the switching element is turned on again, and this is repeated.
[0027]
As described above, according to the present embodiment, high frequency power can be supplied to the pan 8 without increasing the switching loss of the switching element 4, and the induction heating cooker capable of heating an aluminum pan or a multi-layer pan. Can be realized.
[0028]
(Example 2)
A second embodiment of the present invention will be described with reference to the drawings. This embodiment relates to claim 2.
[0029]
FIG. 3 is a waveform diagram showing the operation of this embodiment. Since the overall configuration of the present embodiment is the same as that of the first embodiment, a description thereof will be omitted.
[0030]
The operation in the above configuration will be described. In this embodiment, the frequency of the resonance current determined by the heating coil 6 and the resonance capacitor 7 is set to 100 kHz or more. Here, when heating an aluminum pan or the like, a repulsive force is generated from an antiphase magnetic field generated in the pan and a magnetic field from the heating coil 6, and this is a phenomenon that occurs due to the lightness factor of the pan itself. As shown, the buoyancy decreases as the frequency of the high-frequency magnetic field supplied to the heating coil 6 is increased. Here, the problem of pot floating is solved by setting the resonance frequency of the resonance current to 100 kHz or more.
[0031]
As described above, according to this embodiment, even when the weight of an aluminum pan or the like is light, it is difficult for the pan to float, and a highly safe induction heating cooker can be realized.
[0032]
(Example 3)
A third embodiment of the present invention will be described with reference to the drawings. This embodiment relates to claim 3.
[0033]
FIG. 5 is a diagram showing a circuit configuration of this embodiment. The circuit configuration used in the present embodiment is different from that in the first embodiment in order to detect the turn-off timing of the switching element 4, so that the zero current detection means 10 that detects the zero current of the switching element 4 and the counter that counts the number of resonance currents. 11, the control means 9 controls the switching element 4.
[0034]
The operation in the above configuration will be described. The zero current detection means 10 comprises current detection means such as a current transformer and a flip-flop, and detects the moment when the current changes from positive to negative and outputs it to a logic circuit such as a counter 11 and an AND circuit. The counter 11 counts up to a preset number of resonance currents, and outputs when the set value is reached. The control means 9 receives the output from the counter 11 and the output from the zero current detection means 10 and turns off the switching element 4.
[0035]
As described above, according to this embodiment, it is possible to reliably perform a switching operation with zero current and the number of necessary resonance currents, and to realize a highly reliable induction heating cooker with little switching loss. .
[0036]
(Example 4)
A fourth embodiment of the present invention will be described with reference to the drawings. This embodiment relates to claim 1.
[0037]
FIG. 6 is a waveform diagram showing the operation of this embodiment. Since the overall configuration of the present embodiment is the same as that of the first embodiment, a description thereof will be omitted.
[0038]
The operation in the above configuration will be described. In this embodiment, the supply of the high-frequency current to the heating coil 6 is stopped during the off time, that is, the power is adjusted with the length of the off time using the fact that no power is applied. By using this method, it is possible to perform control with a substantially constant on-time, and it is possible to perform power adjustment only by zero current detection without counting the number of resonance currents. In the method of this embodiment, the input power increases as the off time is shorter, that is, the frequency is higher.
[0039]
As described above, according to the present embodiment, it is possible to adjust the power while maintaining the number of resonance currents, and it is possible to realize an induction heating cooker excellent in controllability.
[0040]
(Example 5)
A fifth embodiment of the present invention will be described with reference to the drawings. This embodiment relates to claim 5.
[0041]
FIG. 7 is a waveform diagram showing the operation of this embodiment. Since the overall configuration of the present embodiment is the same as that of the fifth embodiment, a description thereof will be omitted.
[0042]
The operation in the above operation will be described. In this embodiment, the input power is controlled by controlling the number of resonance currents. In this method, the smaller the number of resonance currents, that is, the lower the frequency, the larger the input power. This method is effective when the resonance current exceeds 100 kHz because the controllability improves as the number of resonance currents at full power increases.
[0043]
As described above, according to this embodiment, the range of power adjustment is widened, and an induction heating cooker with excellent controllability can be realized.
[0044]
(Example 6)
A sixth embodiment of the present invention will be described with reference to the drawings. This embodiment relates to claim 6.
[0045]
FIG. 8 is a waveform diagram showing the operation of this embodiment. Since the overall configuration of the present embodiment is the same as that of the sixth embodiment, a description thereof will be omitted.
[0046]
The operation in the above operation will be described. In this embodiment, the driving frequency is made constant by controlling the number of resonance currents and changing the off time. In this method, since the off time is also determined by the number of resonance currents, the control frequency is inferior, but the driving frequency is constant, so that the interference sound between the pans generated when there are two burners is prevented. It becomes possible.
[0047]
As described above, according to the present embodiment, it is possible to adjust power at a constant frequency, and it is possible to suppress the generation of interference sound due to the difference in driving frequency between adjacent induction heating cookers, and there is little noise. It is possible to adjust the power at a certain frequency that can realize an induction heating cooker, it is possible to suppress the generation of interference sound due to the difference in driving frequency of adjacent induction heating cookers, and induction with less noise A cooking device can be realized.
[0048]
(Example 7)
A seventh embodiment of the present invention will be described with reference to the drawings. This embodiment relates to claim 7.
[0049]
FIG. 9 is a diagram showing a circuit configuration of the present embodiment. The circuit configuration used in the present embodiment is different from that of the first embodiment in that the pot discriminating means 13 discriminates the kind of the pot and the switching for switching the capacity of the resonant capacitor 7 according to the kind of the pot discriminated by the pot discriminating means 13. It is the point which has the means 12.
[0050]
The operation in the above configuration will be described. When the pan 8 is made of magnetic stainless steel or iron, the frequency of the resonance current is desired to be lower than the driving frequency as in the conventional example. This is because the loss generated in the heating coil 6 increases due to the skin effect when a high-frequency current is passed, so that the pan can be heated sufficiently with the specific resistance at the driving frequency when the pan 8 is iron or the like. It is. On the other hand, when the pan 8 is an aluminum pan or a multi-layer pan, it is necessary to flow a resonance current several times as large as the driving frequency as described in the first embodiment. Therefore, it is effective to change the frequency of the resonance current depending on the material of the pan to create a resonance current corresponding to the pan 8. In the case of this method, it is not necessary to switch the heating coil 6 which is performed by the conventional aluminum pan heating. When the pan 8 is an iron pan or the like, the resonance frequency is low, so the value of the resonance capacitor 7 is large, and when the pan 8 is an aluminum pan, the value of the resonance capacitor 7 is small. FIG. 10 shows an operation waveform when the pan is changed. The most effective resonance current can be selected by selecting the optimum resonance capacitor 7 according to the type of pan. Here, various methods are conceivable, such as detecting the pan discriminating means 13 from the impedance seen from the heating coil 6 of the pan or the change in the frequency of the resonance current.
[0051]
As described above, according to the present embodiment, it becomes possible to effectively heat various pots with one type of heating coil, and a small induction heating cooker as compared with the conventional induction heating cooker combined with aluminum pot heating. Is realized.
[0052]
(Example 8)
An eighth embodiment of the present invention will be described with reference to the drawings .
[0053]
FIG. 11 is a diagram showing a circuit configuration of this embodiment. The circuit configuration used in the present embodiment is different from that of the first embodiment in that the pan weight discriminating means 14 for detecting the weight of the pan and the capacity of the resonant capacitor 7 are switched according to the pan weight detected by the pan discriminating means 14. It is the point which has the switching means 12.
[0054]
The operation in the above configuration will be described. When the pan 8 is an aluminum pan, a repulsive force is generated from the reverse phase magnetic field generated in the pan and the magnetic field from the heating coil 6, and the lightness factor of the pan itself is added to the pan so that the pan floating phenomenon occurs. For this purpose, as shown in FIG. 4, a method of increasing the frequency of the high-frequency magnetic field supplied to the heating coil 6 to reduce the buoyancy is effective. However, increasing the frequency of the resonance current leads to an increase in the loss of the heating coil 6. Therefore, the pot weight discriminating means 14 detects the weight of the pot, and only when the weight is below a certain value, the capacity of the resonant capacitor 7 is changed by the switching means 12 and the frequency of the resonance current is increased to prevent the pot from being lifted. It is effective to do. Here, as the pan weight discriminating means, various methods such as a weight sensor and detection of the moment when the pan is lifted can be considered.
[0055]
As described above, according to the present embodiment, it is possible to suppress the phenomenon that the pan is lifted when the pan is light, and a highly safe induction heating cooker is realized.
[0056]
【The invention's effect】
As is apparent from the above examples, according to the first aspect of the invention, it is possible to supply high frequency power to the pan 8 without increasing the switching loss of the switching element 4, an aluminum pan and an aluminum material It is possible to realize an induction heating cooker capable of heating a multi-layer pot that has many components within the thickness of the pot bottom .
[0057]
Further, according to the present invention of claim 2, even when the weight of an aluminum pan or the like is light, the pan does not easily float, and an induction heating cooker with high safety can be realized.
[0058]
Further, according to the present invention of claim 3, it is possible to realize a highly reliable induction heating cooker with a small number of switching currents and a switching operation with zero current, which can be surely performed with zero switching current. is there.
[0059]
According to the fourth aspect of the present invention, the power can be adjusted while maintaining the number of resonance currents, and an induction heating cooker excellent in controllability can be realized.
[0060]
Moreover, according to the present invention of claim 5, the range of power adjustment is widened, and an induction heating cooker with excellent controllability can be realized.
[0061]
Further, according to the present invention of claim 6, it is possible to adjust the power at a constant frequency, it is possible to suppress the generation of interference sound due to the difference in the driving frequency of the adjacent induction heating cookers, It is possible to adjust the power at a certain frequency, which can realize a small induction heating cooker, and it is possible to suppress the generation of interference sound due to the difference in driving frequency of adjacent induction heating cookers, and there is little noise An induction heating cooker can be realized.
[0062]
In addition, according to the present invention of claim 7, it becomes possible to effectively heat various pans with a single type of heating coil, and the induction heating cooking is smaller than the conventional induction heating cooker also used for heating aluminum pans. Implements the vessel.
[Brief description of the drawings]
FIG. 1 is a diagram showing a circuit configuration of an induction heating cooker according to a first embodiment of the present invention. FIG. 2 is a waveform diagram showing an operation of each part of the induction heating cooker according to the first embodiment of the present invention. 3 is a waveform diagram showing the operation of each part of the induction heating cooker according to the second embodiment of the present invention. FIG. 4 is a diagram showing the characteristics of the second embodiment of the present invention. The figure which shows the circuit structure of the induction heating cooking appliance of an Example. [FIG. 6] (a) The wave form diagram which shows the operation | movement of each part when the input electric power of the induction heating cooking appliance of the 4th Example of this invention is large. The wave form diagram which shows the operation | movement of each part when the input electric power of the induction heating cooking appliance of the 4th Example of this invention is small. (A) Input power of the induction heating cooking appliance of the 5th Example of this invention (B) The operation of each part when the input power of the induction heating cooker of the fifth embodiment of the present invention is small Waveform diagram [FIG. 8] (a) Waveform diagram showing the operation of each part when the input power of the induction heating cooker of the sixth embodiment of the present invention is large. (B) Induction of the sixth embodiment of the present invention. FIG. 9 is a waveform diagram showing the operation of each part when the input power of the cooking device is small. FIG. 9 is a diagram showing the circuit configuration of the induction cooking device of the seventh embodiment of the present invention. The wave form diagram which shows the operation | movement of each part at the time of using the 1st pan of the induction heating cooking appliance of 7th Example (b) Use the 2nd pan of the induction heating cooking appliance of 7th Example of this invention. FIG. 11 is a diagram showing the circuit configuration of the induction heating cooker according to the eighth embodiment of the present invention. FIG. 12 is a diagram showing the waveforms of each part of the conventional induction heating cooker. FIG. 13 is a diagram showing an example of a circuit configuration of a conventional induction heating cooker.
DESCRIPTION OF SYMBOLS 1 Power supply 2 Smoothing capacitor 3 Choke coil 4 Switching element 5 Diode 6 Heating coil 7 Resonance capacitor 8 Pan 9 Control means 10 Zero current detection means 11 Counter 12 Switching means 13 Pan discrimination interruption means 14 Pan weight discrimination means 15 Control means

Claims (7)

電源に並列に接続された平滑コンデンサと、前記電源の正極に接続されたチョークコイルと、前記チョークコイルの逆端と前記電源の負極に接続されたスイッチング素子と、前記スイッチング素子に並列に接続され電流がスイッチング素子と逆方向に流れる場合に電流を環流するダイオードと、前記スイッチング素子に並列に配置され互いに直列に接続された加熱コイルと共振コンデンサからなる高周波インバータと、前記スイッチング素子を制御する制御手段を備え、アルミ鍋やアルミ材質が鍋底部の厚みの内多くの成分をしめる多層鍋を加熱する際に、前記スイッチング素子の駆動周波数に比べて、前記スイッチング素子がオン状態の時に前記加熱コイルと前記共振コンデンサで発生する共振電流の周波数が2倍以上高くなるべく、鍋と結合した加熱コイルのインダクタンスと共振コンデンサの容量を定めて2波形以上の共振電流が1回のスイッチング動作で流れる誘導加熱調理器。A smoothing capacitor connected in parallel to the power supply, a choke coil connected to the positive electrode of the power supply, a switching element connected to the opposite end of the choke coil and the negative electrode of the power supply, and connected in parallel to the switching element A diode that circulates the current when current flows in the opposite direction to the switching element, a high-frequency inverter that is arranged in parallel with the switching element and connected in series with each other, and a control that controls the switching element The heating coil when the switching element is in an on-state compared to the driving frequency of the switching element when heating the aluminum pan or the multi-layer pan in which the aluminum material has many components in the thickness of the bottom of the pan. said generated at the resonant capacitor resonant frequency of the current is 2 times or more higher rather as possible, and the pot Induction heating cooker combined inductance and resonant current capacity defining two or more waveforms of the resonant capacitor of the heating coil flows in the switching operation of one. アルミ鍋やアルミ材質が鍋底部の厚みの内多くの成分をしめる多層鍋を加熱する際に、鍋と結合した加熱コイルのインダクタンスと共振コンデンサの容量で決まる共振電流周波数を100kHz以上とする請求項1に記載の誘導加熱調理器。 When heating an aluminum pan or a multilayer pan in which an aluminum material has many components within the thickness of the pan bottom, the resonance current frequency determined by the inductance of the heating coil coupled to the pan and the capacity of the resonant capacitor is 100 kHz or more. The induction heating cooker according to 1. アルミ鍋やアルミ材質が鍋底部の厚みの内多くの成分をしめる多層鍋を加熱する際に、共振電流が正から負に移り変わった瞬間の零電流を検知する零電流検知手段と零電流通過の回数をカウントするカウンターを備え、あらかじめ定められた回数の零電流時にスイッチング素子をオフする請求項1または2に記載の誘導加熱調理器。 When heating an aluminum pan or a multi-layer pan in which the aluminum material has many components of the thickness of the bottom of the pan, zero current detection means that detects the zero current at the moment when the resonance current changes from positive to negative and zero current passing The induction heating cooker according to claim 1 or 2, further comprising a counter for counting the number of times, wherein the switching element is turned off at a predetermined number of times of zero current. アルミ鍋やアルミ材質が鍋底部の厚みの内多くの成分をしめる多層鍋を加熱する際に、入力電力の制御をスイッチング素子のオフ時間で行う請求項1または2に記載の誘導加熱調理器。The induction heating cooker according to claim 1 or 2, wherein when an aluminum pan or an aluminum material heats a multi-layer pan in which many ingredients are included in the thickness of the bottom of the pan, the input power is controlled by the switching element off time. アルミ鍋やアルミ材質が鍋底部の厚みの内多くの成分をしめる多層鍋を加熱する際に、共振電流の零電流を通過する回数を変えることにより、入力電力を制御する請求項3に記載の誘導加熱調理器。 The input power is controlled by changing the number of times that the zero current of the resonance current is passed when heating an aluminum pan or a multilayer pan in which an aluminum material has many components in the thickness of the bottom of the pan . Induction heating cooker. アルミ鍋やアルミ材質が鍋底部の厚みの内多くの成分をしめる多層鍋を加熱する際に、スイッチング素子の駆動周波数を一定とする請求項5記載の誘導加熱調理器。The induction heating cooker according to claim 5 , wherein the driving frequency of the switching element is constant when the aluminum pan or the multi-layer pan in which the aluminum material has many components within the thickness of the bottom of the pan is heated . 鍋の種類を検知する鍋判別手段と、複数の共振コンデンサと、前記共振コンデンサを切り替える切り替え手段を有し、前記鍋判別手段により判別された鍋が磁性ステンレスや鉄の場合は共振コンデンサの値は大きくし、前記鍋判別手段により判別された鍋がアルミの場合は共振コンデンサの値は小さくするように共振コンデンサを切り替え共振電流の周波数を変化させる請求項1から6のいずれか一項に記載の誘導加熱調理器。  A pan discriminating means for detecting the type of pan, a plurality of resonant capacitors, and a switching means for switching the resonant capacitor. When the pan discriminated by the pan discriminating means is magnetic stainless steel or iron, the value of the resonant capacitor is The frequency of the resonance current is changed according to any one of claims 1 to 6, wherein the resonance capacitor is switched so that the value of the resonance capacitor is reduced when the pot determined by the pot determination means is aluminum. Induction heating cooker.
JP24109499A 1999-08-27 1999-08-27 Induction heating cooker Expired - Fee Related JP4345151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24109499A JP4345151B2 (en) 1999-08-27 1999-08-27 Induction heating cooker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24109499A JP4345151B2 (en) 1999-08-27 1999-08-27 Induction heating cooker

Publications (2)

Publication Number Publication Date
JP2001068260A JP2001068260A (en) 2001-03-16
JP4345151B2 true JP4345151B2 (en) 2009-10-14

Family

ID=17069207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24109499A Expired - Fee Related JP4345151B2 (en) 1999-08-27 1999-08-27 Induction heating cooker

Country Status (1)

Country Link
JP (1) JP4345151B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004047496A1 (en) * 2002-11-20 2004-06-03 Matsushita Electric Industrial Co., Ltd. Induction heating apparatus
JP4710503B2 (en) * 2005-09-15 2011-06-29 パナソニック株式会社 Induction heating device
JP4492559B2 (en) * 2006-02-28 2010-06-30 パナソニック株式会社 Induction heating cooker
JP5605077B2 (en) * 2010-08-19 2014-10-15 パナソニック株式会社 Induction heating cooker
KR102069582B1 (en) * 2017-06-26 2020-01-23 엘지전자 주식회사 Pot detecting sensor and induction heating apparatus including thereof
KR102256126B1 (en) * 2017-06-26 2021-05-25 엘지전자 주식회사 Pot detecting sensor and induction heating apparatus including thereof
KR102069580B1 (en) 2017-06-26 2020-01-23 엘지전자 주식회사 Pot detecting sensor and induction heating apparatus including thereof
KR102294498B1 (en) * 2017-06-26 2021-08-27 엘지전자 주식회사 Induction heating apparatus and pot detection method thereof
KR102069583B1 (en) 2017-06-26 2020-01-23 엘지전자 주식회사 Induction heating apparatus and pot detection method thereof

Also Published As

Publication number Publication date
JP2001068260A (en) 2001-03-16

Similar Documents

Publication Publication Date Title
JPH0334287A (en) Electromagnetic cooker
JP4193095B2 (en) Induction heating cooker
JP4345151B2 (en) Induction heating cooker
KR100629334B1 (en) Induction heating cooker to limit the power level when input voltage is low and its operating method therefor
JPH05251172A (en) Electromagnetic induction heating cooker
JP4345775B2 (en) Induction heating cooker
JP4345165B2 (en) Induction heating cooker
JP4383942B2 (en) Induction heating cooker
JPH11121159A (en) Induction heating cooker
JP2005149737A (en) Induction heating device
JP3966600B2 (en) Electromagnetic cooker
JP2011041623A (en) Rice cooker
JPH11260542A (en) Induction heating cooking device
JP2008027922A (en) Induction heating cooking device
JP3625784B2 (en) Inverter device
JP4345209B2 (en) Induction heating cooker
JPH02270293A (en) Induction heat cooking appliance
JP2001160484A5 (en)
CN114688952B (en) Electromagnetic heating equipment, pot deviation detection method thereof and heating control system
KR102261568B1 (en) Heating device sensing object to be heated
JPH0475635B2 (en)
KR20090005142U (en) Induction heating cooker
JP2001126854A (en) Induction heating cooking device
JP4314705B2 (en) Induction heating cooker
JP2003017236A (en) Induction heating cooker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060728

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090706

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140724

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees