JP4344950B2 - Shrinking of animal hair fiber - Google Patents

Shrinking of animal hair fiber Download PDF

Info

Publication number
JP4344950B2
JP4344950B2 JP2005504901A JP2005504901A JP4344950B2 JP 4344950 B2 JP4344950 B2 JP 4344950B2 JP 2005504901 A JP2005504901 A JP 2005504901A JP 2005504901 A JP2005504901 A JP 2005504901A JP 4344950 B2 JP4344950 B2 JP 4344950B2
Authority
JP
Japan
Prior art keywords
enzyme
shrink
fiber
animal hair
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005504901A
Other languages
Japanese (ja)
Other versions
JPWO2004070106A1 (en
Inventor
徹 高岸
保広 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa Fine Chemicals Co Ltd
Original Assignee
Daiwa Fine Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa Fine Chemicals Co Ltd filed Critical Daiwa Fine Chemicals Co Ltd
Publication of JPWO2004070106A1 publication Critical patent/JPWO2004070106A1/en
Application granted granted Critical
Publication of JP4344950B2 publication Critical patent/JP4344950B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M16/00Biochemical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. enzymatic
    • D06M16/003Biochemical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. enzymatic with enzymes or microorganisms
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/02Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements ultrasonic or sonic; Corona discharge
    • D06M10/025Corona discharge or low temperature plasma
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/02Natural fibres, other than mineral fibres
    • D06M2101/10Animal fibres
    • D06M2101/12Keratin fibres or silk

Description

本発明は、羊毛、カシミヤ、アルパカ、アンゴラなどの獣毛繊維を含む繊維製品に水洗い洗濯が可能な防縮性を付与する改良された防縮加工方法に関する。  The present invention relates to an improved shrink-proofing method for imparting shrink-proofing properties capable of washing and washing to a textile product containing animal hair fibers such as wool, cashmere, alpaca, and Angola.

羊毛、カシミヤ、アルパカ、アンゴラなどの獣毛繊維は、優れた吸放湿特性、保温性、風合い(柔軟な手触り)などを有し、理想的な繊維といわれているが、繊維表皮に鱗片状のスケールが存在するため、該繊維を用いた織物、編物、不織布などの繊維製品は、洗濯(ドライクリーニングを除く)を繰り返すことによって、複数の繊維間でスケールの先端突部同士が絡み合い、縮みを生じる。この収縮は、スケールの表面摩擦係数の異方性に起因するものであり、フェルト収縮と呼ばれ、獣毛独特の欠点である。
この欠点を解消するための種々の方法が、これまでに開発されている。そのうちの一つは、現在、羊毛防縮加工法の主流となっている塩素化樹脂法(酸化/樹脂防縮加工法)である。この方法は羊毛表面に存在する疎水性スケールの先端の突出部を塩素化剤を用いて塩素酸化して削り取り、摩擦係数の異方性を減少させると共に、比較的親水性である獣毛繊維本体を一部分露出させた後、ウレタン系樹脂などの親水性樹脂(防縮剤)で該表面を覆う方法である。この方法によれば、防縮剤は繊維表面に強固に結合して、洗濯回数の増加によっても容易に剥離せず、従って製品は優れた防縮性を有する。しかしながらこの方法は、塩素化剤の利用を必須とするため、有害な吸収性有機ハロゲン化合物(AOX)を排出し環境を汚染するという重大な弊害がある。廃水規制の厳格な西欧では、現在、該方法の工業的実施は困難となりつつある。しかも、この塩素化樹脂法は、利用する塩素化剤が繊維の内部にまで侵入して繊維を損傷させたり、重量損失を大きくするなどの欠点がある。また、防縮剤としての樹脂が繊維表面を被覆するため、得られる繊維は獣毛繊維本来の優れた風合い(柔軟な手触り)を損ない、硬い感触となる不利がある。更に、繊維に結合した塩素が経時的に二重結合を生成して繊維を黄変させる、いわゆる「黄変化現象」が避けられない不利もある。
塩素化剤を利用せず、従って有害物質を排出しない、クリーンな防縮加工方法も知られている。該方法には、プロテアーゼを利用する方法および電子エネルギー(プラズマ)を利用する方法が含まれる。前者は、縮みのもととなるスケール先端突部をプロテアーゼによって分解除去して繊維表面を改質する方法であり、後者は、プラズマ照射によって繊維表面に活性基を導入し、繊維を親水性に改質する方法である。
しかしながら、現在、この種の獣毛繊維の防縮加工方法に、その利用が提案されているプロテアーゼは、いずれも繊維表面を覆っているケラチン質に富むスケールを選択的に分解除去できるものではない。このような酵素を利用して充分な防縮性を得るためには、多量の酵素を用いた長時間の処理が必要となる。しかるに、このような酵素処理では、スケールと共に繊維内部のコルテックス細胞や細胞膜複合体(セルメンプレンコンプレックス、CMC)も酵素により分解され、大きな重量減少および著しい強度低下を招く。この強度低下は致命的な欠点である。このように、従来のプロテアーゼを利用する防縮加工方法は、繊維の強度低下なしに充分な防縮加工を行い得るものではない。
また、プラズマを利用する防縮加工方法は、疎水性のスケール表面を親水性に改質するものにすぎない。縮みの原因であるスケール表面の摩擦係数の異方性を減少させるものではない。該方法のみで充分な防縮性を付与することは不可能である。該プラズマを利用する獣毛繊維製品の防縮加工処理は、一般には、前述した防縮剤(親水性樹脂)による繊維表面の被覆処理、酵素処理などとの併用が推奨されている。より詳しくは、低温プラズマ処理後、樹脂加工し、更にプロテアーゼを利用して失われた風合いを改善する方法(例えば、特許第2905311号参照)、及び低温プラズマ処理とプロテアーゼ処理とを組合せる方法(例えば、特表平10−511437号公報参照)が報告されている。
しかしながら、これらの方法によっても尚満足できる防縮性、強度および風合を有する繊維製品は得られない。即ち、防縮剤を用いた樹脂加工処理法は、本質的に獣毛繊維本来の柔軟な風合いをマスクする不利があり、酵素処理法は、スケールに選択的に作用する酵素が現在尚開発されていないために、繊維自体の強度低下を惹起するという致命的な不利がある。これらを併用する方法は、それぞれの処理法の欠点を許容できる範囲に少なくして、防縮性、風合いおよび強度を、それぞれ折り合いがつく範囲で満足させるものでしかない。しかも、これらの方法において併用される低温プラズマ処理は、減圧下での作業を要し、装置的にも、コスト的および時間的にも、実用面で不利があり、更に、連続処理が困難である欠点もある。
最近になって、常圧下でのパルス放電プラズマ処理(パルスコロナ処理)とウレタン系樹脂を利用する樹脂加工処理とを併用した獣毛繊維製品の防縮加工方法が提案された(特開平11−131365号公報参照)。しかしながら、この方法も、防縮樹脂を利用することに基づく前述した欠点、即ち、充分な防縮性を付与するためには、繊維の風合いが損なわれる不利は避けられないものである。
以上のように、塩素化剤などの利用による環境汚染問題を伴うことなく、獣毛繊維を防縮加工する方法は、防縮性と風合いとの相反する要求、また防縮性と強度との相反する要求を、同時に満足できるものではなく、これらの要求を全て満足する、新たな獣毛繊維の防縮加工技術が、当業界で切望されている。
Animal hair fibers such as wool, cashmere, alpaca, and angora have excellent moisture absorption and release characteristics, heat retention, texture (soft touch), etc., and are said to be ideal fibers. Therefore, textile products such as woven fabrics, knitted fabrics, and non-woven fabrics using the fibers are repeatedly washed (except for dry cleaning), so that the tip protrusions of the scales are entangled and shrunk between multiple fibers. Produce. This shrinkage is due to the anisotropy of the surface friction coefficient of the scale, which is called felt shrinkage, and is a drawback unique to animal hair.
Various methods have been developed to eliminate this drawback. One of them is the chlorinated resin method (oxidation / resin shrinkage processing method), which is currently the mainstream of the wool shrinkage treatment method. In this method, the tip of the hydrophobic scale on the surface of the wool is scraped by chlorination using a chlorinating agent to reduce the friction coefficient anisotropy, and the animal fiber body is relatively hydrophilic. Is partially covered, and then the surface is covered with a hydrophilic resin (shrink-proofing agent) such as urethane resin. According to this method, the shrink-resistant agent is firmly bonded to the fiber surface and does not easily peel off even when the number of washings is increased, and thus the product has excellent shrinkage resistance. However, since this method requires the use of a chlorinating agent, it has a serious adverse effect of polluting the environment by discharging harmful absorptive organic halogen compounds (AOX). In Western Europe, where wastewater regulations are strict, industrial implementation of the method is currently becoming difficult. Moreover, this chlorinated resin method has drawbacks such that the chlorinating agent used penetrates into the inside of the fiber and damages the fiber, or increases the weight loss. In addition, since the resin as a shrink-proof agent coats the fiber surface, the resulting fiber has a disadvantage that it impairs the original excellent texture (soft touch) of the animal hair fiber and makes it feel hard. Furthermore, there is an unavoidable disadvantage of the so-called “yellowing phenomenon” in which the chlorine bonded to the fiber generates double bonds over time and yellows the fiber.
There is also known a clean shrink-proofing method that does not use a chlorinating agent and therefore does not discharge harmful substances. The method includes a method using protease and a method using electron energy (plasma). The former is a method of modifying the fiber surface by degrading and removing the scale tip protrusions that cause shrinkage by protease, and the latter introduces active groups to the fiber surface by plasma irradiation to make the fiber hydrophilic. This is a method of reforming.
However, none of the proteases proposed to be used in this type of animal hair fiber shrink-proofing process can selectively decompose and remove the keratinous scale covering the fiber surface. In order to obtain sufficient shrinkage using such an enzyme, a long-time treatment using a large amount of enzyme is required. However, in such an enzyme treatment, cortex cells and cell membrane complexes (cell membrane plain complex, CMC) inside the fiber as well as the scale are decomposed by the enzyme, resulting in a large weight reduction and a significant strength reduction. This reduction in strength is a fatal defect. Thus, the conventional shrink-proofing method using protease cannot perform sufficient shrink-proofing without reducing the strength of the fiber.
Moreover, the shrink-proof processing method using a plasma is only what modifies the hydrophobic scale surface to hydrophilicity. It does not reduce the anisotropy of the coefficient of friction on the scale surface, which is the cause of shrinkage. It is impossible to impart sufficient shrinkage resistance only by this method. In general, the shrink-proofing treatment of animal hair fiber products using the plasma is recommended to be used in combination with the above-described coating treatment of the fiber surface with a shrink-proofing agent (hydrophilic resin), enzyme treatment or the like. More specifically, after low-temperature plasma treatment, a resin is processed, and a lost texture is further improved by using protease (see, for example, Japanese Patent No. 2905311), and a combination of low-temperature plasma treatment and protease treatment ( For example, see Japanese National Publication No. 10-511437).
However, even by these methods, a fiber product having satisfactory shrinkage resistance, strength and texture cannot be obtained. That is, the resin processing method using a shrink-preventing agent has the disadvantage of essentially masking the natural soft texture of animal hair fibers, and an enzyme that selectively acts on the scale is still being developed in the enzyme processing method. Therefore, there is a fatal disadvantage that causes a decrease in strength of the fiber itself. The method using these in combination only reduces the disadvantages of the respective treatment methods to an acceptable range and satisfies the shrinkage resistance, texture, and strength within the range where each can be folded. In addition, the low-temperature plasma treatment used in combination with these methods requires work under reduced pressure, which is disadvantageous in terms of practicality in terms of equipment, cost and time, and is difficult to perform continuous treatment. There are also certain drawbacks.
Recently, a method for preventing shrinkage of animal hair fiber products using a pulse discharge plasma treatment under normal pressure (pulse corona treatment) and a resin processing using a urethane resin has been proposed (Japanese Patent Laid-Open No. 11-131365). No. publication). However, this method also has the above-mentioned disadvantages based on the use of the shrink-resistant resin, that is, the disadvantage that the texture of the fiber is impaired in order to impart sufficient shrink-proof property.
As described above, a method for shrink-proofing animal hair fibers without causing environmental pollution problems due to the use of a chlorinating agent, etc. is a request for conflict between the shrinkage resistance and the texture, and a request for conflict between the shrinkage resistance and the strength. However, there is an urgent need in the art for a new animal hair fiber shrink-proofing technology that satisfies all these requirements.

本発明の目的は、上記要望に合致する獣毛繊維の防縮加工技術、即ち、塩素系薬剤などの環境汚染の問題を伴う薬剤を使用せずに、水洗い洗濯によっても縮まない防縮性を付与することができ、しかも、この防縮加工によって獣毛繊維本来の風合いを損なわず、強度低下も実質的に伴わない、改良された獣毛繊維の防縮加工技術を提供することにある。
本発明者は、鋭意研究の結果、獣毛繊維表面のスケール部分に選択的に作用してこれを分解するが、繊維本体であるセルメンブレンコンプレックス(CMC、細胞膜複合体)層には実質的に悪影響を及ぼさない理想的な防縮加工用酵素ともいうべきアルカリプロテアーゼを見出すと共に、この特定酵素による防縮加工処理に先だって、パルスコロナ処理又は非塩素系酸化剤による酸化処理を行うときには、前記目的に合致する新しい獣毛繊維の防縮加工技術が提供できることを見出した。本発明はこの知見を基礎として完成されたものである。本発明は、以下の項1〜12に記載の発明を提供する。
項1.獣毛繊維の防縮加工方法であって、獣毛繊維をパルスコロナ処理するか又は非塩素系酸化剤を用いて酸化処理した後、ケラチン分解活性が70AKU以上であり且つケラチン分解活性に対するコラーゲン分解活性比が2以下およびケラチン分解活性に対するエラスチン分解活性比が4以下であるアルカリプロテアーゼを用いた酵素処理を行うことを特徴とする獣毛繊維の防縮加工方法。
項2.獣毛繊維をパルスコロナ処理した後、アルカリプロテアーゼを用いた酵素処理を行う請求項1に記載の獣毛繊維の防縮加工方法。
項3.パルスコロナ処理が、常温下に、平均電解強度6〜100kv/cm、パルス頻度10pps以上およびパルス幅0.1μs以上の条件で行われる項1又は2に記載の防縮加工方法。
項4.獣毛繊維を非塩素系酸化剤による酸化処理した後、アルカリプロテアーゼを用いた酵素処理を行う請求項1に記載の獣毛繊維の防縮加工方法。
項5.非塩素系酸化剤が過酸化水素、過硫酸及びその塩並びにジクロロイソシアヌル酸塩からなる群から選ばれる少なくとも1種である請求項1又は3に記載の方法。
項6.非塩素系酸化剤による酸化処理が、繊維1g当たり酸化剤2〜4gを用いて、浴比1:15〜25、温度30〜60℃、pH4.0〜4.5および時間1〜8時間の条件で行われる請求項5に記載の方法。
項7.アルカリプロテアーゼが、放線菌由来のものである項1〜6のいずれかに記載の防縮加工方法。
項8.アルカリプロテアーゼが、ノカルディオプシス エスピー(Nocardiopsis sp.)TOA−1株(FERM BP−08603)の産生するものである項1〜6のいずれかに記載の防縮加工方法。
項9.アルカリプロテアーゼとの接触が、繊維1g当たり酵素力価300〜1000APUのアルカリプロテアーゼを用いて、浴比1:15〜25、温度30〜60℃、pH7〜9.5および時間2〜8時間の条件で行われる項1〜8のいずれかに記載の防縮加工方法。
項10.項1〜3のいずれかに記載の獣毛繊維の防縮加工方法に利用されるアルカリプロテアーゼであって、ケラチン分解活性が70AKU以上であり且つケラチン分解活性に対するコラーゲン分解活性比が2以下およびケラチン分解活性に対するエラスチン分解活性比が4以下であるアルカリプロテアーゼ。
項11.ノカルディオプシス エスピー(Nocardiopsis sp.)TOA−1株(FERM P−18676)の産生するものである項10に記載のアルカリプロテアーゼ。
項12.項1〜9のいずれかに記載の方法によって得られる防縮加工された獣毛繊維。
以下、本発明獣毛繊維の防縮加工方法を詳述する。
(1) 獣毛繊維
本発明方法の適用される獣毛繊維には、従来公知の各種の獣毛繊維、例えば、羊毛、カシミヤ、アルパカ、アンゴラなどが含まれる。また本発明方法の適用される獣毛繊維は、上記獣毛繊維自体は勿論のこと、該獣毛繊維を紡績した獣毛糸条、該獣毛糸条を製編織してなる獣毛編織物、上記獣毛繊維を集積してなる獣毛不織布などの獣毛繊維製品の形態であってもよい。本発明方法は、これを獣毛繊維製品に適用することによって該製品中の獣毛繊維を防縮加工することができ、かくして防縮加工された獣毛繊維製品を得ることができる。更に、これらの獣毛糸条、獣毛編織物、獣毛不織布などの繊維製品は、獣毛繊維のみから構成されている必要はなく、獣毛繊維と他種繊維とが混合されたものであってもよい。この他種繊維は何ら限定されない。代表例としては、セルロース繊維、アクリル繊維、ポリエステル繊維、ポリアミド繊維などを挙げることができる。他種繊維の混合割合は、特に限定されず、どのような割合であっても、本発明方法によって、該混合物中の獣毛繊維の防縮加工が行い得る。防縮加工を要望される獣毛繊維の混合割合は、製品全重量の少なくとも5重量%であればよい。具体的には、例えば羊毛繊維15重量%、アクリル繊維83重量%およびスパンデックス2重量%からなる野球帽子などや、羊毛繊維5重量%、ナイロン繊維15重量%およびアクリル繊維80重量%からなるニット製品などを本発明に従う防縮加工法の対象とすることができる。
(2) パルスコロナ処理
本発明に従う獣毛繊維のパルスコロナ処理は、従来公知の方法、例えば前述した特開平11−131365号公報に記載の方法に準じて、獣毛繊維に常圧下にパルス高電圧を印加することにより実施される。即ち、放電電極と対向電極との間に獣毛繊維を通過させつつ、両電極間に一定の電圧をパルス状で印加することにより実施される。両電極間の距離は、獣毛繊維が通過しうる範囲であればよく、具体的には1〜40cm程度である。両電極間に印加される電圧は、平均電解強度(両電極間に印加される電圧の平均値を両電極間距離で除したもの)が6〜100kv/cm程度、より好ましくは7〜50kv/cm程度の範囲となるものとするのがよく、このような電圧の採用によって、所望のパルスコロナ処理を行い得る。
また、パルス高電圧は、所定の電圧が、所定の時間間隔をおいて、非連続的に印加されるものとする。ここで、印加するパルス高電圧のパルス頻度(一秒当たりに発生するパルス数)は、一般には10pps以上、特に50〜100ppsの範囲であるのが好ましい。パルス幅(一個のパルスが発生している時間)は、一般的に約0.1μs以上、特に約0.5〜10μsの範囲であるのが好ましい。
パルスコロナ処理は、常圧下で行われることが重要であり、これによって、獣毛繊維に連続して、効率よく、パルス高電圧を印加することができる。また、常圧下でのパルス高電圧の印加により、大気中の酸素が活性化し、活性化した酸素や電子が存在するプラズマ状態を生じさせ得る。これらの酸素や電子が獣毛繊維に衝突して、獣毛繊維表面にカルボキシル基や水酸基などの活性基を導入させ得る。
上記パルスコロナ処理によって、獣毛繊維表面は、均一に親水性となる。
(3) 酸化剤処理
本発明に従う獣毛繊維の酸化処理は、非塩素系の酸化剤を利用して実施される。該非塩素系酸化剤には、例えば過酸化水素、過硫酸、過硫酸塩、例えば過硫酸カリウム、過硫酸水素カリウムなどのモノ過硫酸アルカリ金属塩およびジ過硫酸アルカリ金属塩、ジクロロイソシアヌル酸ナトリウムなどのジクロロイソシアヌル酸塩、モノペルオキシフタル酸などが含まれる。これらはその一種を単独で用いることもでき、また二種以上を併用することもできる。これらのうちで特に好ましい酸化剤は過硫酸及びその塩類である。該酸化剤の具体例としては、デュポン社より市販されている「モノ過硫酸水素カリウム」を挙げることができる。このものはモノ過硫酸水素カリウムを主成分とし、このものと過硫酸カリウムとの混合物である。
非塩素系酸化剤は、塩素系酸化剤とは異なって、環境汚染の要因となるAOXの生成を伴わない利点がある。また、この酸化剤による処理は、引き続くアルカリプロテアーゼによる酵素処理と同様に、ウエット法に従って実施できるため、両処理工程をより容易に組み合わせ得る利点がある。
獣毛繊維の酸化処理は、例えば酸化剤を含有する液中に非処理繊維を浸漬するか、被処理繊維に酸化剤を含有する液を塗布、噴霧などにより施行することにより実施される。
酸化処理は、この酸化処理によって得られる繊維を引き続き酵素処理する際、該繊維が、特にそのスケール表面が、酵素処理に適した親水性となることを目的としている。該酸化処理の条件(浴比、温度、時間、液pHなど)は、引き続く酵素処理によって所望の防縮加工された繊維が得られるように適宜決定することができる。この条件は、利用する酸化剤の種類、被処理繊維の種類などに応じて適当に決定することができる。好ましくは、酸化剤量2〜4g/L、浴比1:15〜25、温度30〜60℃、時間1〜8時間、液pH4.0〜4.5程度の条件を採用することができる。
上記酸化処理後、得られる獣毛繊維は、直接に又は適宜水洗などを行って、酵素処理に供することができる。また、必要に応じて、通常の還元剤を用いた還元処理を行うこともできる。
(4) 酵素処理
本発明方法においては、前記(2)又は(3)で処理された獣毛繊維を次いで酵素処理する。該酵素処理は、特定のプロテアーゼを接触、作用させることにより行われる。該プロテアーゼは、ケラチン分解活性が70AKU以上であり且つケラチン分解活性に対するコラーゲン分解活性比が2以下およびケラチン分解活性に対するエラスチン分解活性比が4以下であるアルカリプロテアーゼであることが重要である。特に、ケラチン分解活性が120AKU以上のものが好ましい。該アルカリプロテアーゼの代表例としては、後記(5)に示すアルカリプロテアーゼを挙げることができる。
ここで、ケラチン分解活性(AKU)は、次に示す測定法により測定される。即ち、シグマ社製のKeratin Azureを細かく粉砕したもの0.04gを含む100mmol/Lホウ砂−炭酸ナトリウム緩衝液(pH10.5)3mLにカゼイン分解活性25APU/mLに調製した酵素溶液1mLを混合し、35℃で60分間緩速撹拌反応させた後、分解に伴って遊離する色素を吸光度595nmで測定する。1AKUは、上記反応条件下において、1時間に吸光度595nmを0.001増加させる酵素量とする。
なお、上記において酵素溶液のカゼイン分解活性(APU/mL)は、次に示す測定法により測定される。即ち、ハマルステンの乳製カゼイン1%を含む100mmol/Lホウ砂−炭酸ナトリウム緩衝液(pH10.5)1mLを酵素溶液1mLと混合し、35℃で10分間反応させた後、7.2%トリクロロ酢酸溶液2mLを加えて反応を停止させ、35℃で20分間放置し、次に濾紙(ADVANTEC、No.6、TOYO社製)で濾過し、濾液中の蛋白分解物をフォリン法により測定する。1APUは、上記測定法において、1分間に1μgのチロシンを遊離する酵素量とする。
また、上記ケラチン分解活性に対する相対比で示されるコラーゲン分解活性(ACU/mL)およびエラスチン分解活性(AEU/mL)は、それぞれ以下の測定法により求められる。即ち、コラーゲンType I(シグマ社製)またはエラスチン(シグマ社製)を2%含む100mmol/Lホウ砂−炭酸ナトリウム緩衝液(pH10.5)1mLにカゼイン分解活性50APU/mLに調製した酵素溶液1mLを混合し、35℃で2時間緩速撹拌反応させた後、7.2%トリクロル酢酸溶液2mLを加えて反応を停止させ、35℃で20分間放置する。次に、濾紙(ADVANTEC、No.6、TOYO社製)で濾過し、濾液中の蛋白分解物をフォリン法により測定し、660nmにおける吸光度の増加量を求める(反応0時間の660nm測定値を基準としてそれに対する増加量を算出する)。1ACUおよび1AEUは、上記測定法において、1時間に吸光度660nmを0.001増加させる酵素量とする。
上記ケラチン分解活性を基準としてその相対比で示されるコラーゲン分解活性およびエラスチン分解活性は、本酵素のケラチンに対する特異性乃至選択性を示すものである。即ち、これらコラーゲン分解活性およびエラスチン分解活性相対比が小さい程、該酵素はコラーゲンおよびエラスチンへの作用が小さく、従ってケラチンに特異的であることを示す。
かかる特性を有する酵素、即ち、特定のケラチン分解活性と、該ケラチン分解活性に対する特定のコラーゲン分解活性比およびエラスチン分解活性比を満たす酵素は、その利用によって、本発明所期の優れた獣毛防縮処理効果を奏し得る。その理由は、次のように考えられる。即ち、獣毛繊維表面は、ケラチンに覆われており疎水性であるが、本発明方法に従う前処理、即ちパルスコロナ処理又は酸化剤処理によって極性を付与される(親水化)。該獣毛繊維を次いで本発明に従い酵素処理するときには、上記で親水化された繊維表面全体に均一に酵素が作用し得ると共に、該酵素は、高いケラチン特異性およびケラチン分解活性を有することに基づいて、繊維表面のスケール層に選択的に作用してこれを分解消失させるが、CMC層には殆ど作用せず、かくして、強度低下、風合い低下などを実質的に引き起こすことなく優れた防縮性を付与できるものと考えられる。
本発明に従うアルカリプロテアーゼによる酵素処理(接触)は、一般に、水性液剤形態の上記酵素液を利用して、その中に被処理繊維を浸漬するか、被処理繊維に酵素液を塗布、噴霧などにより施行することにより実施される。酵素液における酵素の濃度は、特に限定されるものではなく、被処理繊維の種類、採用されたパルスコロナ処理条件、酵素処理の方法、条件などに応じて適宜決定することができる。通常、酵素は10−80APU/mL、好ましくは20−40APU/mLの濃度の溶液形態で、獣毛繊維重量1gに対して約100−2400APU程度、好ましくは約300−1000APU程度の力価となる量で用いられるのがよい。
また、酵素液には、必要に応じてpH調整剤としての水酸化カルシウム、緩衝剤としてのホウ酸などの他、この種の酵素処理液に添加配合されることの知られている界面活性剤などを適宜添加配合することができる。該界面活性剤としては、例えば、薬品浸透促進効果のある界面活性剤や脱脂効果のある界面活性剤など、具体的には「スプラランUF」(Zschimmer & Schwarz社製)などを挙げることができる。また該界面活性剤には、防腐効果をも奏し得る界面活性、具体的には「シスモランBH」(Bayer社製)なども含まれる。これらの界面活性剤などの添加配合量は、通常それらが用いられる量と特に異ならない。本発明では、浸透剤としての界面活性剤の利用は不必要であるが、勿論、使用することを妨げるものではない。
酵素処理の条件は、例えば浸漬法の場合を例にとれば、浴比1:10−30程度、好ましくは1:15−25程度、温度30−60℃程度、好ましくは40−50℃程度、pH7−9.5程度、好ましくは8.5−9程度および時間0.5−8時間、好ましくは2−8時間、より好ましくは1−2時間の条件で行い得る。酵素反応の停止は、常法に従い、例えば約90℃で10分間程度加熱することにより行い得る。反応終了後は、流水で充分に洗浄し、乾燥することによって、本発明所望の防縮加工処理された獣毛繊維を収得できる。
(5) アルカリプロテアーゼ
本発明防縮加工方法に好適なアルカリプロテアーゼとしては、放線菌起源のものを挙げることができる。その代表例としては、本発明者らが見出した好アルカリ性ノカルディオプシス エスピー TOA−1株の産生するもの(特願2002−161099)を挙げることができる。以下、このTOA−1株の産生するアルカリプロテアーゼを「本酵素」ともいう。
該TOA−1株は、日本国茨城県つくば市東1丁目1番地1中央第6の独立行政法人 産業技術総合研究所 特許微生物寄託センターに、平成14年1月16日に、Nocardiopsis sp.TOA−1なる表示で寄託されており、その寄託番号はFERM P−18676である。このものは平成16年1月29日に国際寄託されており、その寄託番号はFERM BP−08603である。
上記菌の培養および本酵素の採取は、常法に従い実施することができる。例えば該菌は好アルカリ性放線菌であるため、その培養は通常の培地に適当なアルカリを添加したアルカリ域で行われる。培地に用いられる炭素源、窒素源、他の無機塩などの栄養源は、この種の酵素生産菌の培養に用いられる通常のものでよい。例えば炭素源としては、グルコース、可溶性デンプン、セルロースなどを例示できる。窒素源としては、硝酸塩、アンモニウム塩などの無機物、尿素、ペプトン、乾燥酵母、酵母エキス、スキムミルク、大豆粉、コーンスチープリカー、カゼイン、肉エキス、アミノ酸などを例示できる。他の無機塩としては、マグネシウム塩、カリウム塩、ナトリウム塩、リン酸塩などを例示できる。これらの栄養源は、それぞれに属するものを1種単独で用いてもよく、また2種以上併用することもできる。それらの組合せも任意である。培地に添加されるアルカリとしては、例えば0.5−2%程度の濃度の炭酸ナトリウム、炭酸水素ナトリウムなどの炭酸塩の水溶液、水酸化ナトリウム水溶液、アンモニア水などを例示できる。培地のpHは、通常8−11程度とするのが好ましい。培養は、20−40℃程度、好ましくは30−35℃程度の温度下に、2−7日間、好気的に、撹拌または振盪しながら行うことができる。所望の酵素は、主として培養液中に分泌、蓄積される。
本酵素の培養液からの採取・精製は、該酵素の理化学的性質などを利用した既知の方法に従い実施できる。本酵素は、主として菌体外(培養液中)に分泌されるため、例えば濾過、遠心分離などの操作により菌体を除去して粗酵素液を得ることができる。該粗酵素液は更に常法に従い、例えば硫安などを用いて塩析させる方法;メタノール、エタノール、アセトンなどの有機溶媒を用いて沈殿させる方法;ケラチンなどを用いて吸着させる方法;限外濾過法;ゲル濾過クロマトグラフィー、イオン交換クロマトグラフィー、疎水性クロマトグラフィーなどの各種クロマトグラフィー法などにより精製することができる。これらの精製操作は単独で利用することもでき、また併用することもできる。
特に好ましい精製方法の一つとしては、まず培養濾液に80%飽和硫安を添加して塩析を行い、得られた沈殿を緩衝液に溶解し、次いで例えばCM−Toyopearl 650M(東ソー社製)、DEAE−Toyopearl 650M(同社製)などによるイオン交換クロマトグラフィーを行う方法を例示できる。この方法により、SDS電気泳動的に均一な精製酵素を得ることができる。
かくして得られる酵素は、次の性質を有している。
(1) 作用および基質特異性
蛋白質およびペプチドに作用し、ペプチド結合をエンド型の機作により切断して低分子量オリゴペプチドおよびアミノ酸を生成する。また、ケラチンなどの不溶性蛋白質に対しても強力な活性を示す。
(2) 最適pHおよび安定pH
緩衝液としてHCl/KCl(pH1.0−1.5)、グリシン/NaCl/HCl(pH2.0−3.0)、酢酸(pH4.0−5.0)、リン酸(pH6.0−7.0)、トリス塩酸(pH7.0−9.0)、グリシン/NaCl/NaOH(pH9.0−12.0)およびKCl/NaOH(pH12.0−13.0)を使用して、前記した活性測定法に準じて求めた活性測定結果から、本酵素の最適pHは、30℃において、カゼインを基質とした場合11.0−11.5であり、ケラチンを基質とした場合12.0以上である。
同様に、本酵素を各pHの緩衝液中に30℃で24時間保持した後、その残存プロテアーゼ活性を測定することにより求めた本酵素の安定pH域は、1.5−12.0の広範囲に亘ることが確認される。
(3) 最適温度および安定温度
本酵素の最適温度は、カゼインを基質とした場合は70−75℃であり、ケラチンを基質とした場合は65−70℃である。また、本酵素を100mmol/Lトリス塩酸緩衝液(pH7.0)に添加し、40−80℃の温度範囲で10分間保持した後、その残存プロテアーゼ活性を測定した結果、本酵素は60℃までは安定であることがわかる。なお、本酵素の温度安定性に関しては、カルシウム添加(10mM)の効果は認められない。
(4) 分子量
本酵素の分子量をSDS電気泳動法により測定した。その結果、分子量は約20,000であった。なお、後述する配列番号:2に記載のアミノ酸配列から算出した分子量は、19,150である。
(5) 等電点
本酵素の等電点を等電点電気泳動法により測定した。その結果、等電点は10.0以上であった。
(6) 阻害
一般的な酵素阻害剤であるPMSF(フェニルメタンスルフォニルフルオライド)、EDTA(エチレンジアミン四酢酸)およびSSI(ストレプトマイセス ズブチリシン インヒビター)のそれぞれを所定濃度となるように50mmol/Lトリス塩酸緩衝液(pH9.0)に溶解し、本酵素を添加後30℃で30分間処理し、次いで、処理溶液より一定量を分取してその残存活性を測定した。その結果、本酵素はPMSFおよびSSIにより阻害され、EDTAによる阻害を受けなかった。このことから、本酵素はセリンプロテアーゼであることが判明した。
(7) アミノ末端配列
本酵素のアミノ末端から25番目までの配列を、気相プロテインシークエンサー(島津製作所製、PPSQ−21)を用いて決定した。その結果、配列番号:2の1−25番目の配列が確認された。
(8) 塩基配列およびアミノ酸配列
本酵素の遺伝子およびアミノ酸の配列を、常法(例えば、J.Sambrook,E.F.Fritsch,T.Maniatis:Molecular Cloning.A Laboratoty Manual,2nd.ed.Cold Spring Harbor Laboratory Press,1989など参照)に従い、使用機器、試薬キットなどのプロトコルに従い決定した。まず、精製酵素を尿素処理後、リシルエンドペプチダーゼ(和光純薬)により分解し、得られた断片のアミノ醒配列を気相プロテインシークエンサーで決定した。かくして得られたアミノ酸配列情報より、適当な2種のオリゴヌクレオチドプライマーをホスホアミダイト法により合成し、このプライマーを用いて、PCR(Biometra社製、T−Gradient Thermoblock 050−801)に従い遺伝子の増幅を行った。その結果、0.5kbp前後に特異的な増幅断片を認めた。この断片をプローブとして、本菌株TOA−1のゲノムライブラリーより、本酵素をコードする完全長の遺伝子をスクリーニングした。得られたクローンの塩基配列をジデオキシ法(F.Sanger et.al.,Proc.Natl.Acad.Sci.,74,5463−5467,1977)を原理とするDNAシークエンサー(LICOR社製、LICOR−4000)により決定した。その塩基配列(564bp)を配列番号:1に示す。また、該塩基配列をもとにして決定されたアミノ酸配列(188アミノ酸)を配列番号:2に示す。
(9) ケラチン特異性
本酵素は、特に優れたケラチン特異性を有している。例えば、本酵素と市販の代表的アルカリプロテアーゼ(製品AおよびBとする)とのケラチン分解活性、コラーゲン分解活性およびエラスチン分解活性を対比した結果を表1に示す。また、ケラチン分解活性を基準としてコラーゲン分解活性およびエラスチン分解活性の相対活性比を求めた結果を表2に示す。

Figure 0004344950
Figure 0004344950
これらの表に示される結果から、本酵素は市販酵素である製品AおよびBと比較して、ケラチン分解活性が2倍以上高く、コラーゲン分解活性およびエラスチン分解活性は低く、ケラチンに対する特異性の高いことがわかる。従って、本酵素は市販酵素に比して、コラーゲンおよびエラスチンへの作用が少なく、獣毛繊維製品の処理に際して繊維内部のコルテックス細胞や細胞質複合体の分解が小さく、重量減少や強度低下を招くおそれが非常に少ないことが明らかである。An object of the present invention is to provide an animal hair fiber shrink-proofing technique that meets the above-described requirements, that is, without using a chemical with a problem of environmental pollution such as a chlorine-based chemical, and imparts a shrink-proof property that does not shrink even by washing with water. In addition, an object of the present invention is to provide an improved animal hair fiber shrink-proofing technique that does not impair the natural texture of animal hair fibers and does not substantially reduce strength.
As a result of earnest research, the present inventor selectively acts on the scale portion of the surface of the animal hair fiber to decompose it, but the cell membrane complex (CMC, cell membrane complex) layer, which is the fiber main body, is substantially We found an alkaline protease that should be called an ideal anti-shrinking enzyme that does not have an adverse effect, and met the above purpose when performing pulse corona treatment or oxidation treatment with a non-chlorine oxidant prior to shrink-proofing treatment with this specific enzyme. It was found that new animal hair fiber shrink-proof processing technology can be provided. The present invention has been completed based on this finding. The present invention provides the inventions according to items 1 to 12 below.
Item 1. A method for preventing shrinkage of animal hair fibers, wherein the animal hair fibers are subjected to pulse corona treatment or oxidation treatment using a non-chlorine oxidant, and then have a keratin degradation activity of 70 AKU or more and a collagen degradation activity with respect to the keratin degradation activity A method for preventing shrinkage of animal hair, comprising performing an enzyme treatment using an alkaline protease having a ratio of 2 or less and an elastin degradation activity ratio with respect to keratin degradation activity of 4 or less.
Item 2. The animal hair fiber shrink-proofing method according to claim 1, wherein the animal hair fiber is subjected to pulse corona treatment and then subjected to an enzyme treatment using an alkaline protease.
Item 3. Item 3. The shrink-proofing method according to Item 1 or 2, wherein the pulse corona treatment is performed at room temperature under conditions of an average electrolytic strength of 6 to 100 kv / cm, a pulse frequency of 10 pps or more, and a pulse width of 0.1 μs or more.
Item 4. The animal hair fiber shrink-proofing method according to claim 1, wherein the animal hair fiber is oxidized with a non-chlorine oxidant and then subjected to an enzyme treatment using an alkaline protease.
Item 5. The method according to claim 1 or 3, wherein the non-chlorine oxidant is at least one selected from the group consisting of hydrogen peroxide, persulfuric acid and salts thereof, and dichloroisocyanurate.
Item 6. Oxidation treatment with a non-chlorine oxidant is carried out at a bath ratio of 1:15 to 25, a temperature of 30 to 60 ° C., a pH of 4.0 to 4.5, and a time of 1 to 8 hours using 2 to 4 g of oxidant per 1 g of fiber. The method according to claim 5, which is performed under conditions.
Item 7. Item 7. The shrink-proofing method according to any one of Items 1 to 6, wherein the alkaline protease is derived from actinomycetes.
Item 8. Item 7. The shrink-proofing method according to any one of Items 1 to 6, wherein the alkaline protease is produced by Nocardiopsis sp. TOA-1 strain (FERM BP-08603).
Item 9. The contact with the alkaline protease was performed using an alkaline protease having an enzyme titer of 300 to 1000 APU per gram of fiber, a bath ratio of 1:15 to 25, a temperature of 30 to 60 ° C., a pH of 7 to 9.5, and a time of 2 to 8 hours. Item 9. The shrink-proofing method according to any one of Items 1 to 8, wherein
Item 10. Item 4. An alkaline protease used in the animal hair fiber shrink-proofing method according to any one of Items 1 to 3, wherein the keratin degradation activity is 70 AKU or more, the collagen degradation activity ratio to keratin degradation activity is 2 or less, and keratin degradation An alkaline protease having an elastin degrading activity ratio of 4 or less.
Item 11. Item 11. The alkaline protease according to Item 10, which is produced by Nocardiopsis sp. TOA-1 strain (FERM P-18676).
Item 12. Item 10. An animal hair fiber that has been shrink-proofed obtained by the method according to any one of Items 1 to 9.
Hereinafter, the shrink-proofing method of the animal hair fiber of the present invention will be described in detail.
(1) Animal hair fibers The animal hair fibers to which the method of the present invention is applied include various conventionally known animal hair fibers such as wool, cashmere, alpaca, and angora. The animal hair fibers to which the method of the present invention is applied are not only the animal hair fibers themselves, but also the animal hair yarns obtained by spinning the animal hair fibers, the animal hair knitted fabrics obtained by knitting and weaving the animal hair yarns, It may be in the form of an animal hair fiber product such as an animal hair nonwoven fabric obtained by accumulating animal hair fibers. In the method of the present invention, by applying this to an animal hair fiber product, the animal hair fiber in the product can be shrunk, and thus a shrunk animal fiber product can be obtained. Furthermore, these fiber products such as animal hair yarns, animal hair knitted fabrics, and animal hair nonwoven fabrics do not need to be composed of animal hair fibers alone, but are made of a mixture of animal hair fibers and other types of fibers. May be. This other kind of fiber is not limited at all. Typical examples include cellulose fiber, acrylic fiber, polyester fiber, polyamide fiber and the like. The mixing ratio of the other kinds of fibers is not particularly limited, and the animal hair fibers in the mixture can be shrunk by the method of the present invention at any ratio. The mixing ratio of the animal hair fibers that are required to be shrink-proofed may be at least 5% by weight of the total product weight. Specifically, for example, a baseball cap composed of 15% by weight of wool fiber, 83% by weight of acrylic fiber and 2% by weight of spandex, and a knitted product composed of 5% by weight of wool fiber, 15% by weight of nylon fiber and 80% by weight of acrylic fiber. Can be the subject of the shrink-proofing method according to the present invention.
(2) Pulse corona treatment The pulse corona treatment of animal hair fibers according to the present invention is carried out according to a conventionally known method, for example, the method described in JP-A-11-131365 described above. This is done by applying a voltage. That is, it is carried out by applying a constant voltage in a pulsed manner between both electrodes while passing animal hair fibers between the discharge electrode and the counter electrode. The distance between both electrodes should just be the range which an animal hair fiber can pass, and is specifically about 1-40 cm. The voltage applied between the two electrodes has an average electrolytic strength (the average value of the voltage applied between the two electrodes divided by the distance between both electrodes) of about 6 to 100 kv / cm, more preferably 7 to 50 kv / cm. It is preferable to be in a range of about cm, and by adopting such a voltage, a desired pulse corona treatment can be performed.
The pulse high voltage is assumed to be a non-continuous application of a predetermined voltage at a predetermined time interval. Here, the pulse frequency of the pulse high voltage to be applied (number of pulses generated per second) is generally 10 pps or more, and particularly preferably in the range of 50 to 100 pps. The pulse width (the time during which one pulse is generated) is generally about 0.1 μs or more, preferably about 0.5 to 10 μs.
It is important that the pulse corona treatment is performed under normal pressure, whereby a pulse high voltage can be applied efficiently and continuously to the animal hair fibers. Further, by applying a pulse high voltage under normal pressure, oxygen in the atmosphere is activated, and a plasma state in which activated oxygen and electrons exist can be generated. These oxygen and electrons collide with the animal hair fiber to introduce an active group such as a carboxyl group or a hydroxyl group on the surface of the animal hair fiber.
By the pulse corona treatment, the animal hair fiber surface is uniformly hydrophilic.
(3) Oxidant treatment The oxidation treatment of animal hair fibers according to the present invention is carried out using a non-chlorine oxidant. Examples of the non-chlorine oxidant include hydrogen peroxide, persulfuric acid, persulfates, for example, monopersulfate alkali metal salts such as potassium persulfate and potassium hydrogensulfate, and dipersulfate alkali metal salts, sodium dichloroisocyanurate, etc. Dichloroisocyanurate, monoperoxyphthalic acid, and the like. These can be used alone or in combination of two or more. Of these, particularly preferred oxidizing agents are persulfuric acid and its salts. Specific examples of the oxidizing agent include “potassium monohydrogen persulfate” commercially available from DuPont. This is composed mainly of potassium hydrogen persulfate and is a mixture of this and potassium persulfate.
Unlike chlorine-based oxidants, non-chlorine-based oxidants have the advantage that they are not accompanied by the production of AOX that causes environmental pollution. In addition, the treatment with the oxidizing agent can be carried out according to the wet method in the same manner as the subsequent enzyme treatment with the alkaline protease, and thus there is an advantage that both treatment steps can be combined more easily.
The oxidation treatment of animal hair fibers is carried out, for example, by immersing non-treated fibers in a liquid containing an oxidizing agent, or by applying or spraying a liquid containing an oxidizing agent to a fiber to be treated.
The purpose of the oxidation treatment is to make the fiber, especially the scale surface thereof hydrophilic, suitable for the enzyme treatment when the fiber obtained by this oxidation treatment is subsequently subjected to the enzyme treatment. Conditions for the oxidation treatment (bath ratio, temperature, time, solution pH, etc.) can be appropriately determined so that a desired shrink-proof fiber can be obtained by subsequent enzyme treatment. This condition can be appropriately determined according to the type of oxidizing agent used, the type of fiber to be treated, and the like. Preferably, an oxidizing agent amount of 2 to 4 g / L, a bath ratio of 1:15 to 25, a temperature of 30 to 60 ° C., a time of 1 to 8 hours, and a liquid pH of about 4.0 to 4.5 can be employed.
After the oxidation treatment, the obtained animal hair fiber can be subjected to an enzyme treatment directly or appropriately after washing with water. Moreover, the reduction process using a normal reducing agent can also be performed as needed.
(4) Enzyme treatment In the method of the present invention, the animal hair fiber treated in the above (2) or (3) is then subjected to an enzyme treatment. The enzyme treatment is performed by contacting and acting a specific protease. It is important that the protease is an alkaline protease having a keratin degradation activity of 70 AKU or more, a collagen degradation activity ratio to keratin degradation activity of 2 or less, and an elastinolysis activity ratio to keratin degradation activity of 4 or less. In particular, those having a keratin degradation activity of 120 AKU or more are preferred. Typical examples of the alkaline protease include alkaline proteases shown in (5) below.
Here, keratin degradation activity (AKU) is measured by the following measurement method. That is, 1 mL of enzyme solution prepared to 25 APU / mL of casein decomposition activity was mixed with 3 mL of 100 mmol / L borax-sodium carbonate buffer solution (pH 10.5) containing 0.04 g of Keratin Azure made by Sigma. Then, the mixture is allowed to react with stirring at 35 ° C. for 60 minutes, and then the dye released with decomposition is measured at an absorbance of 595 nm. 1 AKU is the amount of enzyme that increases the absorbance at 595 nm by 0.001 per hour under the above reaction conditions.
In the above, the casein degradation activity (APU / mL) of the enzyme solution is measured by the following measurement method. That is, 1 mL of 100 mmol / L borax-sodium carbonate buffer (pH 10.5) containing 1% hamal-sten dairy casein was mixed with 1 mL of enzyme solution, reacted at 35 ° C. for 10 minutes, and then 7.2% trichloro. The reaction is stopped by adding 2 mL of an acetic acid solution, allowed to stand at 35 ° C. for 20 minutes, then filtered through a filter paper (ADVANTEC, No. 6, manufactured by TOYO), and the proteolysate in the filtrate is measured by the forin method. 1 APU is the amount of enzyme that liberates 1 μg of tyrosine per minute in the above measurement method.
Moreover, the collagen degradation activity (ACU / mL) and the elastin degradation activity (AEU / mL) shown by the relative ratio with respect to the said keratin degradation activity are calculated | required with the following measuring methods, respectively. That is, 1 mL of an enzyme solution prepared to 50 APU / mL of casein decomposition activity in 1 mL of 100 mmol / L borax-sodium carbonate buffer solution (pH 10.5) containing 2% of collagen Type I (manufactured by Sigma) or elastin (manufactured by Sigma) And the mixture is allowed to react with slow stirring for 2 hours at 35 ° C., then 2 mL of a 7.2% trichloroacetic acid solution is added to stop the reaction, and the mixture is allowed to stand at 35 ° C. for 20 minutes. Next, it is filtered through a filter paper (ADVANTEC, No. 6, manufactured by TOYO), and the proteolysate in the filtrate is measured by the forin method to determine the amount of increase in absorbance at 660 nm (based on the measured value of 660 nm at reaction time 0). As an increase for that). 1ACU and 1AEU are the amounts of enzyme that increase the absorbance at 660 nm by 0.001 per hour in the above measurement method.
Collagen-degrading activity and elastin-degrading activity indicated by the relative ratios based on the keratin-degrading activity indicate the specificity or selectivity of the enzyme for keratin. That is, the smaller the relative ratio of these collagenolytic activity and elastinolytic activity, the smaller the effect of the enzyme on collagen and elastin, thus indicating that it is specific for keratin.
An enzyme having such characteristics, that is, an enzyme that satisfies a specific keratin degradation activity and a specific collagen degradation activity ratio and an elastin degradation activity ratio with respect to the keratin degradation activity can be used to achieve excellent animal hair shrinkage. A processing effect can be produced. The reason is considered as follows. That is, the surface of the animal hair fiber is covered with keratin and is hydrophobic, but is polarized (hydrophilized) by pretreatment according to the method of the present invention, that is, pulse corona treatment or oxidizing agent treatment. When the animal hair fiber is then treated with the enzyme according to the present invention, the enzyme can uniformly act on the entire surface of the fiber that has been hydrophilized as described above, and the enzyme has high keratin specificity and keratin degradation activity. Thus, it selectively acts on the scale layer on the fiber surface and decomposes and disappears, but hardly acts on the CMC layer, and thus has excellent shrinkage resistance without substantially causing a decrease in strength or a decrease in texture. It is thought that it can be granted.
The enzyme treatment (contact) with the alkaline protease according to the present invention is generally performed by immersing the fiber to be treated in the enzyme solution in the form of an aqueous liquid, or by applying the enzyme solution to the fiber to be treated, spraying, or the like. Implemented by enforcing. The concentration of the enzyme in the enzyme solution is not particularly limited, and can be appropriately determined according to the type of fiber to be treated, the employed pulse corona treatment conditions, the enzyme treatment method, conditions, and the like. Usually, the enzyme is in the form of a solution having a concentration of 10-80 APU / mL, preferably 20-40 APU / mL, and has a titer of about 100-2400 APU, preferably about 300-1000 APU, per 1 g of animal hair fiber weight. Should be used in quantity.
In addition, calcium hydroxide as a pH adjuster, boric acid as a buffering agent, etc., as well as surfactants that are known to be added to and mixed with this type of enzyme treatment liquid as necessary. Etc. can be appropriately added and blended. Examples of the surfactant include surfactants having a chemical penetration promoting effect and surfactants having a degreasing effect, such as “Spralane UF” (manufactured by Zschimmer & Schwartz). The surfactant also includes a surface activity that can also exhibit an antiseptic effect, specifically, “cismoran BH” (manufactured by Bayer). The amount of these surfactants added is not particularly different from the amount in which they are usually used. In the present invention, the use of a surfactant as a penetrating agent is unnecessary, but, of course, does not prevent the use.
The enzyme treatment conditions are, for example, in the case of an immersion method, a bath ratio of about 1: 10-30, preferably about 1: 15-25, a temperature of about 30-60 ° C., preferably about 40-50 ° C. The reaction can be performed under conditions of about pH 7-9.5, preferably about 8.5-9, and time 0.5-8 hours, preferably 2-8 hours, more preferably 1-2 hours. The enzyme reaction can be stopped by heating at about 90 ° C. for about 10 minutes according to a conventional method. After completion of the reaction, it is possible to obtain animal hair fibers subjected to the desired shrink-proofing treatment of the present invention by washing thoroughly with running water and drying.
(5) Alkaline protease Examples of the alkaline protease suitable for the shrinkage-proofing method of the present invention include those derived from actinomycetes. A typical example thereof is one produced by the alkaliphilic Nocardiopsis SP TOA-1 strain found by the present inventors (Japanese Patent Application No. 2002-161099). Hereinafter, the alkaline protease produced by this TOA-1 strain is also referred to as “the present enzyme”.
The TOA-1 strain was obtained from Nocardiopsis sp. On January 16, 2002 at the National Institute of Advanced Industrial Science and Technology, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi 1-chome, Tsukuba, Ibaraki, Japan. It has been deposited with the designation TOA-1, and the deposit number is FERM P-18676. This was deposited internationally on January 29, 2004, and the deposit number is FERM BP-08603.
Cultivation of the above-mentioned bacterium and collection of this enzyme can be performed according to conventional methods. For example, since the bacterium is an alkalophilic actinomycete, the culture is carried out in an alkaline region in which a suitable alkali is added to a normal medium. Nutrient sources such as carbon source, nitrogen source, and other inorganic salts used in the medium may be ordinary ones used for culturing this kind of enzyme-producing bacteria. For example, glucose, soluble starch, cellulose and the like can be exemplified as the carbon source. Examples of the nitrogen source include inorganic substances such as nitrates and ammonium salts, urea, peptone, dry yeast, yeast extract, skim milk, soy flour, corn steep liquor, casein, meat extract, amino acids, and the like. Examples of other inorganic salts include magnesium salts, potassium salts, sodium salts, and phosphates. One of these nutrient sources may be used alone, or two or more of these nutrient sources may be used in combination. Their combination is also arbitrary. Examples of the alkali added to the medium include aqueous solutions of carbonates such as sodium carbonate and sodium hydrogen carbonate having a concentration of about 0.5-2%, aqueous sodium hydroxide, and aqueous ammonia. The pH of the medium is usually preferably about 8-11. Culturing can be carried out at a temperature of about 20-40 ° C., preferably about 30-35 ° C., for 2-7 days, aerobically with stirring or shaking. The desired enzyme is secreted and accumulated mainly in the culture medium.
The enzyme can be collected and purified from the culture solution according to a known method using the physicochemical properties of the enzyme. Since the present enzyme is mainly secreted outside the microbial cells (in the culture solution), for example, the microbial cells can be removed by an operation such as filtration or centrifugation to obtain a crude enzyme solution. The crude enzyme solution is further subjected to a conventional method, for example, a method of salting out using ammonium sulfate, a method of precipitation using an organic solvent such as methanol, ethanol, acetone, a method of adsorbing using keratin, etc., an ultrafiltration method They can be purified by various chromatographic methods such as gel filtration chromatography, ion exchange chromatography and hydrophobic chromatography. These purification operations can be used alone or in combination.
As one of the particularly preferred purification methods, 80% saturated ammonium sulfate is first added to the culture filtrate, salting out is performed, and the resulting precipitate is dissolved in a buffer solution, and then CM-Toyopearl 650M (manufactured by Tosoh Corporation), for example, An example is a method of performing ion exchange chromatography using DEAE-Toyopearl 650M (manufactured by the same company). By this method, a purified enzyme that is uniform in SDS electrophoresis can be obtained.
The enzyme thus obtained has the following properties.
(1) Action and substrate specificity Acts on proteins and peptides, and cleaves peptide bonds by an endo-type mechanism to produce low molecular weight oligopeptides and amino acids. It also exhibits strong activity against insoluble proteins such as keratin.
(2) Optimum pH and stable pH
As buffers, HCl / KCl (pH 1.0-1.5), glycine / NaCl / HCl (pH 2.0-3.0), acetic acid (pH 4.0-5.0), phosphoric acid (pH 6.0-7) 0.0), Tris-HCl (pH 7.0-9.0), Glycine / NaCl / NaOH (pH 9.0-12.0) and KCl / NaOH (pH 12.0-13.0). From the activity measurement results obtained according to the activity measurement method, the optimum pH of the enzyme is 11.0-11.5 when casein is used as a substrate at 30 ° C., and 12.0 or more when keratin is used as a substrate. It is.
Similarly, the stable pH range of the present enzyme determined by measuring the residual protease activity after holding the enzyme in a buffer solution of each pH at 30 ° C. for 24 hours is a wide range of 1.5 to 12.0. It is confirmed that
(3) Optimal temperature and stable temperature The optimal temperature of this enzyme is 70-75 ° C. when casein is used as a substrate, and 65-70 ° C. when keratin is used as a substrate. In addition, the enzyme was added to 100 mmol / L Tris-HCl buffer (pH 7.0), held at a temperature range of 40-80 ° C. for 10 minutes, and the residual protease activity was measured. Is stable. In addition, regarding the temperature stability of this enzyme, the effect of calcium addition (10 mM) is not recognized.
(4) Molecular weight The molecular weight of the enzyme was measured by SDS electrophoresis. As a result, the molecular weight was about 20,000. In addition, the molecular weight calculated from the amino acid sequence described in SEQ ID NO: 2 described later is 19,150.
(5) Isoelectric point The isoelectric point of the enzyme was measured by isoelectric focusing. As a result, the isoelectric point was 10.0 or more.
(6) Inhibition Each of the general enzyme inhibitors PMSF (phenylmethanesulfonyl fluoride), EDTA (ethylenediaminetetraacetic acid), and SSI (Streptomyces subtilisin inhibitor) is adjusted to a predetermined concentration of 50 mmol / L Tris-HCl. The resultant was dissolved in a buffer solution (pH 9.0), treated with this enzyme for 30 minutes at 30 ° C., and then a fixed amount was taken from the treated solution to measure its residual activity. As a result, this enzyme was inhibited by PMSF and SSI, and not inhibited by EDTA. This revealed that this enzyme is a serine protease.
(7) Amino terminal sequence The sequence from the amino terminal to the 25th amino acid of this enzyme was determined using a gas phase protein sequencer (manufactured by Shimadzu Corporation, PPSQ-21). As a result, the 1-25th sequence of SEQ ID NO: 2 was confirmed.
(8) Nucleotide sequence and amino acid sequence The gene and amino acid sequence of this enzyme can be obtained by conventional methods (for example, J. Sambrook, EF Fritsch, T. Maniatis: Molecular Cloning. A Laboratory Manual, 2nd. Ed. Cold Spring). According to Harbor Laboratory Press, 1989, etc.), it was determined according to the protocol of the equipment used, reagent kit, etc. First, the purified enzyme was treated with urea and then decomposed with lysyl endopeptidase (Wako Pure Chemical Industries), and the amino acid sequence of the obtained fragment was determined with a gas phase protein sequencer. From the amino acid sequence information thus obtained, appropriate two types of oligonucleotide primers were synthesized by the phosphoramidite method, and using these primers, gene amplification was performed according to PCR (Biometra, T-Gradient Thermoblock 050-801). went. As a result, a specific amplified fragment was observed around 0.5 kbp. Using this fragment as a probe, a full-length gene encoding this enzyme was screened from the genomic library of this strain TOA-1. A DNA sequencer (manufactured by LICOR, LICOR-4000) based on the dideoxy method (F. Sanger et.al., Proc. Natl. Acad. Sci., 74 , 5463-5467, 1977) was used as the base sequence of the obtained clone. ). The base sequence (564 bp) is shown in SEQ ID NO: 1. The amino acid sequence (188 amino acids) determined based on the base sequence is shown in SEQ ID NO: 2.
(9) Keratin specificity This enzyme has a particularly excellent keratin specificity. For example, Table 1 shows the results of comparing the keratin degradation activity, collagen degradation activity, and elastin degradation activity of this enzyme and commercially available representative alkaline proteases (referred to as products A and B). In addition, Table 2 shows the results of determining the relative activity ratio of collagen degradation activity and elastin degradation activity based on keratin degradation activity.
Figure 0004344950
Figure 0004344950
From the results shown in these tables, this enzyme has a keratin-degrading activity more than twice as high as that of products A and B, which are commercially available enzymes, has low collagen-degrading activity and elastin-degrading activity, and has high specificity for keratin. I understand that. Therefore, this enzyme has less action on collagen and elastin than commercially available enzymes, and cortex cells and cytoplasmic complexes in the fiber are less decomposed during the treatment of animal fiber products, leading to weight loss and strength reduction. It is clear that there is very little fear.

発明の効果The invention's effect

本発明は、パルス高電圧印加によるパルスコロナ処理又は非塩素系酸化剤による酸化処理と、ケラチン特異性の高いプロテアーゼによる酵素処理とを組み合わせた、ハロゲンフリーのプロセスを提供するものであり、きわめてクリーンで環境への負荷が少なく、実用性に優れたものである。
本発明により得られる獣毛繊維からなる製品は、機械的強度などの特性は失うことなく、充分に防縮加工された品質の良好なものであり、家庭の洗濯機で洗濯可能であり、ドライクリーニングの必要はない。しかも、この製品は獣毛繊維本来の柔軟な手触りを保有しており、その風合いが非常に優れたものである。
また、本発明方法は、環境に有害な化合物を排出するおそれはなく、減圧下での作業も必要なく、作業、装置、コストおよび製造時間の面でも実用的に優れたものである。
The present invention provides a halogen-free process that combines a pulse corona treatment by applying a pulse high voltage or an oxidation treatment with a non-chlorine oxidant and an enzyme treatment with a protease having high keratin specificity, and is extremely clean. Therefore, it has low environmental impact and is highly practical.
The product made of animal hair fibers obtained by the present invention has good quality that has been sufficiently shrink-proofed without losing properties such as mechanical strength, can be washed in a home washing machine, and is dry-cleaned. There is no need. In addition, this product possesses the soft touch inherent to animal hair fibers, and its texture is very excellent.
In addition, the method of the present invention is practically excellent in terms of work, equipment, cost, and production time because there is no risk of discharging compounds harmful to the environment, and no work under reduced pressure is required.

以下、本発明に利用するアルカリプロテアーゼの製造例を参考例として示し、次いで本発明防縮加工方法の実施例を挙げて本発明を更に詳細に説明する。
尚、実施例において求められた試料の面積収縮率、強伸度および重量減少率は、以下の測定法および算出法に従うものである。
(1)試料の面積収縮率
IWS(国際羊毛事務局)の試験規格TM185に準拠し、リン酸ナトリウム緩衝液(pH7)を用い、キューベックス試験機(FLOATAIRE社製)を使用して、3時間の収縮試験を行い、収縮試験前後での試料の縦及び横の平均長さを乗じて、面積収縮率を算出した。
(2)試料の強伸度試験
縦糸および横糸の各々20点について最大引張強度(N)を(株)島津製作所製オートグラフを用いて測定した。
(3)試料の重量減少率
防縮処理前後での100℃、1.5時間乾燥後の重量変化を測定した。
参考例1 粗酵素標品の調製
ノカルディオプシス エスピーTOA−1株(FERM BP−08603)の前培養液を、スキムミルク0.5%、酵母エキス0.1%および別殺菌して添加した炭酸ナトリウム1.0%を含む培地(pH10.5)4000mLを入れた小型ジャーファーメンターに植菌し、30℃、通気量1v/v/分、200回転/分で3日間培養した。培養終了後、培養液を8,000回転/分で10分間遠心分離して菌体を除去した。
上記により45APU/mLの粗酵素液約3,800mLを得た。この粗酵素液に硫安粉末を80%飽和になるまで加え、一昼夜5℃で暗所に静置後、生じた沈殿を8,000回転/分で遠心分離して回収し、凍結乾燥した。上記により、15,100APU/gの粗酵素標品を8.9g得た。
このもののケラチン分解活性は、72,500AKU/gであり、コラーゲン分解活性は、77,900ACU/gであり、エラスチン分解活性は、106,000AEU/gであった。これらのことから、本酵素のケラチン分解活性に対するコラーゲン分解活性比は1.08、エラスチン分解活性比は1.46と算出される。
Hereinafter, production examples of alkaline protease used in the present invention will be described as reference examples, and then the present invention will be described in more detail with reference to examples of the shrinkage-proofing method of the present invention.
In addition, the area shrinkage rate, the strong elongation, and the weight reduction rate of the samples obtained in the examples are according to the following measurement method and calculation method.
(1) Area shrinkage rate of sample 3 hours using sodium phosphate buffer (pH 7) and a Cubex tester (FLOATAIRE) according to IWS (International Wool Secretariat) test standard TM185. The area shrinkage ratio was calculated by multiplying the average lengths of the sample before and after the shrinkage test.
(2) Strength and elongation test of sample The maximum tensile strength (N) of each of 20 points of warp and weft was measured using an autograph manufactured by Shimadzu Corporation.
(3) Weight reduction rate of sample The weight change after drying for 1.5 hours at 100 ° C. before and after the shrink-proofing treatment was measured.
Reference Example 1 Preparation of Crude Enzyme Sample Nocardiopsis SP TOA-1 strain (FERM BP-08603) precultured solution was added 0.5% skim milk, 0.1% yeast extract and sterilized sodium carbonate A small jar fermenter containing 4000 mL of a medium (pH 10.5) containing 1.0% was inoculated and cultured at 30 ° C., aeration rate 1 v / v / min, 200 rpm / min for 3 days. After completion of the culture, the culture was centrifuged at 8,000 rpm for 10 minutes to remove the cells.
As a result, about 3,800 mL of a 45 APU / mL crude enzyme solution was obtained. To this crude enzyme solution, ammonium sulfate powder was added until it was 80% saturated. After standing overnight in the dark at 5 ° C., the resulting precipitate was collected by centrifugation at 8,000 rpm, and lyophilized. As a result, 8.9 g of a crude enzyme preparation of 15,100 APU / g was obtained.
This product had a keratin degradation activity of 72,500 AKU / g, a collagen degradation activity of 77,900 ACU / g, and an elastin degradation activity of 106,000 AEU / g. From these, the collagen degradation activity ratio to the keratin degradation activity of this enzyme is calculated as 1.08, and the elastin degradation activity ratio is calculated as 1.46.

試料としてJIS L 0803規定の羊毛添付白布を準備した。この試料に、日本ペイント株式会社製常圧プラズマ処理装置「プラズマアトム」を用いて、相対湿度30−40%、室温の雰囲気下でパルス高電圧印加によるパルスコロナ処理を施した。パルス高電圧印加は、電極間距離23.5mm、平均電界強度32.3kv/cm、電源出力76kv、パルス頻度120ppsおよびパルス幅2.5μsの条件で試料を760mm/分で搬送しながら行い、20回繰返した。
次に、パルスコロナ処理した試料を0.1mol/Lトリス−HCl緩衝液(pH9.0)、浴比1:20、50℃およびpH9.0の条件下で、本酵素2g/L,3g/Lまたは4g/L(300AKU/mL,450AKU/mLまたは600AKU/mLに相当する)で2,4,6または8時間それぞれ接触処理して酵素処理を行った。
得られた本発明酵素処理布の性質を、上記で試料として用いた未処理布(パルスコロナ処理も醇素処理も行っていない羊毛添付白布)およびパルスコロナ処理のみを行った羊毛添付白布と比較して表3(面積収縮率の結果)および表4(強伸度試験結果)に示す。

Figure 0004344950
Figure 0004344950
各表に示す結果から、本発明方法によれば、酵素の使用量および処理時間を適宜決定することにより、面積収縮率5%以下で強度低下が実質的になく、重量減少率も3%以下の、優れた防縮加工製品を収得できることが判った。しかも、本発明によれば、未処理布と差のない優れた風合いを有する防縮加工製品が得られることが明らかとなった。本発明防縮加工製品は、ソフトで柔らかく白くなっており、染色性の向上も認められた。
また、得られた本発明処理布、未処理布およびパルスコロナ処理のみを行った対照布における羊毛繊維の形状を電子顕微鏡にて観察した。その結果、未処理羊毛布では、羊毛繊維のスケールが明瞭に観察されたのに対して、パルスコロナ処理のみを行った処理布では、スケールが削られたような状態で丸みを帯びている様子が観察され、本発明処理布(収縮率0%)では、スケールがさらに丸みを帯びている様子が明らかとなった
比較例1
実施例1と同様にしてパルスコロナ処理した試料に、市販のアルカリプロテアーゼ酵素製品(製品AおよびB、前記表1および2に示すケラチン分解活性、コラーゲン分解活性比およびエラスチン分解活性を有するもの)を作用させて、比較処理布を得た。
市販酵素製品AおよびBを用いた酵素処理は、浴比1:20、50℃、Britton−Robinson広域緩衝液(pH8.0)を用い、非イオン性界面活性剤「スコアロール100」(北広ケミカル株式会社製繊維加工用薬剤)2g/L中で行った。酵素製品Aの場合は、力価2335APU/mLで16時間処理した。また酵素製品Bの場合は、力価428APU/mLで16時間処理した。
得られた比較処理布の性質を、未処理布および本発明処理布と比較して表5に示す。
尚、市販酵素製品の力価および処理時間を実施例1と一致させて行った比較試験では、得られる処理布の収縮率は5%を遙かに越えるものとなり、所望の防縮加工はできなかった。
Figure 0004344950
表5に示す結果から次のことが明らかである。本発明方法では、本酵素を2g/L用いて6時間処理することにより、収縮率3.66%を達成できたのに対し、製品Aでは2,335APU/mLで16時間、製品Bでは428APU/mLで16時間の処理によって、収縮率5%が達成できるにすぎなかった。また、本酵素を利用した本発明方法では、強度低下は未処理とほぼ同様であったのに対し、製品AおよびBを用いた場合は、それぞれ0.5Nまで強度が低下(約58%の強度低下が認められる)し、重量減少率も各々13%および18%と著しく、生地はボロボロの状態となることが明らかとなった。
本発明方法に採用するパルスコロナ処理は、それ自体温度上昇しないために羊毛繊維の風合いを低下させるおそれのないものであり、しかも本発明方法では引き続く酵素処理によって風合いがより柔らかくなっていた。従って、本発明方法では、当然ながら柔軟剤などの利用は不必要である。また、本発明方法では従来法において採用される如き酸化剤処理をしていないので、処理布は耐黄変性があり、染色性も向上している。さらに、本発明方法では、促進剤としての非イオン性界面活性剤の使用も必要がなく、これは廃液処理の観点からも優れた方法であるということができる。As a sample, a wool-attached white cloth according to JIS L 0803 was prepared. This sample was subjected to a pulse corona treatment by applying a pulse high voltage in an atmosphere of a relative humidity of 30 to 40% and room temperature using an atmospheric pressure plasma treatment apparatus “Plasma Atom” manufactured by Nippon Paint Co., Ltd. Pulse high voltage application is performed while transporting the sample at 760 mm / min under the conditions of a distance between electrodes of 23.5 mm, an average electric field strength of 32.3 kv / cm, a power output of 76 kv, a pulse frequency of 120 pps and a pulse width of 2.5 μs, Repeated several times.
Next, a sample subjected to pulse corona treatment was prepared under the conditions of 0.1 mol / L Tris-HCl buffer (pH 9.0), bath ratio 1:20, 50 ° C. and pH 9.0. The enzyme treatment was performed by contact treatment with L or 4 g / L (corresponding to 300 AKU / mL, 450 AKU / mL or 600 AKU / mL) for 2, 4, 6 or 8 hours, respectively.
Comparison of the properties of the enzyme-treated cloth of the present invention compared with the untreated cloth (white wool-attached cloth not subjected to pulse corona treatment or silicon treatment) used as a sample and the wool-attached white cloth subjected to pulse corona treatment alone. The results are shown in Table 3 (result of area shrinkage rate) and Table 4 (result of strong elongation test).
Figure 0004344950
Figure 0004344950
From the results shown in each table, according to the method of the present invention, by appropriately determining the amount of enzyme used and the treatment time, there is substantially no decrease in strength at an area shrinkage rate of 5% or less, and the weight reduction rate is 3% or less. It has been found that an excellent shrink-proof processed product can be obtained. Moreover, according to the present invention, it has been clarified that a shrink-proof processed product having an excellent texture that is not different from that of an untreated fabric can be obtained. The shrink-proof processed product of the present invention was soft, soft and white, and improved dyeability was also observed.
Moreover, the shape of the wool fiber in the obtained control cloth, this untreated cloth, and the control cloth which performed only the pulse corona treatment was observed with an electron microscope. As a result, in the untreated wool cloth, the scale of the wool fiber was clearly observed, whereas in the treated cloth subjected only to the pulse corona treatment, the scale was rounded in a state where the scale was shaved. As a result, it was clarified that the treated cloth of the present invention (shrinkage rate 0%) was further rounded.
Comparative Example 1
A commercially available alkaline protease enzyme product (products A and B having keratin degradation activity, collagen degradation activity ratio and elastin degradation activity shown in Tables 1 and 2) was applied to a sample subjected to pulse corona treatment in the same manner as in Example 1. A comparatively treated cloth was obtained by the action.
Enzymatic treatment using commercially available enzyme products A and B uses a bath ratio of 1:20, 50 ° C., Britton-Robinson broad-area buffer (pH 8.0), and a nonionic surfactant “Scoreol 100” (Kitahiro Chemical) It was carried out in 2 g / L of a textile processing agent manufactured by the same company. In the case of enzyme product A, it was treated with a titer of 2335 APU / mL for 16 hours. In the case of enzyme product B, it was treated with a titer of 428 APU / mL for 16 hours.
The properties of the comparative treated cloth obtained are shown in Table 5 in comparison with the untreated cloth and the treated cloth of the present invention.
In addition, in the comparative test conducted by matching the titer and treatment time of the commercially available enzyme product with those in Example 1, the shrinkage rate of the obtained treated cloth exceeds 5%, and the desired shrink-proofing process cannot be performed. It was.
Figure 0004344950
From the results shown in Table 5, the following is clear. In the method of the present invention, a contraction rate of 3.66% was achieved by treating the enzyme with 2 g / L for 6 hours, whereas in product A, 2,335 APU / mL was applied for 16 hours, and in product B, 428 APU. A shrinkage of 5% could only be achieved by treatment for 16 hours at / mL. Further, in the method of the present invention using the present enzyme, the strength decrease was almost the same as that of the untreated, whereas when products A and B were used, the strength decreased to 0.5 N (about 58%). Strength reduction was observed), and the weight loss rates were 13% and 18%, respectively, and it became clear that the dough became tattered.
The pulse corona treatment employed in the method of the present invention itself does not raise the temperature, so that the texture of the wool fiber is not lowered, and in the method of the present invention, the texture is softened by the subsequent enzyme treatment. Therefore, in the method of the present invention, it is naturally unnecessary to use a softening agent or the like. Further, in the method of the present invention, since the oxidizing agent treatment as employed in the conventional method is not performed, the treated cloth has yellowing resistance and dyeability is improved. Furthermore, in the method of the present invention, it is not necessary to use a nonionic surfactant as an accelerator, which can be said to be an excellent method from the viewpoint of waste liquid treatment.

試料としてJIS L 0803規定の羊毛添付白布を準備した。この試料を、モノ過硫酸水素カリウム(DuPont社製「OxoneTM」)2gを水1Lに溶解した液(pH4.0)中に、浴比1:20、50℃の条件で30分間浸漬して酸化剤処理を行った。
次に、酸化剤処理した試料を0.1mol/Lトリス−HCl緩衝液(pH9.0)、浴比1:20、50℃およびpH9.0の条件下で、本酵素2g/Lまたは3g/L(300AKU/mLまたは450AKU/mLに相当する)で2,3,4または6時間それぞれ接触処理して酵素処理を行った。
得られた本発明酵素処理布の性質を、上記で試料として用いた未処理布(酸化剤処理も酵素処理も行っていない羊毛添付白布)および酸化剤処理のみを行った羊毛添付白布と比較して表6(面積収縮率の結果)および表7(強伸度試験結果)に示す。

Figure 0004344950
Figure 0004344950
各表に示す結果から、次のことが明らかである。即ち、酸化剤処理のみでは十分な防縮性は得られないが、酸化剤処理と酵素処理とを組み合わせるときには、酵素の使用量および処理時間を適宜決定することにより、面積収縮率5%を遙かに下回りしかも強度低下も殆どなく、重量減少率も3%以下の、優れた防縮加工製品を収得できることが判る。しかも、本発明によれば、未処理布と差のない優れた風合いを有する防縮加工製品が得られることが明らかとなった。本発明防縮加工製品は、ソフトで柔らかく白くなっており、染色性の向上も認められた。
また、得られた本発明処理布、未処理布および酸化剤処理のみを行った対照布における羊毛繊維の形状(乾燥状態)を電子顕微鏡にて観察した。その結果、未処理羊毛布では、羊毛繊維のスケールが明瞭に観察され、酸化剤処理のみを行った処理布でも、ほぼ同様にスケールが観察されたのに対して、本発明処理布(収縮率0%)では、スケールが削られて丸みを帯びている様子が明らかとなった。尚、この例で得られた本発明処理布を、実施例1で得た本発明処理布と対比すると、この例で得られた処理布では羊毛繊維表面に若干の損傷が見られる場合があり、これが機械的強度を実施例1の場合に比して若干低下させるものと考えられる。As a sample, a wool-attached white cloth according to JIS L 0803 was prepared. This sample was immersed in a solution (pH 4.0) in which 2 g of potassium hydrogen persulfate (“Oxone ” manufactured by DuPont) was dissolved in 1 L of water at a bath ratio of 1:20 and 50 ° C. for 30 minutes. Oxidant treatment was performed.
Next, the oxidant-treated sample was subjected to 2 g / L or 3 g / L of this enzyme under the conditions of 0.1 mol / L Tris-HCl buffer (pH 9.0), bath ratio 1:20, 50 ° C. and pH 9.0. The enzyme treatment was performed by contact treatment with L (corresponding to 300 AKU / mL or 450 AKU / mL) for 2, 3, 4 or 6 hours, respectively.
The properties of the obtained enzyme-treated cloth of the present invention were compared with the untreated cloth (white cloth attached with wool which was not subjected to oxidizing agent treatment or enzyme treatment) and the white cloth attached with wool which was only treated with oxidizing agent. Table 6 (results of area shrinkage) and Table 7 (results of high elongation test).
Figure 0004344950
Figure 0004344950
From the results shown in each table, the following is clear. That is, sufficient shrinkage cannot be obtained only by the oxidant treatment, but when combining the oxidant treatment and the enzyme treatment, the area shrinkage rate can be increased by 5% by appropriately determining the amount of the enzyme used and the treatment time. In addition, it can be seen that an excellent shrink-proof processed product having a lower strength and almost no decrease in strength and a weight reduction rate of 3% or less can be obtained. Moreover, according to the present invention, it has been clarified that a shrink-proof processed product having an excellent texture that is not different from that of an untreated fabric can be obtained. The shrink-proof processed product of the present invention was soft, soft and white, and improved dyeability was also observed.
Moreover, the shape (dry state) of the wool fiber in the obtained treated cloth of the present invention, the untreated cloth, and the control cloth subjected only to the oxidizing agent treatment was observed with an electron microscope. As a result, in the untreated wool cloth, the scale of the wool fiber was clearly observed, and in the treated cloth subjected only to the oxidizing agent treatment, the scale was observed almost in the same manner, whereas the treated cloth (shrinkage rate) 0%), it became clear that the scale was cut and rounded. In addition, when the treated cloth of the present invention obtained in this example is compared with the treated cloth of the present invention obtained in Example 1, the treated cloth obtained in this example may have some damage on the wool fiber surface. This is considered to reduce the mechanical strength slightly as compared with the case of Example 1.

本発明によれば、機械的強度などの特性は実質的に失うことなく、充分に防縮加工された品質の良好な獣毛繊維製品を収得できる。この獣毛繊維製品は、家庭の洗濯機で洗濯可能であり、ドライクリーニングの必要はない。しかも、獣毛繊維本来の柔軟な手触りを保有しており、その風合いが非常に優れたものである。
本発明方法は、環境に有害な化合物を排出するおそれはなく、減圧下での作業も必要なく、作業、装置、コストおよび製造時間の面でも実用的に優れたものである。
According to the present invention, it is possible to obtain a quality animal hair fiber product that has been sufficiently shrink-proofed without substantially losing properties such as mechanical strength. This animal hair fiber product can be washed in a home washing machine and does not require dry cleaning. Moreover, it has the soft touch inherent to animal hair fibers, and its texture is very excellent.
The method of the present invention is practically excellent in terms of work, equipment, cost, and production time because there is no risk of discharging compounds harmful to the environment, and there is no need for work under reduced pressure.

Claims (7)

獣毛繊維の防縮加工方法であって、獣毛繊維をパルスコロナ処理した後、ケラチン分解活性が70AKU以上であり且つケラチン分解活性に対するコラーゲン分解活性比が2以下およびケラチン分解活性に対するエラスチン分解活性比が4以下であるアルカリプロテアーゼを用いた酵素処理を行うことを特徴とする獣毛繊維の防縮加工方法。A shrink proofing method of animal fiber, after pulsed corona treatment the animal fiber, elastin degradation collagenolytic activity ratio keratolytic activity against a is and keratolytic activity than 70AKU is for 2 or less and keratin hydrolyzing activity A method for preventing shrinkage of animal hair, comprising performing an enzyme treatment using an alkaline protease having an activity ratio of 4 or less. パルスコロナ処理が、常温下に、平均電解強度6〜100kv/cm、パルス頻度10pps以上およびパルス幅0.1μs以上の条件で行われる請求項に記載の防縮加工方法。2. The shrink-proofing method according to claim 1 , wherein the pulse corona treatment is performed at normal temperature under conditions of an average electrolytic strength of 6 to 100 kv / cm, a pulse frequency of 10 pps or more, and a pulse width of 0.1 μs or more. アルカリプロテアーゼが、放線菌由来のものである請求項1又は2に記載の防縮加工方法。The shrink-proofing method according to claim 1 or 2 , wherein the alkaline protease is derived from actinomycetes. アルカリプロテアーゼが、ノカルディオプシス エスピー(Nocardiopsis sp.)TOA−1株(FERM BP−08603)産生するものである請求項に記載の防縮加工方法。Alkaline protease, Nocardioides Opsys sp (Nocardiopsis sp.) Shrink proofing method according to claim 3 TOA-1 strain (FERM BP-08603) is intended to produce. アルカリプロテアーゼとの接触が、繊維1g当たり酵素力価300〜1000APUのアルカリプロテアーゼを用いて、浴比1:15〜25、温度30〜60℃、pH7〜9.5および時間2〜8時間の条件で行われる請求項1〜4のいずれか一項に記載の防縮加工方法。The contact with the alkaline protease was performed using an alkaline protease having an enzyme titer of 300 to 1000 APU per gram of fiber, a bath ratio of 1:15 to 25, a temperature of 30 to 60 ° C., a pH of 7 to 9.5, and a time of 2 to 8 hours. The shrink-proof processing method as described in any one of Claims 1-4 performed by this. 請求項1〜5のいずれか一項に記載の方法によって得られる防縮加工された獣毛繊維。The animal hair fiber by which shrink-proof processing obtained by the method as described in any one of Claims 1-5 was carried out. 請求項1〜5のいずれか一項に記載の方法によって得られる防縮加工された獣毛繊維を含む繊維製品。A textile product comprising animal hair fibers subjected to shrink-proof processing obtained by the method according to any one of claims 1 to 5 .
JP2005504901A 2003-02-06 2004-02-06 Shrinking of animal hair fiber Expired - Fee Related JP4344950B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003029610 2003-02-06
JP2003029610 2003-02-06
PCT/JP2004/001291 WO2004070106A1 (en) 2003-02-06 2004-02-06 Method of shrink-proofing animal hair fiber

Publications (2)

Publication Number Publication Date
JPWO2004070106A1 JPWO2004070106A1 (en) 2006-05-25
JP4344950B2 true JP4344950B2 (en) 2009-10-14

Family

ID=32844240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005504901A Expired - Fee Related JP4344950B2 (en) 2003-02-06 2004-02-06 Shrinking of animal hair fiber

Country Status (2)

Country Link
JP (1) JP4344950B2 (en)
WO (1) WO2004070106A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6855548B2 (en) 2000-02-08 2005-02-15 F. Hoffman-La Roche Ag Use of acid-stable proteases in animal feed
AU2004211446B2 (en) 2003-02-07 2009-05-28 Novozymes A/S Proteases
CN1867668A (en) 2003-10-10 2006-11-22 诺维信公司 Proteases
BRPI0512341A (en) 2004-06-21 2008-03-04 Novozymes As isolated polypeptide having protease activity, isolated nucleic acid sequence, nucleic acid construct, expression vector, recombinant host cell, transgenic plant or plant part, transgenic non-human animal, use of at least one protease, methods for producing a polypeptide, to improve the nutritional value of an animal feed and to treat protein, animal feed, and, animal feed additive
PL2488690T3 (en) 2009-10-16 2015-02-27 Tonak A S Method for improving felting properties of animal fibres by plasma treatment
JP5368541B2 (en) * 2011-12-22 2013-12-18 日本毛織株式会社 Method for producing washable fabric
CN102995393B (en) * 2012-11-15 2014-09-17 浙江中新毛纺织有限公司 Preparation method of total easy-care wool tops and product thereof
JP5390725B2 (en) * 2013-06-27 2014-01-15 日本毛織株式会社 Washable fabric and washable product using the same
CN104099371A (en) * 2014-07-18 2014-10-15 辽宁师范大学 Application of KAP26.1 gene as exogenous gene introduced into cashmere goat cells and used for improving wool fineness
CN104726982A (en) * 2015-03-12 2015-06-24 浙江米皇羊绒股份有限公司 High-elongation skin-friendly cashmere yarn
JP7165937B2 (en) * 2018-04-17 2022-11-07 山形県 Animal fiber processing method and textile product

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58144105A (en) * 1982-02-12 1983-08-27 Kurabo Ind Ltd Production of descaled animal fiber
DE3881033T2 (en) * 1987-10-28 1993-12-02 Schoeller Hardturm Ag Zuerich ENZYMATIC TREATMENT OF WOOL.
JPH11131365A (en) * 1997-11-04 1999-05-18 Nippon Paint Co Ltd Shrink resistance finishing of animal hair textile product
ATE311762T1 (en) * 2000-02-08 2005-12-15 Dsm Ip Assets Bv USE OF ACID-STABLE SUBTILISINE PROTEASES IN ANIMAL FEED

Also Published As

Publication number Publication date
JPWO2004070106A1 (en) 2006-05-25
WO2004070106A1 (en) 2004-08-19

Similar Documents

Publication Publication Date Title
JP4344950B2 (en) Shrinking of animal hair fiber
US5880080A (en) Use of alkaline proteases in industrial textile laundering processes
JP4547335B2 (en) Endoglucanase STCE and cellulase preparation containing the same
JPH10511437A (en) Enzyme treatment method of wool
JPWO2008111613A1 (en) Endoglucanase PPCE and cellulase preparation comprising the same
AU4074699A (en) A method for enzymatic treatment of wool
JP2011200249A (en) Alkaline protease
CN109972390B (en) Method for performing anti-felting finishing on wool fabric by using protease K
JP2003524707A (en) Wool treatment method
US5980579A (en) Process for improved shrink resistance in wool
El-Sayed et al. Enzyme-Based Feltproofing of Wool.
JP4137526B2 (en) Keratinase and production method thereof
JP2006129865A (en) Alkaline protease
JP4114046B2 (en) Enzymatic hair removal treatment and enzymatic hair removal method
AU757109B2 (en) A method for enzymatic treatment of wool
EP0617746A1 (en) Strength loss resistant methods for improving the softening of cotton toweling and related fabrics.
US6140109A (en) Method for enzymatic treatment of wool
WO2004081278A1 (en) Antibacterial pectocellulose
Wang et al. Combined use of mild oxidation and cutinase/lipase pretreatments for enzymatic processing of wool fabrics
US20060121595A1 (en) Treatment of animal hair fibers with modified proteases
JP3913898B2 (en) Alkaline pectate lyase
JP3350786B2 (en) Wool structure that can be machine-washed with laundry soap based on household goods quality label and method of manufacturing the same
JP4178489B2 (en) Wool fiber structure with excellent texture
Padaki et al. 1Central Silk Technological Research Institute, Bangalore, Karnataka, India; 2E. I. Dupont India Private Limited, Mumbai, India
JP2006087404A (en) Alkali-resistant mannanase

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090630

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees