JP4344508B2 - 文生成システム、文生成方法、プログラム - Google Patents

文生成システム、文生成方法、プログラム Download PDF

Info

Publication number
JP4344508B2
JP4344508B2 JP2002181598A JP2002181598A JP4344508B2 JP 4344508 B2 JP4344508 B2 JP 4344508B2 JP 2002181598 A JP2002181598 A JP 2002181598A JP 2002181598 A JP2002181598 A JP 2002181598A JP 4344508 B2 JP4344508 B2 JP 4344508B2
Authority
JP
Japan
Prior art keywords
morpheme
information
morpheme information
unit
character string
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002181598A
Other languages
English (en)
Other versions
JP2004029931A (ja
Inventor
声揚 黄
裕 勝倉
和生 岡田
淳 富士本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universal Entertainment Corp
PtoPA Inc
Original Assignee
PtoPA Inc
Aruze Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PtoPA Inc, Aruze Corp filed Critical PtoPA Inc
Priority to JP2002181598A priority Critical patent/JP4344508B2/ja
Publication of JP2004029931A publication Critical patent/JP2004029931A/ja
Application granted granted Critical
Publication of JP4344508B2 publication Critical patent/JP4344508B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Document Processing Apparatus (AREA)
  • Machine Translation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、利用者から入力された入力情報に基づいて、議事録等に使用される文を生成する文生成システム、文生成方法、プログラムに関する。
【0002】
【従来の技術】
従来から、例えば、所定の者が、テープレコーダ等の録音装置に、会議や面談の進行とともに、会議の参加者等の利用者の発話内容を録音することが行われている。そして、会議や面談終了後に、上記所定の者が、ワープロ等を用いて編集を行うことにより、会議中の意見や面談中の意見等に関する文(例えば、議事録用文)を生成していた。
【0003】
【発明が解決しようとする課題】
しかしながら、上述した従来技術には、以下のような問題点があった。会議中や面談中における参加者(利用者)は、例えば、意見を考えるときに、「えーと」や「うーん」等の発話を行う場合がある。また、参加者が意見をいう前に、「こんにちは」等のあいさつに関する発話が行われることもある。
【0004】
このような発話(「えーと」等)を含まない文(例えば、議事録用文)であっても、名詞や形容詞等の、意味内容をもつ言葉が上記文に含まれていれば、上記参加者や参加者以外の者が、上記文の意味を理解できる。また、議事録用文に、文の意味を理解するのに必要がない「えーと」や「うーん」、「こんにちは」等の言葉が含まれていると、多くの者が会議等の内容を、短時間に理解することが困難となってしまう。
【0005】
このため、議事録用文において、短時間で、会議等の内容を多くの者に理解させることを目的にする場合には、名詞や形容詞等の意味内容をもつ言葉で構成された文の生成が必要である。
【0006】
従来においては、上記記録装置では、このような言葉(「えーと」や「うーん」等)までそのまま記録されてしまうので、上記所定の者が、文の意味を理解するのに必要な言葉と、文の意味を理解するのに必要でない言葉を判別してから、上記文を生成していた。このため、上記所定の者が、上記文を生成するのに手間がかかってしまった。
【0007】
従って、利用者から入力された入力情報(発話内容等)から、名詞や形容詞等の、意味内容をもつ言葉で構成される文(例えば、議事録用文)を自動的に生成するシステムの開発が望まれていた。
【0008】
本発明は、以上のような問題点に鑑みてなされたものであり、利用者から入力された入力情報から、名詞や形容詞等の、意味内容をもつ言葉で構成される文を自動的に生成する文生成システム、文生成方法、プログラムを提供することを目的とする。
【0009】
【課題を解決するための手段】
本願に係る発明は、上記課題を解決すべくなされたものであり、利用者から入力された入力情報に基づいて、該入力情報を示す文字列を特定し、特定された前記文字列に基づいて、該文字列の最小単位を構成する少なくとも1つの形態素を第1形態素情報として抽出し、名詞、形容詞等であり、かつ、感動詞以外の形態素により構成される第2形態素情報を、複数、記憶手段に記憶するとともに、前記形態素を、主体格、対象格、述語の属性ごとに分類して前記記憶手段に記憶し、抽出され主体格、対象格、述語に分類された前記第1形態素情報と、前記記憶手段に記憶された各第2形態素情報とを照合し、前記各第2形態素情報の中から、前記第1形態素情報が第2形態素情報の各形態素を含む場合における当該第2形態素情報を検索し、各属性と、前記第2形態素情報の形態素の後に係る文字又は文字列である係り受け要素とが対応づけられた対応テーブルを参照して、検索された前記第2形態素情報の各形態素に対して、前記各形態素が分類された属性に対応する係り受け要素を結合させてなる結合文字列に基づいて、前記利用者へ出力する文を生成することを特徴とするものである。
【0010】
本発明によれば、第1形態素情報に、例えば、議事録用の文の意味を人が理解するのに必要でなく、意味内容をもたない形態素(例えば、「えーと」、「あー」、「こんにちわ」等)が含まれていても、各第2形態素情報には、名詞や形容詞等の、意味内容をもつ形態素だけが含まれているので、検索手段が検索する第2形態素情報には、第1形態素情報の各形態素のうち、名詞や形容詞等の、意味内容をもつ形態素だけが含まれることになる。
【0011】
この結果、本発明によれば、入力情報に対応する第1形態素情報の各形態素のうち、例えば、議事録用の文の意味を理解するのに必要でなく、意味内容をもたない形態素(例えば、「えーと」、「あー」、「こんにちわ」等)を取り除くことができ、名詞や形容詞等の、意味内容をもつ形態素と係り受け要素を組み合わせた結合文字列で構成される文の自動生成が可能となる。
【0012】
従って、例えば、議事録作成者等は、この生成された文を、例えば、会議中の発話内容等の議事録文としてそのまま使用することが可能であり、上記議事録作成者等の負担を従来に比べて低減できる。
【0013】
また、本発明は、利用者から入力された入力情報に基づいて、該入力情報を示す文字列を特定し、特定された前記文字列に基づいて、該文字列の最小単位を構成する少なくとも1つの形態素を第1形態素情報として抽出し、特定された前記文字列に基づいて、抽出された第1形態素情報の各形態素の後に係る文字又は文字列を、前記係り受け要素として前記各形態素と対応づけて、抽出し、名詞、形容詞等であり、かつ、感動詞以外の形態素により構成される第2形態素情報を、複数、記憶手段に記憶するとともに、前記形態素を、主体格、対象格、述語の属性ごとに分類して前記記憶手段に記憶し、抽出され、主体格、対象格、述語に分類された前記第1形態素情報と、前記記憶手段に記憶された各第2形態素情報とを照合し、前記各第2形態素情報の中から、前記第1形態素情報が第2形態素情報の各形態素を含む場合における当該第2形態素情報を検索第2形態素情報として、検索し、抽出された前記第1形態素情報の各形態素を各属性に分類し、各属性に属する前記検索第2形態素情報の各形態素の後に、それぞれ、分類された前記各属性に属する前記第1形態素情報の各形態素に対応する係り受け要素を、各属性ごとに、結合させてなる結合文字列に基づいて、前記利用者へ出力する文を生成することも可能である。
【0014】
また、上記発明において、前記検索は、分類された各属性に属する前記第1形態素情報の前記各形態素と、前記記憶手段に記憶された前記各属性に属する前記各第2形態素情報の前記各形態素とを、各属性ごとに照合し、前記第1形態素情報が前記第2形態素情報の形態素を含んでいる属性の数を、各第2形態素情報ごとに算出し、各第2形態素情報ごとに算出された属性の数に応じて、前記記憶手段に記憶された各第2形態素情報の中から、第2形態素情報を前記検索第2形態素情報として選択して行うことが好ましい。
【0015】
本発明によれば、第1形態素情報が第2形態素情報の形態素を含んでいる属性の数が大きい第2形態素情報を選択手段が選択すれば、第1形態素情報(利用者の入力情報を構成する要素)に意味内容が最も近い第2形態素情報を選択することができる。
【0016】
【発明の実施の形態】
(1)文生成システムの構成
本発明に係る文生成システムについて図面を参照しながら説明する。図1は、本実施形態に係る文生成装置1を有する文生成システムの概略構成図である。
【0017】
同図に示すように、文生成装置1は、入力部100と、音声認識部200と、文制御部300と、文解析部400と、文データベース500と、出力部600と、音声認識辞書記憶部700とを備えている。
【0018】
尚、本実施形態では、説明の便宜上、利用者の発話内容(この発話内容は、入力情報の1種)に限定して説明するが、この利用者の発話内容に限定されるものではなく、キーボード等から入力された入力情報であってもよい。従って、以下に示す「発話内容」は、「発話内容」を「入力情報」に置き換えて説明することもできる。
【0019】
入力部100は、利用者からの入力情報を取得する取得手段であり、本実施形態では、マイクロホン、キーボード等が挙げられる。この入力部100は、利用者から入力された入力情報に基づいて、入力情報(音声以外)に対応する文字列を特定する文字認識手段でもある。
【0020】
ここで、入力情報とは、キーボード等を通じて入力された文字、記号、音声等を意味するものである。具体的に、入力部100は、利用者の入力情報(音声以外)を取得し、取得した入力情報を文字列として特定し、特定した文字列を文制御部300に出力する。また、利用者からの発話内容(この発話内容は、音声からなるものであり、入力情報の1種である)をマイクロホンなどで取得した入力部100は、取得した発話内容を構成する音声を音声信号として音声認識部200に出力する。
【0021】
音声認識部200は、入力部100で取得した発話内容に基づいて、発話内容に対応する文字列を特定する文字認識手段である。具体的には、入力部100から音声信号が入力された音声認識部200は、入力された音声信号を解析し、解析した音声信号に対応する文字列を、音声認識辞書記憶部700に格納されている辞書を用いて特定し、特定した文字列を文字列信号として文制御部300に出力する。音声認識辞書記憶部700は、標準的な音声信号に対応する辞書(あ、い、う、え、など)を格納しているものである。
【0022】
前記文解析部400は、文制御部300に入力された文字列を解析するものであり、本実施形態では、図2に示すように、形態素抽出部410と、文節解析部420と、文構造解析部430と、形態素データベース450とを有している。
【0023】
形態素抽出部410は、音声認識部200で特定された文字列に基づいて、文字列の最小単位を構成する少なくとも1つの形態素を第1形態素情報として抽出する形態素抽出手段である。
【0024】
具体的に、管理部310から文字列が入力された形態素抽出部410は、入力された文字列の中から各形態素を抽出する。ここで、形態素とは、本実施形態では、文字列に表された語構成の最小単位を意味するものであり、この語構成の最小単位としては、図3に示すように、例えば、名詞、形容詞、動詞などの品詞が挙げられる。各形態素は、本実施形態では、m1、m2、・・、mlと表現する。
【0025】
但し、形態素データベース450に格納されている形態素は、品詞に限られず、「えーと」、「うーん」、「こんにちわ」等の言葉も含まれる。
【0026】
また、形態素抽出部410は、入力された文字列信号に対応する文字列と、形態素データベース450に予め格納されている名詞、形容詞、動詞などからなる形態素群とを照合し、文字列の中から形態素群と1致する各形態素(m1、m2、・・・)を抽出し、抽出した各形態素を抽出信号として文節解析部420に出力する。また、形態素抽出部410は、管理部310から出力された文字列信号も文節解析部420に出力する。
【0027】
文節解析部420は、形態素抽出部410で抽出された各形態素に基づいて、各形態素を文節形式に変換する変換手段である。具体的に、形態素抽出部410から抽出信号が入力された文節解析部420は、入力された抽出信号に対応する各形態素を用いて文節形式にまとめる。
【0028】
ここで、文節形式とは、本実施形態では、日本語文法において、自立語又は自立語に1つ以上の付属語がついた文、或いは、日本語文法の意味を崩さない程度に文字列をできるだけ細かく区切った1区切りの文を意味する。この文節は、本実施形態では、p1、p2、・・・pkと表現する。例えば、「私は車を運転する」が1区切りの文に該当する。
【0029】
即ち、文節解析部420は、図4に示すように、入力された抽出信号に対応する各形態素に基づいて各形態素の係り受け要素(例えば、が・は・を・・)を抽出する。
【0030】
具体的には、文節解析部420は、入力された文字列信号に基づいて、形態素抽出部410により抽出された第1形態素情報の各形態素の後に係る文字又は文字列である係り受け要素を抽出する係り受け要素抽出手段である。
【0031】
例えば、入力された文字列情報が「えーと私は車を運転する...」であり、抽出された第1形態素情報が(えーと;私;車;運転)の場合には、文節解析部420は、形態素(えーと)、形態素(私)の係り受け要素として、「は」を抽出し、形態素(車)の係り受け要素として、「を」を抽出し、形態素(運転)の係り受け要素として、「する」を抽出する。
【0032】
そして、文節解析部420は、抽出した係り受け要素に基づいて各形態素を各文節にまとめることを行う。例えば、入力された文字列情報が、「えーと私は車を運転する...」であり、入力された第1形態素情報の各形態素が「えーと」、「私」、「車」、「運転」の場合には、文節解析部420は、「えーと私は車を運転する」を1文節と認識する。
【0033】
また、文節解析部420は、各係り受け要素を、第1形態素情報の各形態素と対応づけて抽出する。例えば、文節解析部420は、入力された文字列情報が「えーと私は車を運転する...」であり、抽出された第1形態素情報が(えーと;私;車;運転)の場合には、文節解析部420は、係り受け要素「は」を、形態素(えーと)及び形態素(私)と対応づけて抽出し、係り受け要素「を」を、形態素(車)と対応づけて抽出し、係り受け要素「する」を、形態素(運転)と対応づけて抽出する。
【0034】
各形態素を各文節にまとめた文節解析部420は、各形態素をまとめた各文節と、各文節を構成する各形態素とを含む文型情報を文型信号として、文構造解析部430に出力する。また、文節解析部420は、第1形態素情報の各形態素と対応づけられた各係り受け要素を係り受け要素信号として、生成部330に出力する。
【0035】
文構造解析部430は、文節解析部420で分節された第1形態素情報の各形態素を主体格、対象格などの格の属性に分類する分類手段である。具体的に、文節解析部420から文型信号が入力された文構造解析部430は、入力された文型信号に対応する各形態素と各形態素からなる文節とに基づいて、文節に含まれる各形態素の「格構成」(格の属性)を決定する。
【0036】
ここで、「格構成」とは、文節における実質的な概念を示す格(格の属性)を意味するものであり、本実施形態では、例えば、主語・主格を意味するサブジェクト(主体格)、対象を意味するオブジェクト(対象格)、動作・動詞を意味するアクション(述語格)、時間を意味するタイム(テンス、ムード、アスペクトからなるもの)、場所を意味するロケーション等が挙げられる。本実施形態では、文節におけるサブジェクト、オブジェクト、アクションの三要素の「格」(格構成)に対応付けられた各形態素を第1形態素情報とする。
【0037】
即ち、文構造解析部430は、図5に示すように、例えば、各形態素の係り受け要素が、例えば、”が”又は”は”である場合は、その係り受け要素の前にある形態素がサブジェクト(主語又は主格)であると判断する。また、文構造解析部430は、例えば、各形態素の係り受け要素が、例えば、”の”又は”を”である場合は、その係り受け要素の前にある形態素がオブジェクト(対象)であると判断する。
【0038】
更に、文構造解析部430は、例えば、各形態素の係り受け要素が、例えば、”する”である場合は、その係り受け要素の前にある形態素がアクション(述語;この述語は動詞、形容詞などから構成される)であると判断する。
【0039】
具体的には、入力された文型信号のうち、文節が(えーと私は車を運転する)であり、文節を構成する各形態素が(えーと)、(私)、(車)、(運転)である場合、文構造解析部430は、第1形態素情報の各形態素(「えーと」;「私」;「車」;「運転」)について、形態素「えーと」及び形態素「私」は、後に係る文字等は「は」なのでサブジェクト、形態素「車」は後に係る文字等は「を」なのでオブジェクト、形態素「運転」は、後に係る文字等は「する」なのでアクションであると判断する。
【0040】
各文節を構成する各形態素の「格構成」(格)を決定した文構造解析部430は、決定した「格構成」に対応付けられた第1形態素情報に基づいて、後述する第2形態素情報を検索させるための検索命令信号を検索部320に出力する。また、文構造解析部430は、決定した「格構成」に対応付けられた第1形態素情報を示す格対応信号(例えば、「えーと」及び「私」はサブジェクトに、「車」はオブジェクトに、「運転」はアクションに対応づけられている旨を示す信号)を生成部330に出力する。
【0041】
文データベース500は、名詞、形容詞等の、意味内容をもつ上記形態素を少なくとも1つ以上含む第2形態素情報を、複数記憶する記憶手段である。
【0042】
意味内容をもつ上記形態素とは、例えば、日本語として意味をもつ形態素であるとともに文節の意味を人が理解するために必要となる形態素である。
【0043】
例えば、(えーと私は車を運転する)という文節を考える。ここで、形態素は、(えーと)、(私)、(車)、(運転)であるが、文節の意味は(私が車を運転する)であり、形態素(私)、(車)、(運転)は、上記文節の意味を人が理解するために必要となる形態素である。
【0044】
しかし、形態素(えーと)が文節に含まれていなくとも、人は文節の意味を理解できるので、形態素(えーと)は、意味内容をもつ上記形態素ではない。
【0045】
このように(えーと)や(うーん)等の日本語として意味をもたない形態素は、意味内容をもつ上記形態素には該当しない。
【0046】
また、例えば、(こんにちは私が意見を提案します)という文節を考える。ここで、形態素は、(こんにちは)、(私)、(意見)、(提案)であるが、文節の意味は、(私が意見を提案する)であり、形態素(こんにちは)が文節に含まれていなくとも、人は文節の意味を理解できるので、形態素(えーと)は、意味内容をもつ上記形態素ではない。このように(こんにちは)や(おはよう)等の挨拶を示す形態素は、意味内容をもつ上記形態素には該当しない。
【0047】
このため、文データベース500には、(えーと、)や(うーん)、(こんにちわ)等の形態素は、記憶されていない。意味内容をもつ上記形態素としては、例えば、(私)、(大きい)等の品詞(名詞、形容詞、動詞等)が該当する。
【0048】
そして、第2形態素情報は、少なくとも1つ以上の上記形態素が組み合わされることにより構成される。第2形態素情報としては、例えば、(私;車;運転)が該当する。
【0049】
また、文データベース500は、第2形態素情報を構成する各形態素を、主体格、対象格等の属性に分類して、記憶する記憶手段でもある。例えば、第2形態素情報(私;車;運転)の形態素(私)は、主体格に分類され、形態素(車)は対象格に分類され、形態素(運転)は、述語格に分類されて、文データベース500に記憶される。
【0050】
尚、第2形態素情報には、上記三要素に対応付けられた各形態素に限定されるものではなく、他の「格」、即ち、時間を意味するタイム(ムード、テンス、アスペクトなどからなるもの)、場所を意味するロケーション、条件を意味するコンディション、感想を意味するインプレッション、結果を意味するエフェクトなどに対応付けられた各形態素を有していてもよい。
【0051】
この第2形態素情報は、本実施形態では、文データベース500に予め格納されているものであり、上記第1形態素情報(利用者が発話した内容から導かれたもの)とは区別されるものである。
【0052】
また、第2形態素情報のうち、「格構成」(サブジェクト、オブジェクト、アクションなど)に対応付けられた形態素がない場合は、その部分については、本実施形態では、”*”を示すことにする。
【0053】
例えば、{A映画名って?}の文を第2形態素情報(サブジェクト;オブジェクト;アクション)に変換すると、{A映画名って?}の文のうち、”A映画名”がサブジェクトとして特定することができるが、その他”オブジェクト””アクション”は文の要素になっていないので、この話題タイトルは、”サブジェクト”(A映画名);”オブジェクト”なし(*);”アクション”なし(*)となる。
【0054】
文制御部300は、本実施形態では、図2に示すように、管理部310と、検索部320と、生成部330とを有している。
【0055】
管理部310は、文制御部300の全体を制御するものである。具体的に、入力部100又は音声認識部200から文字列が入力された管理部310は、入力された文字列を形態素抽出部410に出力する。また、管理部310は、生成部330で生成された文を文信号として出力部600に出力する。
【0056】
検索部320は、形態素抽出部410で抽出された第1形態素情報と、文データベース500に記憶された各第2形態素情報とを照合し、上記各第2形態素情報の中から、上記第1形態素情報が第2形態素情報の各形態素を含む場合における上記第2形態素情報を検索第2形態素情報として検索する。
【0057】
具体的には、図6に示すように、検索部320は、文構造解析部430で分類された各属性に属する第1形態素情報の各形態素と、文データベース500に記憶された上記各属性に属する各第2形態素情報の各形態素とを、各属性ごとに照合し、第1形態素情報が第2形態素情報の形態素を含んでいる属性の数を、各第2形態素情報ごとに算出する算出部321と、算出部321により各第2形態素情報ごとに算出された属性の数に応じて、文データベース500に記憶された各第2形態素情報の中から、第2形態素情報を検索第2形態素情報として、選択する選択部322とを有する。
【0058】
例えば、検索命令信号が示す情報が、第1形態素情報が(えーと;犬;人;噛んだ)であり、形態素(えーと)及び形態素(犬)が主体格に対応づけられており、形態素(人)が対象格に対応づけられており、形態素(噛んだ)が述語格に対応づけられている場合、検索部320が文データベース500に記憶されている各第2形態素情報のうち、検索第2形態素情報を検索する動作を以下に説明する。
【0059】
先ず、検索部320が文データベース500から読み出した第2形態素情報が(人;犬;噛んだ)であり、形態素(人)が主体格に分類され、形態素(犬)が対象格に分類され、形態素(噛んだ)が述語格に分類されている場合について、説明する。
【0060】
この場合、算出部321は、第1形態素情報において、各属性と対応づけられた各形態素が(以下、各属性と対応づけられた各形態素を、格構成における格の形態素という)形態素(えーと(サブジェクト))、形態素(犬(サブジェクト))、形態素(人(オブジェクト))、形態素(噛んだ(アクション))であり、それらの形態素と、これらの形態素が属する格と同一格の第2形態素情報の各形態素(人(サブジェクト)、犬(オブジェクト)、噛んだ(アクション))とを、各属性ごとに照合する。そして、算出部321は、第1形態素情報が前記第2形態素情報の形態素を含んでいる属性は1つ(アクション)と算出する。
【0061】
即ち、算出部321は、主体格に属する第1形態素情報(形態素(えーと)及び形態素(犬))は、主体格に属する第2形態素情報の形態素(人)を含んでいないと判断し、 対象格に属する第1形態素情報(形態素(人))は、対象格に属する第2形態素情報の形態素(犬)を含んでいないと判断し、述語格に属する第1形態素情報(形態素(噛んだ))は、述語格に属する第2形態素情報の形態素(噛んだ)を含んでいると判断し、第1形態素情報が第2形態素情報の形態素を含んでいる属性は1つ(述語格)と算出する。
【0062】
次に、検索部320が文データベース500から読み出した第2形態素情報が(犬;人;噛んだ)であり、形態素(犬)が主体格に分類され、形態素(人)が対象格に分類され、形態素(噛んだ)が述語格に分類されている場合について、説明する。
【0063】
この場合、算出部321は、第1形態素情報における格構成における格の形態素が(えーと(サブジェクト)、犬(サブジェクト)、人(オブジェクト)、噛んだ(アクション))であり、それらの形態素((えーと)(犬)、(人)、(噛んだ))と、これらの形態素を構成する格と同一格の第2形態素情報の各形態素(犬(サブジェクト)、人(オブジェクト)、噛んだ(アクション))とを各属性ごとに照合する。そして算出部321は、第1形態素情報が第2形態素情報の形態素を含んでいる属性は3つと算出する。
【0064】
即ち、算出部321は、主体格に属する第1形態素情報(形態素(えーと)及び形態素(犬))は、主体格に属する第2形態素情報の形態素(犬)を含んでいると判断し、 対象格に属する第1形態素情報(形態素(人))は、対象格に属する第2形態素情報の形態素(人)を含んでいると判断し、述語格に属する第1形態素情報(形態素(噛んだ))は、述語格に属する第2形態素情報の形態素(噛んだ)を含んでいると判断し、第1形態素情報が第2形態素情報の形態素を含んでいる属性は3つ(主体格、対象格、述語格)と算出する。
【0065】
そして、選択部322は、文データベース500に記憶されている各第2形態素情報の中から、例えば、各第2形態素情報ごとに算出された属性の数の多い第2形態素情報(犬;人;噛んだ)を検索第2形態素情報として、選択する。
【0066】
なお、上述した検索部320による検索方法は、一例にすぎず、本発明では、これに限定されるわけではない。即ち、形態素抽出部410で抽出された第1形態素情報と、文データベース500に記憶された各第2形態素情報とを照合し、各第2形態素情報の中から、上記第1形態素情報が第2形態素情報の各形態素を含む場合における上記第2形態素情報を検索する方法であれば、本発明の適用が可能である。
【0067】
選択部322は、検索第2形態素情報を、検索結果信号として、生成部330に出力する。この際、選択部322は、検索第2形態素情報の各形態素が分類された属性を、属性信号として生成部330に出力する。
【0068】
生成部330は、各属性に属する検索第2形態素情報の各形態素の後に、それぞれ、文構造解析部430(分類手段)により分類された上記各属性に属する第1形態素情報の各形態素に対応する係り受け要素を、各属性ごとに、結合させてなる結合文字列に基づいて、利用者へ出力する文を生成する。
【0069】
例えば、生成部330に入力される検索結果信号(検索第2形態素情報)が(私;車;運転)であり、属性信号が示す情報が、第2形態素情報の形態素(私)が主体格に分類され、形態素(車)が対象格に分類され、形態素(運転)が述語格に分類されている旨であり、上記係り受け要素信号が示す情報が、第1形態素情報の形態素「えーと」及び形態素「私」には、係り受け要素(は)が対応づけられ、形態素「車」には、係り受け要素(を)が対応づけられ、形態素「運転」には、係り受け要素(する)が対応づけられている旨であり、検索命令信号が示す情報が、第1形態素情報の形態素「えーと」及び形態素「私」は、主体格に属し、形態素「車」は、対象格に属し、形態素「運転」は、述語格に属する旨の場合について以下に説明する。
【0070】
生成部330は、第1形態素情報の各形態素(形態素(えーと)及び各形態素(私)、形態素(車)、形態素(運転))にそれぞれ対応する係り受け要素(形態素(えーと)及び形態素(私)には、係り受け要素(は)が対応、等)と、第1形態素情報の各形態素が属する属性(形態素(えーと)及び(私)は主体格等)とに基づいて、各係り受け要素((は)、(を)、(する))が対応する属性((は)は主体格、(を)は対象格、(する)は述語格)を特定する。
【0071】
そして、生成部330は、各属性(主体格、対象格、述語格)に属する上記第2形態素情報の各形態素(主体格に属する形態素(私)、対象格に属する形態素(車)、述語格に属する形態素(運転))の後に、それぞれ、対応する属性の係り受け要素(主体格に対応する係り受け要素(は)、対象格に対応する係り受け要素(を)、述語格に対応する係り受け要素(です)を結合することで、結合文字列((私は)(車を)(運転する))を複数生成する。
【0072】
そして、生成部330は、生成された各結合文字列((私は)(車を)(運転する))を組み合わせることにより、利用者へ出力するための文として、各結合文字列が配列された文(私は車を運転する)を生成する。生成された文は、文信号として、管理部310を介して出力部600に送られる。
【0073】
出力部600は、生成部330により生成された文信号に対応する文(例えば、私は車を運転する)を出力する出力手段であり、本実施形態では、例えば、スピーカ、ディスプレイなどが挙げられる。
【0074】
このようにして、入力部100により入力された入力情報又は音声認識部200により認識された文字列が、例えば、(えーと私は車を運転する)というように、形態素(えーと)等を含んでいても、出力部600から出力される文は、(私は車を運転する)というように、名詞、形容詞等の、意味内容をもつ形態素
で構成される文となる。
【0075】
(2)文生成装置(文生成システム)を用いた文生成方法
上記構成を有する文生成装置1による文生成方法は、以下の手順により実施することができる。図7は、本実施形態に係る文生成方法の手順を示すフローチャート図である。
【0076】
先ず、入力部100が、利用者からの発話内容を取得する(S101)。具体的に入力部100は、利用者の発話内容を構成する音声を取得し、取得した音声を音声信号として音声認識部200に出力する。また、入力部100は、利用者から入力された入力情報(音声以外)に基づいて、入力情報(音声以外)に対応する文字列を特定し、特定した文字列を文字列信号として文制御部300に出力する。
【0077】
次いで、音声認識部200が、入力部100で取得した発話内容に基づいて、発話内容に対応する文字列を特定する(S102)。具体的には、入力部100から音声信号が入力された音声認識部200は、入力された音声信号を解析し、解析した音声信号に対応する文字列を、音声認識辞書記憶部700に格納されている辞書を用いて特定し、特定した文字列を文字列信号として文制御部300に出力する。
【0078】
次いで、形態素抽出部410が、音声認識部200で特定された文字列に基づいて、文字列の最小単位を構成する各形態素を抽出する(S103)。
【0079】
具体的に、管理部310から文字列信号が入力された形態素抽出部410は、入力された文字列信号に対応する文字列と、形態素データベース450に予め格納されている名詞、形容詞、動詞などの形態素群とを照合し、文字列の中から形態素群と1致する各形態素(m1、m2、・・・)を抽出し、抽出した各形態素を抽出信号として文節解析部420に出力する。抽出された第1形態素情報としては、例えば、(えーと;私;車;運転)がある。
【0080】
そして、文節解析部420は、形態素抽出部410で抽出された各形態素に基づいて、各形態素を文節形式にまとめる。具体的に、形態素抽出部410から抽出信号が入力された文節解析部420は、図4に示すように、入力された抽出信号に対応する各形態素に基づいて各形態素の係り受け要素(例えば、が・は・を・・)を抽出する(S104)。即ち、文節解析部420は、入力された文字列信号に基づいて、形態素抽出部410により抽出された第1形態素情報の各形態素の後に係る文字又は文字列である係り受け要素を抽出する。
【0081】
そして、文節解析部420は、抽出した係り受け要素に基づいて各形態素を各文節にまとめることを行う。第1形態素情報は、本実施形態では、1つの文節に属する各形態素を意味する。また、文節解析部420は、各係り受け要素を、第1形態素情報の各形態素と対応づけて抽出する。
【0082】
各形態素を各文節にまとめた文節解析部420は、各形態素をまとめた各文節と、各文節を構成する各形態素とを含む文型情報を文型信号として、文構造解析部430に出力する。また、文節解析部420は、第1形態素情報の各形態素と対応づけられた各係り受け要素を係り受け要素信号として、生成部330に出力する。
【0083】
文構造解析部430は、文節解析部420で分節された第1形態素情報の各形態素を主体格、対象格などの各属性に分類する(S105)。具体的に、文節解析部420から文型信号が入力された文構造解析部430は、入力された文型信号に対応する各形態素と各形態素からなる文節とに基づいて、文節に含まれる各形態素の「格構成」(属性)を決定する。
【0084】
即ち、文構造解析部430は、図5に示すように、例えば、各形態素の係り受け要素が”が”又は”は”である場合は、その係り受け要素の前にある形態素がサブジェクト(主語又は主格)であると判断する。また、文構造解析部430は、例えば、各形態素の係り受け要素が”の”又は”を”である場合は、その係り受け要素の前にある形態素がオブジェクト(対象)であると判断する。
【0085】
更に、文構造解析部430は、例えば、各形態素の係り受け要素が”する”である場合は、その係り受け要素の前にある形態素がアクション(述語;この述語は動詞、形容詞などから構成される)であると判断する。
【0086】
各文節を構成する各形態素の「格構成」(格)を決定した文構造解析部430は、決定した「格構成」に対応付けられた第1形態素情報に基づいて、第2形態素情報を検索させるための検索命令信号を検索部320に出力する。また、文構造解析部430は、決定した「格構成」に対応付けられた第1形態素情報を示す格対応信号を生成部330に出力する。
【0087】
検索部320は、文節解析部420で抽出された第1形態素情報と、文データベース500に記憶された各第2形態素情報とを照合し、各第2形態素情報の中から、上記第1形態素情報が第2形態素情報の各形態素を含む場合における上記第2形態素情報を検索する(S106)。
【0088】
具体的には、図6に示すように、検索部320の算出部321は、文構造解析部430で分類された各属性に属する第1形態素情報の各形態素と、文データベース500に記憶された上記各属性に属する各第2形態素情報の前記各形態素とを、各属性ごとに照合し、前記第1形態素情報が前記第2形態素情報の形態素を含んでいる属性の数を、各第2形態素情報ごとに算出する。そして、検索部320の選択部322は、各第2形態素情報ごとに算出された属性の数に応じて、文データベースに記憶された各第2形態素情報の中から、第2形態素情報を検索第2形態素情報として選択する。
【0089】
第1形態素情報としては、例えば、(えーと;私;車;運転)である場合、選択部322により選択された検索第2形態素情報としては、例えば、(私;車;運転)がある。
【0090】
検索部320の選択部322は、検索第2形態素情報を、検索結果信号として、生成部330に出力する。この際、選択部322は、検索第2形態素情報の各形態素が分類された属性を、属性信号として生成部330に出力する。
【0091】
生成部330は、各属性に属する検索第2形態素情報の各形態素の後に、それぞれ、文構造解析部430(分類手段)により分類された上記各属性に属する第1形態素情報の各形態素に対応する係り受け要素を、各属性ごとに、結合させてなる結合文字列に基づいて、利用者へ出力する文を生成する(S107)。
【0092】
生成部330により生成された文は、文信号として、管理部310を介して出力部600に送られる。出力部600は、上記文信号に対応する文(例えば、私は車を運転する)を出力する(S108)。
【0093】
(作用効果)
上記構成を有する本願に係る発明によれば、文データベース500(記憶部)は、名詞、形容詞等の、意味内容をもつ形態素を少なくとも1つ以上含む第2形態素情報を、複数記憶している。そして、検索部320は、形態素抽出部410で抽出された第1形態素情報と、文データベース500(記憶部)に記憶された各第2形態素情報とを照合し、上記各第2形態素情報の中から、第1形態素情報が第2形態素情報の各形態素を含む場合における当該第2形態素情報を検索する。
【0094】
このため、本実施の形態によれば、第1形態素情報に、例えば、議事録用の文の意味を人が理解するのに必要でなく、意味内容をもたない形態素(例えば、「えーと」、「あー」、「こんにちわ」等)が含まれていても、各第2形態素情報には、名詞や形容詞等の、意味内容をもつ形態素だけが含まれているので、検索部320が検索する第2形態素情報には、第1形態素情報の各形態素のうち、名詞や形容詞等の、意味内容をもつ形態素だけが含まれることになる。
【0095】
この結果、入力情報に対応する第1形態素情報の各形態素のうち、例えば、議事録用の文の意味を理解するのに必要でなく、意味内容をもたない形態素(例えば、「えーと」、「あー」、「こんにちわ」等)を取り除くことができ、名詞や形容詞等の、意味内容をもつ形態素と係り受け要素を組み合わせた結合文字列で構成される文の自動生成が可能となる。
【0096】
従って、議事録作成者等は、この生成された文を、例えば、会議中の発話内容等の議事録文としてそのまま使用することが可能であり、上記議事録作成者等の負担を従来に比べて低減できる。
【0097】
また、検索部320は、分類された各属性に属する第1形態素情報の各形態素と、文データベース500に記憶された上記各属性に属する各第2形態素情報の前記各形態素とを、各属性ごとに照合し、第1形態素情報が第2形態素情報の形態素を含んでいる属性の数を、各第2形態素情報ごとに算出し、各第2形態素情報ごとに算出された各属性の数に応じて、記憶された各第2形態素情報の中から、第2形態素情報を検索第2形態素情報として選択する。
【0098】
このため、第1形態素情報が第2形態素情報の形態素を含んでいる属性の数が大きい第2形態素情報を選択部322が選択すれば、第1形態素情報(利用者の入力情報を構成する要素)に意味内容が最も近い第2形態素情報を選択することができる。
【0099】
更に、本実施の形態によれば、検索部320は、文字列の最小単位である第2形態素情報を検索し、利用者の発話内容と完全に一致する第2形態素情報を検索する必要がないので、開発者は、利用者から発話されるであろう発話内容に対応する膨大な第2形態素情報を予め記憶する必要がなくなり、文データベース500の容量を低減させることができる。
【0100】
なお、生成部330が第2形態素情報の各形態素に結合させる係り受け要素は、文節解析部420で抽出された係り受け要素ではなく、例えば、生成部330が保持している係り受け要素でもよい。即ち、生成部330は、各属性と、第2形態素情報の形態素の後に係る文字又は文字列である係り受け要素とが対応づけられた対応テーブルを保持している。
【0101】
例えば、上記対応テーブルにおいては、主体格に対しては、第2形態素情報の形態素の後に係る係り受け要素(は)が対応づけられ、対象格に対しては、第2形態素情報の形態素の後に係る係り受け要素(を)が対応づけられ、述語格に対しては、第2形態素情報の形態素の後に係る係り受け要素(する)が対応づけられている。
【0102】
そして、生成部330は、上記対応テーブルを参照して、検索部320で検索された第2形態素情報の各形態素に対して、上記各形態素が分類された属性に対応する係り受け要素を結合させることで生成される結合文字列に基づいて、前記利用者へ出力する文を生成するようにしてもよい。
【0103】
例えば、検索部320で検索された第2形態素情報を構成する形態素(私)、形態素(車)、形態素(運転)がそれぞれ、主体格、対象格、述語格に分類されている場合、生成部330は、対応テーブルを参照して、主体格に分類された形態素(私)には、係り受け要素(は)を結合させ、対象格に分類された形態素(車)には、係り受け要素(を)を結合させ、述語格に分類された形態素(運転)には、係り受け要素(する)を結合させて結合文字列を生成するようにしてもよい。そして、生成部330は、上記結合文字列に基づいて、文を生成するようにしてもよい。
【0104】
[変更例]
尚、本発明は、上記実施形態に限定されるものではなく、以下に示すような変更を加えることができる。
【0105】
(第1変更例)
本変更例においては、文データベース500は、複数の形態素の集合からなる集合群の全体を示す要素情報を、集合群に関連付けて複数記憶する要素記憶手段であってもよい。更に、形態素抽出部410は、文字列から抽出した形態素と各集合群とを照合し、各集合群中から、抽出された形態素を含む集合群を選択し、選択した集合群に関連付けられた要素情報を第1形態素情報として抽出してもよい。
【0106】
利用者が発話した文字列に含まれる各形態素には、類似しているものがある。例えば、集合群の全体を示す要素情報を「贈答」とすると、「贈答」は、プレゼント、贈り物、御歳暮、御中元、お祝いなど(集合群)と相互に類似しているので、形態素抽出部410は、「贈答」に類似する形態素(上記のプレゼントなど)がある場合には、その類似する形態素については、「贈答」として取り扱うことができる。
【0107】
即ち、形態素抽出部410は、例えば、文字列から抽出した形態素が「プレゼント」である場合は、「プレゼント」を代表する要素情報が「贈答」であるので、上記「プレゼント」を「贈答」に置き換えることができる。
【0108】
これにより、形態素抽出部410が相互に類似する形態素を整理することができるので、文生成装置を開発する開発者は、相互に類似した各第1形態素情報から把握される意味空間に対応した第2形態素情報を逐一作成する必要がなくなり、結果的に、記憶部(文データベース500)に格納させるデータ量を低減させることができる。
【0109】
(第2変更例)
図8に示すように、本変更例においては、上記実施形態及び上記変更例に限定されるものではなく、文生成装置1a,1bにある通信部800と、通信ネットワーク1000を介して通信部800との間でデータの送受信をするための通信部900と、通信部900に接続された各文データベース500b〜500dと、サーバ2a〜2cとを備えてもよい(文生成システム)。
【0110】
ここで、通信ネットワーク1000とは、データを送受信する通信網を意味するものであり、本実施形態では、例えば、インターネットなどが挙げられる。
【0111】
尚、本変更例では、便宜上、文生成装置1a,1b、文データベース500b〜500d、サーバ2a〜2cを限定しているが、これに限定されるものではなく、更に他の文データベースを設けてもよい。このサーバ2a〜2cには、文データベース500a〜500dに記憶されている内容と同様の内容が記憶されている。
【0112】
これにより、文制御部300は、文生成装置1aの内部に配置してある文データベース500aのみならず、通信ネットワーク1000を介して、他の文生成装置1b、会文ータベース500b〜500d、サーバ2a〜2cをも参照することができるので、例えば、文データベース500aの中から、第1形態素情報が第2形態素情報の各形態素を含む場合における上記第2形態素情報を検索できない場合であっても、他の文生成装置1b、文データベース500b〜500d、サーバ2a〜2cを参照することにより、第1形態素情報が第2形態素情報の各形態素を含む場合における上記第2形態素情報を検索することができる。
【0113】
[プログラム]
上記文生成システム及び文生成方法で説明した内容は、パーソナルコンピュータ等の汎用コンピュータにおいて、所定のプログラム言語を利用するための専用プログラムを実行することにより実現することができる。
【0114】
ここで、プログラム言語としては、本実施形態では、例えば、本発明者らが開発したDKML(Discourse Knowledge Markup Language)、その他C言語等が挙げられる。
【0115】
即ち、文生成装置1は、各文データベース500a〜500dに格納されているデータ(第2形態素情報などの記憶情報)、その他の各部を、DKML(Discourse Knowledge Markup Language)等で構築し、この構築した記憶情報等を利用するためのプログラムを実行することにより実現することができる。
【0116】
このような本実施形態に係るプログラムによれば、利用者の発話内容を構成する第1形態素情報を抽出し、抽出した第1形態素情報と、文データベース500に記憶された各第2形態素情報とに基づいて、名詞、形容詞等の、意味内容をもつ形態素で構成される第2形態素情報を検索し、検索された第2形態素情報から、名詞、形容詞等の、意味内容をもつ形態素で構成される文を自動で生成できるという作用効果を奏する文生成装置、文生成システム及び文生成方法を一般的な汎用コンピュータで容易に実現することができる。
【0117】
更に、上記通信部800と通信部900との間の通信は、通信ネットワークを介して、DKML等からなるプロトコルによってデータを送受信してもよい。これにより、文生成装置1は、例えば、第1形態素情報が第2形態素情報の各形態素を含む場合における上記第2形態素情報を検索できない場合には、通信ネットワーク1000を通じて、DKML等の約束事に従って、上記第2形態素情報(DKMLなどで記述されたもの)を検索することも可能である。
【0118】
尚、プログラムは、記録媒体に記録することができる。この記録媒体は、図9に示すように、例えば、ハードディスク1100、フレキシブルディスク1200、コンパクトディスク1300、ICチップ1400、カセットテープ1500などが挙げられる。このようなプログラムを記録した記録媒体によれば、プログラムの保存、運搬、販売などを容易に行うことができる。
【0119】
【発明の効果】
以上説明したように、本発明によれば、入力情報に対応する第1形態素情報の各形態素のうち、例えば、議事録用の文の意味を理解するのに必要でなく、意味内容をもたない形態素(例えば、「えーと」、「あー」、「こんにちわ」等)を取り除くことができるので、名詞や形容詞等の、意味内容をもつ形態素で構成される文の自動生成が可能となる。
【0120】
従って、例えば、議事録作成者等は、この生成された文を、例えば、会議中の発話内容等の議事録文としてそのまま使用することが可能であり、上記議事録作成者等の負担を従来に比べて低減できる。
【図面の簡単な説明】
【図1】本実施形態に係る文生成システムの概略構成を示すブロック図である。
【図2】本実施形態における文制御部及び文解析部の内部構造を示すブロック図である。
【図3】本実施形態における形態素抽出部で抽出する各形態素の内容をを示す図である。
【図4】本実施形態における文節解析部で抽出する各文節の内容を示す図である。
【図5】本実施形態における文構造解析部で特定する「格」の内容を示す図である。
【図6】本実施形態における検索部の内部構成の一例を示す図である。
【図7】本実施の形態における文生成方法を説明するためのフローチャート図である。
【図8】第2変更例における会話制御システムの概略構成を示す図である。
【図9】本実施形態におけるプログラムを格納する記録媒体を示す図である。
【符号の説明】
1…文生成装置、100…入力部、200…音声認識部、300…文制御部、310…管理部、320…検索部、321…算出部、322…選択部、330…生成部、400…文解析部、410…形態素抽出部、420…文節解析部、430…文構造解析部、450…形態素データベース、500…文データベース、600…出力部、700…音声認識辞書記憶部、800…通信部、900…通信部、1000…通信ネットワーク、1100…ハードディスク、1200…フレキシブルディスク、1300…コンパクトディスク、1400…ICチップ、1500…カセットテープ

Claims (9)

  1. 利用者から入力された入力情報に基づいて、該入力情報を示す文字列を特定する文字認識手段と、
    前記文字認識手段で特定された前記文字列に基づいて、該文字列の最小単位を構成する少なくとも1つの形態素を第1形態素情報として抽出する形態素抽出手段と、
    前記形態素抽出手段で抽出された各第1形態素情報を文節形式に変換する文節解析手段と、
    前記文節解析手段で文節された第1形態素情報を主体格、対象格、述語に決定する文構造解析手段と、
    名詞、形容詞等であり、かつ、感動詞以外の形態素により構成される第2形態素情報が、複数記憶されているとともに、前記形態素が、主体格、対象格、述語の属性ごとに分類されて記憶されている記憶手段と、
    前記形態素抽出手段で抽出され、前記文節解析手段及び文構造解析手段で解析された前記第1形態素情報と、前記記憶手段に記憶された各第2形態素情報とを照合し、前記各第2形態素情報の中から、前記第1形態素情報が第2形態素情報の各形態素を含む場合における当該第2形態素情報を検索する検索手段と、
    各属性と、前記第2形態素情報の形態素の後に係る文字又は文字列である係り受け要素とが対応づけられた対応テーブルを参照して、前記検索手段で検索された前記第2形態素情報の各形態素に対して、前記各形態素が分類された属性に対応する係り受け要素を結合させてなる結合文字列に基づいて、前記利用者へ出力する文を生成する生成手段とを有することを特徴とする文生成システム。
  2. 利用者から入力された入力情報に基づいて、該入力情報を示す文字列を特定する文字認識手段と、
    前記文字認識手段で特定された前記文字列に基づいて、該文字列の最小単位を構成する少なくとも1つの形態素を第1形態素情報として抽出する形態素抽出手段と、
    前記形態素抽出手段で抽出された各第1形態素情報を文節形式に変換する文節解析手段と、
    前記文節解析手段で文節された第1形態素情報を主体格、対象格、述語に決定する文構造解析手段と、
    前記文字認識手段で特定された前記文字列に基づいて、前記形態素抽出手段により抽出された第1形態素情報の各形態素の後に係る文字又は文字列を、係り受け要素として前記各形態素と対応づけて、抽出する係り受け要素抽出手段と、
    名詞、形容詞等であり、かつ、感動詞以外の形態素により構成される第2形態素情報が、複数記憶されているとともに、前記形態素が、主体格、対象格、述語の属性ごとに分類されて記憶されている記憶手段と、
    前記形態素抽出手段で抽出され、前記文節解析手段及び文構造解析手段で解析された前記第1形態素情報と、前記記憶手段に記憶された各第2形態素情報とを照合し、前記各第2形態素情報の中から、前記第1形態素情報が第2形態素情報の各形態素を含む場合における当該第2形態素情報を検索第2形態素情報として、検索する検索手段と、
    前記形態素抽出手段で抽出された前記第1形態素情報の各形態素を各属性に分類する分類手段と、
    各属性に属する前記検索第2形態素情報の各形態素の後に、それぞれ、前記分類手段により分類された前記各属性に属する前記第1形態素情報の各形態素に対応する係り受け要素を、各属性ごとに、結合させてなる結合文字列に基づいて、前記利用者へ出力する文を生成する生成手段とを有することを特徴とする文生成システム。
  3. 前記検索手段は、前記分類手段で分類された各属性に属する前記第1形態素情報の前記各形態素と、前記記憶手段に記憶された前記各属性に属する前記各第2形態素情報の前記各形態素とを、各属性ごとに照合し、前記第1形態素情報が前記第2形態素情報の形態素を含んでいる属性の数を、各第2形態素情報ごとに算出する算出手段と、
    前記算出手段により各第2形態素情報ごとに算出された属性の数に応じて、前記記憶手段に記憶された各第2形態素情報の中から、第2形態素情報を前記検索第2形態素情報として選択する選択手段とを有することを特徴とする請求項2に記載の文生成システム。
  4. コンピュータにおける文生成方法において、
    文字認識手段が、利用者から入力された入力情報に基づいて、該入力情報を示す文字列を特定するステップと、
    形態素抽出手段が、前記文字認識手段で特定された前記文字列に基づいて、該文字列の最小単位を構成する少なくとも1つの形態素を第1形態素情報として抽出するステップと、
    文節解析手段が、前記形態素抽出手段で抽出された各第1形態素情報を文節形式に変換するステップと、
    文構造解析手段が、前記文節解析手段で文節された第1形態素情報を主体格、対象格、述語に決定するステップと、
    名詞、形容詞等であり、かつ、感動詞以外の形態素により構成される第2形態素情報を、複数、記憶手段に記憶するとともに、前記形態素を、主体格、対象格、述語の属性ごとに分類して前記記憶手段に記憶するステップと、
    検索手段が、前記形態素抽出手段で抽出され、前記文節解析手段及び文構造解析手段で解析された前記第1形態素情報と、前記記憶手段に記憶された各第2形態素情報とを照合し、前記各第2形態素情報の中から、前記第1形態素情報が第2形態素情報の各形態素を含む場合における当該第2形態素情報を検索する検索ステップと、
    生成手段が、各属性と、前記第2形態素情報の形態素の後に係る文字又は文字列である係り受け要素とが対応づけられた対応テーブルを参照して、前記検索手段で検索された前記第2形態素情報の各形態素に対して、前記各形態素が分類された属性に対応する係り受け要素を結合させてなる結合文字列に基づいて、前記利用者へ出力する文を生成するステップとを有することを特徴とするコンピュータにおける文生成方法。
  5. コンピュータにおける文生成方法において、
    文字認識手段が、利用者から入力された入力情報に基づいて、該入力情報を示す文字列を特定するステップと、
    形態素抽出手段が、前記文字認識手段で特定された前記文字列に基づいて、該文字列の最小単位を構成する少なくとも1つの形態素を第1形態素情報として抽出するステップと、
    文節解析手段が、前記形態素抽出手段で抽出された各第1形態素情報を文節形式に変換するステップと、
    文構造解析手段が、前記文節解析手段で文節された第1形態素情報を主体格、対象格、述語に決定するステップと、
    係り受け要素抽出手段が、前記文字認識手段で特定された前記文字列に基づいて、前記形態素抽出手段で抽出された第1形態素情報の各形態素の後に係る文字又は文字列を、係り受け要素として前記各形態素と対応づけて、抽出するステップと、
    名詞、形容詞等であり、かつ、感動詞以外の形態素により構成される第2形態素情報を、複数、記憶手段に記憶するとともに、前記形態素を、主体格、対象格、述語の属性ごとに分類して前記記憶手段に記憶するステップと、
    検索手段が、前記形態素抽出手段で抽出され、前記文節解析手段及び文構造解析手段で解析された前記第1形態素情報と、前記記憶手段に記憶された各第2形態素情報とを照合し、前記各第2形態素情報の中から、前記第1形態素情報が第2形態素情報の各形態素を含む場合における当該第2形態素情報を検索第2形態素情報として、検索する検索ステップと、
    分類手段が、前記形態素抽出手段で抽出された前記第1形態素情報の各形態素を各属性に分類する分類ステップと、
    生成手段が、各属性に属する前記検索第2形態素情報の各形態素の後に、それぞれ、前記分類手段の分類ステップにより分類された前記各属性に属する前記第1形態素情報の各形態素に対応する係り受け要素を、各属性ごとに、結合させてなる結合文字列に基づいて、前記利用者へ出力する文を生成するステップとを有することを特徴とするコンピュータにおける文生成方法。
  6. 前記検索手段による検索ステップは、前記分類手段の分類ステップで分類された各属性に属する前記第1形態素情報の前記各形態素と、前記記憶手段に記憶された前記各属性に属する前記各第2形態素情報の前記各形態素とを、各属性ごとに照合し、前記第1形態素情報が前記第2形態素情報の形態素を含んでいる属性の数を、各第2形態素情報ごとに算出手段が算出する算出ステップと、
    前記算出手段の算出ステップにより各第2形態素情報ごとに算出された属性の数に応じて、前記記憶手段に記憶された各第2形態素情報の中から、第2形態素情報を前記検索第2形態素情報として選択するステップとを有することを特徴とする請求項5に記載のコンピュータにおける文生成方法。
  7. コンピュータに、
    利用者から入力された入力情報に基づいて、該入力情報を示す文字列を特定する文字認識手段と、
    前記文字認識手段で特定された前記文字列に基づいて、該文字列の最小単位を構成する少なくとも1つの形態素を第1形態素情報として抽出する形態素抽出手段と、
    前記形態素抽出手段で抽出された各第1形態素情報を文節形式に変換する文節解析手段と、
    前記文節解析手段で文節された第1形態素情報を主体格、対象格、述語に決定する文構造解析手段と、
    名詞、形容詞等であり、かつ、感動詞以外の形態素により構成される第2形態素情報を、複数、記憶手段に記憶するとともに、前記形態素を、主体格、対象格、述語の属性ごとに分類して記憶されている記憶手段と、
    前記形態素抽出手段で抽出され、前記文節解析手段及び文構造解析手段で解析された前記第1形態素情報と、前記記憶手段に記憶された各第2形態素情報とを照合し、前記各第2形態素情報の中から、前記第1形態素情報が第2形態素情報の各形態素を含む場合における当該第2形態素情報を検索する検索手段と、
    各属性と、前記第2形態素情報の形態素の後に係る文字又は文字列である係り受け要素とが対応づけられた対応テーブルを参照して、前記検索手段で検索された前記第2形態素情報の各形態素に対して、前記各形態素が分類された属性に対応する係り受け要素を結合させてなる結合文字列に基づいて、前記利用者へ出力する文を生成する生成手段として機能させるためのコンピュータプログラム。
  8. コンピュータに、
    利用者から入力された入力情報に基づいて、該入力情報を示す文字列を特定する文字認識手段と、
    前記文字認識手段で特定された前記文字列に基づいて、該文字列の最小単位を構成する少なくとも1つの形態素を第1形態素情報として抽出する形態素抽出手段と、
    前記形態素抽出手段で抽出された各第1形態素情報を文節形式に変換する文節解析手段と、
    前記文節解析手段で文節された第1形態素情報を主体格、対象格、述語に決定する文構造解析手段と、
    前記文字認識手段で特定された前記文字列に基づいて、前記形態素抽出手段で抽出された第1形態素情報の各形態素の後に係る文字又は文字列を、係り受け要素として前記各形態素と対応づけて、抽出する係り受け要素抽出手段と、
    名詞、形容詞等であり、かつ、感動詞以外の形態素により構成される第2形態素情報を、複数、記憶手段に記憶するとともに、前記形態素を、主体格、対象格、述語の属性ごとに分類されて記憶されている前記記憶手段と、
    前記形態素抽出手段で抽出され、前記文節解析手段及び文構造解析手段で解析された前記第1形態素情報と、前記記憶手段に記憶された各第2形態素情報とを照合し、前記各第2形態素情報の中から、前記第1形態素情報が第2形態素情報の各形態素を含む場合における当該第2形態素情報を検索第2形態素情報として、検索する検索手段と、
    前記形態素抽出手段で抽出された前記第1形態素情報の各形態素を各属性に分類する分類手段と、
    各属性に属する前記検索第2形態素情報の各形態素の後に、それぞれ、前記分類手段により分類された前記各属性に属する前記第1形態素情報の各形態素に対応する係り受け要素を、各属性ごとに、結合させてなる結合文字列に基づいて、前記利用者へ出力する文を生成する生成手段として機能させるためのコンピュータプログラム。
  9. 前記検索手段に、前記分類手段で分類された各属性に属する前記第1形態素情報の前記各形態素と、前記記憶手段に記憶された前記各属性に属する前記各第2形態素情報の前記各形態素とを、各属性ごとに照合し、前記第1形態素情報が前記第2形態素情報の形態素を含んでいる属性の数を、各第2形態素情報ごとに算出する算出手段と、
    前記算出手段により各第2形態素情報ごとに算出された属性の数に応じて、前記記憶手段に記憶された各第2形態素情報の中から、第2形態素情報を前記検索第2形態素情報として選択する選択手段として機能させるための請求項8に記載のコンピュータプログラム。
JP2002181598A 2002-06-21 2002-06-21 文生成システム、文生成方法、プログラム Expired - Lifetime JP4344508B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002181598A JP4344508B2 (ja) 2002-06-21 2002-06-21 文生成システム、文生成方法、プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002181598A JP4344508B2 (ja) 2002-06-21 2002-06-21 文生成システム、文生成方法、プログラム

Publications (2)

Publication Number Publication Date
JP2004029931A JP2004029931A (ja) 2004-01-29
JP4344508B2 true JP4344508B2 (ja) 2009-10-14

Family

ID=31178392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002181598A Expired - Lifetime JP4344508B2 (ja) 2002-06-21 2002-06-21 文生成システム、文生成方法、プログラム

Country Status (1)

Country Link
JP (1) JP4344508B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110633407B (zh) 2018-06-20 2022-05-24 百度在线网络技术(北京)有限公司 信息检索方法、装置、设备及计算机可读介质

Also Published As

Publication number Publication date
JP2004029931A (ja) 2004-01-29

Similar Documents

Publication Publication Date Title
Baumann et al. The Spoken Wikipedia Corpus collection: Harvesting, alignment and an application to hyperlistening
US8935163B2 (en) Automatic conversation system and conversation scenario editing device
US8386265B2 (en) Language translation with emotion metadata
JP4849663B2 (ja) 会話制御装置
US6816858B1 (en) System, method and apparatus providing collateral information for a video/audio stream
EP2317507B1 (en) Corpus compilation for language model generation
WO2008023470A1 (fr) Procédé de recherche de phrase, moteur de recherche de phrase, programme informatique, support d'enregistrement et stockage de document
JPH08212228A (ja) 要約文作成装置および要約音声作成装置
JP2012037790A (ja) 音声対話装置
JP3997105B2 (ja) 会話制御システム、会話制御装置
JP3706758B2 (ja) 自然言語処理方法,自然言語処理用記録媒体および音声合成装置
Llitjós et al. Improving pronunciation accuracy of proper names with language origin classes
JP4344508B2 (ja) 文生成システム、文生成方法、プログラム
Hale et al. PCFGs with syntactic and prosodic indicators of speech repairs
JP2004347732A (ja) 言語自動識別方法及び装置
JP4110012B2 (ja) 会話制御装置及び会話制御方法
Adell Mercado et al. Buceador, a multi-language search engine for digital libraries
JP4413486B2 (ja) 家電制御装置、家電制御方法及びプログラム
JP4316839B2 (ja) 会話制御装置及び会話制御方法
Baumann et al. The spoken wikipedia corpus collection
JP4751565B2 (ja) 会話制御装置、会話制御方法及びプログラム
JP4274760B2 (ja) 地図出力装置、地図出力方法及びプログラム
JP4038399B2 (ja) 顔画像表示装置、顔画像表示方法及びプログラム
JP2004138661A (ja) 音声素片データベース作成方法、音声合成方法、音声素片データベース作成装置、音声合成装置、音声データベース作成プログラム、音声合成プログラム
JP4205370B2 (ja) 会話制御システム、会話制御方法及びプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090713

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4344508

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term