JP4344458B2 - Corrosion prevention method for supercritical equipment - Google Patents

Corrosion prevention method for supercritical equipment Download PDF

Info

Publication number
JP4344458B2
JP4344458B2 JP2000129439A JP2000129439A JP4344458B2 JP 4344458 B2 JP4344458 B2 JP 4344458B2 JP 2000129439 A JP2000129439 A JP 2000129439A JP 2000129439 A JP2000129439 A JP 2000129439A JP 4344458 B2 JP4344458 B2 JP 4344458B2
Authority
JP
Japan
Prior art keywords
reaction vessel
supercritical
inorganic
coating layer
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000129439A
Other languages
Japanese (ja)
Other versions
JP2001300294A (en
Inventor
健一 薗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Original Assignee
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd filed Critical Metawater Co Ltd
Priority to JP2000129439A priority Critical patent/JP4344458B2/en
Publication of JP2001300294A publication Critical patent/JP2001300294A/en
Application granted granted Critical
Publication of JP4344458B2 publication Critical patent/JP4344458B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Treatment Of Sludge (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、PCB、ダイオキシン等の難分解性化合物や有害物質を含む廃棄物を、超臨界状態の水を用いて酸化分解する超臨界装置の腐食防止方法に関するものである。
【0002】
【従来の技術】
上記のような難分解性化合物や有害物質を含む廃棄物の新しい処理法として、超臨界水酸化法(SCWO)が注目されている。この方法は、廃棄物を臨界点を越えた超臨界状態の水中に投入して酸化分解する方法である。水は超臨界状態においては誘電率、イオン解離定数ともに急激に減少し、非極性の高密度気体のような挙動を示す。この超臨界水の内部に廃棄物を投入すると、有機化合物は完全酸化により水とCO2 に分解され、NやS等のヘテロ原子を含む有機化合物はNOX やSOX の発生を抑えながらヘテロ原子を酸、塩、酸化物等に変換される。一方、無機化合物は超臨界水にはほとんど溶解しないので、この超臨界水酸化法は有機性廃棄物の酸化分解法として適したものである。
【0003】
このために用いられる超臨界装置は、圧力を20MPa 以上、温度を300 〜600 ℃に維持することができる反応容器を備えており、廃棄物は高圧ポンプにより反応容器内に送りこまれて酸化分解される。ところが、この反応容器の内壁面は常に高温高圧に晒されるために腐食され易い。そこで反応容器をステンレス製としたうえチタン製の内張りを施す等の対策が講じられているものの、イニシャルコストが嵩み、しかも徐々に腐食が進行することは避けられない。また、反応容器の出口付近では磨耗も急速に進行するため、チタンの内張りを施してもなお耐久性が不足する。このため定期的に反応容器を解体して内張りを交換しなければならず、ランニングコストも高くなるという問題がある。
【0004】
【発明が解決しようとする課題】
本発明は上記した従来の問題点を解決し、内張りに頼ることなく反応容器の内壁面の腐食を経済的に防止できる超臨界装置の腐食防止方法を提供するためになされたものである。
【0005】
【課題を解決するための手段】
上記の課題を解決するためになされた本発明の超臨界装置の腐食防止方法は、廃棄物を超臨界水酸化法により分解するために、20MPa 以上の圧力と300 〜600 ℃の温度に維持し、水を超臨界状態としている反応容器の内部に、質量%で、SiO 2 :40 〜60%、Al 2 O 3 :10〜30%、CaO:10〜30%、Fe 2 O 3 :10〜30%の組成を持つ無機物の粉粒体を送り込んで、200 〜500 ℃で反応させることにより、反応容器の壁面に無機酸化物のコーティング層を形成することを特徴とするものである。
【0006】
本発明によれば、反応容器の内部に送り込んだ無機物の粉粒体を反応させることにより、反応容器の壁面に耐腐食性に優れた無機酸化物のコーティング層を形成するようにしたため、反応容器の壁面の腐食や磨耗を防止することができる。この反応を適宜のタイミングで行わせることにより、常に反応容器の壁面を補修することができ、半永久的な腐食防止が可能となる。
【0007】
【発明の実施の形態】
以下に図面を参照しつつ、本発明の実施形態を示す。
図1は超臨界装置の要部を概念的に示す図であり、1は酸化剤である水と酸素が充填された反応容器、2は有機性廃棄物を含むスラリーを反応容器1内に供給する高圧ポンプ、3は反応容器1から排出された分解物の分離装置である。反応容器1は例えばSUS 304 、SUS 316 等のステンレス製であり、その内部は図示しない加熱手段及び加圧手段により、20MPa 以上の圧力と300 〜600 ℃の温度に維持され、水を超臨界状態としている。有機性廃棄物は超臨界水との接触により酸化分解され、分解物は分離装置3で酸化剤と分離されて塩として取り出される。
【0008】
以上の構成は従来の装置と同様であるが、本発明では無機物の粉粒体を収納するタンク4と、このタンク4内に収納された無機物の粉粒体を反応容器1の内部に供給するポンプ5とが別に設置されている。無機物の粉粒体はSiO2、Al2O3 、CaO 、Fe2O3 を含むものであり、その組成は重量比でSiO2:40 〜60%、Al2O3:10〜30%、CaO:10〜30%、Fe2O3:10〜30%であることが好ましい。この無機物の粉粒体は反応容器1の内部が空の状態においてポンプ5により反応容器1の内部に送り込まれて反応し、反応容器1の内壁面にFe3O4 を含むガラス質のコーティング層6を形成する。このコーティング層6は溶解性の低い無機酸化物からなるものであり、優れた耐腐食性を発揮する。
【0009】
なお、この反応を行わせるためには反応容器1の内部壁面を200 〜500 ℃にコントロールすることが好ましい。温度がこの範囲よりも低いと無機酸化物が形成されず、逆に温度がこの範囲よりも高いと無機酸化物が分解するためである。このため、反応容器1の壁面温度をコントロールすることによって特定部分に集中的に無機酸化物のコーティング層6を形成させることも可能であり、特に腐食や磨耗の進行し易い反応容器1の出口付近の壁面を集中的にコーティングすることができる。
【0010】
また、無機物の粉粒体の組成を前記した数値範囲内とすることにより、好ましい無機酸化物のコーティング層6を形成することができる。その理由は下記の通りである。
SiO2を40〜60%としたのは、付着性を確保するためのバインダーとなるガラス質を形成するためであり、この範囲未満ではガラス質となりにくく、この範囲を越えるとガラスの融点が高まるために200 〜500 ℃では付着性が得られない。
Al2O3 を10〜30%とし、CaO を10〜30%としたのは、低融点でしかも化学的に耐久性のあるガラス質を形成するためであり、この範囲未満ではガラス質が腐食され易くなって安定したコーティング層6を形成できず、この範囲を越えると付着性が損なわれる。
Fe2O3 を10〜30%としたのは、有効成分であるFe3O4 を効果的に生成させるためであり、この範囲未満ではFe3O4 の生成量が不足して十分な耐腐食性が得られず、この範囲を越えるとバインダーとなるガラス質中に均一に分散させることが困難となる。
【0011】
上記のようにして形成された無機酸化物のコーティング層6は、超臨界水に溶解しにくく、また超臨界水による腐食に対して優れた耐久性を示す。しかも反応容器1を分解することなく任意のタイミングでコーティング層6を形成することができるので、廃棄物を超臨界水酸化法により分解する運転の間に無機物の粉粒体を送り込むことにより、容易に反応容器1の腐食防止を図ることが可能である。なお、反応しなかった余分の無機物の粉粒体は分離装置3で回収されるため、その後の廃棄物の超臨界水酸化に悪影響を及ぼすことはない。
以下に本発明の実施例を示す。
【0012】
【実施例】
反応温度を500 ℃とした超臨界装置に濃縮下水汚泥を40時間にわたり連続供給し、その間の反応容器の内壁面の磨耗量を測定したところ、材質がSUS 304 であるときには50μm 、材質がインコネルであるときには3 μm であった。
次に、本発明によりSiO2 40 %、Al2O3 30%、CaO 20%、Fe2O3 10%の組成を持つ粉粒体を10%スラリーとして別ラインから反応容器内に供給し、同時に酸素源として40%のH2O2を供給して無機酸化物のコーティング層を形成した。その結果、反応容器の材質がSUS 304 である場合にも、上記と同じ条件下における内壁面の磨耗量は2 μm にまで減少した。また、粉粒体の組成をSiO2 50 %、Al2O3 10%、CaO 10%、Fe2O3 30%として同様に無機酸化物のコーティング層を形成した場合にも、上記と同じ条件下における内壁面の磨耗量は2 μm であることが確認された。
【0013】
【発明の効果】
以上に説明したように、本発明によれば反応容器を分解することなくその内部に無機物の粉粒体を送り込んで壁面に無機酸化物のコーティング層を形成することができ、反応容器の腐食防止を図ることができる。本発明の方法は従来のチタンの内張りを行う方法に比較してイニシャルコストが掛からず、また使用する無機物の粉粒体も安価なものであるから、ランニングコストも極めて安価で済む。よって本発明は廃棄物を超臨界水酸化法により分解する反応容器の腐食防止を、経済的に達成することができる利点がある。
【図面の簡単な説明】
【図1】本発明の実施形態を示す概念図である。
【符号の説明】
1 反応容器、2 高圧ポンプ、3 分離装置、4 無機物の粉粒体を収納するタンク、5 ポンプ、6 無機酸化物のコーティング層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for preventing corrosion of a supercritical apparatus that oxidatively decomposes waste containing a hardly decomposable compound such as PCB and dioxin and a harmful substance using water in a supercritical state.
[0002]
[Prior art]
Supercritical water oxidation (SCWO) has attracted attention as a new treatment method for waste containing the above-mentioned hardly decomposable compounds and harmful substances. This method is a method in which waste is introduced into water in a supercritical state exceeding the critical point and oxidatively decomposed. In the supercritical state, both the dielectric constant and the ionic dissociation constant rapidly decrease, and water behaves like a non-polar high-density gas. When waste is put into this supercritical water, organic compounds are decomposed into water and CO 2 by complete oxidation, and organic compounds containing heteroatoms such as N and S are heterogeneous while suppressing the generation of NO X and SO X. Atoms are converted to acids, salts, oxides, etc. On the other hand, since an inorganic compound hardly dissolves in supercritical water, this supercritical water oxidation method is suitable as an oxidative decomposition method for organic waste.
[0003]
The supercritical equipment used for this purpose is equipped with a reaction vessel that can maintain a pressure of 20 MPa or more and a temperature of 300 to 600 ° C., and waste is sent into the reaction vessel by a high-pressure pump and oxidatively decomposed. The However, since the inner wall surface of the reaction vessel is always exposed to high temperature and pressure, it is easily corroded. Therefore, although measures such as making the reaction vessel made of stainless steel and applying a titanium lining have been taken, the initial cost is high, and it is inevitable that corrosion gradually proceeds. In addition, since the wear progresses rapidly near the outlet of the reaction vessel, the durability is still insufficient even when a titanium lining is applied. For this reason, there is a problem that the reaction vessel must be periodically disassembled and the lining must be replaced, and the running cost is increased.
[0004]
[Problems to be solved by the invention]
The present invention has been made to solve the above-mentioned conventional problems and to provide a method for preventing corrosion of a supercritical apparatus that can economically prevent corrosion of the inner wall surface of a reaction vessel without relying on a lining.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the corrosion prevention method of the supercritical apparatus of the present invention maintains a pressure of 20 MPa or more and a temperature of 300 to 600 ° C. in order to decompose the waste by the supercritical water oxidation method. In a reaction vessel in which water is in a supercritical state, by mass%, SiO 2 : 40 to 60%, Al 2 O 3 : 10 to 30%, CaO: 10 to 30%, Fe 2 O 3 : 10 to Inorganic powder particles having a composition of 30% are fed and reacted at 200 to 500 ° C. to form an inorganic oxide coating layer on the wall of the reaction vessel.
[0006]
According to the present invention, an inorganic oxide coating layer having excellent corrosion resistance is formed on the wall surface of the reaction vessel by reacting the inorganic powder particles fed into the reaction vessel. It is possible to prevent corrosion and wear of the wall surface. By performing this reaction at an appropriate timing, the wall surface of the reaction vessel can always be repaired, and semi-permanent corrosion can be prevented.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a diagram conceptually showing a main part of a supercritical apparatus, wherein 1 is a reaction vessel filled with water and oxygen as an oxidizing agent, and 2 is a slurry containing organic waste is fed into the reaction vessel 1 The high-pressure pump 3 is a separation device for the decomposition product discharged from the reaction vessel 1. The reaction vessel 1 is made of stainless steel such as SUS 304 or SUS 316, and the inside is maintained at a pressure of 20 MPa or more and a temperature of 300 to 600 ° C. by a heating means and a pressurizing means (not shown), and water is in a supercritical state. It is said. The organic waste is oxidatively decomposed by contact with supercritical water, and the decomposed product is separated from the oxidizing agent by the separation device 3 and taken out as a salt.
[0008]
The above configuration is the same as that of the conventional apparatus, but in the present invention, the tank 4 for storing the inorganic particles and the inorganic particles stored in the tank 4 are supplied into the reaction vessel 1. A pump 5 is installed separately. Granular material of inorganic are those containing SiO 2, Al 2 O 3, CaO, Fe 2 O 3, the composition of SiO in a weight ratio of 2: 40 ~60%, Al 2 O 3: 10~30%, CaO: 10 to 30% and Fe 2 O 3 : 10 to 30% are preferable. This inorganic granular material is fed into the reaction vessel 1 by the pump 5 while the reaction vessel 1 is empty, and reacts. The glassy coating layer containing Fe 3 O 4 on the inner wall surface of the reaction vessel 1 6 is formed. The coating layer 6 is made of an inorganic oxide having low solubility, and exhibits excellent corrosion resistance.
[0009]
In order to perform this reaction, it is preferable to control the inner wall surface of the reaction vessel 1 to 200 to 500 ° C. If the temperature is lower than this range, the inorganic oxide is not formed. Conversely, if the temperature is higher than this range, the inorganic oxide is decomposed. For this reason, it is possible to form the inorganic oxide coating layer 6 intensively on a specific portion by controlling the wall temperature of the reaction vessel 1, and in particular near the outlet of the reaction vessel 1 where corrosion and wear are likely to proceed. Can be coated intensively.
[0010]
Moreover, the coating layer 6 of a preferable inorganic oxide can be formed by making the composition of an inorganic granular material into the above-mentioned numerical range. The reason is as follows.
The reason why SiO 2 is set to 40 to 60% is to form a glass that becomes a binder for ensuring adhesion, and if it is less than this range, it is difficult to become glassy, and if it exceeds this range, the melting point of the glass increases. Therefore, adhesion cannot be obtained at 200 to 500 ° C.
The reason why Al 2 O 3 is set to 10 to 30% and CaO is set to 10 to 30% is to form a glass material having a low melting point and chemically durable. Below this range, the glass material is corroded. It becomes easy to be formed and the stable coating layer 6 cannot be formed, and if it exceeds this range, the adhesion is impaired.
The reason why the content of Fe 2 O 3 is set to 10 to 30% is to effectively produce Fe 3 O 4 as an active ingredient. If it is less than this range, the amount of Fe 3 O 4 produced is insufficient and sufficient resistance is obtained. Corrosivity cannot be obtained, and if it exceeds this range, it becomes difficult to uniformly disperse it in the vitreous as a binder.
[0011]
The inorganic oxide coating layer 6 formed as described above hardly dissolves in supercritical water, and exhibits excellent durability against corrosion by supercritical water. In addition, since the coating layer 6 can be formed at an arbitrary timing without decomposing the reaction vessel 1, it is easy to send inorganic particles during the operation of decomposing waste by the supercritical water oxidation method. In addition, it is possible to prevent corrosion of the reaction vessel 1. The extra inorganic powder particles that have not reacted are recovered by the separation device 3, and therefore do not adversely affect the supercritical water oxidation of the subsequent waste.
Examples of the present invention are shown below.
[0012]
【Example】
Concentrated sewage sludge was continuously supplied over 40 hours to a supercritical apparatus with a reaction temperature of 500 ° C, and the amount of wear on the inner wall of the reaction vessel was measured during that time. At one time it was 3 μm.
Next, according to the present invention, a granular material having a composition of SiO 2 40%, Al 2 O 3 30%, CaO 20%, Fe 2 O 3 10% is supplied as a 10% slurry from another line into the reaction vessel, Simultaneously, 40% of H 2 O 2 was supplied as an oxygen source to form an inorganic oxide coating layer. As a result, even when the reaction vessel was made of SUS 304, the amount of wear on the inner wall surface was reduced to 2 μm under the same conditions as above. The same conditions as above apply when the inorganic oxide coating layer is formed in the same manner with the composition of the powder as SiO 2 50%, Al 2 O 3 10%, CaO 10%, Fe 2 O 3 30%. The amount of wear on the inner wall was confirmed to be 2 μm.
[0013]
【The invention's effect】
As described above, according to the present invention, it is possible to form an inorganic oxide coating layer on the wall surface by sending inorganic particles into the reaction vessel without decomposing the reaction vessel, thereby preventing corrosion of the reaction vessel. Can be achieved. The method of the present invention does not require an initial cost as compared with the conventional method of lining the titanium, and the inorganic powder to be used is inexpensive, so that the running cost is very low. Therefore, the present invention has an advantage that the corrosion prevention of the reaction vessel for decomposing the waste by the supercritical water oxidation method can be economically achieved.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Reaction container, 2 High-pressure pump, 3 Separation device, 4 Tank which contains the inorganic granular material, 5 Pump, 6 Coating layer of inorganic oxide

Claims (1)

廃棄物を超臨界水酸化法により分解するために、20MPa 以上の圧力と300 〜600 ℃の温度に維持し、水を超臨界状態としている反応容器の内部に、質量%で、SiO 2 :40 〜60%、Al 2 O 3 :10〜30%、CaO:10〜30%、Fe 2 O 3 :10〜30%の組成を持つ無機物の粉粒体を送り込んで、200 〜500 ℃で反応させることにより、反応容器の壁面に無機酸化物のコーティング層を形成することを特徴とする超臨界装置の腐食防止方法。In order to decompose the waste by the supercritical water oxidation method , the pressure is maintained at a pressure of 20 MPa or more and a temperature of 300 to 600 ° C., and in a reaction vessel in which water is in a supercritical state , SiO 2 : 40 ~ 60%, Al 2 O 3 : 10 ~ 30%, CaO: 10 ~ 30%, Fe 2 O 3 : Fe ~ 10 ~ 30% inorganic powders are fed and reacted at 200 ~ 500 ℃ A method for preventing corrosion of a supercritical apparatus, comprising forming a coating layer of an inorganic oxide on a wall surface of a reaction vessel.
JP2000129439A 2000-04-28 2000-04-28 Corrosion prevention method for supercritical equipment Expired - Lifetime JP4344458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000129439A JP4344458B2 (en) 2000-04-28 2000-04-28 Corrosion prevention method for supercritical equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000129439A JP4344458B2 (en) 2000-04-28 2000-04-28 Corrosion prevention method for supercritical equipment

Publications (2)

Publication Number Publication Date
JP2001300294A JP2001300294A (en) 2001-10-30
JP4344458B2 true JP4344458B2 (en) 2009-10-14

Family

ID=18638716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000129439A Expired - Lifetime JP4344458B2 (en) 2000-04-28 2000-04-28 Corrosion prevention method for supercritical equipment

Country Status (1)

Country Link
JP (1) JP4344458B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103030206A (en) * 2012-12-20 2013-04-10 新奥科技发展有限公司 Supercritical water treatment device and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4304276B2 (en) * 2004-03-31 2009-07-29 独立行政法人産業技術総合研究所 Efficient heat insulation method and apparatus for high pressure apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103030206A (en) * 2012-12-20 2013-04-10 新奥科技发展有限公司 Supercritical water treatment device and method
CN103030206B (en) * 2012-12-20 2014-05-07 新奥科技发展有限公司 Supercritical water treatment device and method

Also Published As

Publication number Publication date
JP2001300294A (en) 2001-10-30

Similar Documents

Publication Publication Date Title
US4294706A (en) Process for treating waste water
US3907674A (en) Fluid bed incineration of wastes containing alkali metal chlorides
EP2649007B1 (en) Decomposition of polysulfides and removal of hydrogen sulfide
JPH0588151B2 (en)
EP1116694A3 (en) Catalyst for treating waste water, method for preparing the same and process for treating waste water
TW414783B (en) Advanced oxidation of water using catalytic ozonation
JP4344458B2 (en) Corrosion prevention method for supercritical equipment
AU3939197A (en) A method for the treatment, in particular stabilization, of materials containing environmentally noxious constituents, especially from the incineration of waste, as well as plant for carrying out the said method
US5683748A (en) Process for protecting concrete sewer pipes
EP0082915B1 (en) Catalytic decomposition of hypochlorite using substituted cobalt oxide spinels
EP0874698A1 (en) Method of preventing corrosion in concrete pipe
JP3639172B2 (en) Method for destroying fluorine species using small particle fluidized bed
JP3462969B2 (en) How to reduce the volume of waste ion exchange resin
TW415853B (en) A method for decomposing nitrogen fluoride or sulfur fluoride, and reagent for decomposing thereof
JP3988483B2 (en) Treatment of free chlorine in water
JP3811614B2 (en) Wastewater treatment method
EP0850666B1 (en) Method of decomposing polychlorobiphenyls
KR20180043825A (en) A purification treatment method for a harmful substance-containing liquid and a purification treatment device for a harmful substance-containing liquid
JP2002273459A (en) Method and equipment for hydrothermal oxidation reaction
JPH11292577A (en) Production of slaked lime, slaked lime powder and waste gas treating agent using that
AU2003214758B2 (en) A soil decontamination method
WO2000002977A1 (en) Method for converting chlorine-containing waste plastic to oil
JP2001347159A (en) Method for transforming halogen of organic halide and organic compound to inorganic substance and apparatus for the same
JPH0691247A (en) Breakdown of waste substance containing alumina, silica, calcium and nitrogen by oxidization of fused salt
JP2003236364A (en) Process for hydrothermal reaction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060223

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080331

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090713

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4344458

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term