JP4342546B2 - Turbidity monitoring method and turbidity monitoring device in water - Google Patents

Turbidity monitoring method and turbidity monitoring device in water Download PDF

Info

Publication number
JP4342546B2
JP4342546B2 JP2006283405A JP2006283405A JP4342546B2 JP 4342546 B2 JP4342546 B2 JP 4342546B2 JP 2006283405 A JP2006283405 A JP 2006283405A JP 2006283405 A JP2006283405 A JP 2006283405A JP 4342546 B2 JP4342546 B2 JP 4342546B2
Authority
JP
Japan
Prior art keywords
water
ultrasonic doppler
turbidity
doppler velocimeter
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2006283405A
Other languages
Japanese (ja)
Other versions
JP2007071881A5 (en
JP2007071881A (en
Inventor
聡 稲垣
克則 山木
國喜 中込
真吾 秋山
昌宏 田中
毅 池谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2006283405A priority Critical patent/JP4342546B2/en
Publication of JP2007071881A publication Critical patent/JP2007071881A/en
Publication of JP2007071881A5 publication Critical patent/JP2007071881A5/ja
Application granted granted Critical
Publication of JP4342546B2 publication Critical patent/JP4342546B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、水中の濁り監視方法および濁り監視装置に関するものである。   The present invention relates to a turbidity monitoring method and a turbidity monitoring apparatus in water.

海工事などで発生する濁りが工事海域外に流出すると、周辺環境に様々な問題が発生し、工事の工程に影響を及ぼす場合がある。そのため、工事で発生する濁りを計測する必要がある。従来、濁りの計測には、主に、(1)濁度計を用いる方法(例えば、特許文献1参照)や、(2)採水したサンプルの濁度を測定する方法(例えば、特許文献2参照)が使用されている。   If the turbidity generated by marine construction flows out of the construction sea area, various problems occur in the surrounding environment, which may affect the construction process. Therefore, it is necessary to measure the turbidity generated during construction. Conventionally, turbidity is mainly measured by (1) a method using a turbidimeter (see, for example, Patent Document 1) and (2) a method for measuring the turbidity of a collected sample (for example, Patent Document 2). Browse) is used.

特開2004−354069号公報JP 2004-354069 A 特開平6−027014号公報JP-A-6-027014

しかしながら、(1)、(2)の方法とも、鉛直方向や水平方向の濁度分布を計測するのではなく、水中の1点の濁度を計測するため、工事海域において三次元的に分布する濁りを測定することが不可能である。   However, both the methods (1) and (2) do not measure the turbidity distribution in the vertical or horizontal direction, but measure the turbidity at one point in the water, so that it is distributed three-dimensionally in the construction sea area. It is impossible to measure turbidity.

本発明は、このような問題に鑑みてなされたもので、その目的とするところは、三次元的な濁りの分布や濁り粒子の輸送量を短時間に計測し、工事で出る濁りを詳細に管理することができる水中の濁り監視方法および濁り監視装置を提供することにある。   The present invention has been made in view of such problems, and the object of the present invention is to measure the three-dimensional turbidity distribution and the transport amount of turbid particles in a short time, and to investigate the turbidity generated in construction in detail. It is an object to provide a turbidity monitoring method and a turbidity monitoring apparatus that can be managed.

前述した目的を達成するために、本願の第1の発明は、超音波ドップラー流速計を水平方向に移動させつつ、前記超音波ドップラー流速計から発射されて水中の鉛直方向の各層に浮遊する微粒子で反射された超音波の反射強度および前記超音波ドップラー流速計の水平方向の位置情報を取得し、水深毎の前記反射強度と水平方向の前記位置情報から、前記微粒子の三次元的な分布を推定する水中の濁り監視方法であって、
前記超音波ドップラー流速計の水平軌跡と、前記軌跡から枝分かれした直線の長さと向きにより水深毎の流速と流向を表示し、
予め作成した、採水分析で求めた前記微粒子の浮遊粒子濃度と前記採水分析と同じ位置で測定した超音波ドップラー流速計による反射強度との相関関係を用いて、前記反射強度を浮遊粒子濃度に換算し、
前記超音波ドップラー流速計の水平軌跡と、前記超音波ドップラー流速計で計測された水深毎の流速または、潮汐、風、河川流入を考慮して算出された流速および流向の分布と、水深毎の前記反射強度とを用いて前記微粒子の輸送量を算出し、前記微粒子の三次元的な分布を推定し、任意の水深、範囲および時刻における濁りの予測分布を表示することを特徴とする水中の濁り監視方法である。
In order to achieve the above-mentioned object, the first invention of the present application is a fine particle that is emitted from the ultrasonic Doppler velocimeter and floats in each vertical layer in water while moving the ultrasonic Doppler velocimeter in the horizontal direction. The reflection intensity of the ultrasonic wave reflected by the laser and the horizontal position information of the ultrasonic Doppler velocimeter are acquired, and the three-dimensional distribution of the fine particles is obtained from the reflection intensity at each water depth and the horizontal position information. A method for monitoring turbidity in water,
By displaying the horizontal trajectory of the ultrasonic Doppler velocimeter and the length and direction of the straight line branched from the trajectory, the flow velocity and flow direction for each water depth are displayed.
Using the correlation between the suspended particle concentration of the fine particles determined in the water sampling analysis prepared in advance and the reflected intensity by the ultrasonic Doppler velocimeter measured at the same position as the water sampling analysis, the reflection intensity is determined as the suspended particle concentration. Converted to
The horizontal trajectory of the ultrasonic Doppler velocimeter, the flow velocity for each water depth measured by the ultrasonic Doppler velocimeter, or the distribution of flow velocity and flow direction calculated in consideration of tides, winds and river inflows, and for each water depth The amount of transport of the fine particles is calculated using the reflection intensity, the three-dimensional distribution of the fine particles is estimated , and the predicted distribution of turbidity at an arbitrary water depth, range and time is displayed . Turbidity monitoring method.

超音波ドップラー流速計(ADCP)は、水上で移動可能な観測船等に設置される。超音波ドップラー流速計は、水中に複数の超音波ビームを発信し、鉛直方向の各層の微粒子で反射させて水深毎の流速を計測すると同時に、反射した超音波の反射強度を水深毎に取得する。微粒子とは、例えば、浮遊土砂等である。超音波ドップラー流速計の超音波の周波数は、水深により変化させる。   The ultrasonic Doppler velocimeter (ADCP) is installed on an observation ship that can move on water. The ultrasonic Doppler velocimeter emits multiple ultrasonic beams into the water, reflects them with fine particles in each layer in the vertical direction, measures the flow velocity at each depth of the water, and simultaneously acquires the reflected ultrasonic reflection intensity at each depth. . The fine particles are, for example, suspended earth and sand. The ultrasonic frequency of the ultrasonic Doppler velocimeter is changed according to the water depth.

さらに、観測船には、位置情報を取得するために、例えばGPS(汎地球測位システム)等の設備が設置される。GPS等で観測した水平方向の位置情報と超音波ドップラー流速計で観測した鉛直方向の各層の微粒子による反射波の反射強度は、コンピュータ等に送られ、微粒子の三次元的な分布が推定される。また、超音波ドップラー流速計で測定した流速と、推定された微粒子の三次元的な分布等から、水中の微粒子の輸送量が算出される。   Furthermore, equipment such as GPS (Global Positioning System) is installed in the observation ship in order to acquire position information. The position information in the horizontal direction observed with GPS and the reflection intensity of the reflected waves from the fine particles in each vertical layer observed with the ultrasonic Doppler velocimeter are sent to a computer or the like to estimate the three-dimensional distribution of the fine particles. . Further, the transport amount of the fine particles in water is calculated from the flow velocity measured by the ultrasonic Doppler velocimeter and the estimated three-dimensional distribution of fine particles.

第1の発明では、超音波ドップラー流速計を移動しつつ、超音波ドップラー流速計から発射されて水中の微粒子で反射された超音波の反射強度を取得する。また、超音波ドップラー流速計の水平位置情報も取得する。そして、取得した反射強度と水平位置情報から、水中の微粒子の三次元的な分布を推定する。さらに、超音波ドップラー流速計で計測された流速を用いて微粒子の輸送量を算出することができる。 In the first invention, while moving the ultrasonic Doppler velocimeter, the reflection intensity of the ultrasonic wave emitted from the ultrasonic Doppler velocimeter and reflected by the fine particles in the water is acquired. Also, the horizontal position information of the ultrasonic Doppler velocimeter is acquired. Then, the three-dimensional distribution of fine particles in water is estimated from the acquired reflection intensity and horizontal position information. Furthermore, the transport amount of the fine particles can be calculated using the flow rate measured by the ultrasonic Doppler velocimeter.

また、第2の発明は、超音波ドップラー流速計と、前記超音波ドップラー流速計を水平方向に移動させる移動手段と、前記超音波ドップラー流速計の水平方向の位置情報を取得する手段と、前記超音波ドップラー流速計から発射されて水中の鉛直方向の各層に浮遊する微粒子で反射された超音波の水深毎の反射強度と水平方向の前記位置情報とから、予め作成した、採水分析で求めた前記微粒子の浮遊粒子濃度と前記採水分析と同じ位置で測定した超音波ドップラー流速計による反射強度との相関関係を用いて、前記反射強度を浮遊粒子濃度に換算する手段と、前記超音波ドップラー流速計の水平軌跡と、前記軌跡から枝分かれした直線の長さと向きにより水深毎の流速と流向を表示する第1の表示手段と、 前記超音波ドップラー流速計の水平軌跡と、前記超音波ドップラー流速計で計測された水深毎の流速または、潮汐、風、河川流入を考慮して算出された流速および流向の分布と、水深毎の前記反射強度とを用いて前記微粒子の輸送量を算出し、前記微粒子の三次元的な分布を推定する手段と、任意の水深、範囲および時刻における濁りの予測分布を表示する第2の表示手段と、を具備することを特徴とする水中の濁り監視装置である。 The second invention, an ultrasonic Doppler flow rate meter, said moving means for moving the ultrasonic Doppler velocimeter horizontally, means for obtaining a horizontal position information of the ultrasonic Doppler flow rate meter, the Obtained by sampling analysis prepared in advance from the reflection intensity at each depth of the ultrasonic wave reflected from the fine particles floating in each vertical layer in the water and emitted from the ultrasonic Doppler velocimeter and the position information in the horizontal direction. by using the correlation between the reflection intensity by the ultrasonic Doppler velocimeter of airborne particle concentration and was measured at the same position as the water sampling analysis of the fine particles, and means for converting the reflection intensity into the floating particle concentration, the ultrasonic and horizontal trajectory of the Doppler velocity meter, a first display means for displaying the flow rate and flow direction of each depth by the length and direction of the branched linear from the trajectory, the water of the ultrasonic Doppler velocimeter Above using the locus, the flow rate of each water depth measured by the ultrasonic Doppler flow rate meter, or, tidal, wind, and distribution of the flow rate is calculated by considering the river inflow and flow direction, and the reflection intensity for each depth A means for calculating a transport amount of the fine particles and estimating a three-dimensional distribution of the fine particles ; and a second display means for displaying a predicted distribution of turbidity at an arbitrary water depth, range and time. It is a turbidity monitoring device in water.

移動手段には、例えば観測船を使用し、観測船の舷側等に超音波ドップラー流速計を設置する。また、超音波ドップラー流速計の水平方向の位置情報を取得する手段として、観測船にGPS等を設置する。さらに、水中の各層に浮遊する微粒子で反射された超音波の反射強度と超音波ドップラー流速計の位置情報から微粒子の三次元的な分布を推定し、超音波ドップラー流速計で計測された流速と推定された微粒子の分布から微粒子の輸送量を算出する手段として、コンピュータ等を用いる。   For example, an observation ship is used as the moving means, and an ultrasonic Doppler velocimeter is installed on the side of the observation ship. In addition, a GPS or the like is installed on the observation ship as means for acquiring horizontal position information of the ultrasonic Doppler velocimeter. Furthermore, the three-dimensional distribution of the fine particles is estimated from the reflected intensity of the ultrasonic waves reflected by the fine particles floating in each layer in the water and the position information of the ultrasonic Doppler velocimeter, and the flow velocity measured by the ultrasonic Doppler velocimeter A computer or the like is used as means for calculating the transport amount of fine particles from the estimated fine particle distribution.

第2の発明では、観測船等を移動させつつ、超音波ドップラー流速計の位置情報をGPS等で取得する。超音波ドップラー流速計は、複数の超音波ビームを発信し、水中の微粒子で反射させて流速を計測すると同時に、水中の微粒子で反射した反射波の反射強度を取得する。そして、超音波ドップラー流速計の位置情報と超音波の反射強度から、コンピュータ等を用いて、微粒子の三次元的な分布を推定する。さらに、超音波ドップラー流速計で計測された流速を用いて微粒子の輸送量を算出する。   In the second invention, the position information of the ultrasonic Doppler velocimeter is acquired by GPS or the like while moving the observation ship or the like. The ultrasonic Doppler velocimeter emits a plurality of ultrasonic beams and reflects them with the fine particles in the water to measure the flow velocity, and at the same time acquires the reflection intensity of the reflected wave reflected by the fine particles in the water. Then, the three-dimensional distribution of the fine particles is estimated from the position information of the ultrasonic Doppler velocimeter and the reflection intensity of the ultrasonic waves using a computer or the like. Further, the transport amount of the fine particles is calculated using the flow velocity measured by the ultrasonic Doppler velocimeter.

本発明によれば、三次元的な濁りの分布や濁り粒子の輸送量を短時間に計測し、工事で出る濁りを詳細に管理することができる水中の濁り監視方法および濁り監視装置を提供できる。   According to the present invention, it is possible to provide an underwater turbidity monitoring method and a turbidity monitoring apparatus capable of measuring the three-dimensional turbidity distribution and the amount of turbid particles transported in a short time and managing the turbidity generated in construction in detail. .

以下、図面に基づいて、本発明の実施の形態を詳細に説明する。図1は、濁り監視装置1の概要図である。濁り監視装置1は、観測船3、ADCP(超音波ドップラー流速計)5、コンピュータ19、GPS20等で構成される。ADCP5は、例えば、観測船3の舷7側等に設置される。コンピュータ19、GPS20は、例えば、観測船3上に設置される。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic diagram of the turbidity monitoring apparatus 1. The turbidity monitoring apparatus 1 includes an observation ship 3, an ADCP (ultrasonic Doppler velocimeter) 5, a computer 19, a GPS 20, and the like. The ADCP 5 is installed, for example, on the side of the anchor 7 of the observation ship 3. The computer 19 and the GPS 20 are installed on the observation ship 3, for example.

観測船3は、ADCP5を任意の位置に移動させる。図1に示すように、ADCP5からは、複数本の超音波ビーム11が水底7に向けて発射される。矢印Aに示す方向に発射された超音波ビーム11は、測定セル13の位置に浮遊する微粒子15で矢印Bの方向に反射される。ADCP5は、この反射波14のドップラーシフトで、測定セル13を含む水平面でのADCP5の直下の流速21を測定する。   The observation ship 3 moves the ADCP 5 to an arbitrary position. As shown in FIG. 1, a plurality of ultrasonic beams 11 are emitted from the ADCP 5 toward the water bottom 7. The ultrasonic beam 11 emitted in the direction indicated by the arrow A is reflected in the direction of the arrow B by the fine particles 15 floating at the position of the measurement cell 13. The ADCP 5 measures the flow velocity 21 immediately below the ADCP 5 on the horizontal plane including the measurement cell 13 by the Doppler shift of the reflected wave 14.

流速21を測定すると同時に、ADCP5は、超音波ビーム11の矢印B方向の反射波14の反射強度を取得する。図1では、鉛直方向の1つの層の測定セル13のみを図示したが、ADCP5から発射された超音波ビーム11は鉛直方向の各層の測定セル13中に浮遊する微粒子15で反射され、ADCP5は鉛直方向の各層毎の流速21と、反射波14の反射強度を同時に取得する。ADCP5を用いて測定された水深毎の流速21および反射波14の反射強度は、コンピュータ19に入力される。   Simultaneously with measuring the flow velocity 21, the ADCP 5 acquires the reflection intensity of the reflected wave 14 in the direction of arrow B of the ultrasonic beam 11. In FIG. 1, only the measurement cell 13 of one layer in the vertical direction is illustrated, but the ultrasonic beam 11 emitted from the ADCP 5 is reflected by the fine particles 15 floating in the measurement cell 13 of each layer in the vertical direction. The flow velocity 21 for each layer in the vertical direction and the reflection intensity of the reflected wave 14 are acquired simultaneously. The flow velocity 21 and the reflection intensity of the reflected wave 14 for each water depth measured using the ADCP 5 are input to the computer 19.

観測船3に設置されたGPS20は、ADCP5の位置情報を取得する。濁り監視装置1では、濁り全体の分布を網羅できるように、濁り発生源を中心に経過時間ごとに観測船3の航行範囲を広げながら、ADCP5による流速21と反射波14の反射強度の観測と、GPS20によるADCP5の位置の観測とが行われる。GPS20を用いて取得されたADCP5の位置情報は、コンピュータ19に入力され、表示画面に表示される。   The GPS 20 installed in the observation ship 3 acquires the position information of ADCP5. In the turbidity monitoring device 1, the observation speed of the flow velocity 21 and the reflection intensity of the reflected wave 14 are measured by ADCP 5 while expanding the navigation range of the observation ship 3 for each elapsed time centering on the turbidity source so that the entire turbidity distribution can be covered. The position of ADCP5 is observed by GPS20. The position information of ADCP 5 acquired using the GPS 20 is input to the computer 19 and displayed on the display screen.

図2は、GPS20で観測された観測船3の軌跡25、すなわちADCP5の位置情報を示す図である。図2では、例えば、横軸が東西方向の位置を、縦軸が南北方向の位置を示す。観測船3の軌跡25に示す曲線から枝分かれした複数の直線31は、枝分かれ位置においてADCP5で測定された、水中9の所定の層での流速21と流向を示す。   FIG. 2 is a diagram showing the locus 25 of the observation ship 3 observed by the GPS 20, that is, the position information of the ADCP 5. In FIG. 2, for example, the horizontal axis indicates the position in the east-west direction, and the vertical axis indicates the position in the north-south direction. A plurality of straight lines 31 branched from the curve shown in the trajectory 25 of the observation ship 3 indicate the flow velocity 21 and the flow direction in a predetermined layer of the underwater 9 measured by ADCP 5 at the branching position.

図2に示す例では、投入地点27から水中に投入された土砂等の濁り29aが、時間の経過とともに南西方向の流れで濁り29b、29c、29d、29eに示す位置に運ばれる。観測船3の軌跡25は、海上の観測船3が待機位置23から矢印Cに示す方向に移動を開始し、その後、濁り29a、29b、29c、29d、29e上を往復しながら通過したことを示す。   In the example shown in FIG. 2, turbidity 29a such as earth and sand that has been introduced into the water from the introduction point 27 is carried to the positions indicated by turbidity 29b, 29c, 29d, and 29e in the southwest direction as time passes. The trajectory 25 of the observation ship 3 indicates that the observation ship 3 at sea started to move from the standby position 23 in the direction indicated by the arrow C, and then passed while reciprocating over the turbidity 29a, 29b, 29c, 29d, 29e. Show.

図3は、観測船3の軌跡25に示す位置および時刻での超音波反射強度を示す図である。横軸は時刻を、縦軸は水深を示す。横軸に示す時刻は、図2に示す観測船3の軌跡25、すなわちADCP5での反射強度の測定位置に対応し、観測船3の走行中には距離に換算可能である。例えば、図3の待機中33に示す時間帯には、観測船3は図2に示す待機位置23で待機中である。また、図3の走行中35a、35b、35c、35d、35eに示す時間帯には、観測船3は図2に示す濁り29a、29b、29c、29d、29eのある海上を横切って走行中である。   FIG. 3 is a diagram showing the ultrasonic reflection intensity at the position and time indicated on the trajectory 25 of the observation ship 3. The horizontal axis represents time, and the vertical axis represents water depth. The time shown on the horizontal axis corresponds to the locus 25 of the observation ship 3 shown in FIG. 2, that is, the measurement position of the reflection intensity at the ADCP 5, and can be converted into a distance while the observation ship 3 is traveling. For example, the observation ship 3 is on standby at the standby position 23 shown in FIG. In addition, during the time periods indicated by 35a, 35b, 35c, 35d, and 35e during traveling in FIG. 3, the observation ship 3 is traveling across the sea where the turbidity 29a, 29b, 29c, 29d, and 29e illustrated in FIG. is there.

凡例36は、超音波反射強度と図3中の表示パターンの対応関係を示す。ADCP5で取得された超音波反射強度と、GPS20で取得された位置情報を入力されたコンピュータ19は、観測船3の軌跡25に示す位置および時刻での水中9の反射波14の反射強度を、凡例36に示すような表示パターンを用いて、表示画面に表示させる。   The legend 36 shows the correspondence between the ultrasonic reflection intensity and the display pattern in FIG. The computer 19 that has received the ultrasonic reflection intensity acquired by the ADCP 5 and the position information acquired by the GPS 20 calculates the reflection intensity of the reflected wave 14 of the underwater 9 at the position and time indicated by the trajectory 25 of the observation ship 3. A display pattern as shown in the legend 36 is used to display on the display screen.

図4は、採水分析で求めたS.S.(浮遊粒子)濃度とADCP信号反射強度との関係を示す図である。縦軸は採水分析で求めたS.S.(浮遊粒子)濃度を、横軸はADCP5で観測されたADCP信号反射強度を示す。点37は、表層、中層、低層の各位置で採取したサンプルのS.S.濃度と、同じ位置での超音波反射強度とを示す。   FIG. 4 shows the S.D. S. It is a figure which shows the relationship between (floating particle) density | concentration and ADCP signal reflection intensity. The vertical axis is the S.D. S. The (floating particle) concentration is shown on the horizontal axis, and the ADCP signal reflection intensity observed with ADCP5. Point 37 indicates the S.D. of the sample collected at each position of the surface layer, the middle layer, and the lower layer. S. The density and the ultrasonic reflection intensity at the same position are shown.

直線39は、点37に示すデータの相関直線である。表層、中層、低層のいずれにおいても、水中9で採取したサンプルのS.S.濃度と、同じ位置での超音波ビーム11の反射波14の反射強度との間には、同様の相関関係が見られる。微粒子15からの超音波反射強度は、粒子径及び粒子間の距離(密度)が影響すると考えられ、直線39の関係から、コンピュータ19等を用いて、ADCP5で観測した超音波反射強度(図3)をS.S.濃度に換算した推定値が求められる。   A straight line 39 is a correlation straight line of data indicated by the point 37. In any of the surface layer, the middle layer, and the lower layer, the S.P. S. A similar correlation is found between the density and the reflection intensity of the reflected wave 14 of the ultrasonic beam 11 at the same position. The ultrasonic reflection intensity from the fine particles 15 is considered to be affected by the particle diameter and the distance (density) between the particles. From the relationship of the straight line 39, the ultrasonic reflection intensity (FIG. 3) observed by ADCP5 using the computer 19 or the like. ) S. An estimated value converted to a concentration is obtained.

図5は、空港島41とその北西に設置されたシルトフェンス43付近の流速と流向の分布例を示す図、図6は、図5に示す表示範囲45の濁り分布の予測例を示す図である。図5に示す複数の線の長さは流速を、向きは流向を示す。   FIG. 5 is a diagram showing an example of the distribution of flow velocity and flow direction in the vicinity of the airport island 41 and the silt fence 43 installed in the northwest thereof, and FIG. 6 is a diagram showing an example of predicting the turbidity distribution in the display range 45 shown in FIG. is there. The length of the plurality of lines shown in FIG. 5 indicates the flow velocity, and the direction indicates the flow direction.

図5に示すような流速および流向のデータと、ある時点での濁りの分布から、コンピュータ19等を用いて、土砂等の微粒子15の輸送量が算出され、任意の時間や水深の濁り範囲の予測が行われる。予測結果は、図6に示すように、各濃度のS.S.濃度に対応する複数の表示パターンを用いて表示画面に表示される。   From the flow velocity and flow direction data as shown in FIG. 5 and the distribution of turbidity at a certain point in time, the transport amount of the fine particles 15 such as earth and sand is calculated using a computer 19 or the like, and the turbidity range at an arbitrary time or depth A prediction is made. As shown in FIG. S. It is displayed on the display screen using a plurality of display patterns corresponding to the density.

図5に示す流速および流向のデータには、例えば、濁り監視装置1のADCP5で観測された流速・流向や、潮汐、風、河川流入等を考慮して算出した流速・流向が用いられる。濁りの分布のデータには、濁り監視装置1で観測された微粒子15の濃度分布や、土運船から土砂が投下される時刻、位置等の情報が用いられる。   As the flow velocity and flow direction data shown in FIG. 5, for example, the flow velocity / flow direction observed by ADCP 5 of the turbidity monitoring apparatus 1 and the flow velocity / flow direction calculated in consideration of tides, winds, river inflows, and the like are used. As the turbidity distribution data, information such as the concentration distribution of the fine particles 15 observed by the turbidity monitoring device 1 and the time and position at which the earth and sand are dropped from the soil carrier are used.

次に、濁り監視装置1の動作について説明する。濁り監視装置1を用いて三次元的に濁りを監視するには、観測船3は、図2に示すように、濁り全体の分布を網羅できるよう、濁り発生源を中心に経過時間ごとに航行範囲を広げながら航行する。図2に示す例では、観測船3が待機位置23で待機している間に、土運船等を用いて濁り発生源となる投入地点27から土砂等の微粒子15を投入した。観測船3は、周囲の水面まで濁りが現れるまで待機を続けた後、矢印Cに示す方向に移動を開始し、水中9に発生した濁り29aの上方の海上を通過した。   Next, the operation of the turbidity monitoring device 1 will be described. In order to monitor turbidity three-dimensionally using the turbidity monitoring device 1, the observation ship 3 navigates every elapsed time centering on the turbidity source so that the entire turbidity distribution can be covered as shown in FIG. Sail while expanding the range. In the example shown in FIG. 2, while the observation ship 3 is waiting at the standby position 23, fine particles 15 such as earth and sand are introduced from an introduction point 27 that becomes a turbidity generation source using an earth ship. The observation ship 3 continued to wait until turbidity appeared on the surrounding water surface, then started moving in the direction indicated by arrow C, and passed over the sea above the turbidity 29a generated in the water 9.

次に、観測船3は矢印Dに示す方向に方向転換し、濁り29aが南西方向の流れで濁り29bに示す位置に運ばれるのに合わせて、濁り29bの上方の海上を通過した。さらに、観測船3は、矢印E、矢印F、矢印Gに示す方向に方向転換を繰り返し、南西に運ばれた濁り29c、29d、29eの上方の海上を通過した。   Next, the observation ship 3 turned in the direction indicated by the arrow D, and passed over the sea above the turbidity 29b as the turbidity 29a was carried to the position indicated by the turbidity 29b in the southwest flow. Furthermore, the observation ship 3 repeatedly changed its direction in the directions indicated by the arrows E, F, and G, and passed over the sea above the turbidity 29c, 29d, and 29e carried to the southwest.

図1に示すように、投入位置27での土砂投入直後から、観測船3が海上を移動を続ける間、観測船3の舷7に設置したADCP5から水底7に向けて複数の超音波ビーム11を発射する。矢印Aに示す方向に発射された超音波ビーム11は、鉛直方向の各層の測定セル13内に浮遊する微粒子15により、矢印Bの方向に反射される。   As shown in FIG. 1, a plurality of ultrasonic beams 11 are directed from the ADCP 5 installed on the anchor 7 of the observation ship 3 toward the bottom 7 while the observation ship 3 continues to move on the sea immediately after the earth and sand are introduced at the insertion position 27. Fire. The ultrasonic beam 11 emitted in the direction indicated by the arrow A is reflected in the direction of the arrow B by the fine particles 15 floating in the measurement cells 13 of each layer in the vertical direction.

ADCP5は、矢印Bの方向に反射された反射波14のドップラーシフトで、鉛直方向の各層について、測定セル13を含む水平面でのADCP5の直下の流速21を測定する。同時に、ADCP5は各層に浮遊する微粒子15による反射波14の反射強度を取得する。そして、水深毎の流速21および反射波14の反射強度の情報をコンピュータ19に送る。   The ADCP 5 measures the flow velocity 21 immediately below the ADCP 5 on the horizontal plane including the measurement cell 13 for each layer in the vertical direction by the Doppler shift of the reflected wave 14 reflected in the direction of the arrow B. At the same time, ADCP 5 acquires the reflection intensity of the reflected wave 14 by the fine particles 15 floating in each layer. Then, information on the flow velocity 21 for each water depth and the reflection intensity of the reflected wave 14 is sent to the computer 19.

濁り監視装置1は、ADCP5で水深毎の流速21と反射波14の反射強度を測定すると同時に、観測船3上に設置されたGPS20で観測船3の移動の軌跡、すなわちADCP5の位置情報を取得して、位置情報のデータをコンピュータ19に送る。   The turbidity monitoring device 1 measures the flow velocity 21 at each water depth and the reflected intensity of the reflected wave 14 with the ADCP 5 and simultaneously acquires the movement trajectory of the observation ship 3, that is, the position information of the ADCP 5 with the GPS 20 installed on the observation ship 3. Then, the position information data is sent to the computer 19.

コンピュータ19は、入力された位置情報に基づいて、図2に示すように、観測船3の軌跡25を表示画面に表示する。図2に示すように、表示画面に、ADCP5から入力された流速21等のデータを直線31を用いて同時に表示してもよい。観測船3の軌跡25は、ADCP5の水平方向の測定位置を示す。観測船3の軌跡25から枝分かれした直線31の長さは、枝分かれ位置での水中9の流速21を示し、直線31の向きは、枝分かれ位置での流向を示す。   Based on the input position information, the computer 19 displays the trajectory 25 of the observation ship 3 on the display screen as shown in FIG. As shown in FIG. 2, data such as the flow velocity 21 input from the ADCP 5 may be simultaneously displayed on the display screen using a straight line 31. A trajectory 25 of the observation ship 3 indicates a horizontal measurement position of the ADCP 5. The length of the straight line 31 branched from the trajectory 25 of the observation ship 3 indicates the flow velocity 21 of the water 9 at the branch position, and the direction of the straight line 31 indicates the flow direction at the branch position.

図2に示すようなADCP5の位置情報、および、超音波ビーム11の反射波14の反射強度を取得した後、コンピュータ19は、反射波14の反射強度とその測定位置との関係を整理し、図3に示すようなグラフを表示画面に表示する。   After obtaining the position information of ADCP 5 as shown in FIG. 2 and the reflection intensity of the reflected wave 14 of the ultrasonic beam 11, the computer 19 organizes the relationship between the reflection intensity of the reflected wave 14 and its measurement position, A graph as shown in FIG. 3 is displayed on the display screen.

図3に示す例では、待機中33の後半以降の時間帯に、超音波反射強度の高い部分34が観測された。これは、投入地点27で土砂が投入された後、投入地点27から待機位置23に向かって水底17を這うように動いてきた濁りを捉えている。また、高い超音波反射強度が観測された走行中35a、35b、35c、35d、35eの時間帯には、観測船3は図2に示す濁り29a、29b、29c、29d、29eの上を走行していた。   In the example shown in FIG. 3, a portion 34 with a high ultrasonic reflection intensity was observed in the time zone after the second half of the standby 33. This captures the turbidity that has moved from the loading point 27 toward the standby position 23 so as to crawl the bottom 17 after the earth and sand has been loaded at the loading point 27. Further, during the traveling 35a, 35b, 35c, 35d, and 35e during traveling when high ultrasonic reflection intensity is observed, the observation ship 3 travels on the turbidity 29a, 29b, 29c, 29d, and 29e shown in FIG. Was.

図3から、超音波反射強度の高い部分が濁りの存在する位置に対応すると考えられる。また、最初に発生した強い濁り29aは、時間が経過して、濁り29b、29c、29d、29eの位置に移動するにつれて薄まっていくことがわかる。さらに、水深の浅い水表面から見える濁りの範囲より、水深の深い部分の方がより広い範囲に濁りが広がっていることがわかる。   From FIG. 3, it can be considered that a portion with high ultrasonic reflection intensity corresponds to a position where turbidity exists. Moreover, it turns out that the strong turbidity 29a which generate | occur | produced first becomes thin as time passes and it moves to the position of turbidity 29b, 29c, 29d, 29e. Further, it can be seen that the turbidity is spread in a wider range in the deeper portion than in the turbidity range seen from the shallow water surface.

コンピュータ19は、図4に示すような、S.S.濃度とADCP信号反射強度との相関から、反射波14の反射強度をS.S.濃度に換算する。ADCP5は、観測船3で水平方向に移動しながら鉛直方向の各層における反射強度を取得しているため、三次元的な濃度分布が推定される。   As shown in FIG. S. From the correlation between the density and the ADCP signal reflection intensity, the reflection intensity of the reflected wave 14 is calculated as S.P. S. Convert to concentration. Since ADCP5 acquires the reflection intensity in each layer in the vertical direction while moving in the horizontal direction on the observation ship 3, a three-dimensional concentration distribution is estimated.

さらに、コンピュータ19は、ADCP5で測定した流速21等、または、潮汐、風、河川流入等の条件を考慮して算出した流速と流向の分布を用いて、必要に応じて、図5に示すような画面を表示画面に表示する。また、流速および流向と、ADCP5で観測したある時点での濁りの分布や、土砂を投入する位置等の濁りについての情報から、土砂等の微粒子15の輸送量を算出し、任意の時間や水深の濁り範囲の予測を行い、図6に示すような表示パターンを用いて表示画面に表示する。   Further, the computer 19 uses the flow velocity 21 or the like measured by the ADCP 5 or the flow velocity and flow direction distribution calculated in consideration of conditions such as tide, wind, and river inflow as shown in FIG. Display a simple screen on the display screen. Moreover, the transport amount of the fine particles 15 such as earth and sand is calculated from the information on the turbidity distribution at a certain point of time observed by the ADCP 5 and the turbidity such as the position where the earth and sand are introduced, and the time and depth of water are calculated. The cloudiness range is predicted and displayed on a display screen using a display pattern as shown in FIG.

濁りの分布を予測する対象範囲および対象時刻は、任意に設定できる。必要に応じて、濁り分布の経時変化の予測結果を、図6に示すような表示パターンを用いて連続して表示してもよい。   The target range and target time for predicting the turbidity distribution can be arbitrarily set. If necessary, the prediction result of the turbidity distribution with time may be continuously displayed using a display pattern as shown in FIG.

このように、本実施の形態では、ADCP5を取り付けた観測船3を水平方向に移動させつつ、濁度の基となる微粒子15からの超音波反射強度を連続観測する。ADCP5が、水平方向に移動しつつ、鉛直方向の各層の超音波反射強度を同時に測定するため、三次元的な濁りの濃度分布を短時間に計測することができる。また、ADCP5で計測した流速21を用いて微粒子15の輸送量を算出して濃度分布を予測し、工事で出る濁りを高度に管理することができる。   As described above, in the present embodiment, the ultrasonic reflection intensity from the fine particles 15 that are the basis of turbidity is continuously observed while moving the observation ship 3 to which the ADCP 5 is attached in the horizontal direction. Since the ADCP 5 simultaneously measures the ultrasonic reflection intensity of each layer in the vertical direction while moving in the horizontal direction, the three-dimensional turbidity concentration distribution can be measured in a short time. Moreover, the transport amount of the fine particles 15 can be calculated using the flow velocity 21 measured by ADCP5 to predict the concentration distribution, and the turbidity generated in the construction can be highly managed.

なお、図1では、観測船3の舷7にADCP5を設置したが、ADCP5の設置位置はこれに限らず、船底に設置したり、海面を曳航してもよい。また、コンピュータ19の設置位置は観測船3上に限らず、GPS20やADCP5からのデータを受信できる他の場所に設置してもよい。   In FIG. 1, the ADCP 5 is installed on the anchor 7 of the observation ship 3. However, the installation position of the ADCP 5 is not limited to this, and it may be installed on the bottom of the ship or tow the sea surface. Further, the installation position of the computer 19 is not limited to the observation ship 3 and may be installed in another place where data from the GPS 20 or ADCP 5 can be received.

ADCP5で取得される反射波14の反射強度は、薄い濁りに敏感に反応する傾向があり、定量的な濁度の把握には、濁度計を併用することが望ましい。   The reflected intensity of the reflected wave 14 acquired by ADCP5 tends to react sensitively to thin turbidity, and it is desirable to use a turbidimeter in combination for quantitative grasping of turbidity.

濁り監視装置1の概要図Outline diagram of turbidity monitoring device 1 GPS20で観測された観測船3の軌跡25、すなわちADCP5の位置情報を示す図The figure which shows the locus | trajectory 25 of the observation ship 3 observed by GPS20, ie, the positional information on ADCP5. 観測船3の軌跡25に示す位置および時刻での超音波反射強度を示す図The figure which shows the ultrasonic reflected intensity in the position and time shown in the locus | trajectory 25 of the observation ship 3 採水分析で求めたS.S.(浮遊粒子)濃度とADCP信号反射強度との関係を示す図S.D. obtained by water sampling analysis. S. The figure which shows the relationship between (floating particle) concentration and ADCP signal reflection intensity 空港島41とその北西に設置されたシルトフェンス43付近の流速と流向の分布例を示す図The figure which shows the distribution example of the flow velocity and the flow direction in the vicinity of the airport island 41 and the silt fence 43 installed in the northwest 図5に示す表示範囲45の濁り分布の予測例を示す図The figure which shows the example of prediction of the turbidity distribution of the display range 45 shown in FIG.

符号の説明Explanation of symbols

1………濁り監視装置
3………船
5………ADCP
11………超音波ビーム
15………微粒子
19………コンピュータ
20………GPS
21………流速
23………観測船3の軌跡
29a、29b、29c、29d、29e………濁り
1 ... Turbidity monitoring device 3 ... Ship 5 ... ADCP
11 ……… Ultrasonic beam 15 ……… Particulate 19 ……… Computer 20 ……… GPS
21 ......... Flow velocity 23 ......... Track 29a, 29b, 29c, 29d, 29e of observation ship 3 ... Muddy

Claims (2)

超音波ドップラー流速計を水平方向に移動させつつ、前記超音波ドップラー流速計から発射されて水中の鉛直方向の各層に浮遊する微粒子で反射された超音波の反射強度および前記超音波ドップラー流速計の水平方向の位置情報を取得し、水深毎の前記反射強度と水平方向の前記位置情報から、前記微粒子の三次元的な分布を推定する水中の濁り監視方法であって、
前記超音波ドップラー流速計の水平軌跡と、前記軌跡から枝分かれした直線の長さと向きにより水深毎の流速と流向を表示し、
予め作成した、採水分析で求めた前記微粒子の浮遊粒子濃度と前記採水分析と同じ位置で測定した超音波ドップラー流速計による反射強度との相関関係を用いて、前記反射強度を浮遊粒子濃度に換算し、
前記超音波ドップラー流速計の水平軌跡と、前記超音波ドップラー流速計で計測された水深毎の流速または、潮汐、風、河川流入を考慮して算出された流速および流向の分布と、水深毎の前記反射強度とを用いて前記微粒子の輸送量を算出し、前記微粒子の三次元的な分布を推定し、任意の水深、範囲および時刻における濁りの予測分布を表示することを特徴とする水中の濁り監視方法。
While moving the ultrasonic Doppler velocimeter in the horizontal direction, the reflection intensity of the ultrasonic wave reflected from the fine particles floating from the ultrasonic Doppler velocimeter and floating in each vertical layer in the water, and the ultrasonic Doppler velocimeter A method for monitoring turbidity in water, wherein the position information in the horizontal direction is acquired, and the three-dimensional distribution of the fine particles is estimated from the reflection intensity for each depth of water and the position information in the horizontal direction ,
By displaying the horizontal trajectory of the ultrasonic Doppler velocimeter and the length and direction of the straight line branched from the trajectory, the flow velocity and flow direction for each water depth are displayed.
Using the correlation between the suspended particle concentration of the fine particles determined in the water sampling analysis prepared in advance and the reflected intensity by the ultrasonic Doppler velocimeter measured at the same position as the water sampling analysis, the reflection intensity is determined as the suspended particle concentration. Converted to
The horizontal trajectory of the ultrasonic Doppler velocimeter, the flow velocity for each water depth measured by the ultrasonic Doppler velocimeter, or the distribution of flow velocity and flow direction calculated in consideration of tides, winds and river inflows, and for each water depth The amount of transport of the fine particles is calculated using the reflection intensity, the three-dimensional distribution of the fine particles is estimated , and the predicted distribution of turbidity at an arbitrary water depth, range and time is displayed . Turbidity monitoring method.
超音波ドップラー流速計と、
前記超音波ドップラー流速計を水平方向に移動させる移動手段と、
前記超音波ドップラー流速計の水平方向の位置情報を取得する手段と、
前記超音波ドップラー流速計から発射されて水中の鉛直方向の各層に浮遊する微粒子で反射された超音波の水深毎の反射強度と水平方向の前記位置情報とから、予め作成した、採水分析で求めた前記微粒子の浮遊粒子濃度と前記採水分析と同じ位置で測定した超音波ドップラー流速計による反射強度との相関関係を用いて、前記反射強度を浮遊粒子濃度に換算する手段と、
前記超音波ドップラー流速計の水平軌跡と、前記軌跡から枝分かれした直線の長さと向きにより水深毎の流速と流向を表示する第1の表示手段と、
前記超音波ドップラー流速計の水平軌跡と、前記超音波ドップラー流速計で計測された水深毎の流速または、潮汐、風、河川流入を考慮して算出された流速および流向の分布と、水深毎の前記反射強度とを用いて前記微粒子の輸送量を算出し、前記微粒子の三次元的な分布を推定する手段と、
任意の水深、範囲および時刻における濁りの予測分布を表示する第2の表示手段と、
を具備することを特徴とする水中の濁り監視装置。
An ultrasonic Doppler anemometer,
Moving means for moving the ultrasonic Doppler velocimeter in a horizontal direction ;
Means for acquiring horizontal position information of the ultrasonic Doppler velocimeter;
From the reflection intensity at each water depth of the ultrasonic wave reflected from the fine particles floating in the vertical layers in the water and emitted from the ultrasonic Doppler velocimeter, the position information in the horizontal direction was created in advance. Using the correlation between the determined suspended particle concentration of the fine particles and the reflected intensity by the ultrasonic Doppler velocimeter measured at the same position as the water sampling analysis, the means for converting the reflected intensity to the suspended particle concentration,
A first display means for displaying a horizontal trajectory of the ultrasonic Doppler velocimeter, and a flow velocity and a flow direction for each water depth according to the length and direction of a straight line branched from the trajectory;
The horizontal trajectory of the ultrasonic Doppler velocimeter, the flow velocity for each water depth measured by the ultrasonic Doppler velocimeter, or the distribution of flow velocity and flow direction calculated in consideration of tides, winds and river inflows, and for each water depth Means for calculating a transport amount of the fine particles using the reflection intensity and estimating a three-dimensional distribution of the fine particles;
Second display means for displaying a predicted distribution of turbidity at an arbitrary depth, range and time;
A turbidity monitoring device in water, comprising:
JP2006283405A 2006-10-18 2006-10-18 Turbidity monitoring method and turbidity monitoring device in water Expired - Lifetime JP4342546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006283405A JP4342546B2 (en) 2006-10-18 2006-10-18 Turbidity monitoring method and turbidity monitoring device in water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006283405A JP4342546B2 (en) 2006-10-18 2006-10-18 Turbidity monitoring method and turbidity monitoring device in water

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002131313A Division JP2003322604A (en) 2002-05-07 2002-05-07 Method of monitoring turbidity in water and turbidity monitoring device

Publications (3)

Publication Number Publication Date
JP2007071881A JP2007071881A (en) 2007-03-22
JP2007071881A5 JP2007071881A5 (en) 2009-01-29
JP4342546B2 true JP4342546B2 (en) 2009-10-14

Family

ID=37933410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006283405A Expired - Lifetime JP4342546B2 (en) 2006-10-18 2006-10-18 Turbidity monitoring method and turbidity monitoring device in water

Country Status (1)

Country Link
JP (1) JP4342546B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100883046B1 (en) 2008-06-11 2009-02-10 (주)지오시스템리서치 Remote-control vessel for water quality and meteorological environmental monitoring and method for managing the same
CN103197093B (en) * 2013-03-18 2015-05-13 中国电建集团中南勘测设计研究院有限公司 Hydrometric station cableway type flow velocity automatic measurement device
CN104457712B (en) * 2014-11-24 2016-12-07 三峡大学 The system and method for density current it is layered under the conditions of the low flow velocity of gulf, storehouse, mobile monitoring river-like reservoir tributary
CN107897060A (en) * 2017-11-17 2018-04-13 中国电建集团成都勘测设计研究院有限公司 The observation procedure of fish constellation effect under dam

Also Published As

Publication number Publication date
JP2007071881A (en) 2007-03-22

Similar Documents

Publication Publication Date Title
Smith et al. Observations of nearshore circulation: Rip currents
Moum et al. Observations of boundary mixing over the continental slope
Muste et al. Capabilities of large-scale particle image velocimetry to characterize shallow free-surface flows
JP4415192B2 (en) Riverbed measuring device
Lermusiaux et al. Coupled ocean–acoustic prediction of transmission loss in a continental shelfbreak region: Predictive skill, uncertainty quantification, and dynamical sensitivities
Senechal et al. The ECORS-Truc Vert’08 nearshore field experiment: presentation of a three-dimensional morphologic system in a macro-tidal environment during consecutive extreme storm conditions
Shitashima et al. Development of detection and monitoring techniques of CO2 leakage from seafloor in sub-seabed CO2 storage
Kawanisi et al. Continuous monitoring of a dam flush in a shallow river using two crossing ultrasonic transmission lines
Ghobrial et al. Characterizing suspended frazil ice in rivers using upward looking sonars
JP4342546B2 (en) Turbidity monitoring method and turbidity monitoring device in water
Razaz et al. Variability of a natural hydrocarbon seep and its connection to the ocean surface
JP2003322604A (en) Method of monitoring turbidity in water and turbidity monitoring device
JP2004184268A (en) Underwater resources exploring method and system thereof
Hu et al. Low-angle dunes in the Changjiang (Yangtze) Estuary: Flow and sediment dynamics under tidal influence
US20220146475A1 (en) Method of and apparatus for scanning with an underwater mass spectrometer
Amador et al. ADCP bias and Stokes drift in AUV-based velocity measurements
Armenio et al. Environmental technologies to safeguard coastal heritage
Song et al. Observation and forecasting of rip current generation in Haeundae Beach, Korea Plan and Experiment
Miles et al. Sediment Resuspension and Transport from a Glider-Integrated Laser in Situ Scattering and Transmissometry (LISST) Particle Analyzer
RU2521717C1 (en) Method of passive acoustic monitoring of demersal gas-liquid flows
Blanc A. PHYSICAL OCEANOGRAPHY
Rona et al. Acoustics advances study of sea floor hydrothermal flow
French-McCay et al. Evaluation of field-collected data measuring fluorescein dye movements and dispersion for dispersed oil transport modeling
Zirek et al. Change detection of seafloor topography by modeling multitemporal multibeam echosounder measurements
Ghobrial Characterization of suspended frazil and surface ice in rivers using sonars

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090707

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4342546

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150717

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term