JP4342338B2 - Three-dimensional porous structure and manufacturing method thereof - Google Patents

Three-dimensional porous structure and manufacturing method thereof Download PDF

Info

Publication number
JP4342338B2
JP4342338B2 JP2004040550A JP2004040550A JP4342338B2 JP 4342338 B2 JP4342338 B2 JP 4342338B2 JP 2004040550 A JP2004040550 A JP 2004040550A JP 2004040550 A JP2004040550 A JP 2004040550A JP 4342338 B2 JP4342338 B2 JP 4342338B2
Authority
JP
Japan
Prior art keywords
porous structure
polymer
dimensional porous
dimensional
water droplets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004040550A
Other languages
Japanese (ja)
Other versions
JP2005232238A (en
Inventor
賢 田中
允史 竹林
政嗣 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2004040550A priority Critical patent/JP4342338B2/en
Publication of JP2005232238A publication Critical patent/JP2005232238A/en
Application granted granted Critical
Publication of JP4342338B2 publication Critical patent/JP4342338B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Biological Depolymerization Polymers (AREA)

Description

この出願の発明はポリマーの3次元多孔質構造体とその製造方法に関するものである。   The invention of this application relates to a polymer three-dimensional porous structure and a method for producing the same.

微細構造の規則的に配列を特徴とする材料は半導体低誘電率材料、電子ディスプレイ用散乱層、磁気記録材料、フォトニック結晶、触媒担体、DNAチップ、プロテインチップ、マイクロマシーン、マイクロ流路、ケミカルバルブ、細胞培養基材など多様な用途への応用が検討されている有望な素材である。なかでも、次世代の医療技術として注目されている再生医療の推進においては、適切な細胞増殖のための微細構造を利用した3次元の足場材の提供が必要とされている。適切な生体組織化誘導のためには、細胞・増殖因子・足場のバランスが重要であるが、とりわけ足場である細胞外マトリックスは、細胞の増殖や分化、細胞間の情報伝達の場としての役割を担っていることが知られている。そして、足場基材は表面の化学的性質のみならず、その微細構造によっても細胞の接着、分裂、増殖、移動および分化などの挙動に影響を与えることが知られている。さらに、3次元的な生体組織化を促進するためには、3次元の足場が必要と考えられている(非特許文献1−2)。   Materials characterized by regularly arranged microstructures are semiconductor low dielectric constant materials, scattering layers for electronic displays, magnetic recording materials, photonic crystals, catalyst carriers, DNA chips, protein chips, micromachines, microchannels, chemicals It is a promising material that is being studied for various uses such as valves and cell culture substrates. In particular, in the promotion of regenerative medicine, which is attracting attention as the next-generation medical technology, it is necessary to provide a three-dimensional scaffold using a fine structure for appropriate cell growth. The balance of cells, growth factors, and scaffolds is important for the proper induction of biological organization, but the extracellular matrix, which is the scaffold, plays a role as a field for cell proliferation and differentiation, and for communication between cells. It is known that It is known that the scaffold base material affects not only the surface chemical properties but also the behavior such as cell adhesion, division, proliferation, migration and differentiation not only by its fine structure. Furthermore, it is considered that a three-dimensional scaffold is necessary to promote three-dimensional biological organization (Non-Patent Document 1-2).

しかしながら、現在までに様々な基材表面への微細構造加工技術が検討、開発されているが、いずれにおいても高性能な3次元構造は実現されていないのが実情である。一方、産業上有用な2次元構造の作製法としては、ポリマーにおいてドット、ライン、ハニカムなどの規則的なメゾスコピックパターン構造の作製方法が提案されている(特許文献1)。この方法はポリマーの疎水性有機溶媒溶液のキャスト膜へ水分の結露を利用した安価で簡便な方法であるが、有機溶媒の蒸散と雰囲気中の水分の結露が非平衡的に同時進行し、構造体は単層すなわち2次元的なパターン構造に限られており、現在までポリマーによる3次元的な微細構造の作製は実現されていない。
再生医工学の最先端,箋義人編,シーエムシー出版,2002 R. P. Lanza, R. Langer, J. Vacanti, eds, Principle of Tissue Engineering, Academic Press, 2000 特開2001−157574号公報
However, up to now, various microstructural processing techniques on the surface of the substrate have been studied and developed, but none of them has realized a high-performance three-dimensional structure. On the other hand, as a method for producing an industrially useful two-dimensional structure, a method for producing a regular mesoscopic pattern structure such as dots, lines, and honeycombs in a polymer has been proposed (Patent Document 1). This method is an inexpensive and simple method using moisture condensation on a cast membrane of a hydrophobic organic solvent solution of polymer, but the evaporation of the organic solvent and moisture condensation in the atmosphere proceed simultaneously in a non-equilibrium manner. The body is limited to a single layer, that is, a two-dimensional pattern structure, and production of a three-dimensional microstructure using a polymer has not been realized so far.
State-of-the-art of regenerative medical engineering, Yoshito Seki, CMC Publishing, 2002 RP Lanza, R. Langer, J. Vacanti, eds, Principle of Tissue Engineering, Academic Press, 2000 JP 2001-157574 A

この出願の発明は、以上のような背景から、各種の有用性を有する均一な構造パターンを呈する3次元的な多孔質構造体を提供することを課題とする。   An object of the invention of this application is to provide a three-dimensional porous structure exhibiting a uniform structure pattern having various utilities from the above background.

この出願の発明者らは、すでに提案している2次元的な微細構造の製造技術を基礎として、3次元構造を実現するための検討を鋭意行い、新たに得られた以下のような知見に基づいて、この出願の発明の3次元構造体とその製造方法を完成している。   The inventors of this application eagerly studied to realize a three-dimensional structure on the basis of the two-dimensional microstructure manufacturing technology that has already been proposed, and obtained the following findings. Based on this, the three-dimensional structure of the invention of this application and its manufacturing method have been completed.

すなわち、発明者がすでに提案している構造体は、ポリマー溶液表面に結露を生じさせ、結露した水滴が最密充填することで、水滴以外の空間でポリマーの析出したものと考えられる。さらに、結露した水滴がポリマー溶液表面で2次元的に配列して、すなわち細孔の鋳型となり、均一な微細細孔パターンを呈する構造体が作製されたと考えられる。そこで、この出願の発明者らは細孔の鋳型となる結露した水滴を有機溶媒中に3次元的に配置させることができれば、均一な構造パターンを呈する3次元的微細構造が実現できると考え、はじめにポリマー溶液表面に発生した結露水滴の層をポリマー溶液内に沈め、ポリマー溶液表面に結露水滴を再度発生させ、これを繰り返すことで3次元的微細構造を作製することを可能とした。   That is, it is considered that the structure already proposed by the inventor causes condensation on the surface of the polymer solution, and the condensed water droplets are closely packed, so that the polymer is deposited in a space other than the water droplets. In addition, it is considered that the condensed water droplets are two-dimensionally arranged on the surface of the polymer solution, that is, become a pore template, and a structure exhibiting a uniform fine pore pattern is produced. Therefore, the inventors of this application think that a three-dimensional microstructure exhibiting a uniform structure pattern can be realized if the condensed water droplets serving as pore templates can be three-dimensionally arranged in an organic solvent. First, a layer of condensed water droplets generated on the surface of the polymer solution was submerged in the polymer solution, and condensed water droplets were generated again on the surface of the polymer solution. By repeating this, it was possible to produce a three-dimensional microstructure.

以上のことから、この出願の発明は、第1には、基板表面にポリマーの有機溶媒溶液をキャストし、この有機溶媒を蒸散させると同時に雰囲気中の水分を結露させ、さらに結露した水滴を3次元的に多層に配置させた後に、その水滴を蒸発させることを特徴とするポリマーの3次元多孔質構造体の製造方法を提供する。そして第2には、この構造体を作製するためのポリマーは、少くとも1種以上の生分解性ポリマーを含むことを特徴とする製造方法を提供する。 From the above, according to the invention of the present application, first, an organic solvent solution of a polymer is cast on the surface of the substrate, and the organic solvent is evaporated, and moisture in the atmosphere is condensed at the same time. Provided is a method for producing a three-dimensional porous structure of a polymer, characterized in that the water droplets are evaporated after being arranged in multiple dimensions. And second, polymer for making this structure will provide a production method which comprises one or more biodegradable polymers least.

には、結露した水滴の3次元配置が、高湿度空気の吹き付けによって行われること、第は、この高湿度空気の吹き付けが間欠的に行われることを特徴とする上記いずれかの製造方法を提供する。 Third , the three-dimensional arrangement of condensed water droplets is performed by blowing high-humidity air, and fourth , the high-humidity air blowing is intermittently performed. Provide a method.

また、さらにこの出願の発明は、第には、上記いずれかの製造方法によって製造されたハニカム構造を有するポリマー3次元体である多孔質構造体であって、ハニカムの孔径あるいは層厚の少くとも一方が0.01−100μmの範囲であることを特徴とする構造体を提供し、第には、ハニカム構造が2−20の多層の構成を有していることを特徴とする構造体を提供する。 Still the invention of this application, the fifth, the a porous structure is any polymer 3D having a manufactured honeycomb structured by the manufacturing method, less of a honeycomb having a pore size or thickness Both of them provide a structure characterized by having a range of 0.01-100 μm, and sixth , a structure characterized in that the honeycomb structure has a multilayer structure of 2-20 I will provide a.

そして、第には、上記いずれかの構造体を構成の少くとも一部としていることを特徴とする細胞培養足場材をも提供する。 And seventh, there is also provided a cell culture scaffold comprising any one of the above structures as at least a part of the structure.

この出願の発明により、新規な微細多孔質構造体とその製造方法が提供される。これにより、細胞培養基材のほか、DNAチップおよびプロテインチップをはじめとすると各種バイオ診断用チップ、セパレーターやイオン交換膜などの電池隔膜材料、触媒担体、ディスプレイや光導波路などの光学材料、異方性固体伝導性材料や半導体材料、各種記録媒体のほか、各種の触媒、酵素、抗体および薬剤などの有用な担体が提供される。   The invention of this application provides a novel fine porous structure and a method for producing the same. As a result, in addition to cell culture substrates, various biodiagnostic chips such as DNA chips and protein chips, battery membrane materials such as separators and ion exchange membranes, catalyst carriers, optical materials such as displays and optical waveguides, anisotropic materials In addition to conductive solid conductive materials, semiconductor materials, and various recording media, useful carriers such as various catalysts, enzymes, antibodies, and drugs are provided.

この出願の発明の本質的特徴は、多孔質構造体の孔の鋳型となる水滴をポリマー溶液中に3次元で最密充填する点である。すなわち、基板表面にキャストしたポリマーの有機溶媒溶液の蒸発により結露を発生させ、生じた水滴とポリマー溶液との極性の違いによる相互作用、および水滴の溶液内への沈降操作によって、微細水滴粒子をポリマー溶液中に最密充填する技術である。なお、この出願の3次元多孔質構造体は好ましくはハニカム構造を呈する構造体であるが、これは鋳型となる水滴の六方最密充填よるものと考えられる。また、水滴は必ずしも高純度の水ではなく、結露後に気体分子を吸収させるなど、水滴の物性を若干変化させて、作製される構造体がハニカム構造とはならない最密充填の形式をとるものであってもよい。   An essential feature of the invention of this application is that water droplets, which serve as a template for pores of the porous structure, are closely packed in a polymer solution in three dimensions. That is, condensation is generated by evaporation of the organic solvent solution of the polymer cast on the substrate surface, and the fine water droplet particles are formed by the interaction due to the difference in polarity between the generated water droplet and the polymer solution, and the sedimentation operation of the water droplet into the solution. This is a technique for close packing in a polymer solution. The three-dimensional porous structure of this application is preferably a structure having a honeycomb structure, which is considered to be due to the hexagonal close-packing of water droplets as a mold. In addition, water droplets are not necessarily high-purity water, and the physical properties of the water droplets are slightly changed, such as absorbing gas molecules after dew condensation, so that the structure to be produced takes the form of closest packing that does not become a honeycomb structure. There may be.

なお、この出願の発明において「基板」とは構造体を作製する際の基礎となる部分であり、構造体には含まれない。   In the invention of this application, the “substrate” is a portion that is a basis for manufacturing a structure, and is not included in the structure.

さらに、この出願の発明において「湿度」および「結露」という用語について本質的に含意される水分、さらに「水分」および「水滴」という用語は、水を主成分とする液体を指すものであるが、必ずしも純度100%の水に限定されるものではない。   Furthermore, in the invention of this application, moisture essentially implied for the terms “humidity” and “condensation”, and the terms “moisture” and “water droplets” refer to a liquid mainly composed of water. However, it is not necessarily limited to 100% pure water.

また、この出願の発明において「空気」は比較的不活性な気体であればよく、必ずしも標準的組成の大気に限定されるものではない。   In the invention of this application, “air” may be a relatively inert gas, and is not necessarily limited to a standard composition of air.

以下に示す発明の実施の形態では、結露する水滴として水、ポリマー溶液として疎水性ポリマーと両親媒性ポリマーの混合ポリマーの疎水性有機溶媒溶液を例示されるが、この出願の発明の実施形態は、目的とする水滴とポリマー溶液との相互作用、すなわち、水滴とポリマー溶液間の極性の違いによって微細水滴粒子の最密充填を実現可能な組み合わせであればよく、例示した組み合わせに限定されるものではない。   In the embodiment of the invention shown below, water is used as the water droplets to be condensed, and the hydrophobic organic solvent solution of the mixed polymer of the hydrophobic polymer and the amphiphilic polymer is exemplified as the polymer solution. Any combination that can achieve the closest packing of fine water droplets by the interaction between the target water droplet and the polymer solution, that is, the difference in polarity between the water droplet and the polymer solution, is limited to the exemplified combinations. is not.

この出願の発明の構造体作製に用いる疎水性ポリマーは、ポリスチレン、ポリメチルヘキサデシルシロキサン、ポリビニルカルバゾールなどの汎用性ポリマー、ポリスルホンなどのエンジニアリングプラスチック、ポリメチルメタクリレート、ポリテトラヒドロフルフリルメタクリレートおよびポリブチルメタクリレートなどの(メタ)アクリル系ポリマー、スチレン−ブタジエン系エラストマー、ポリウレタン系ポリマー、ポリブチレンカーボネートおよびポリエチレンカーボネートなどの脂肪族ポリカーボネート、ポリ乳酸、乳酸−グリコール酸共重合体、ポリヒドロキシ酪酸、ポリカプロラクトン、ポリエチエンアジペートおよびポリブチレンアジペートなどの生分解性ポリマーなどが有機溶媒への溶解性の観点から好ましい。これらは1種を単独で用いてもよいし、複数を組み合わせて用いてもよい。   Hydrophobic polymers used in the production of the structure of the invention of this application are general-purpose polymers such as polystyrene, polymethylhexadecylsiloxane, and polyvinylcarbazole, engineering plastics such as polysulfone, polymethyl methacrylate, polytetrahydrofurfuryl methacrylate, and polybutyl methacrylate. (Meth) acrylic polymers such as styrene-butadiene elastomers, polyurethane polymers, aliphatic polycarbonates such as polybutylene carbonate and polyethylene carbonate, polylactic acid, lactic acid-glycolic acid copolymers, polyhydroxybutyric acid, polycaprolactone, polyethylene Biodegradable polymers such as enadipate and polybutylene adipate are preferred from the viewpoint of solubility in organic solvents. These may be used alone or in combination.

この出願の発明の構造体作製に用いる両親媒性ポリマーは、ポリエチレングリコール/ポリプロピレングリコールブロック共重合体もしくはアクリルアミドポリマーを主鎖骨格とし、疎水性側鎖としてドデシル基、親水性側鎖としてラクトース基もしくはカルボキシル基を併せ持つ両親媒性ポリマー、ヘパリン、デキストラン硫酸、DNAまたはRNA等のアニオン性ポリマーと長鎖アルキルアンモニウム塩とのイオンコンプレックスによる両親媒性ポリマー、もしくはゼラチン、コラーゲン、アルブミンおよびキトサンなどの水溶性タンパク質を親水性基とした両親媒性ポリマーを利用することができる。   The amphiphilic polymer used for producing the structure of the invention of this application has a polyethylene glycol / polypropylene glycol block copolymer or acrylamide polymer as a main chain skeleton, a dodecyl group as a hydrophobic side chain, a lactose group as a hydrophilic side chain, or Amphiphilic polymer having carboxyl group, amphiphilic polymer by ion complex of anionic polymer such as heparin, dextran sulfate, DNA or RNA and long chain alkyl ammonium salt, or water-soluble such as gelatin, collagen, albumin and chitosan An amphiphilic polymer having a protein as a hydrophilic group can be used.

この出願の発明の構造体作製に用いるポリマー溶液を調製する有機溶媒は、ポリマー溶液表面に微小な水滴粒子を形成させることが必須であることから、該有機溶媒は疎水性を有することが必要である。該有機溶媒の例としてはクロロホルム、ジクロロメタンおよびジクロロエタン等のハロゲン系有機溶媒、ベンゼン、トルエンおよびキシレンなどの芳香族炭化水素、酢酸エチルおよび酢酸ブチル等のエステル類、メチルイソブチルケトン等の非水溶性ケトン類、二硫化炭素等を用いることが出来る。これらの有機溶媒は1種を単独で使用してもよいし、複数を組み合わせた混合溶媒を使用してもよい。   Since the organic solvent for preparing the polymer solution used for the production of the structure of the invention of this application is required to form fine water droplet particles on the surface of the polymer solution, the organic solvent needs to have hydrophobicity. is there. Examples of the organic solvent include halogen-based organic solvents such as chloroform, dichloromethane and dichloroethane, aromatic hydrocarbons such as benzene, toluene and xylene, esters such as ethyl acetate and butyl acetate, and water-insoluble ketones such as methyl isobutyl ketone. For example, carbon disulfide can be used. These organic solvents may be used individually by 1 type, and the mixed solvent which combined multiple may be used.

この出願の発明の構造体作製に用いるポリマー溶液を調製する際のポリマー濃度は、疎水性ポリマーと両親媒性ポリマーを合わせて、0.01−20w%を用いることができ、好ましくは0.1−10w%である。なお、ポリマー濃度が0.01w%を下回ると構造体の力学的強度が不足し、20w%以上では十分な3次元構造が得られない。さらに、疎水性ポリマーと両親媒性ポリマーの重量組成比は好ましくは99:1から50:50の間である。総ポリマーに対する両親媒性ポリマーの重量比が1%未満では均一な多孔質構造が得ることが難しく、また50%を超えると構造体の安定性、特に力学的安定性にかける。   The polymer concentration in preparing the polymer solution used for the production of the structure of the invention of this application can be 0.01-20 w%, preferably 0.1-20 w%, combining the hydrophobic polymer and the amphiphilic polymer. -10 w%. If the polymer concentration is less than 0.01 w%, the mechanical strength of the structure is insufficient, and if it is 20 w% or more, a sufficient three-dimensional structure cannot be obtained. Furthermore, the weight composition ratio of the hydrophobic polymer to the amphiphilic polymer is preferably between 99: 1 and 50:50. When the weight ratio of the amphiphilic polymer to the total polymer is less than 1%, it is difficult to obtain a uniform porous structure, and when it exceeds 50%, the stability of the structure, particularly mechanical stability, is affected.

この出願の発明の構造体作製における結露水滴の3次元的な配置操作は、溶媒の比重が水より小さいものを選択し、ポリマー溶液表面に結露した水滴を溶液中に沈みこませる方法によって行うことができる。すなわち、結露形成の途中で雰囲気中からの水分の供給を一時的に遮断し、水滴と周囲の溶液との比重差によって結露水滴を溶液へ沈み込ませる方法である。あるいは、結露溶液表面に気体を吹き付けることにより水滴を沈みこませる方法を用いてもよい。吹き付けにより結露水滴は沈みこんで溶液面が露出するほか、完全に沈み込まないまでも結露水滴同士の隙間に新たに生じた溶液面に、新たに結露を生じさせることができる。気体の吹き付けによる方法では、高湿度空気を用いることが好ましいが、ポリマー溶液表面に結露を生じる事が出来る程度の湿度をもった気体であればよく、空気に限らず、窒素、アルゴンなどの不活性気体を用いてもよい。   The three-dimensional arrangement operation of the condensed water droplets in the production of the structure of the invention of this application is performed by a method in which a solvent having a specific gravity smaller than that of water is selected and the water droplets condensed on the polymer solution surface are submerged in the solution. Can do. That is, this is a method in which the supply of moisture from the atmosphere is temporarily interrupted during the formation of condensation, and the condensation water droplets are submerged into the solution due to the specific gravity difference between the water droplets and the surrounding solution. Or you may use the method of sinking a water droplet by spraying gas on the surface of a dew condensation solution. By spraying, the condensed water droplets sink and the solution surface is exposed, and even if it does not completely sink, new condensation can be generated on the solution surface newly generated in the gap between the condensed water droplets. In the method by gas blowing, it is preferable to use high-humidity air, but any gas having a humidity sufficient to cause condensation on the polymer solution surface may be used. An active gas may be used.

この出願の発明の構造体作製に使用する基板としてはガラス、金属、ITO基板およびシリコンウエハーなどの無機材料、また、ポリプロピレン、ポリエチレン、ポリエーテルケトンおよびフッ素樹脂などの耐有機溶媒性に優れた高分子、水、流動性パラフィンおよび液状ポリエーテルなどの液体が使用できる。   Substrates used for the production of the structure of the invention of this application include inorganic materials such as glass, metal, ITO substrate and silicon wafer, and high resistance to organic solvents such as polypropylene, polyethylene, polyetherketone and fluororesin. Liquids such as molecules, water, liquid paraffin and liquid polyethers can be used.

この出願の発明によって提供される3次元多孔質構造体は、基板上に作製して基板とともにそのまま使用してもよいし、剥離して構造体のみを使用してもよい。基板上の作製した膜状の3次元構造体は構造的に安定性が高く自立性を有することから、それを基板より容易に剥離でき自己支持フィルムとして利用できる。また、従来技術により様々な加工を施して使用することができ、使用方法、用途は特に限定されるものではない。例えば、構造体を延伸させ、伸長した細孔の配列構造を使用することも可能である。延伸の方法も、特に限定されず、ピンセットや手作業による延伸、マイクロマニピュレーターを用いた延伸でもよい。さらに、表面に微細突起構造を作製することも可能である。微細突起構造の修飾方法も特に限定されず、また修飾面も微細突起構造は構造体表面(非基板側)および基板側の両面が可能である。微細突起構造をもつ構造体として、微細突起構造の鋳型となる溝が彫られた基板を用いて構造体を作製し基板から剥離してフィルムとして用いる方法、また粘着テープなどによる物理的な剥離操作による表面修飾を行った構造体などを用いることが出来る。   The three-dimensional porous structure provided by the invention of this application may be produced on a substrate and used as it is together with the substrate, or may be peeled off to use only the structure. Since the film-like three-dimensional structure produced on the substrate is structurally stable and self-supporting, it can be easily peeled off from the substrate and used as a self-supporting film. In addition, it can be used after being subjected to various processing according to conventional techniques, and its usage and application are not particularly limited. For example, it is possible to extend the structure and use an extended pore array structure. The stretching method is also not particularly limited, and stretching using tweezers or manual work or stretching using a micromanipulator may be used. Furthermore, it is possible to produce a fine protrusion structure on the surface. The modification method of the fine protrusion structure is not particularly limited, and the fine protrusion structure on the modification surface can be both on the structure surface (non-substrate side) and on the substrate side. As a structure having a fine protrusion structure, a method of producing a structure using a substrate on which a groove serving as a mold of the fine protrusion structure is carved and using it as a film by peeling off the substrate, or a physical peeling operation using an adhesive tape, etc. It is possible to use a structure or the like that has been subjected to surface modification.

この出願の発明において、多孔質構造が形成される機構として次のようなことが考えられる。すなわち、キャストしたポリマー溶液に含まれる有機溶媒の蒸発潜熱によりポリマー溶液表面の温度が低下し、雰囲気中の水分がポリマー溶液表面に凝集いわゆる結露を生じる。結露した水滴とポリマー溶液中に含まれる両親媒性ポリマーの親水性基との相互作用によって、結露した水滴の表面張力が減少し、その結果、結露した水滴は会合を繰り返して大きな液滴となることなく、微粒子のまま安定化される。溶媒が蒸発するに伴い、ヘキサゴナル状に結露した水滴が最密充填した形で並んでいき、この水滴を蒸発させるとポリマーが規則正しく並んだハニカム状の3次元多孔質構造体が得られる。この出願の発明の構造体作製は、相対湿度50−95%雰囲気中で行われることが好ましい。なお、相対湿度50%以下では十分な結露が得られず、95%以上では結露生成の制御が難しい。   In the invention of this application, the following may be considered as a mechanism for forming a porous structure. That is, the temperature of the surface of the polymer solution is lowered by the latent heat of evaporation of the organic solvent contained in the cast polymer solution, and moisture in the atmosphere aggregates on the surface of the polymer solution, so-called condensation occurs. The surface tension of the condensed water droplets decreases due to the interaction between the condensed water droplets and the hydrophilic group of the amphiphilic polymer contained in the polymer solution. As a result, the condensed water droplets repeatedly associate to form large droplets. Without stabilization, the fine particles are stabilized. As the solvent evaporates, water droplets condensed in hexagonal form are arranged in a close-packed form, and when these water droplets are evaporated, a honeycomb-like three-dimensional porous structure in which polymers are regularly arranged is obtained. The structure of the invention of this application is preferably produced in an atmosphere with a relative humidity of 50-95%. When the relative humidity is 50% or less, sufficient condensation cannot be obtained, and when it is 95% or more, it is difficult to control condensation generation.

この出願の発明によって提供される3次元多孔質構造体の孔径および層厚は、溶媒の蒸発速度、結露生成速度、および結露水滴とポリマー溶液に含まれる両親媒性ポリマーとの相互作用を変化させることによって制御可能である。すなわち、それらの孔径および層厚は、ポリマー溶液の濃度、溶媒の種類と組み合わせ、ポリマーの種類および組成比、および基板へのキャスト厚等の諸条件による制御が可能である。また、雰囲気および結露した水滴を3次元的に多層に配置させる際の吹き付け空気の相対湿度、温度、吹き付け方法(例えば、連続、間欠、風圧変化など吹き付け流量のパターン変化)および雰囲気の気圧などによっても多孔質構造を決定する結露水滴の成長の調節が可能であり、従ってそれら孔径および層厚の制御ができる。この出願の発明によって提供される3次元多孔質構造体においては、好ましくは各層のハニカムの孔径あるいは層厚の少なくとも一方が0.01−100μmである。   The pore size and layer thickness of the three-dimensional porous structure provided by the invention of this application change the evaporation rate of the solvent, the rate of condensation formation, and the interaction of the condensation water droplets with the amphiphilic polymer contained in the polymer solution. Can be controlled. That is, the pore size and layer thickness can be controlled by various conditions such as the concentration of the polymer solution, the type of solvent, the type and composition ratio of the polymer, and the cast thickness to the substrate. Also, depending on the relative humidity, temperature, spraying method (for example, continuous, intermittent, wind pressure change, etc., change in spraying flow pattern) and atmospheric pressure of the atmosphere when three-dimensionally arranging the atmosphere and condensed water droplets in multiple layers In addition, it is possible to control the growth of condensed water droplets that determine the porous structure, and thus control the pore diameter and layer thickness. In the three-dimensional porous structure provided by the invention of this application, at least one of the pore diameter or the layer thickness of the honeycomb of each layer is preferably 0.01 to 100 μm.

以下、この出願の発明の詳細について実施例を用いて具体的に示すが、この出願の発明はこれらの例に限定されるものではない。   Hereinafter, although the details of the invention of this application are specifically shown using examples, the invention of this application is not limited to these examples.

重量平均分子量20万のポリスチレン(Aldrich)と両親媒性アクリルアミドである次式で表わされるドデシルアクリルアミド−ω−カルボキシヘキシルアクリルアミド(化合物1:Cap)を重量比10:1の割合で混合したクロロホルム溶液(総ポリマー濃度として4mg/l)を調製した。このポリマー溶液を直径10cmのガラスシャーレ上に7ml(約10.5g)キャストし、相対湿度50%の高湿度空気を3l/分の流量で吹き付け、クロロホルム溶媒の蒸発を開始し、蒸発開始後、240秒後(溶液の残量3.5g)に、高湿度空気の吹き付けを停止し、ガラスシャーレに蓋をして、クロロホルムの蒸発を停止させた。この状態を60秒間保持した後、相対湿度70%の高湿度空気を3l/分の流量で吹き付け、クロロホルムを蒸発させた。最後に水分を十分に蒸発させ、3次元多孔質構造体を作製した。以上の方法の概略を図1に示した。得られた3次元多孔質構造体表面の電子顕微鏡観察の結果を図2に示した。   A chloroform solution in which polystyrene (Aldrich) having a weight average molecular weight of 200,000 and dodecylacrylamide-ω-carboxyhexylacrylamide (compound 1: Cap) represented by the following formula, which is an amphiphilic acrylamide, are mixed at a weight ratio of 10: 1 ( A total polymer concentration of 4 mg / l) was prepared. 7 ml (about 10.5 g) of this polymer solution was cast on a glass petri dish having a diameter of 10 cm, high-humidity air having a relative humidity of 50% was blown at a flow rate of 3 l / min, and evaporation of the chloroform solvent was started. After 240 seconds (solution remaining amount: 3.5 g), high-humidity air blowing was stopped, and the glass petri dish was covered to stop the evaporation of chloroform. After maintaining this state for 60 seconds, high-humidity air with a relative humidity of 70% was blown at a flow rate of 3 l / min to evaporate chloroform. Finally, water was sufficiently evaporated to produce a three-dimensional porous structure. The outline of the above method is shown in FIG. The result of electron microscope observation of the surface of the obtained three-dimensional porous structure is shown in FIG.

実施例1のポリスチレンに代えて、重量平均分子量35万のポリメチルメタクリレート(Aldrich)を用いて、実施例1と同様の操作で3次元多孔質構造体を作製した。図3は、得られた3次元多孔質構造体の表面の電子顕微鏡観察の結果を示したものである。   A three-dimensional porous structure was produced in the same manner as in Example 1 using polymethyl methacrylate (Aldrich) having a weight average molecular weight of 350,000 instead of the polystyrene in Example 1. FIG. 3 shows the result of electron microscope observation of the surface of the obtained three-dimensional porous structure.

実施例1のポリスチレンに代えて、重量平均分子量2.9万のポリカーボネートを用いて、実施例1と同様の操作で3次元多孔質構造体を作製した。図4は、得られた3次元多孔質構造体の表面の電子顕微鏡観察の結果を示したものである。   A three-dimensional porous structure was produced in the same manner as in Example 1 using polycarbonate having a weight average molecular weight of 29,000 instead of the polystyrene in Example 1. FIG. 4 shows the result of electron microscope observation of the surface of the obtained three-dimensional porous structure.

実施例1のポリスチレンに代えて、重量平均分子量24万のポリテトラヒドロフルフリルメタクリレート(Scientific Polymer Products)を用いて、実施例1と同様の操作で3次元多孔質構造体を作製した。図5は、得られた3次元多孔質構造体の表面の電子顕微鏡観察の結果を示したものである。   A three-dimensional porous structure was produced in the same manner as in Example 1 using polytetrahydrofurfuryl methacrylate (Scientific Polymer Products) having a weight average molecular weight of 240,000 instead of the polystyrene in Example 1. FIG. 5 shows the result of electron microscope observation of the surface of the obtained three-dimensional porous structure.

実施例1のポリスチレンに代えて、粘度平均分子量4万のポリ(ε−カプロラクトン)(和光純薬)を用いて、実施例1と同様の操作で3次元多孔質構造体を作製した。図6は、得られた3次元多孔質構造体の表面の電子顕微鏡観察の結果を示したものである。   A three-dimensional porous structure was produced in the same manner as in Example 1, except that poly (ε-caprolactone) (Wako Pure Chemical Industries) having a viscosity average molecular weight of 40,000 was used in place of the polystyrene in Example 1. FIG. 6 shows the result of electron microscope observation of the surface of the obtained three-dimensional porous structure.

実施例1のポリスチレンに代えて、重量平均分子量4万−7.5万のポリ(グリコール酸−乳酸)共重合体(組成比50:50)(Aldrich)を用いて、実施例1と同様の操作で3次元多孔質構造体を作製した。図7は、得られた3次元多孔質構造体の表面の電子顕微鏡観察の結果を示したものである。   In place of the polystyrene of Example 1, a poly (glycolic acid-lactic acid) copolymer (composition ratio 50:50) (Aldrich) having a weight average molecular weight of 40,000 to 75,000 was used. A three-dimensional porous structure was produced by the operation. FIG. 7 shows the result of electron microscope observation of the surface of the obtained three-dimensional porous structure.

実施例1のポリスチレンに代えて、重量平均分子量8万のポリスルホンを用いて、実施例1と同様の操作で3次元多孔質構造体を作製した。図8は、得られた3次元多孔質構造体の表面の電子顕微鏡観察の結果を示したものである。   A three-dimensional porous structure was produced in the same manner as in Example 1, except that polysulfone having a weight average molecular weight of 80,000 was used in place of the polystyrene in Example 1. FIG. 8 shows the result of electron microscope observation of the surface of the obtained three-dimensional porous structure.

実施例4におけるクロロホルム溶媒の蒸発開始後の蒸発時間のみを変化させた。溶液残量がそれぞれ5.0g、4.0g、3.5g、3.0gになった時点で蒸発を停止し、実施例4と同様に3次元ハニカム構造体を作製した。クロロホルム溶液残量が5.0gの場合を除いて3次元多孔質構造体が得られた。図9は、得られた3次元多孔質構造体の表面の電子顕微鏡観察の結果を示したものである。   Only the evaporation time after the start of evaporation of the chloroform solvent in Example 4 was changed. Evaporation was stopped when the remaining amount of the solution reached 5.0 g, 4.0 g, 3.5 g, and 3.0 g, respectively, and a three-dimensional honeycomb structure was produced in the same manner as in Example 4. A three-dimensional porous structure was obtained except when the chloroform solution remaining amount was 5.0 g. FIG. 9 shows the result of electron microscope observation of the surface of the obtained three-dimensional porous structure.

溶液残量がそれぞれ5.0g(a)、4.0g(b)、3.5g(c)、3.0g(d)で得られた構造体表面の電子顕微鏡像である。   It is an electron microscopic image of the surface of a structure obtained when the remaining amount of the solution is 5.0 g (a), 4.0 g (b), 3.5 g (c), and 3.0 g (d), respectively.

実施例8におけるクロロホルム溶媒の蒸発停止の保持時間を変化させた。実施例8における蒸発停止時のクロロホルム溶液残量が3.0gの場合において、ガラスシャーレに蓋をしてクロロホルムの蒸発を停止させた状態を、それぞれ0秒、30秒、60秒、120秒間保持した後、実施例8と同様に3次元多孔質構造体を作製した。保持時間0秒の場合を除いて3次元多孔質構造体が得られた。図10は、得られた3次元多孔質構造体の表面の電子顕微鏡観察の結果を示したものである。   The retention time for stopping the evaporation of the chloroform solvent in Example 8 was changed. When the remaining amount of the chloroform solution at the time of stopping the evaporation in Example 8 was 3.0 g, the state where the evaporation of the chloroform was stopped by covering the glass petri dish was held for 0 seconds, 30 seconds, 60 seconds, and 120 seconds, respectively. After that, a three-dimensional porous structure was produced in the same manner as in Example 8. A three-dimensional porous structure was obtained except when the holding time was 0 second. FIG. 10 shows the result of electron microscope observation of the surface of the obtained three-dimensional porous structure.

保持時間がそれぞれ0秒(a)、30秒(b)、60秒(c)、120秒(d)で得られた構造体表面の電子顕微鏡像である。   It is the electron microscope image of the structure surface obtained by holding time 0 second (a), 30 second (b), 60 second (c), and 120 second (d), respectively.

実施例8における蒸発停止時のクロロホルム溶液残量が3.0gの場合において得られた3次元多孔質構造体について、粘着テープを構造体フィルム表面に貼付した後に剥離して微細突起構造体を作製した。電気顕微鏡による斜めからの観察の結果、剥離テープ側、基板ガラスシャーレ側の双方に微細突起構造体が作製された。図11は、得られた3次元多孔質構造体の表面の電子顕微鏡観察の結果を示したものである。   The three-dimensional porous structure obtained when the residual amount of the chloroform solution at the time of stopping evaporation in Example 8 was 3.0 g, and then peeled off after applying the adhesive tape to the structure film surface to produce a fine protrusion structure did. As a result of observation from an oblique direction with an electric microscope, fine protrusion structures were produced on both the peeling tape side and the substrate glass petri dish side. FIG. 11 shows the result of electron microscope observation of the surface of the obtained three-dimensional porous structure.

剥離テープ側(c)および基板ガラス側(d)双方の微細突起構造体表面、および剥離処理前の構造体の電子顕微鏡像(aおよびb、aは真上、bは斜め55度からの観察像)である。   Electron microscopic images of the surface of the fine protrusion structure on both the peeling tape side (c) and the substrate glass side (d), and the structure before the peeling treatment (a and b, a is directly above, b is an observation from an angle of 55 degrees Image).

この出願の発明の3次元構造体の製造方法についての概略を示した図である。It is the figure which showed the outline about the manufacturing method of the three-dimensional structure of invention of this application. 実施例1のポリスチレンとドデシルアクリルアミド−ω−カルボキシヘキシルアクリルアミド(Cap)の混合ポリマー溶液より得られた3次元多孔質構造体表面の電子顕微鏡像である。2 is an electron microscopic image of the surface of a three-dimensional porous structure obtained from a mixed polymer solution of polystyrene and dodecylacrylamide-ω-carboxyhexylacrylamide (Cap) in Example 1. FIG. 実施例2(ポリメチルメタクリレートとCap)により得られた3次元多孔質構造体表面の電子顕微鏡像である。It is an electron microscope image of the surface of the three-dimensional porous structure obtained by Example 2 (polymethylmethacrylate and Cap). 実施例3(ポリカーボネートとCap)により得られた3次元多孔質構造体表面の電子顕微鏡像である。It is an electron microscope image of the surface of the three-dimensional porous structure obtained by Example 3 (polycarbonate and Cap). 実施例4(ポリテトラヒドロフルフリルメタクリレートとCap)により得られた3次元多孔質構造体表面の電子顕微鏡像である。It is an electron microscopic image of the surface of the three-dimensional porous structure obtained by Example 4 (polytetrahydrofurfuryl methacrylate and Cap). 実施例5(ポリ(ε−カプロラクトン)とCap)により得られた3次元多孔質構造体表面の電子顕微鏡像である。It is an electron microscope image of the surface of the three-dimensional porous structure obtained by Example 5 (poly ((epsilon) -caprolactone) and Cap). 実施例6(ポリ(グリコール酸−乳酸)共重合体とCap)により得られた3次元多孔質構造体表面の電子顕微鏡像である。It is an electron microscope image of the surface of the three-dimensional porous structure obtained by Example 6 (poly (glycolic acid-lactic acid) copolymer and Cap). 実施例7(ポリスルホンとCap)により得られた3次元多孔質構造体表面の電子顕微鏡像である。It is an electron microscopic image of the surface of the three-dimensional porous structure obtained by Example 7 (polysulfone and Cap). 実施例8に示すクロロホルム溶液残量を変化させた場合の電子顕微鏡像である。It is an electron microscope image at the time of changing the chloroform solution residual amount shown in Example 8. FIG. 実施例9に示すクロロホルム蒸発停止の保持時間を変化させた場合の電子顕微鏡像である。It is an electron microscope image at the time of changing the retention time of the chloroform evaporation stop shown in Example 9. FIG. 粘着テープ剥離によって作製した場合の電子顕微鏡像である。It is an electron microscope image at the time of producing by adhesive tape peeling.

Claims (7)

基板表面にポリマーの有機溶媒溶液をキャストし、この有機溶媒を蒸散させると同時に雰囲気中の水分を結露させ、さらに結露した水滴を3次元的に配置させた後にその水滴を蒸発させることを特徴とするポリマーの3次元多孔質構造体の製造方法。 It is characterized by casting an organic solvent solution of a polymer on the substrate surface, evaporating the organic solvent, condensing moisture in the atmosphere, and further arranging the condensed water droplets in three dimensions and then evaporating the water droplets. A method for producing a three-dimensional porous structure of a polymer. ポリマーが、少なくとも1種類以上の生分解性ポリマーを含むことを特徴とする請求項1記載の製造方法。 The production method according to claim 1, wherein the polymer contains at least one biodegradable polymer. 結露した水滴の3次元配置が、高湿度空気の吹き付けによって行われることを特徴とする請求項1または2記載の製造方法。 3. The manufacturing method according to claim 1, wherein the three-dimensional arrangement of condensed water droplets is performed by blowing high-humidity air. 高湿度空気の吹き付けが間欠的に行われることを特徴とする請求項3記載の製造方法。 The manufacturing method according to claim 3, wherein the high-humidity air is intermittently sprayed. 請求項1から4のいずれかの製造方法によって製造されたハニカム構造を有するポリマー3次元体である多孔質構造体であって、ハニカムの孔径あるいは層厚の少くとも一方が0.01−100μmの範囲であることを特徴とする3次元多孔質構造体。 A porous structure which is a three-dimensional polymer body having a honeycomb structure manufactured by the manufacturing method according to any one of claims 1 to 4, wherein at least one of the pore diameter or the layer thickness of the honeycomb is 0.01 to 100 µm. A three-dimensional porous structure characterized by being in a range. ハニカム構造が2−20の多層の構成を有していることを特徴とする請求項記載の3次元多孔質構造体。 6. The three-dimensional porous structure according to claim 5 , wherein the honeycomb structure has a multilayer structure of 2-20. 請求項5または6に記載の3次元多孔質構造体を構成の少くとも一部としていることを特徴とする細胞培養足場材。 A cell culture scaffold comprising the three-dimensional porous structure according to claim 5 or 6 as at least a part of the constitution.
JP2004040550A 2004-02-17 2004-02-17 Three-dimensional porous structure and manufacturing method thereof Expired - Fee Related JP4342338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004040550A JP4342338B2 (en) 2004-02-17 2004-02-17 Three-dimensional porous structure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004040550A JP4342338B2 (en) 2004-02-17 2004-02-17 Three-dimensional porous structure and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005232238A JP2005232238A (en) 2005-09-02
JP4342338B2 true JP4342338B2 (en) 2009-10-14

Family

ID=35015523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004040550A Expired - Fee Related JP4342338B2 (en) 2004-02-17 2004-02-17 Three-dimensional porous structure and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4342338B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101174391B1 (en) 2004-08-27 2012-08-16 국립대학법인 홋가이도 다이가쿠 Process for production of submicrohoneycomb structures
WO2006093207A1 (en) * 2005-03-02 2006-09-08 National University Corporation Hokkaido University Base material for regulating the differentiation/proliferation of cells
WO2007032493A1 (en) * 2005-09-16 2007-03-22 The Furukawa Electric Co., Ltd. Multilayer structure and process for producing multilayer structure
JP4944449B2 (en) * 2006-01-18 2012-05-30 日東電工株式会社 Production method of porous structure, porous structure, and scaffold for cell culture comprising porous structure
JP2007291185A (en) * 2006-04-21 2007-11-08 Hokkaido Univ Honeycomb porous form and method for producing the same
EP1862188B1 (en) * 2006-06-02 2018-02-28 Eidgenössische Technische Hochschule Zürich Porous membrane comprising a biocompatible block-copolymer
JP5238323B2 (en) * 2008-03-28 2013-07-17 富士フイルム株式会社 Perforated film
KR101317509B1 (en) 2011-09-26 2013-10-15 경희대학교 산학협력단 Method for the formation of patterned wrinkle on elastomer
CN111346522B (en) * 2020-02-16 2021-10-01 武汉纺织大学 Polyvinyl alcohol-ethylene copolymer honeycomb porous membrane and preparation method thereof
KR102411907B1 (en) * 2020-11-30 2022-06-21 성균관대학교산학협력단 Preparing method of textile-based wearable sensor and smart clothes including the same

Also Published As

Publication number Publication date
JP2005232238A (en) 2005-09-02

Similar Documents

Publication Publication Date Title
US7799378B2 (en) Process for producing micropillar structure
JP4731044B2 (en) Stretched film and cell culture substrate using the same
Zhang et al. Breath figure: a nature-inspired preparation method for ordered porous films
JP4431233B2 (en) Honeycomb structure and method for preparing the same, and film and cell culture substrate using the structure
Bae et al. 25th anniversary article: scalable multiscale patterned structures inspired by nature: the role of hierarchy
KR102096286B1 (en) Ultra-thin polymer film, and porous ultra-thin polymer film
US20170363953A1 (en) Device for carrying out a capillary nanoprinting method, a method for carrying out capillary nanoprinting using the device, products obtained according to the method and use of the device
Hoa et al. Preparation of porous materials with ordered hole structure
Park et al. Hierarchically ordered polymer films by templated organization of aqueous droplets
JP4342338B2 (en) Three-dimensional porous structure and manufacturing method thereof
JP2002335949A (en) Cell three-dimensional tissue culture method using honeycomb structure film
Yoo et al. Solvent-assisted patterning of polyelectrolyte multilayers and selective deposition of virus assemblies
JP4247432B2 (en) Honeycomb structure film having irregularities
KR101174391B1 (en) Process for production of submicrohoneycomb structures
Asoh et al. Site-selective chemical etching of silicon using patterned silver catalyst
JP5050205B2 (en) Method for manufacturing honeycomb structure with isolated holes
Tanaka et al. Control of hepatocyte adhesion and function on self-organized honeycomb-patterned polymer film
Rodríguez-Hernández et al. Breath Figures
Díaz-Marín et al. Capillary Transfer of self-assembled colloidal crystals
JP2004330330A (en) Method of manufacturing meso-structure using honeycomb structure as mold
Xiong et al. Honeycomb structured porous films prepared by the method of breath figure: history and development
Fragal et al. Controlling cell growth with tailorable 2D nanoholes arrays
JP2009108163A (en) Preparation and apparatus for manufacturing of film
Li et al. Two-dimensional ordered polymer hollow sphere and convex structure arrays based on monolayer pore films
Koley et al. Tunable morphology from 2D to 3D in the formation of hierarchical architectures from a self-assembling dipeptide: thermal-induced morphological transition to 1D nanostructures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080627

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081215

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090707

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4342338

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees