JP4341599B2 - Power grid interconnection stabilization apparatus and power grid stabilization method - Google Patents

Power grid interconnection stabilization apparatus and power grid stabilization method Download PDF

Info

Publication number
JP4341599B2
JP4341599B2 JP2005269370A JP2005269370A JP4341599B2 JP 4341599 B2 JP4341599 B2 JP 4341599B2 JP 2005269370 A JP2005269370 A JP 2005269370A JP 2005269370 A JP2005269370 A JP 2005269370A JP 4341599 B2 JP4341599 B2 JP 4341599B2
Authority
JP
Japan
Prior art keywords
power
frequency
small
scale
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005269370A
Other languages
Japanese (ja)
Other versions
JP2007082361A (en
Inventor
泰崇 木村
泰志 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005269370A priority Critical patent/JP4341599B2/en
Publication of JP2007082361A publication Critical patent/JP2007082361A/en
Application granted granted Critical
Publication of JP4341599B2 publication Critical patent/JP4341599B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、小規模電力系統を安定化させる電力系統安定化装置及び電力系統安定化方法に関する。   The present invention relates to a power system stabilization device and a power system stabilization method for stabilizing a small-scale power system.

従来配電系統では、配電系統と分散型電源や新エネルギー電源を個々に連系することはあったが、配電系統と小規模電力系統という新しい小規模系統設備を系統連系することはなかった。しかし、新エネルギーの技術革新に伴い、配電系統に様々な形態で燃料電池などの電源や、新エネルギー電源や風力発電や太陽光発電などの分散型電源と負荷を含む小規模系統を連系する機会が増加する傾向にある。   In the conventional distribution system, the distribution system and the distributed power source and the new energy power source were individually connected, but the new small-scale system facilities such as the distribution system and the small-scale power system were not interconnected. However, along with new energy technology innovation, power distribution systems such as fuel cells and distributed power sources such as new energy power sources, wind power generation, and solar power generation are connected to the distribution system in various forms. Opportunities tend to increase.

また、従来の交流系統と交流系統の系統連系には、直流送電連系(以下、BTB)や直流送電による非同期連系を行っている。しかし、非同期連系は電力系統のように大きな規模での系統接続であり、電力動揺は発電所で出力調整を行うことで潮流制御を行っていた。電力系統のような規模の大きい系統では、潮流の制御を行いやすいが、配電系統の分散型電源では出力の追従が十分でなく制御性能がよくないという問題があった。更に、電力系統で使用されているBTBは電力会社の配電系統よりも高電圧の系統である送電系統では適用されてきたが配電系統では規模が小さく潮流制御することが難しいという理由で適用出来なかった。   In addition, the conventional AC system and AC system interconnection are performed by DC transmission interconnection (hereinafter referred to as BTB) or asynchronous interconnection by DC transmission. However, the asynchronous interconnection is a system connection on a large scale like the power system, and the power fluctuation is controlled by adjusting the output at the power plant. A large-scale system such as an electric power system can easily control power flow, but a distributed power source in a distribution system has a problem in that output tracking is not sufficient and control performance is not good. Furthermore, the BTB used in the power system has been applied to the transmission system that is a higher voltage system than the distribution system of the power company, but cannot be applied because the power distribution system is small and difficult to control the power flow. It was.

一方小規模電力系統は、極端に小規模な系統であり電源が変動しやすい太陽光発電や風力発電や各種の分散型電源や燃料電池と負荷で構成されているため電源の十分な追従が難しく、事故時に電力会社の配電系統から解列して単独運転状態になったとき、需給のバランスが悪化し電力供給がより困難となる。   On the other hand, a small-scale power system is an extremely small-scale system and consists of photovoltaic power generation, wind power generation, various distributed power sources, fuel cells, and loads, where the power source is likely to fluctuate. In the event of an accident, when the power supply system is disconnected from the power distribution system and enters a single operation state, the supply-demand balance deteriorates and power supply becomes more difficult.

特開平7−67257号公報(以下、特許文献1)には、電力系統間を接続するBTB(直流送電連系)と、系統情報をもとにBTBへの送電量を決定して指令するBTB送電量指令部と、BTB送電量指令部からの指令信号と事故情報とからBTBへの電力量の絞り込み量を出力するBTB送電量調整手段とからなる電力系統安定化装置が記載されている。   Japanese Patent Application Laid-Open No. 7-67257 (hereinafter referred to as Patent Document 1) describes a BTB (DC power transmission interconnection) that connects between power systems, and a BTB that determines and commands the amount of power transmitted to the BTB based on the system information. An electric power system stabilizing device is described that includes a power transmission amount command unit, and a BTB power transmission amount adjustment unit that outputs a power amount narrowing amount to the BTB from a command signal from the BTB power transmission amount command unit and accident information.

特開平10−304570号公報(以下、特許文献2)には、BTB変換器を起動して直流連系とし、安定化制御装置は両系統の周波数情報などに基づいてBTB変換器を制御し、系統周波数を維持するために必要な電力を融通して安定化を図る技術が記載されている。   In JP-A-10-304570 (hereinafter referred to as Patent Document 2), the BTB converter is started to be a DC interconnection, and the stabilization control device controls the BTB converter based on the frequency information of both systems. A technique is described in which power necessary for maintaining the system frequency is interchanged to achieve stabilization.

特開平7−67257号公報JP-A-7-67257 特開平10−304570号公報JP-A-10-304570

特許文献1,2に記載の技術では、一方の電力系統が小規模電力系統の場合、小規模電力系統が極端に小さい系統であるため小規模電力系統内だけでは需給バランスをとれず自立運転が出来ない、さらに分散型電源の追従が十分でなく小規模電力系統内だけでは需給調整が出来ないという課題があった。   In the technologies described in Patent Documents 1 and 2, when one power system is a small-scale power system, the small-scale power system is an extremely small system, so that supply and demand balance is not achieved in the small-scale power system alone, and independent operation is possible. In addition, there is a problem that the distributed power supply cannot be followed sufficiently and supply and demand cannot be adjusted only within a small-scale power system.

本発明は、大規模電力系統に連系された小規模電力系統の周波数を安定化することができる系統安定化装置を提供することを目的とする。   An object of the present invention is to provide a system stabilizing device capable of stabilizing the frequency of a small-scale power system linked to a large-scale power system.

本発明の一つの特徴によれば、電力系統安定化装置を、第1の電力系統と第2の電力系統を連系する直流送電線に送電される送電電力を制御する電力系統安定化装置であって、第1の電力系統の周波数を検出する第1の電力系統周波数検出手段と、第2の電力系統の周波数を検出する第2の電力系統周波数検出手段と、第1の電力周波数検出手段により検出された周波数の所定の周期以下の成分と第2の電力周波数検出手段により検出された周波数の前記所定の周期以下の成分との差分に基づいて前記直流送電線に送電される送電電力の目標値を演算する直流送電線送電電力目標値演算手段と、直流送電線送電電力目標値演算手段により演算された送電電力の目標値に基づいて直流送電線に送電される送電電力を制御する送電電力制御手段を備えるものとする点にある。   According to one feature of the present invention, an electric power system stabilizing device is a power system stabilizing device that controls transmission power transmitted to a DC power transmission line interconnecting a first electric power system and a second electric power system. The first power system frequency detecting means for detecting the frequency of the first power system, the second power system frequency detecting means for detecting the frequency of the second power system, and the first power frequency detecting means. Of the transmission power transmitted to the DC power transmission line based on the difference between the component of the frequency detected by the step below the predetermined cycle and the component of the frequency detected by the second power frequency detection means below the predetermined cycle DC transmission line transmission power target value calculation means for calculating a target value, and transmission for controlling transmission power transmitted to the DC transmission line based on the target value of transmission power calculated by the DC transmission line transmission power target value calculation means Power control means Lies in the fact that the obtaining things.

本発明のその他の特徴は、発明を実施するための詳細な説明欄で説明する。   Other features of the present invention are described in the detailed description section for carrying out the invention.

本発明によれば、大規模電力系統に連系された小規模電力系統の周波数を安定化することができる系統安定化装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the system stabilization apparatus which can stabilize the frequency of the small-scale electric power system connected with the large-scale electric power system can be provided.

本発明は、電力会社の配電系統と、新エネルギー電源もしくは分散型電源の両方もしくはどちらか一方と負荷を有する小規模電力系統との系統連系時、系統連系線にBTBを設置し潮流を制御するようにBTBに指令を与える制御装置により、配電系統及び小規模電力系統の系統を安定化させる系統連系安定化装置に関する。本実施例では、小規模電力系統とは、最大需要電力が1MW以下の電力系統とする。   The present invention installs a BTB in the grid connection line when the grid connection between the power distribution system of the power company and the new energy power source and / or the distributed power source and the small-scale power system having a load is established. The present invention relates to a system interconnection stabilization device that stabilizes a power distribution system and a small-scale power system by a control device that gives a command to the BTB so as to control. In this embodiment, the small-scale power system is a power system having a maximum demand power of 1 MW or less.

系統連系安定化装置の考え方について説明する。小規模電力系統と配電系統の間にBTBを介して系統連系し、BTBを通過する有効電力を一定値に設定すれば、小規模電力系統から配電系統に有効電力の変動を与えなくて済む。ただし、その場合、太陽光や風力や燃料電池を有する小規模電力系統のなかで変動を吸収するのが困難になる。そこで、(1)小規模電力系統から配電系統への有効電力の変動はおもに長周期変動が問題になること、
(2)短周期変動はランダムノイズとみなせるので小規模電力系統と配電系統の短周期変動は統計的に相殺しあうこと、の2点に着目し、BTBに流れる有効電力の長周期変動を一定にしつつ、短周期成分は自由に往来できるようにBTBの有効電力を制御する。
The concept of the grid interconnection stabilization device will be described. If the grid connection is established between the small-scale power system and the distribution system via the BTB and the active power passing through the BTB is set to a constant value, it is not necessary to change the effective power from the small-scale power system to the distribution system. . However, in that case, it becomes difficult to absorb fluctuations in a small-scale power system having sunlight, wind power, and fuel cells. Therefore, (1) the fluctuation of the active power from the small-scale power system to the distribution system is mainly caused by long-period fluctuation,
(2) Since short-period fluctuations can be regarded as random noise, the short-period fluctuations of the small-scale power system and distribution system are statistically offset, and the long-period fluctuations of the active power flowing through the BTB are constant. In addition, the effective power of the BTB is controlled so that the short period component can freely come and go.

本発明の一実施形態に係わる系統連系安定化装置は、BTBと系統周波数検出手段と小規模電力系統周波数検出手段と長周期短周期成分分離フィルタ装置と長周期成分通過防止手段とBTB通過出力演算手段とBTB通過潮流制御手段を有する系統連系安定化装置を有することを特徴とする。   A grid interconnection stabilization apparatus according to an embodiment of the present invention includes a BTB, a grid frequency detection means, a small-scale power grid frequency detection means, a long-period and short-period component separation filter apparatus, a long-period component passage prevention means, and a BTB passage output. It has the grid connection stabilization apparatus which has a calculating means and a BTB passage power flow control means, It is characterized by the above-mentioned.

まず、系統周波数検出装置で電力会社高圧配電系統の周波数を検出して、小規模電力系統周波数検出装置で小規模電力系統の周波数を検出する。次に、長周期短周期成分分離手段によって、配電系統と小規模電力系統の周波数を短周期成分と長周期成分に分離する。長周期成分とは、本実施例では、30秒から10分の周期の範囲内で設定した設定周期以上の周期の成分を指す。分離した長周期成分は、長周期成分通過制御手段によって一定にしてBTBに通過させないように通過潮流制御信号を、小規模電力系統内の分散型電源に出力制御信号を与えてBTBを通過する潮流を制御する。もう一方の短周期成分から、小規模電力系統と配電系統の周波数変動量を求めて、BTBに流すべき有効電力量を通過出力演算手段にて求める。求めた有効電力量分だけをBTBに流すようにBTB通過潮流制御手段のBTB通過潮流指令信号にて指令値を与え制御する。   First, the system frequency detection device detects the frequency of the power company high-voltage distribution system, and the small-scale power system frequency detection device detects the frequency of the small-scale power system. Next, the frequency of the distribution system and the small-scale power system is separated into the short cycle component and the long cycle component by the long cycle / short cycle component separation means. In the present embodiment, the long-period component refers to a component having a period equal to or longer than a set period set within a period of 30 seconds to 10 minutes. The separated long-period component is made constant by the long-period component passage control means so that it does not pass through the BTB, and a power flow that passes through the BTB by giving an output control signal to the distributed power source in the small-scale power system. To control. From the other short cycle component, the frequency fluctuation amount of the small-scale power system and the distribution system is obtained, and the effective power amount to be supplied to the BTB is obtained by the passage output calculation means. Control is performed by giving a command value with a BTB passage power flow command signal of the BTB passage power flow control means so that only the determined effective power amount flows to the BTB.

本発明に係わる系統連系安定化装置は、BTB通過出力演算手段,同期化力演算手段,有効電力制御装置を有すること特徴とする。BTB通過出力演算手段は、配電系統と小規模電力系統の周波数変動量を求めるものである。同期化力演算手段にて制御パラメータの同期リアクタンスで割り、同期化力積分回路にて積分する。有効電力制御装置では、求めた有効電力の変化分を積分して、30分毎の有効電力目標値を0もしくは一定にするように制御を行いBTBに流すべく有効電力量を求めるものである。これにより小規模電力系統から配電系統に与える有効電力の変動を抑えることと、小規模電力系統内の変動抑制を両立することが可能となる。   The grid interconnection stabilization apparatus according to the present invention includes BTB passage output calculation means, synchronization force calculation means, and active power control apparatus. The BTB passage output calculation means obtains the frequency fluctuation amount of the distribution system and the small-scale power system. The synchronizing force calculation means divides by the control parameter synchronous reactance, and the synchronizing force integrating circuit integrates. The active power control device integrates the obtained change in active power, performs control so that the target value of active power every 30 minutes is 0 or constant, and obtains the amount of active power to flow to the BTB. As a result, it is possible to achieve both suppression of fluctuations in active power from the small-scale power system to the distribution system and suppression of fluctuations in the small-scale power system.

以下、図面に基づいて本発明の実施形態を説明する。図1は、この実施形態にかかわる系統連系安定化装置の全体的な構成を示すものである。図1の系統連系制御装置19について説明する。系統周波数検出手段11,小規模電力系統周波数検出手段12,長周期短周期成分分離手段13,長周期短周期成分制御手段14,BTB通過潮流演算手段15,BTB通過潮流制御手段16とからなる。系統周波数検出手段11とは、電力会社の配電系統における周波数を監視し常時検出するものである。小規模電力系統周波数検出手段
12とは、小規模電力系統における周波数を常時検出するものである。長周期短周期成分分離手段13とは、系統周波数検出手段11と小規模電力系統周波数検出手段12で検出した周波数を、長周期成分と短周期成分に分離するものである。長周期成分制御手段14は、長周期短周期成分分離手段13で検出された配電系統と小規模電力系統の長周期成分の周波数を、BTB18と小規模電力系統内の制御対象の電源17において遮断するように信号を与えて制御するものである。BTB通過潮流演算手段15とは、長周期短周期成分分離手段13で分離された短周期成分から、BTBを通過させる有効電力量を求め、潮流を0もしくは一定にするように演算し制御するものである。BTB通過潮流制御手段
16は、BTBを通過させる有効電力量をBTB通過潮流指令信号としてBTB18に信号を与える。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows the overall configuration of a grid interconnection stabilization apparatus according to this embodiment. The grid interconnection control device 19 in FIG. 1 will be described. The system frequency detection means 11, the small-scale power system frequency detection means 12, the long cycle / short cycle component separation means 13, the long cycle / short cycle component control means 14, the BTB passage power flow calculation means 15, and the BTB passage power flow control means 16. The system frequency detection means 11 monitors and constantly detects the frequency in the distribution system of the electric power company. The small-scale power system frequency detection means 12 constantly detects the frequency in the small-scale power system. The long cycle / short cycle component separating unit 13 separates the frequency detected by the system frequency detecting unit 11 and the small-scale power system frequency detecting unit 12 into a long cycle component and a short cycle component. The long cycle component control means 14 cuts off the frequency of the long cycle components of the distribution system and the small-scale power system detected by the long-cycle and short-cycle component separation means 13 at the BTB 18 and the power supply 17 to be controlled in the small-scale power system. In this way, a signal is given and controlled. The BTB passage power flow calculating means 15 obtains an effective power amount for passing the BTB from the short cycle components separated by the long cycle / short cycle component separating means 13 and calculates and controls the power flow to be 0 or constant. It is. The BTB passage power flow control means 16 gives a signal to the BTB 18 as the BTB passage power flow command signal with the amount of effective power passing through the BTB.

次に、図2について説明する。系統連系安定化装置29は、BTB21,系統連系制御装置24からなる。系統連系制御装置24では、配電系統22から周波数25を検出し、小規模電力系統23から周波数26を検出する。検出した周波数をもとにBTB21に流れる潮流を計算してBTB21に潮流制御信号28を、小規模電力系統内の制御対象の分散型電源に制御信号27を送信し、制御する。   Next, FIG. 2 will be described. The grid interconnection stabilization device 29 includes a BTB 21 and a grid interconnection control device 24. The grid interconnection control device 24 detects the frequency 25 from the distribution system 22 and detects the frequency 26 from the small-scale power system 23. Based on the detected frequency, the power flow flowing in the BTB 21 is calculated, and the power flow control signal 28 is transmitted to the BTB 21 and the control signal 27 is transmitted to the distributed power source to be controlled in the small-scale power system.

次に、図3について説明する。図3は、図1のBTB通過潮流演算手段15の詳細を示した説明図である。周波数変化量演算手段151は、短周期成分の周波数変化量を演算する。同期化力演算手段152は、同期化力を演算する。同期化力積分手段153は、求めた同期化力を積分するものである。有効電力制御手段154は、同期化力を積分して求めたBTBに流れる潮流を決定するものである。   Next, FIG. 3 will be described. FIG. 3 is an explanatory diagram showing details of the BTB passage power flow calculating means 15 of FIG. The frequency change amount calculation means 151 calculates the frequency change amount of the short period component. The synchronization force calculation means 152 calculates the synchronization force. The synchronizing force integrating means 153 integrates the obtained synchronizing force. The active power control means 154 determines the power flow flowing through the BTB obtained by integrating the synchronization force.

次に作用について、図4のフローチャートに従って説明する。まず、S11のステップの周波数分析は、配電系統と小規模電力系統の図5に示すような配電系統の周波数と図6に示すような小規模電力系統の周波数を、周波数検出手段と小規模電力系統周波数検出手段で検出する。次に、S12のステップでは、系統周波数を図7に示すような長周期の周波数成分と図9に示すような短周期の周波数成分に分離する。また、30秒から2分程度の変動は、短周期の周波数成分、それよりも長い周期は長周期成分に分離する。一方で小規模電力系統周波数も同様に、図8に示すような長周期変動の周波数成分と図10に示すような短周期変動の周波数成分に分離する。次に、S13のステップでは、分離された図7,図8のように周波数の長周期成分の周波数は、BTBを一定で通過させないように小規模電力系統内の制御対象の分散型電源により制御する。一方、図9,図10に示すような周波数の短周期成分は、図3に示すようなBTB通過出力演算手段によって通過すべく出力を求める。次に、S14のステップでは、図3に示すBTB出力演算手段155によってBTBに流れる潮流を求める。まず、周波数変化量演算手段151により、図9に示すような系統周波数と図10に示すような系統周波数の偏差Δf1 と小規模電力系統周波数の偏差Δf2の差分を求める。 Next, the operation will be described with reference to the flowchart of FIG. First, the frequency analysis of the step of S11 is performed by dividing the frequency of the distribution system and the small-scale power system as shown in FIG. 5 and the frequency of the small-scale power system as shown in FIG. Detected by system frequency detection means. Next, in step S12, the system frequency is separated into a long-cycle frequency component as shown in FIG. 7 and a short-cycle frequency component as shown in FIG. Further, fluctuations of about 30 seconds to 2 minutes are separated into short-cycle frequency components, and longer cycles are separated into long-cycle components. On the other hand, the small-scale power system frequency is similarly separated into a frequency component with long-period fluctuation as shown in FIG. 8 and a frequency component with short-period fluctuation as shown in FIG. Next, in step S13, as shown in FIGS. 7 and 8, the frequency of the long period component of the frequency is controlled by the distributed power source to be controlled in the small-scale power system so that the BTB does not pass constant. To do. On the other hand, the short period component of the frequency as shown in FIG. 9 and FIG. 10 obtains the output to pass by the BTB passage output calculating means as shown in FIG. Next, in step S14, the tidal current flowing through the BTB is obtained by the BTB output calculating means 155 shown in FIG. First, the difference between the system frequency as shown in FIG. 9 and the system frequency deviation Δf 1 and the small-scale power system frequency deviation Δf 2 is obtained by the frequency variation calculation means 151.

Figure 0004341599
Figure 0004341599

次に、ステップ15では、図3の同期化力演算手段152により求めた周波数の偏差の差分Δfを線路の制御パラメ−タである同期リアクタンスXで割ることにより同期化力を求める。同期化力は以下のように表される。   Next, in step 15, the synchronizing force is obtained by dividing the difference Δf in frequency deviation obtained by the synchronizing force calculating means 152 in FIG. 3 by the synchronous reactance X that is a control parameter of the line. The synchronization power is expressed as follows.

図11において系統側の位相をθ1 、小規模電力系統側の位相をθ2 、制御パラメータである線路の同期リアクタンスをXとすると流れる有効電力Pは次式のように表すことができる。 In FIG. 11, assuming that the phase on the grid side is θ 1 , the phase on the small-scale power grid side is θ 2 , and the synchronous reactance of the line, which is a control parameter, is X, the flowing active power P can be expressed as the following equation.

Figure 0004341599
但し、Xは同期リアクタンス
Figure 0004341599
Where X is the synchronous reactance

Xは、例えば配電系統のリアクタンスと小規模電力系統のリアクタンスの総和として求めることができる。次に、ステップS15について説明する。   X can be obtained, for example, as the sum of the reactance of the power distribution system and the reactance of the small-scale power system. Next, step S15 will be described.

式(2)より、同期化力は次式のように表すことができる。   From equation (2), the synchronization force can be expressed as:

Figure 0004341599
Figure 0004341599

次に、目標となるBTBを通過させる有効電力Pの時間毎の変化量は、次式で表すことができる。   Next, the amount of change per hour of the effective power P that passes the target BTB can be expressed by the following equation.

Figure 0004341599
次に、ステップS16では、式(4)で求めた時間毎の有効電力Pを図3の同期化力積分手段153によって積分することにより、BTBを通過させる有効電力目標値Pを次式で表すことができる。
Figure 0004341599
Next, in step S16, the active power target value P that passes through the BTB is expressed by the following equation by integrating the effective power P for each time obtained by the equation (4) by the synchronizing force integrating means 153 of FIG. be able to.

Figure 0004341599
Figure 0004341599

式(5)で求めた有効電力目標値PだけBTBに流すように潮流を制御する。求めた有効電力目標値Pを、図3の有効電力制御手段154によって、図12に示すように、ある所定(例えば30分間)の範囲で0もしくは一定にする。式(5)の時間で積分する時間範囲は例えば5分程度として、5分毎に有効電力目標値Pを求める。次にステップS17では、求めた有効電力目標値Pが、ある所定時間(例えば30分間)の範囲で0もしくは一定になるように制御量を求める。すなわち、30分毎の需給が同時同量になるように制御する。   The power flow is controlled so that only the active power target value P obtained by Expression (5) flows through the BTB. The obtained active power target value P is set to 0 or constant within a predetermined range (for example, 30 minutes) as shown in FIG. 12 by the active power control means 154 of FIG. For example, the time range for integration with the time of Expression (5) is about 5 minutes, and the active power target value P is obtained every 5 minutes. Next, in step S17, the control amount is obtained so that the obtained active power target value P is 0 or constant within a predetermined time period (for example, 30 minutes). That is, control is performed so that supply and demand every 30 minutes are the same amount at the same time.

本発明は、電力会社の高圧配電系統と小規模な系統設備を有する小規模電力系統を系統連系時に、系統連系線に潮流を制御するBTBを設置する。そのことにより、小規模電力系統の分散型電源の追従性が悪くても配電系統と小規模電力系統で需給バランスを調整することが出来る。更には、2つの系統の周波数成分から連系部分のBTB方式に流れる潮流を0もしくは一定に制御することにより、小規模電力系統と配電系統を安定化することができる。従来は、周波数維持や電圧維持の問題から分散型電源を大量に導入できなかったが、小規模電力系統のように系統に1点で連系するようなシステムで系統連系点において潮流制御を行うことが可能なBTBを導入することで系統に、より多くの分散型電源を導入することが可能となる利点がある。   The present invention installs a BTB that controls power flow on a grid connection line when a high-voltage distribution system of a power company and a small-scale power system having small-scale system facilities are connected to the grid. As a result, the balance between supply and demand can be adjusted between the distribution system and the small-scale power system even if the followability of the distributed power source of the small-scale power system is poor. Furthermore, the small-scale power system and the power distribution system can be stabilized by controlling the power flow flowing from the frequency components of the two systems to the BTB system of the interconnected part to 0 or constant. In the past, distributed power sources could not be introduced in large quantities due to problems of frequency maintenance and voltage maintenance, but tidal current control was performed at the grid connection point in a system that was connected to the system at one point, such as a small-scale power system. By introducing BTB that can be performed, there is an advantage that more distributed power sources can be introduced into the system.

本発明に係わる系統連系安定化装置の構成例を示した説明図である。It is explanatory drawing which showed the structural example of the grid connection stabilization apparatus concerning this invention. 系統連系安定化装置と配電系統と小規模電力系統との関係を示した説明図である。It is explanatory drawing which showed the relationship between a grid connection stabilizer, a power distribution system, and a small-scale power system. 図1の系統連系安定化装置のBTB通過出力演算手段について示した説明図である。It is explanatory drawing shown about the BTB passage output calculating means of the grid connection stabilization apparatus of FIG. 図2の系統連系制御装置のフローチャートについての説明図である。It is explanatory drawing about the flowchart of the grid connection control apparatus of FIG. 配電系統の周波数の例を示した説明図である。It is explanatory drawing which showed the example of the frequency of a power distribution system. 小規模電力系統側の周波数の例を示した説明図である。It is explanatory drawing which showed the example of the frequency by the side of a small scale electric power grid | system. 配電系統における長周期成分の周波数の例を示した説明図である。It is explanatory drawing which showed the example of the frequency of the long period component in a power distribution system. 小規模電力系統における長周期成分の周波数の例を示した説明図である。It is explanatory drawing which showed the example of the frequency of the long period component in a small scale electric power grid | system. 配電系統における短周期成分の周波数の例を示した説明図である。It is explanatory drawing which showed the example of the frequency of the short period component in a power distribution system. 小規模電力系統における短周期成分の周波数を示した説明図である。It is explanatory drawing which showed the frequency of the short period component in a small-scale electric power system. 配電系統と小規模電力系統の位相と潮流の関係について示した説明図である。It is explanatory drawing shown about the relationship between the phase and power flow of a power distribution system and a small-scale power system. 図1のBTB潮流制御装置の制御の例について示した説明図である。It is explanatory drawing shown about the example of control of the BTB power flow control apparatus of FIG.

符号の説明Explanation of symbols

11…系統周波数検出手段、12…小規模電力系統周波数検出手段、13…長周期短周期成分分離手段、14…長周期成分通過防止手段、15,155…BTB通過出力演算手段、16…BTB通過潮流制御手段、17…小規模電力系統内分散型電源、18,21…BTB(直流送電連系)、19…系統連系制御装置、22…配電系統、23…小規模電力系統、24…系統連系制御装置、25…配電系統周波数、26…小規模電力系統周波数、27…小規模電力系統出力制御信号、28…BTB潮流制御信号、29…系統連系安定化装置、151…系統周波数と小規模電力系統周波数変化量演算手段、152…同期化力演算手段、153…同期化力積分手段、154…有効電力制御手段、156…有効電力目標値指令信号。   DESCRIPTION OF SYMBOLS 11 ... System frequency detection means, 12 ... Small-scale electric power system frequency detection means, 13 ... Long period short period component separation means, 14 ... Long period component passage prevention means, 15,155 ... BTB passage output calculation means, 16 ... BTB passage Power flow control means, 17 ... distributed power supply in small-scale power system, 18, 21 ... BTB (DC power transmission interconnection), 19 ... grid-connected control device, 22 ... distribution system, 23 ... small-scale power system, 24 ... system Interconnection control device, 25 ... distribution system frequency, 26 ... small power system frequency, 27 ... small power system output control signal, 28 ... BTB power flow control signal, 29 ... system connection stabilization device, 151 ... system frequency Small power system frequency variation calculation means 152... Synchronization power calculation means 153... Synchronization power integration means 154... Active power control means 156.

Claims (3)

電力会社の配電系統と最大需要電力が1MW以下の小規模電力系統を連係する直流送電線に送電される送電電力を制御する電力系統安定化装置であって、前記電力会社の配電系統の周波数を検出する第1の周波数検出手段と、前記小規模電力系統の周波数を検出する第2の周波数検出手段と、前記第1の周波数検出手段により検出された電力会社の配電系統の周波数の30秒から10分の周期の範囲内で設定した周期以下の成分と前記第2の周波数検出手段により検出された小規模電力系統の周波数の前記30秒から10分の周期の範囲内で設定した周期以下の成分との差分に基づいて前記直流送電線に送電される送電電力の目標値を演算する送電電力目標値演算手段と、前記送電電力目標値演算手段により演算された送電電力の目標値に基づいて前記直流送電線に送電される送電電力を制御する送電電力制御手段を備えることを特徴とする電力系統安定化装置。   A power system stabilizing device that controls transmission power transmitted to a DC power transmission line that links a power distribution system and a small-scale power system with a maximum demand power of 1 MW or less, the frequency of the power distribution system of the power company being First frequency detection means for detecting, second frequency detection means for detecting the frequency of the small-scale power system, and 30 seconds of the frequency of the distribution system of the electric power company detected by the first frequency detection means A component less than or equal to a period set within a period of 10 minutes and a frequency less than or equal to a period set within a period of 10 minutes from the 30 seconds of the frequency of the small-scale power system detected by the second frequency detection means. A transmission power target value calculation means for calculating a target value of the transmission power transmitted to the DC transmission line based on a difference from the component, and a transmission power target value calculated by the transmission power target value calculation means. There are a DC power transmission line power system stabilizer, characterized in that it comprises a transmission power control means for controlling the transmission power transmitted to. 請求項1において、前記送電電力目標値演算手段は前記第1の周波数検出手段により検出された電力会社の配電系統の周波数の30秒から10分の周期の範囲内で設定した周期以下の成分と前記第2の周波数検出手段により検出された小規模電力系統の周波数の前記30秒から10分の周期の範囲内で設定した周期以下の成分との差分を所定の時間積分することにより前記直流送電線に送電される送電電力の目標値を演算することを特徴とする電力系統安定化装置。 According to claim 1, before Kioku DENDEN force target value calculating means following period set in the range of periods from 30 seconds to 10 minutes in the frequency of the distribution system of the power companies detected by the first frequency detecting means By integrating the difference between the component and the component of the frequency of the small-scale power system detected by the second frequency detecting means within a period of 30 seconds to 10 minutes within a predetermined period, and integrating the difference for a predetermined time A power system stabilizing device that calculates a target value of transmission power transmitted to a DC transmission line. 電力会社の配電系統と最大需要電力が1MW以下の小規模電力系統を連係する直流送電線に送電される送電電力を制御する系統安定化方法であって、前記電力会社の配電系統の周波数を検出する第1の周波数検出手順と、前記小規模電力系統の周波数を検出する第2の周波数検出手順と、前記第1の電力周波数検出手順により検出された電力会社の配電系統の周波数の30秒から10分の周期の範囲内で設定した周期以下の成分と前記第2の周波数検出手順により検出された小規模電力系統の周波数の前記30秒から10分の周期の範囲内で設定した周期以下の成分との差分に基づいて前記直流送電線に送電される送電電力の目標値を演算する送電線送電電力目標値演算手順と、前記送電電力目標値演算手順により演算された送電電力の目標値に基づいて前記直流送電線に送電される送電電力を制御する送電電力制御手順とを有することを特徴とする電力系統安定化方法。 A system stabilization method for controlling transmission power transmitted to a DC transmission line that links a distribution system of an electric power company and a small-scale power system having a maximum demand power of 1 MW or less, and detects the frequency of the distribution system of the electric power company A first frequency detection procedure, a second frequency detection procedure for detecting the frequency of the small-scale power system, and the frequency of the power system distribution system detected by the first power frequency detection procedure from 30 seconds. Less than the period set within the period of 10 minutes from the 30 seconds of the component of the period less than the period set within the period of 10 minutes and the frequency of the small-scale power system detected by the second frequency detection procedure wherein the feed calculate the target value wires transmitted power target value calculation procedure of the transmission power transmitted to the DC transmission line, the transmission power target value target of the transmission power calculated by the calculating procedure on the basis of the difference between the components Power system stabilizing method characterized by having a transmission power control procedure for controlling a transmission power transmitted to the DC transmission line based on.
JP2005269370A 2005-09-16 2005-09-16 Power grid interconnection stabilization apparatus and power grid stabilization method Expired - Fee Related JP4341599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005269370A JP4341599B2 (en) 2005-09-16 2005-09-16 Power grid interconnection stabilization apparatus and power grid stabilization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005269370A JP4341599B2 (en) 2005-09-16 2005-09-16 Power grid interconnection stabilization apparatus and power grid stabilization method

Publications (2)

Publication Number Publication Date
JP2007082361A JP2007082361A (en) 2007-03-29
JP4341599B2 true JP4341599B2 (en) 2009-10-07

Family

ID=37942042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005269370A Expired - Fee Related JP4341599B2 (en) 2005-09-16 2005-09-16 Power grid interconnection stabilization apparatus and power grid stabilization method

Country Status (1)

Country Link
JP (1) JP4341599B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5582831B2 (en) 2010-03-11 2014-09-03 株式会社東芝 Solar power system
JP5566736B2 (en) 2010-03-12 2014-08-06 株式会社東芝 Solar power system
AU2011355888B2 (en) 2011-01-20 2015-07-16 Kabushiki Kaisha Toshiba Photovoltaic system and power supply system
CN115549169B (en) * 2022-09-28 2024-05-24 南方电网科学研究院有限责任公司 Asynchronous interconnection flexible direct-current virtual inertia control method, device and system

Also Published As

Publication number Publication date
JP2007082361A (en) 2007-03-29

Similar Documents

Publication Publication Date Title
US8295988B2 (en) Generating apparatus and control method thereof
EP3026775B1 (en) Control device for solar power generation inverter
WO2013136852A1 (en) Charge power control apparatus, charge power control method, program, and solar power generation system
WO2012124130A1 (en) Power control device and power control method
WO2011114422A1 (en) Power supply system, power supply method, program, recording medium, and power supply controller
EP2680425B1 (en) Power conversion apparatus
US9391537B2 (en) Photovoltaic system and power supply system
JP2012120285A (en) Isolated operation detection device and isolated operation detection method
JP4341599B2 (en) Power grid interconnection stabilization apparatus and power grid stabilization method
JP2007143225A (en) Control system
JP2006246650A (en) System cooperation method of distributed power source and system cooperation inverter
JP4967539B2 (en) Isolated operation detection device, power conditioner, and isolated operation detection method
KR101951117B1 (en) Control System For Wind Power Generating
JP2011015493A (en) Distributed power supply device
CN202444279U (en) Countercurrent prevention system
KR101529982B1 (en) System for satisfying low voltage ride through capability of single phase grid connected pv inverter
JP5630914B2 (en) Method and system for extracting power from renewable energy sources
JP5742591B2 (en) Solar power generation equipment
JP2016208723A (en) Demand adjustment system for power system
US8780595B2 (en) Methods and systems for controlling a power converter
JP2011055656A (en) Fuel cell device, photovoltaic power generator, and distributed power supply system
JP5784470B2 (en) Power conditioner and control method thereof
JP4835453B2 (en) Isolated operation detection method, distributed power supply isolated operation detection control device, isolated operation detection device, and distributed power supply
KR102489088B1 (en) Frequincy regulation operating method and grid system frequincy regulation system
JP2015177571A (en) Power conditioner with storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090629

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4341599

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees