JP4341229B2 - Method for producing highly reactive calcium hydroxide with improved handling - Google Patents

Method for producing highly reactive calcium hydroxide with improved handling Download PDF

Info

Publication number
JP4341229B2
JP4341229B2 JP2002329136A JP2002329136A JP4341229B2 JP 4341229 B2 JP4341229 B2 JP 4341229B2 JP 2002329136 A JP2002329136 A JP 2002329136A JP 2002329136 A JP2002329136 A JP 2002329136A JP 4341229 B2 JP4341229 B2 JP 4341229B2
Authority
JP
Japan
Prior art keywords
calcium hydroxide
highly reactive
calcium
weight
organic additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002329136A
Other languages
Japanese (ja)
Other versions
JP2004161536A (en
Inventor
孝信 汐待
明 斎川
礼佳 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yoshizawa Lime Industry Co Ltd
Original Assignee
Yoshizawa Lime Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshizawa Lime Industry Co Ltd filed Critical Yoshizawa Lime Industry Co Ltd
Priority to JP2002329136A priority Critical patent/JP4341229B2/en
Publication of JP2004161536A publication Critical patent/JP2004161536A/en
Application granted granted Critical
Publication of JP4341229B2 publication Critical patent/JP4341229B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ハンドリング性を改善した高反応性水酸化カルシウムの製造方法に関する。
【0002】
【従来の技術】
都市ゴミ焼却施設においては、その排ガス中の有害成分を除去するために、水酸化カルシウム(消石灰)を排ガスに吹き込んでおり、発生した飛灰は、埋め立てにより処分している。ところが、近年は、飛灰を埋め立てる最終処分場が不足し、またはその余命が少なくなってきていることから、飛灰の量を極力少なくすることが必要になり、従来の水酸化カルシウムにくらべて少量で足りるものが要求されている。この要求を満たすべく、従来品よりも比表面積が大きく、粒径が小さな高反応性の水酸化カルシウムが開発され、市場を確立してきた。
【0003】
高反応性の水酸化カルシウムは、酸化カルシウム(生石灰)を消化して製造するときに、通常、消化水に、アルコール等の有機系薬剤を添加して消化反応を遅延させ、消石灰粒子の粗大化を防ぐ条件下に製造され、その後必要に応じて、粉砕や分級工程を経て製品とされている。このような高反応性の水酸化カルシウムは、JISで規格された従来の消石灰と比較して、約1/2の使用量で、ゴミ焼却炉の排ガス中の塩化水素ガス濃度を、規制値以下に低減することができる。
【0004】
しかし、環境に対する関心は高まる一方であり、塩化水素のみならず、二酸化硫黄に対しても高い反応性を有する、より高反応性の水酸化カルシウムが求められるようになってきた。一般に、都市ゴミ焼却炉から発生する排ガス中の二酸化硫黄の濃度は、塩化水素の濃度と比較して1/5〜1/10であり、また、酸としては塩化水素の方がはるかに強いため、上述した高反応性水酸化カルシウムでは、排ガス中で塩化水素と優先的に反応してしまい、活性のある表面が消失してしまう。活性な表面が消失した粒子であっても、その内部には、まだ未反応の水酸化カルシウムが残存しているが、反応生成物の粒子内への拡散速度は粒子表面での反応速度と比較して著しく遅いから、このような水酸化カルシウム粒子は、もはや二酸化硫黄と反応する余力が残っていない。従って、在来の高反応性の水酸化カルシウムは、二酸化硫黄の除去能力が不十分であった。
【0005】
この点を改善するために、多くの研究が行われた。その結果、水酸化カルシウム粒子中に存在する細孔径を大きくすれば、たとえ塩化水素と優先的に反応したとしても、細孔が閉塞せず、粒子内部まで酸性ガスが入り込んで反応することができるため、二酸化硫黄の除去性能が高まることがわかった。実際に、このような水酸化カルシウムは、酸化カルシウムに消化水を加えて得られる水酸化カルシウムが少なくとも10〜15%の水分を含有するか、または完全なスラリーとなるように、大過剰の消化水で消化したものを乾燥することによって得られることがわかっている。発明者らも、すでにこのような消石灰を工業的に製造する方法を提案している。このようにして製造された、「第二世代」の高反応性水酸化カルシウムは、塩化水素のみならず二酸化硫黄に対してもすぐれた除去性能を有することが、多くのゴミ焼却施設で確認されている。
【0006】
その一方で、このような高反応性の水酸化カルシウムは、サイロから煙道に吹き込むまでの気送配管に付着しやすいという、ハンドリング上の問題があることも、同時に明らかになった。この問題を改善するためにとられた方策は、高反応性水酸化カルシウムに珪藻土のような助剤を10%程度の量混合するというものであるが、これでは、飛灰の発生量を削減するという、高反応性水酸化カルシウム使用の目的に反することはいうまでもない。
【0007】
助剤を添加せずに高反応性水酸化カルシウムのハンドリング性を改善する方策を求め、発明者らは研究を重ねた。その結果、以下の知見を得た。
・二酸化硫黄除去性能を高めた、細孔容積の大きな高反応性水酸化カルシウムは、従来の高反応性水酸化カルシウムと比較して、空気輸送することにより発生する静電気の量が著しく多い。これは、在来の高反応性水酸化カルシウムは板状一次粒子が規則的に配列し、凝集体をつくっているのに対し、細孔容積の大きな高反応性水酸化カルシウムは一次粒子が不規則に配列しているため、空気輸送時に粒子同士が衝突したときの摩擦抵抗が大きいためであると考えられる。
・水酸化カルシウムのサイロから煙道に吹き込むまでの気送系中で、付着が最も起こりやすいのは、サイロから切り出された直後、すなわち輸送用の圧縮空気と接触した瞬間、および煙道に吹き込む直前、すなわち燃焼排ガスと接触しやすい位置である。両者の共通点は、接触するガス中に二酸化炭素が含まれていることである。
・気送系の中間部においては付着が起こりにくいのは、高反応性水酸化カルシウムが気送用の空気と接触したとき、短時間で、その空気中に含まれる二酸化炭素がほとんど反応して吸収され、中間部の空気中には二酸化炭素が実質上含まれていないためと考えられる。
【0008】
以上の知見にもとづき、細孔容積の大きい高反応性水酸化カルシウムが気送配管に付着するメカニズムは、次のように説明される。まず、サイロから切り出され気送空気と接触した高反応性水酸化カルシウムの粒子同士が衝突することにより、粒子が帯電して金属配管方向に引き寄せられる。配管の壁と衝突した水酸化カルシウム粒子は、表面のミクロな凹凸にひっかかったり、わずかに含まれる付着水分中に溶け込んだ状態の水酸化カルシウムが析出することにより、配管の壁に接着されたりする。そこで気送空気中に含まれる二酸化炭素と反応して炭酸カルシウムとなり、配管表面に強固に固定される。高反応性水酸化カルシウム粒子が付着した配管表面の凹凸はさらに大きくなるため、新たな粒子を捕らえやすくなり、その結果、付着量がますます増大して、配管が閉塞するに至る。
【0009】
このような現象を防止するには、たとえばシリコンオイルのような疎水性の薬剤を用いて、表面を完全に改質すればよいが、それでは、このような水酸化カルシウムに特有の高い反応性が失われてしまう。しかし、少量を添加しただけで粒子間の滑りがよくなって静電気の発生を抑えることができ、反応性の低下が無視できるほど小さければ、問題の実質的な解決につながる。発明者は、このような着想に基づいて研究の結果、特定の性質をそなえた有機系物質で処理するのが有効であることを見出した。
【0010】
【発明が解決しようとする課題】
本発明の目的は、高反応性の水酸化カルシウム、とくに細孔容積が大きく、塩化水素のみならず、二酸化硫黄との反応性が高い水酸化カルシウムにおいて、そのハンドリング性を改善し、気送系の閉塞などの問題を生じないものの製造方法を提供することにある。
【0011】
【課題を解決するための手段】
上記の目的を達成する本発明のハンドリング性を改善した高反応性水酸化カルシウムの製造方法は、炭酸カルシウムを軽度に焼成して得た酸化カルシウムに大過剰の水を加え、水和反応により水酸化カルシウムを生成させ、これを乾燥して集塵することにより、粉末状で高い反応性をもった水酸化カルシウムを製造する方法を実施するに当り、乾燥から集塵までの工程において、つぎの条件
1)アルコール性水酸基を2個以上有すること、
2)水溶性であること、および
3)沸点が150℃以上であること、
をすべて満たす有機系添加剤を、乾燥した水酸化カルシウムに対し、重量で0.05〜2.0%に相当する量添加し、輸送工程を利用して混合することを特徴とする。
【0012】
炭酸カルシウムを「軽度に焼成」するとは、消化のために水と混合した後ただちに水和反応が起こるよう焼成することを意味する。酸化カルシウムに対して「大過剰」の水を加える消化ということも、当業技術で理解されているように、水和反応に理論上必要な水の量に対し、少なくとも2.5倍の水を使用することを意味する。
【0013】
【発明の実施形態】
本発明の高反応性水酸化カルシウムの製造方法において、有機系添加剤の添加は、乾燥から集塵までの過程で行なうから、有機系添加剤は噴霧により添加することが好ましい。このとき、水酸化カルシウムの温度は60℃以上、最高150℃に達している。アルコール性水酸基が1個である有機物は、一般に低沸点で揮発性が大きいため、適切でない。もっとも、アルコール性水酸基は1個でも、炭素数が多くなれば揮発性は低くなり、沸点も上昇するが、そのような薬剤は、水溶性が低くなるし、それ以前に、工業的に供給可能な量とコストの面から、排ガス処理用の水酸化カルシウムの添加剤としては適当でない。
【0014】
本発明で使用するに適した添加剤の例をあげれば、エチレングリコール、ジェチレングリコール、プロピレングリコール、ジプロピレングリコール、ジエタノールアミン、トリエタノールアミン、グリセリン、ジグリセリン等である。これらの中でとくに好適なのは、ジプロピレングリコール、グリセリンおよびトリエタノールアミンである。これらの添加剤は単独で便用してもよいし、複数を混合して使用してもよい。
【0015】
上記の添加剤は、乾燥した水酸化カルシウムに対し、重量で0.05〜2.0%に相当する量添加する。0.05%に満たない少量では、添加の効果が得られないし、2.0%を超えて添加すると、水酸化カルシウムの反応性を低下させるとともに、無用のコスト高を招く。通常、0.1〜0.5%の範囲の添加が適切である。
【0016】
添加剤は、10〜70%、好ましくは30〜50%の濃度の水溶液として水酸化カルシウムに添加するとよい。溶液とすることにより、添加剤の粘度を下げるとともに、被処理物である高反応性水酸化カルシウムに対して圧倒的に少ない量の添加剤の使用量を、見掛け上高めて、均一な分散を容易にするという効果が得られる。溶液として添加された過剰な水分は、雰囲気温度が高いため、特段の乾燥手段を講じなくても蒸発する。添加剤水溶液の濃度を10%より低くすると、製品を乾燥するためにエネルギーを加える必要が生じ、不都合である。
【0017】
添加剤の添加は、乾燥から集塵まで、具体的にいえば、乾燥機本体から集塵機までの間の、適当な部分で行なうことができる。より上流の工程で行なう方が、その後の輸送工程における混合効果を期待できることはいうまでもない。したがって、最も好ましい添加位置は、乾燥機の内部である。水酸化カルシウムの製造に使用される乾燥機は、一般に解砕機能を有しており、この部分でより強力に混合することができ、また、乾燥機内部への付着を低減する効果も期待できる。添加された薬剤は、製品をサイロに輸送するまでの工程、たとえば気送工程やスクリューコンベアー輸送工程などにおいて、さらに均一に混合される。
【0018】
酸化カルシウムから水酸化カルシウムへの水和反応を、酸化カルシウムを大過剰の消化水に投入して、得られる水酸化カルシウムが完全なスラリーとなる、いわゆる湿式消化によって行なう場合は、この消化を、水酸化カルシウムと反応し、または水酸化カルシウム粒子の表面に吸着するような界面活性剤を、酸化カルシウム100重量部あたり0.01〜1.0重量部の割合となる量混合した消化水を用いて実施するとよい。それにより、有機系添加剤の分散が助けられ、きわめて均一な表面処理が可能となる。この界面活性剤が水酸化カルシウムと反応し、または水酸化カルシウム粒子の表面に吸着したことは、その後の脱水工程から発生する濾液中のCODを測定することによって、確認できる。
【0019】
【実施例】
以下に記す実施例および比較例においては、水酸化カルシウムのハンドリング性を、空気輸送に際しての配管への粉末付着量および粒子の帯電状態によって測定した。その方法は、つぎのとおりである。すなわち、製造した水酸化カルシウム15kgを、テーブルフィーダーを用いて切り出し、12m3/hrの流量で空気輸送する。テーブルフィーダーの切出部直後に、内径10mm、長さ100mmの鉄製の配管を接続し、空気輸送前後の重量変化を測定して、粉末の付着量を調べる。この鉄製配管の後は、接続配管を経由して内径25mm、長さ15mのアース線入り塩ビ配管を通過させて、水酸化カルシウムを大気中に噴出させる。噴出した水酸化カルシウムを絶縁した鉄板に衝突させ、鉄板の静電電位を測定することにより、空気輸送による粒子の耐電状態を計測する。
【0020】
[実施例1]
酸化カルシウム100重量部をカルボン酸系高分子アニオン界面活性剤0.5重量部およびくえん酸0.5重量部を溶解した消化水600重量部で消化した。これを乾燥することにより粉末状高反応性水酸化カルシウムとしたが、乾燥機中に、50%ジプロピレングリコール溶液を、乾燥粉末100重量部に対して0.5重量部吹き込み、水酸化カルシウムの表面を改質した。
【0021】
[実施例2]
実施例1で得た高反応性水酸化カルシウムの乾燥の過程で、乾燥機中に、ジプロピレングリコール溶液に代えて、50%トリエタノールアミン溶液を、乾燥粉末100重量部に対して0.5重量部吹き込んだほかは、実施例1と同様に操作して水酸化カルシウムの表面を改質した。
【0022】
[実施例3]
実施例1で得た高反応性水酸化カルシウムの乾燥の過程で、乾燥機中に、ジプロピレングリコール溶液に代えて、50%グリセリン溶液を、乾燥粉末100重量部に対して0.5重量部吹き込んだほかは、実施例1と同様に操作して水酸化カルシウムの表面を改質した。
【0023】
[比較例]
酸化カルシウム100重量部を、くえん酸0.5重量部を溶解した消化水600重量部で消化し、これを乾燥することにより高反応性水酸化カルシウム粉末を得、これをそのまま空気輸送の試験に使用した。
【0024】
実施例1〜3および比較例の高反応性水酸化カルシウムについて上記試験の結果を、それぞれの水酸化カルシウム粉末がもつ、BET法により測定した比表面積の値とともに、表1に示す。
【0025】
表1

Figure 0004341229
【0026】
【発明の効果】
本発明の方法により高反応性水酸化カルシウム、とくに細孔容積の大きい、塩化水素のみならず二酸化硫黄に対する反応性も高い水酸化カルシウムを製造すれば、その問題点であったハンドリング性の悪さが改善され、水酸化カルシウムの気送系を閉塞させるといった問題が解消した、使いやすい高反応性水酸化カルシウムを提供することができる。この高反応性水酸化カルシウムを都市ゴミ焼却炉の排ガス処理に使用することにより、有害物質の除去率を高めた処理を、設備運転上のトラブルを避けて実施することが可能になる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing highly reactive calcium hydroxide with improved handling properties.
[0002]
[Prior art]
In the municipal waste incineration facility, calcium hydroxide (slaked lime) is blown into the exhaust gas in order to remove harmful components in the exhaust gas, and the generated fly ash is disposed of by landfill. However, in recent years, the final disposal site for landfilling fly ash has become scarce or the life expectancy has decreased, so it has become necessary to reduce the amount of fly ash as much as possible, compared to conventional calcium hydroxide. What is needed is a small amount. In order to satisfy this requirement, highly reactive calcium hydroxide having a larger specific surface area and smaller particle size than conventional products has been developed and established a market.
[0003]
Highly reactive calcium hydroxide is produced by digesting calcium oxide (quick lime), usually adding an organic chemical such as alcohol to the digestion water to delay the digestion reaction and coarsening the slaked lime particles It is manufactured under the conditions that prevent the above, and after that, it is made into a product through pulverization and classification processes as necessary. Such high-reactivity calcium hydroxide is less than the regulated value in the concentration of hydrogen chloride gas in the waste incinerator exhaust gas, using about 1/2 the amount of conventional slaked lime standardized by JIS. Can be reduced.
[0004]
However, interest in the environment is increasing, and there has been a demand for higher-reactivity calcium hydroxide having high reactivity not only with hydrogen chloride but also with sulfur dioxide. In general, the concentration of sulfur dioxide in the exhaust gas generated from municipal waste incinerators is 1/5 to 1/10 compared to the concentration of hydrogen chloride, and hydrogen chloride is much stronger as an acid. In the above-described highly reactive calcium hydroxide, it reacts preferentially with hydrogen chloride in the exhaust gas, and the active surface disappears. Even if the active surface disappears, unreacted calcium hydroxide still remains inside, but the diffusion rate of the reaction product into the particle is compared with the reaction rate on the particle surface. Thus, such calcium hydroxide particles no longer have the potential to react with sulfur dioxide. Therefore, the conventional highly reactive calcium hydroxide has an insufficient ability to remove sulfur dioxide.
[0005]
Many studies have been conducted to improve this point. As a result, if the pore diameter present in the calcium hydroxide particles is increased, even if it preferentially reacts with hydrogen chloride, the pores are not blocked and acidic gas can enter and react inside the particles. Therefore, it turned out that the removal performance of sulfur dioxide improves. In fact, such calcium hydroxide may contain a large excess of digestion so that the calcium hydroxide obtained by adding digestion water to calcium oxide contains at least 10-15% moisture or is a complete slurry. It has been found that it can be obtained by drying what has been digested with water. The inventors have already proposed a method for industrially producing such slaked lime. Many of the incineration facilities have confirmed that the “second generation” highly reactive calcium hydroxide produced in this way has excellent removal performance not only for hydrogen chloride but also for sulfur dioxide. ing.
[0006]
On the other hand, it became clear at the same time that such highly reactive calcium hydroxide has a handling problem that it easily adheres to the air-feeding pipe from the silo to the flue. A measure taken to remedy this problem is to mix auxiliaries such as diatomaceous earth with highly reactive calcium hydroxide in an amount of about 10%, but this reduces the amount of fly ash generated. Needless to say, this is contrary to the purpose of using highly reactive calcium hydroxide.
[0007]
The inventors conducted research to find a way to improve the handleability of highly reactive calcium hydroxide without adding an auxiliary agent. As a result, the following knowledge was obtained.
-High-reactivity calcium hydroxide with a large pore volume and improved sulfur dioxide removal performance has a significantly larger amount of static electricity generated by pneumatic transportation than conventional high-reactivity calcium hydroxide. This is because conventional high-reactivity calcium hydroxide has regularly arranged plate-like primary particles to form aggregates, whereas high-reactivity calcium hydroxide with a large pore volume has no primary particles. This is considered to be because the frictional resistance is large when particles collide during pneumatic transportation because they are regularly arranged.
・ In the air transportation system from the calcium hydroxide silo to the flue, the adhesion is most likely to occur immediately after being cut out from the silo, that is, the moment when it comes into contact with compressed air for transportation, and the flue is blown into the flue. Immediately before, that is, a position where it is easy to come into contact with combustion exhaust gas. The common point of both is that carbon dioxide is contained in the gas in contact.
-Adhesion hardly occurs in the middle part of the air transportation system when the highly reactive calcium hydroxide comes into contact with the air for air transportation, and the carbon dioxide contained in the air reacts almost in a short time. This is probably because carbon dioxide is not substantially contained in the air in the middle part.
[0008]
Based on the above knowledge, the mechanism by which highly reactive calcium hydroxide having a large pore volume adheres to the pneumatic piping is explained as follows. First, particles of high-reactivity calcium hydroxide cut out from a silo and in contact with air-feeding air collide with each other, so that the particles are charged and drawn toward the metal pipe. Calcium hydroxide particles that collide with the wall of the pipe may get stuck on the surface of the pipe due to the micro unevenness on the surface or by precipitation of calcium hydroxide dissolved in the slightly attached water. . Therefore, it reacts with carbon dioxide contained in the air and becomes calcium carbonate, which is firmly fixed to the pipe surface. The irregularities on the surface of the pipe to which the highly reactive calcium hydroxide particles are attached become larger, making it easier to catch new particles. As a result, the amount of adhesion increases and the pipe is blocked.
[0009]
In order to prevent such a phenomenon, it is sufficient to completely modify the surface by using a hydrophobic agent such as silicone oil. It will be lost. However, if a small amount is added, slipping between particles is improved and generation of static electricity can be suppressed. If the decrease in reactivity is negligibly small, the problem can be substantially solved. As a result of research based on such an idea, the inventor has found that it is effective to treat with an organic material having a specific property.
[0010]
[Problems to be solved by the invention]
The object of the present invention is to improve the handling property of highly reactive calcium hydroxide, particularly calcium hydroxide having a large pore volume and not only hydrogen chloride but also highly reactive with sulfur dioxide, It is an object of the present invention to provide a manufacturing method that does not cause problems such as blockage.
[0011]
[Means for Solving the Problems]
The process for producing highly reactive calcium hydroxide with improved handling properties according to the present invention that achieves the above object is to add a large excess of water to calcium oxide obtained by lightly calcining calcium carbonate, and then add water by a hydration reaction. In carrying out a method for producing calcium hydroxide having high reactivity by generating calcium oxide and drying it to collect dust, the following steps are taken from drying to dust collection. Condition 1) having two or more alcoholic hydroxyl groups,
2) being water-soluble, and 3) having a boiling point of 150 ° C. or higher,
An organic additive satisfying all of the above is added to the dried calcium hydroxide in an amount corresponding to 0.05 to 2.0% by weight, and mixed using a transport process.
[0012]
“Lightly calcining” calcium carbonate means calcining so that a hydration reaction occurs immediately after mixing with water for digestion. Digestion that adds a “large excess” of water to calcium oxide also means that at least 2.5 times the amount of water theoretically required for the hydration reaction, as is understood in the art. Means to use.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
In the method for producing highly reactive calcium hydroxide of the present invention, the organic additive is added in the process from drying to dust collection. Therefore, the organic additive is preferably added by spraying. At this time, the temperature of calcium hydroxide has reached 60 ° C. or higher and a maximum of 150 ° C. Organic substances having one alcoholic hydroxyl group are not suitable because they generally have a low boiling point and high volatility. However, even if there is only one alcoholic hydroxyl group, if the number of carbon atoms increases, the volatility will decrease and the boiling point will increase, but such agents will be less water soluble and can be supplied industrially before that. In view of the amount and cost, it is not suitable as an additive for calcium hydroxide for exhaust gas treatment.
[0014]
Examples of additives suitable for use in the present invention include ethylene glycol, jetylene glycol, propylene glycol, dipropylene glycol, diethanolamine, triethanolamine, glycerin, diglycerin and the like. Of these, particularly preferred are dipropylene glycol, glycerin and triethanolamine. These additives may be used alone or in combination.
[0015]
The above additive is added in an amount corresponding to 0.05 to 2.0% by weight with respect to the dried calcium hydroxide. If the amount is less than 0.05%, the effect of addition cannot be obtained. If the amount exceeds 2.0%, the reactivity of calcium hydroxide is lowered and unnecessary costs are increased. Usually, addition in the range of 0.1 to 0.5% is appropriate.
[0016]
The additive may be added to calcium hydroxide as an aqueous solution having a concentration of 10 to 70%, preferably 30 to 50%. By making it a solution, the viscosity of the additive is lowered, and the amount of additive used in an overwhelmingly small amount with respect to the highly reactive calcium hydroxide to be processed is apparently increased to achieve uniform dispersion. The effect of facilitating is obtained. Excess water added as a solution evaporates without special drying means because of high atmospheric temperature. If the concentration of the additive aqueous solution is lower than 10%, it is inconvenient because it is necessary to add energy to dry the product.
[0017]
Addition of the additive can be performed from drying to dust collection, specifically, at an appropriate portion from the dryer body to the dust collector. It goes without saying that the mixing effect in the subsequent transport process can be expected by performing the process in the upstream process. Therefore, the most preferable addition position is inside the dryer. The dryer used for the production of calcium hydroxide generally has a crushing function, can be mixed more strongly in this part, and can also be expected to reduce the adhesion to the inside of the dryer. . The added drug is further uniformly mixed in a process until the product is transported to the silo, for example, an air feeding process or a screw conveyor transport process.
[0018]
When the hydration reaction from calcium oxide to calcium hydroxide is carried out by so-called wet digestion in which calcium oxide is added to a large excess of digested water and the resulting calcium hydroxide becomes a complete slurry, this digestion is performed. Using digested water in which a surfactant that reacts with calcium hydroxide or adsorbs on the surface of calcium hydroxide particles is mixed in an amount of 0.01 to 1.0 part by weight per 100 parts by weight of calcium oxide. It is good to carry out. Thereby, dispersion of the organic additive is assisted, and a very uniform surface treatment is possible. The fact that this surfactant reacts with calcium hydroxide or is adsorbed on the surface of calcium hydroxide particles can be confirmed by measuring the COD in the filtrate generated in the subsequent dehydration step.
[0019]
【Example】
In the examples and comparative examples described below, the handleability of calcium hydroxide was measured by the amount of powder adhering to the piping and the charged state of the particles during pneumatic transportation. The method is as follows. That is, 15 kg of the produced calcium hydroxide is cut out using a table feeder and pneumatically transported at a flow rate of 12 m 3 / hr. Immediately after cutting out the table feeder, an iron pipe with an inner diameter of 10 mm and a length of 100 mm is connected, and the change in weight before and after pneumatic transportation is measured to examine the amount of adhered powder. After this iron pipe, the calcium hydroxide is jetted into the atmosphere through a connecting pipe and passing through a PVC pipe containing a ground wire with an inner diameter of 25 mm and a length of 15 m. The discharged calcium hydroxide is allowed to collide with an insulated iron plate and the electrostatic potential of the iron plate is measured, thereby measuring the withstand state of particles by pneumatic transportation.
[0020]
[Example 1]
100 parts by weight of calcium oxide was digested with 600 parts by weight of digested water in which 0.5 parts by weight of a carboxylic acid polymer anionic surfactant and 0.5 parts by weight of citric acid were dissolved. This was dried to obtain a powdery highly reactive calcium hydroxide. A 50% dipropylene glycol solution was blown into a dryer at 0.5 parts by weight with respect to 100 parts by weight of the dry powder. The surface was modified.
[0021]
[Example 2]
In the course of drying the highly reactive calcium hydroxide obtained in Example 1, instead of the dipropylene glycol solution, a 50% triethanolamine solution was added to the dry powder in an amount of 0.5 parts per 100 parts by weight of the dry powder. The surface of calcium hydroxide was modified in the same manner as in Example 1 except that the parts by weight were blown.
[0022]
[Example 3]
In the course of drying the highly reactive calcium hydroxide obtained in Example 1, 0.5% by weight of 50% glycerin solution was used instead of dipropylene glycol solution in the drier. The surface of calcium hydroxide was modified in the same manner as in Example 1 except that it was blown.
[0023]
[Comparative example]
100 parts by weight of calcium oxide is digested with 600 parts by weight of digested water in which 0.5 part by weight of citric acid is dissolved, and dried to obtain a highly reactive calcium hydroxide powder, which is used as it is for a pneumatic transport test. used.
[0024]
The results of the above test for the highly reactive calcium hydroxides of Examples 1 to 3 and Comparative Example are shown in Table 1 together with the specific surface area values measured by the BET method of the respective calcium hydroxide powders.
[0025]
Table 1
Figure 0004341229
[0026]
【The invention's effect】
If the method of the present invention is used to produce highly reactive calcium hydroxide, particularly calcium hydroxide having a large pore volume and high reactivity to not only hydrogen chloride but also sulfur dioxide, the poor handling properties, which was the problem. It is possible to provide an easy-to-use highly reactive calcium hydroxide that has been improved and has solved the problem of blocking the calcium hydroxide air-feeding system. By using this highly reactive calcium hydroxide for the exhaust gas treatment of municipal waste incinerators, it is possible to carry out treatment with an increased removal rate of harmful substances while avoiding troubles in equipment operation.

Claims (5)

炭酸カルシウムを焼成して得た酸化カルシウムに対し湿式消化を行なって水酸化カルシウムを生成させ、これを乾燥して集塵することにより、粉末状で高い反応性をもった水酸化カルシウムを製造する方法を実施するに当り、乾燥から集塵までの工程において、つぎの条件
1)アルコール性水酸基を2個以上有すること、
2)水溶性であること、および
3)沸点が150℃以上であること、
をすべて満たす有機系添加剤を、乾燥した水酸化カルシウムに対し、重量で0.05〜2.0%に相当する量添加し、輸送工程を利用して混合することを特徴とするハンドリング性を改善した高反応性水酸化カルシウムの製造方法。
Against the calcium oxide obtained by firing calcium carbonate by performing wet digestion to generate calcium hydroxide, by collecting the dust by drying this to produce a calcium hydroxide having a high reactivity in powder form In carrying out the method, in the steps from drying to dust collection, the following conditions 1) having two or more alcoholic hydroxyl groups,
2) being water-soluble, and 3) having a boiling point of 150 ° C. or higher,
An organic additive satisfying all of the above requirements is added to the dried calcium hydroxide in an amount corresponding to 0.05 to 2.0% by weight and mixed using a transport process. An improved process for producing highly reactive calcium hydroxide.
有機系添加剤を濃度10〜70重量%の水溶液として水酸化カルシウムに添加する請求項1の製造方法。The process according to claim 1, wherein the organic additive is added to calcium hydroxide as an aqueous solution having a concentration of 10 to 70% by weight . 有機系添加剤を乾燥機の内部に噴霧することにより添加する請求項1または2の製造方法。The method according to claim 1 or 2, wherein the organic additive is added by spraying the inside of the dryer. 有機系添加剤として、ジプロピレングリコール、グリセリンおよびトリエタノールアミンから選んだ1種または2種以上を使用する請求項1ないし3のいずれかの製造方法。4. The method according to claim 1, wherein one or more selected from dipropylene glycol, glycerin and triethanolamine is used as the organic additive. 酸化カルシウムの水和反応を、酸化カルシウムを水に投入して消化する湿式消化法により行ない、この消化を、水酸化カルシウムと反応し、または水酸化カルシウム粒子の表面に吸着するような界面活性剤を、酸化カルシウム100重量部あたり0.01〜1.0重量部の割合となる量混合した消化水を用いて実施する、請求項1ないし4のいずれかの製造方法。The hydration of calcium oxide, the calcium oxide is performed by a wet digestion to digest was put into water, this digestion, surfactants such as adsorbed on the surface of reacting with calcium hydroxide, or calcium hydroxide particles The manufacturing method in any one of Claim 1 thru | or 4 which implements an agent using the digestive water mixed in the quantity used as the ratio of 0.01-1.0 weight part per 100 weight part of calcium oxide.
JP2002329136A 2002-11-13 2002-11-13 Method for producing highly reactive calcium hydroxide with improved handling Expired - Fee Related JP4341229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002329136A JP4341229B2 (en) 2002-11-13 2002-11-13 Method for producing highly reactive calcium hydroxide with improved handling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002329136A JP4341229B2 (en) 2002-11-13 2002-11-13 Method for producing highly reactive calcium hydroxide with improved handling

Publications (2)

Publication Number Publication Date
JP2004161536A JP2004161536A (en) 2004-06-10
JP4341229B2 true JP4341229B2 (en) 2009-10-07

Family

ID=32807220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002329136A Expired - Fee Related JP4341229B2 (en) 2002-11-13 2002-11-13 Method for producing highly reactive calcium hydroxide with improved handling

Country Status (1)

Country Link
JP (1) JP4341229B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017220773A1 (en) 2016-06-24 2017-12-28 S.A. Lhoist Recherche Et Developpement Method for producing a highly porous fine powdered slaked lime composition, and product obtained therefrom
WO2017220167A1 (en) 2016-06-24 2017-12-28 S.A. Lhoist Recherche Et Developpement Process for manufacturing fine and highly porous powdery slaked lime composition and product thereby obtained
CN108178175A (en) * 2018-03-05 2018-06-19 南京格暠环保科技有限公司 The preparation method of calcium hydroxide special for plastic heat stabilizer

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142192A1 (en) * 2006-06-02 2007-12-13 National University Corporation Tohoku University Porous calcium oxide particulate and porous calcium hydroxide particulate
JP5306739B2 (en) * 2008-08-18 2013-10-02 宇部マテリアルズ株式会社 Slaked lime and method for producing the same
CN105669427A (en) * 2016-02-26 2016-06-15 程洪光 Recover method for acid mist generated by acid hydrolysis reaction in citric acid production
CN111116061A (en) * 2019-12-31 2020-05-08 米易东立矿业有限公司 Dry preparation method of nano calcium hydroxide
CN111606581A (en) * 2020-05-07 2020-09-01 常熟市宏宇钙化物有限公司 Preparation method of liquid calcium hydroxide
CN112358205A (en) * 2020-11-27 2021-02-12 广西合山市华纳新材料科技有限公司 Preparation method of high-activity calcium hydroxide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017220773A1 (en) 2016-06-24 2017-12-28 S.A. Lhoist Recherche Et Developpement Method for producing a highly porous fine powdered slaked lime composition, and product obtained therefrom
WO2017220167A1 (en) 2016-06-24 2017-12-28 S.A. Lhoist Recherche Et Developpement Process for manufacturing fine and highly porous powdery slaked lime composition and product thereby obtained
FR3053039A1 (en) 2016-06-24 2017-12-29 Lhoist Rech Et Developpement Sa PROCESS FOR PREPARING A FINE AND VERY POROUS PULVERULENTLY CHOPPED LIME COMPOSITION AND PRODUCT OBTAINED THEREFROM
CN108178175A (en) * 2018-03-05 2018-06-19 南京格暠环保科技有限公司 The preparation method of calcium hydroxide special for plastic heat stabilizer

Also Published As

Publication number Publication date
JP2004161536A (en) 2004-06-10

Similar Documents

Publication Publication Date Title
JP4341229B2 (en) Method for producing highly reactive calcium hydroxide with improved handling
CN110605014A (en) Dry-method desulfurizer production process and system
JP2009072730A (en) Dust collector having powder mixing treatment means and powder mixing treatment method
WO1989007990A1 (en) Method of insolubilizing heavy metals contained in fly ash discharged from garbage incinerator
CN107789973A (en) A kind of flue gas of sintering machine dust collecting process and device
WO2021134925A1 (en) Semi-dry flue gas desulfurization and denitrification method
US11148149B2 (en) Hydrated lime with reduced resistivity and method of manufacture
CN113117478A (en) Flue gas desulfurization and denitrification method based on fly ash
CN111069226A (en) Novel S-N-P inhibitor coupled mechanochemical method for degrading waste incineration fly ash
JP5580154B2 (en) Slaked lime, method for producing slaked lime, and acid gas remover
CN211358355U (en) A deacidification device for gas cleaning
JP2005021822A (en) Facility and method for treating waste gas
CN113559688A (en) Flue gas desulfurization and denitrification integrated device and method
CN108970373A (en) For chemical industry tail gas multi-pollutant removing device and its removal methods
JP2002029738A (en) Calcium hydroxide and acidic gas treating agent by using the same
CN112007504A (en) Flue gas dry desulfurization device and process
TWI834124B (en) Incineration system executing flue-gas desulfurization by using sodium hydrogen carbonate
JP3101181B2 (en) Exhaust gas treatment agent and exhaust gas treatment method
CN110975554A (en) Method for flue gas desulfurization of lime rotary kiln by using kiln tail ash
JP2003088831A (en) Method of treating alkaline component-containing fly ash
CN220558923U (en) Desulfurization system for high-sulfur flue gas
CN113926306B (en) Calcium-based desulfurization system and method for coking coal-charging coke-pushing dust-removing flue gas
CN104399368B (en) Flue gas purifying method realizes the flue gas injection conveying technique of absorbent pretreatment
CN111214933B (en) Sintering flue gas desulfurization system and method
CN218692496U (en) System for preparing solidified heavy metal gelled material from steel chemical waste residues

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090629

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees