JP4341004B2 - Non-sintered nickel electrode and alkaline battery - Google Patents

Non-sintered nickel electrode and alkaline battery Download PDF

Info

Publication number
JP4341004B2
JP4341004B2 JP2002220511A JP2002220511A JP4341004B2 JP 4341004 B2 JP4341004 B2 JP 4341004B2 JP 2002220511 A JP2002220511 A JP 2002220511A JP 2002220511 A JP2002220511 A JP 2002220511A JP 4341004 B2 JP4341004 B2 JP 4341004B2
Authority
JP
Japan
Prior art keywords
nickel
active material
paste
electrode
nickel electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002220511A
Other languages
Japanese (ja)
Other versions
JP2004063287A (en
Inventor
晃一 坂本
誠二郎 落合
香織 初代
唱起 宮本
隆 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2002220511A priority Critical patent/JP4341004B2/en
Publication of JP2004063287A publication Critical patent/JP2004063287A/en
Application granted granted Critical
Publication of JP4341004B2 publication Critical patent/JP4341004B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、アルカリ電池用非焼結式ニッケル電極および該ニッケル電極を用いたニッケル水素電池、ニッケルカドミウム電池やニッケル亜鉛電池等のアルカリ電池に関するものである。
【0002】
【従来の技術】
近年携帯電話等の小型情報端末機器、パーソナルコンピュータ、電動工具等の電源として、ニッケル水素電池やニッケルカドミウム電池等のアルカリ電池が広く用いられている。また、ニッケル亜鉛一次(ニッケル亜鉛乾電池ともいう)および二次電池も高エネルギーを有する電池として注目されている。殊に、ニッケル水素電池は、従来高出力を必要とする用途には不向きとされていたが、高率放電特性の改良によって前記の用途のみならず、ハイブリッド形電気自動車(HEV)の動力源としても用いられるようになり、その需要が増大している。
【0003】
前記、アルカリ電池に適用するニッケル電極は、以前焼結式電極が主流であったが、生産性が高いことおよび活物質充填率の高い電極を得易い事などから、近年においては、非焼結式(ペースト式ともいう)電極が多く採用されている。
【0004】
前記非焼結式ニッケル電極は、活物質である水酸化ニッケルを主成分とする活物質粉末と導電剤粉末や導電剤の前駆体物質の粉末を添加混合した混合粉末や、導電剤またはコバルト化合物等の導電剤の前駆体物質の層で表面をコートした水酸化ニッケルを主成分とする活物質粉末に増粘剤を溶解させた水溶液を添加混練してペースト(以下ニッケル電極用活物質ペーストと記述する)にし、該ペーストを多孔性基板に充填した後乾燥し、プレス加工を施したものである。前記増粘剤はニッケル電極の結着剤も兼ねる。
【0005】
特に、近年負極の放電リザーブ生成を抑制して放電容量を向上させることを意図して、水酸化ニッケルを主成分とする活物質粉末の表面に水酸化コバルトからなる導電剤の前駆体を層状に析出させた後に次亜塩素酸塩等の酸化剤を用いて水酸化コバルトを酸化して導電性の高次コバルト化合物に変えたり、水酸化コバルトの他に水酸化ニッケルの一部を酸化することが検討されている。このようにニッケル電極用活物質粉末に予め酸化処理を施す方法については例えば特開平8−213010号公報や特開平12−307130号公報に提案されている。
【0006】
また、最近従来のマンガン乾電池に比べて高率放電特性に優れたニッケル亜鉛一次電池(ニッケル亜鉛乾電池)が製品化されようとしている。該一次電池の正極活物質の主成分は、水酸化ニッケルを酸化することによって得られる高次ニッケル化合物(酸価数3のニッケル化合でありオキシ水酸化ニッケルともいう)である。前記同様活物質粉末表面にコバルトの高次化合物を生成させ、導電性を付与することもできる。ニッケル水素電池等二次電池用のニッケル電極と異なるところは、水酸化ニッケルの少なくとも大部分を、化学的な酸化処理によって高次ニッケル化合物に変えている点である。このように、ニッケル電極の活物質粉末に化学的酸化処理を施しその一部または殆ど全てを酸化することが重要な技術になってきている。
【0007】
前記、ペースト式ニッケル電極の増粘剤兼結着剤としては、安価であること、水溶液にした時に適度なペースト粘度が得られるところから、一般的にカルボキシメチルセルロース(以下CMCと記述する)等の有機高分子化合物が使用されている。
【0008】
しかし、CMCは、耐酸化性が十分でない。そのため、前記予め酸化処理を施したニッケル電極用活物質ペーストを作製する時に、ペーストの増粘材としてCMCを適用すると、CMCが活物質粉末の酸化力によって分解されペーストの粘度が時間の経過とともに低下する。そのためにペーストに含まれる粉体と液体成分が分離してしましまい、多孔性基板へのペースト充填工程に支障を来したり、ペーストを多孔性基板に均一に充填できなくなる虞があった。
【0009】
また、CMCを含むニッケル電極を電池に組み充電を行うと、前記CMCの酸化分解反応が起こり、負極に放電リザーブが生成することとなる。また、CMCの酸化分解が進むに従って、ニッケル電極の結着力が低下するために、サイクル性能の低下を来すなどの欠点があった。
【0010】
このような従来技術の欠点を解消するため、特開平2000−58060号公報には、ニッケル電極の活物質ペーストの増粘剤としてポリN−ビニルアセトアミドを使用することによって、ペーストの粘度が経時的に低下するのを抑制することが提案されている。
【0011】
しかし、ポリN−ビニルアセトアミドは、塩基性雰囲気において加水分解を受ける虞がある。即ち、アルカリ電池の内部では、濃厚な苛性カリウムによって下記の式に示すような加水分解を受ける虞がある。
【0012】
【化1】

Figure 0004341004
【0013】
密閉型のアルカリ電池においては、電池内にフリーな電解液が極力存在しないように、電解液量が制限されている。従って、密閉型アルカリ電池の場合、前記反応が進行することによって電解液のアルカリ濃度が低下し酢酸カリウムが生成して、電池製造後時間経過と共に電池の内部インピーダンスが増大する虞が高い。
【0014】
また、アセトアミドはフォルムアミドに比べて遥かに安定性に優れた化合物であるが、ニッケル電極のように強い酸化力を持つ物質と共存する状況下で長時間使用するには耐酸化性が十分とはいえない。アルカリ電池内のアミド化合物の酸化劣化は、電池の自己放電を助長する虞がある。さらに高次ニッケル化合物を含む活物質ペーストの増粘剤としてポリビニルアセトアミドを適用した場合、ポリビニルアセトアミドが酸化されて劣化し、ペーストの粘度が時間の経過とともに急激に低下する虞がある。
【0015】
【発明が解決しようとする課題】
本発明は、前記従来技術の問題点に鑑みなされたものであって、水酸化ニッケルあるいは水酸化ニッケルの一部または水酸化ニッケルの殆ど全てを予め化学的に酸化して高次ニッケル化合物に変えた活物質粉末を多孔性金属基板に充填してなるアルカリ電池用非焼結式ニッケル電極を作製するに際して、粘度の経時的低下の小さい活物質ペーストを提供するものである。また、非焼結式ニッケル電極を備えた密閉式アルカリ電池において、長期放置しても内部インピーダンスが増大せず、保存特性の優れたアルカリ電池を提供せんとするものである。
【0016】
【課題を解決するための手段】
本発明は、水酸化ニッケルまたは高次ニッケル化合物を主成分とする活物質粉末を多孔性金属基板に充填してなるアルカリ電池用非焼結式ニッケル電極において、ポリビニルアセトアミドのアミド基のNに結合している基をアルキル化またはアリール基で置換した変性ポリビニルアミドを含むことを特徴とするニッケル電極とすることによって前記課題を解決する。
【0017】
ここでいう変性ポリビニルアミドとは、アミド基のNに結合しているアシル基(−RCO),スルフォン基(−RSO2)等の基を前記アルキル基またはアリール基で置換したものを指す。
【0018】
前記置換によってポリアミドの耐アルカリ性および耐酸化性を向上させ、ポリアミドとアルカリ電解液およびニッケル電極との反応を抑制する。
【0019】
【発明の実施の形態】
本発明に係るアルカリ電池用ニッケル電極は、水酸化ニッケルまたは高次ニッケル化合物を主成分とする活物質粉末を多孔性金属基板に充填してなるアルカリ電池用非焼結式ニッケル電極である。
【0020】
前記活物質粉末は、平均粒径が5〜50μmの粉末であって、水酸化ニッケルあるいはそれを酸化して得られる高次ニッケル化合物を主成分とし、該水酸化ニッケルや高次ニッケル化合物は、亜鉛などの異種元素を数重量%固溶状態で含有してもよい。また、前記活物質粉末は、表面に1重量%〜10重量%の比率で水酸化コバルトや一酸化コバルト等のコバルト化合物あるいはそれを酸化して得られる高次コバルト化合物の層を形成したものであってもよい。
【0021】
前記ニッケル電極は、前記活物質に増粘剤兼結着剤としての高分子化合物の溶液を加えて混練して作製した活物質ペーストを発泡ニッケル等の多孔性基板に充填し、乾燥して溶媒を除去した後にプレスして作製する。
【0022】
従来、ニッケル電極の活物質ペーストを安価にかつ容易に作製するために、増粘剤兼活物質粉末の結着剤として例えばCMCやポリビニルアセトアミドのような水溶性のポリマーが適用されてきた。しかし、これらのポリマーには前記のような欠点があった。本発明では、ニッケル電極の増粘剤兼活物質粉末の結着剤として前記変性ポリビニルアミドを適用する。
【0023】
前記アシル基(−RCO),スルフォン基(−RSO2)等の基を置換するのに適用するアルキル基は、特に限定されるのではなく、メチル基、エチル基。プロピル基、ブチル基等が含まれる。また、本発明に適用するアリ−ル基も特に限定されるものではなくフェニル基、トリル基、キシリル基、ビフェニル基、ナフチル基等が含まれる。
【0024】
前記アシル基やスルフォン基をアルキル基やアリール基で置換するには公知のアルキル化あるいはアリール化反応を適用することができる。ここでは、置換した比率を変性率と記述する。活物質ペーストを安価にかつ容易に作製するためには、増粘剤として水溶性ポリマーを適用することが望ましい。前記変性率が70%を超えるとポリマーの水溶性が乏しくなる。また、変性率が30%未満では、増粘剤の耐アルカリ電解液性、耐酸化性向上の効果が小さい。従って、前記変性率を30〜70%の範囲に設定することが好ましい。
【0025】
活物質ペーストは液体と固体(粉末)が分離することなく、かつペーストを基板に充填した後でペーストが簡単に基板から流出してしまわないよう、適当な粘度を備えるものでなければならない。本発明においては、活物質ペーストの粘度を3,000〜10,000ミリパスカル・秒(mPa・秒)に設定する。さらに望ましくは、4000〜7000mPa・秒に設定することが望ましい。
【0026】
ペースト粘度は、主として増粘剤の分子量とその濃度によって決まる。本発明に適用する変性ポリビニルアミドの平均分子量は、特に限定されるものではないが、数平均分子量が5,000〜1,000,000のものが好ましい。さらには、数平均分子量が10,000〜200,000のものが好ましい。数平均分子量が5,000を下回ると、適正な粘度を得るためには増粘剤の濃度を高くする必要がある。ペースト中の増粘剤濃度を高くすることは、出来上がったニッケル電極に含まれる増粘剤の比率が高いということに他ならず、電極の電導度低下の要因になると同時に活物質充填量の低下に繋がるので好ましくない。
【0027】
また、数平均分子量が1,000,000を超えると増粘剤の濃度を小さくしてもペーストの粘度が高過ぎるので活物質ペーストを多孔性基板に充填するのが困難になり、また、活物質粉末と前記増粘剤を混連しても均一な組成の活物質ペーストを造るのが困難になる虞がある。
【0028】
水酸化ニッケル粉末に対する変性ポリビニルアミド誘導体の比率は、0.05〜5.0重量%とすることが望ましい。該比率が0.05重量%未満では、ペースト形成に必要な溶液粘度が得難い。また、できあがった電極の結着性が劣る欠点が生じ易い。一方、増粘剤の比率が5.0重量%を超えると、ペースト粘度が高過ぎて多孔性基板への充填が難しくなる他、電極の導電性や活物質粉末充填量の低下を招くので好ましくない。
【0029】
ペーストを作製する手順は、とくに限定されない。前記高次ニッケル化合物を活物質として適用する場合、公知の方法に従い酸化剤を用いて予め酸化処理を施した水酸化ニッケル粉末と変性ポリビニルアミドの粉末を予め混合しておき、該混合粉末に水を加えて混練してもよいし、予め変性ポリビニルアミドの水溶液を準備しておき、該水溶液を前記水酸化ニッケル粉末に添加して混練してもよい。
【0030】
ペースト中に含ませる水分の比率は、特に限定されるものではない。ペースト中の粉末が分離しないこと、嵩高くなく基板へ充填し易い柔らかさを持つように設定すればよい。具体的には、ペースト中に含ませる水分の比率を10〜35重量%の範囲に設定するのが適当である。
【0031】
本発明に適用する水酸化ニッケルを主成分とするニッケル電極用活物質粉末は、特に限定されるものではない。前記のように水酸化ニッケルに亜鉛などの異種元素を固溶させたものも適用できる。ただし、本発明は、電池の高容量化を意図した活物質粉末であって、予め酸化剤を用いて化学的に酸化処理を施した活物質粉末に適用した場合に特に有効である。
【0032】
前記のようにアルカリ二次電池用のニッケル電極においては、その容量を高めたり放電リザーブの生成を低減するために、ニッケル電極の活物質として、前記コバルト化合物を表面に析出させ、さらに化学的な酸化処理によって前記コバルト化合物を酸化して高次コバルト化合物とすると同時に、ニッケルの一部も酸化した水酸化ニッケル粉末を適用する。
【0033】
水酸化ニッケル粉末の酸化の程度は、それに含まれるニッケルとコバルトを合わせた平均酸化数で表すことができる。酸化の程度は、反応浴への酸化剤の添加量等、酸化の条件を変えることによって制御することができる。本発明の対象とするニッケル水素電池等、アルカリ二次電池の高容量化を図るためには、前記平均酸化数を2.04〜2.4の範囲に設定することが好ましい。また、アルカリ一次電池用のニッケル電極の場合には、ほぼ100%酸化してニッケル化合物の殆ど全てを高次ニッケル化合物とする。
【0034】
前記化学的酸化処理に用いる酸化剤はとくに限定される物ではない。具体的には、ペルオキソ二硫酸アンモニウム{(NH4228}、ペルオキソ二硫酸カリウム(K228)、ペルオキソ二硫酸ナトリウム(N228)、次亜塩素酸ナトリウム(NaClO)、亜塩素酸ナトリウム(NaClO2)等の酸化剤を適用することができる。
【0035】
以下、ニッケル水素電池を例に採り、1実施例に基づいて本発明の詳細を説明するが、本発明は、水酸化ニッケルやニッケルの高次化合物(オキシ水酸化ニッケル)を主たる活物質とする非焼結式ニッケル電極を備えるアルカリ電池全てに適用できる。従って、本発明の電池構成、電極の構成材料等は、以下に記載の実施例に限定されるものではない。
【0036】
【実施例】
(ニッケル電極の活物質粉末の作製)
ニッケル電極の活物質には、高容量型のニッケル電極用活物質として用いられている高密度タイプの水酸化ニッケルを主成分とする粉末(以下単に水酸化ニッケル粉末と記述する)を適用した。該水酸化ニッケル粉末は、平均粒径が約10μmの粉末であって、金属としての比率で亜鉛(Zn)およびコバルト(Co)をそれぞれ4重量%と5重量%固溶させた水酸化ニッケルを芯層とし、表面にβ−水酸化コバルト{Co(OH)2}を被覆したものである。尚、水酸化ニッケル粉末に占める前記水酸化コバルトの比率を6重量%とした。
【0037】
前記水酸化ニッケル粉末100gを温度90℃、濃度30重量%の水酸化ナトリウム水溶液200ml中に投入し、撹拌して粉末を分散させた。前記分散液の温度を90℃に維持しながら、酸化剤である濃度5%の次亜塩素酸ナトリウム溶液50mlを徐徐に滴下した。該反応浴の温度を前記温度に維持しながら、2時間の間ゆっくり撹拌した。前記水酸化ニケル粉末を反応浴溶液とろ過分離した後、水洗しその後乾燥した。該水酸化ニッケル紛末の平均酸化数は2.17で、該粉末10gを100mlの水に分散させた時の分散液のpHは、11.8であった。
【0038】
(実施例1)
(ニッケル電極活物質ペーストの作製)
ポリビニルアセトアミド原料として、置換基にエチル基を適用して平均分子量が100,000、変性率が50%の変性ポリビニルアミドを合成し、該ポリマ水に溶解させて、濃度が1.0重量%の水溶液を作製した。前記酸化処理を施した水酸化ニッケル紛末80重量部に、前記水溶液20重量部を添加混連して、ニッケル電極の活物質ペーストを作製した。
【0039】
(ニッケル電極の活物質ペースト粘度の調査)
前記ニッケル電極の活物質ペーストを温度20℃において放置し、ペースト作製後の経時的変化を調べた。粘度測定にはB型粘度計を用いた。
【0040】
(ニッケル電極の作製)
前記ペーストを作製して1時間経過後、再度ペーストを撹拌し、厚さ1.6mm、目付量500g/m2、幅50mm、長さ50mの発泡性ニッケル基板に充填した。活物質の充填効率は約95%であった。ペースト充填後乾燥し、プレス加工をして厚さを0.7mmに調整しニッケル電極用原板とした。該原板を所定の寸法に裁断してニッケル電極とした。
【0041】
平均粒径が約50μmで、MmNi3.55Co0.75Mn0.4Al0.3(Mmは、La、Ce、Pr、Nd等の希土類元素の混合物であるミッシュメタルを表す)で示される組成の水素吸蔵合金を用いて所定の方法に従って水素吸蔵合金電極(負極)を作製した。尚、負極と正極の充填容量比を1.6に設定した。
【0042】
(ニッケル水素電池の作製)
前記ニッケル電極と水素吸蔵合金電極を組み合わせて捲回式極板群を作製し、該極板群を適用して、6.8MのKOHと1.0MLiOHを含む水溶液1.9mlを注液した後定法により密閉してAAサイズの円筒型ニッケル水素電池を作製した。
【0043】
(実施例2)
実施例1において、前記変性率50%の変性ポリビニルアミドに換えて変性率70%の変性ポリビニルアミドを適用した。それ以外は、実施例1と同じとした。
(実施例3)
実施例1において、前記変性率50%の変性ポリビニルアミドに換えて変性率30%の変性ポリビニルアミドを適用した。それ以外は、実施例1と同じとした。
(実施例4)
実施例1において、前記変性率50%の変性ポリビニルアミドに換えて変性率15%の変性ポリビニルアミドを適用した。それ以外は、実施例1と同じとした。
【0044】
(比較例1)
実施例1において、変性ポリビニルアミドに換えてポリビニルアセトアミドを適用した。また、活物質ペーストを作製後、直ちに(目立った粘度低下が起きない中に)前記基板に充填した。それ以外は、実施例1と同じとした。
【0045】
(実施例5)
実施例1において、変性ポリビニルアミドの原料としてポリアセトアミドに換えてポリスルフォンアミドを適用し、置換基として実施例1と同じくエチル基を適用し変性率50%の変性ポリビニルアミドを合成した。該ポリマーをニッケル電極の活物質ペーストの増粘剤として適用した。それ以外は、実施例1と同じとした。
【0046】
(比較例2)
実施例1において、変性ポリビニルアセトアミドに換えてポリビニルスルフォンアミドを適用した。また、活物質ペーストを作製後、直ちに(目立った粘度低下が起きない中に)前記基板に充填した。それ以外は、実施例1と同じとした。
【0047】
(実施例6)
実施例1において、変性ポリビニルアミドを合成するための置換基としてフェニル基を適用した。それ以外は、実施例1と同じとした。
【0048】
(初期化成)
前記ニッケル水素電池を、温度20℃においてレート1/10ItA(電流160mA)で15時間充電、1/5ItA(電流320mA)終止電圧1Vでの放電を1サイクルとし、5サイクル繰り返し充放電を行った。
【0049】
(ニッケル電極活物質ペースト粘度測定結果)
図1に前記実施例1、実施例5および比較例1、比較例2によるペートの粘度の経時変化を示す。図1に示した如く、本発明の実施例に係るニッケル電極の活物質ペーストは、粘度が安定しており、経時変化が小さい。このことは、長時間液体と固体の分離が生じないため、ペーストのポットライフが長く作業性に優れていることを示している。一方、比較例においてはいずれもペースト作製後の粘度の低下が急であり、ペーストを約5時間放置するとペーストの粘度が低下するために液体と固体の分離がおきる。比較例の場合、ペーストを放置することが難しく、作業性が劣る。
【0050】
(保存特性評価試験)
初期化成終了後の実施例電池および比較例電池をおのおの6個用意し、1/5ItAで定格容量の120%充電した後、温度20℃において30日間放置した後以下の(1)および(2)に示す試験に供した。
(1)6個のうち3個の電池を温度20℃において、レート1/5ItA、終止電圧1.0Vとして放電し、その時の放電容量を求めた。
(2)6個のうち残りの3個を温度20℃において、レート1ItA、終止電圧0.9Vとして放電し、再度前記の条件で充電した後、レート1ItA、終止電圧0.9Vとして放電し、その時の放電容量を求めた。
【0051】
前記(1)、(2)に示した保存特性評価試験の結果を表1に示す。結果は、前記試験において得られた容量の放置前の放電容量に対する比率(%)で表記した。
【0052】
【表1】
Figure 0004341004
【0053】
表1に示した通り、本発明に係る実施例電池は、単なる放置後の放電および放置後に放電した後に再度充電を行った後の放電おける放電容量が高い。また、実施例4に比べて実施例1〜実施例3の放置後および再充電後に放電した時の放電容量が高い。このことから、増粘剤の変性率を30%以上にすることが好ましい。
【0054】
図2に、実施例1および比較例1の前記保存特性評価試験のうち(2)の試験に供した電池の放置前および放置後再度充電した後の放電曲線を示す。
【0055】
図2に示した如く、実施例1に係る電池の放電電圧は、放置前と放置後において大きな差がない。一方、比較例電池の場合は、放置後の放電電圧が放置前のそれに比べて低下している。比較例電池の場合、放置において電池の内部インピーダンスが増大しているために放電電圧が低下した。該インピーダンスの増大は、ニッケル電極とそれに含まれる結着剤が反応したことによるものと考えられる。
【発明の効果】
【0056】
本発明の請求項1によれば、水酸化ニッケルの少なくとも一部を酸化した活物質粉末を適用した活物質ペーストの粘度の経時的な低下を抑制することができる。また、非焼結式ニッケル電極を備えたアルカリ電池であって、保存性能の優れたアルカリ電池を実現するためのニッケル電極を提供することができる。
【0057】
本発明の請求項2によればニッケル電極活物質ペーストの粘度の経時変化が抑制され、安価でかつ容易に活物質ペーストを作製することができる。
【0058】
本発明の請求項3によれば、非焼結式ニッケル電極を備えたアルカリ電池であって保存性能に優れたアルカリ電池を提供することができる。
【0059】
【図面の簡単な説明】
【図1】本発明の実施例および比較例に係るニッケル電極の活物質ペーストの粘度の経時変化を示すグラフである。
【図2】本発明の実施例および比較例に係るニッケル水素電池の放置前および放置後に放電し、再度充電した後の放電における放電曲線を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to non-sintered nickel electrodes for alkaline batteries, and alkaline batteries such as nickel metal hydride batteries, nickel cadmium batteries, and nickel zinc batteries using the nickel electrodes.
[0002]
[Prior art]
In recent years, alkaline batteries such as nickel metal hydride batteries and nickel cadmium batteries have been widely used as power sources for small information terminal devices such as mobile phones, personal computers, and electric tools. Nickel zinc primary (also called nickel zinc dry batteries) and secondary batteries are also attracting attention as batteries having high energy. In particular, nickel-metal hydride batteries have been conventionally unsuitable for applications that require high output. However, by improving high-rate discharge characteristics, nickel-metal hydride batteries can be used not only for the aforementioned applications but also as a power source for hybrid electric vehicles (HEV). Is also being used and its demand is increasing.
[0003]
The nickel electrode applied to the alkaline battery was previously a sintered electrode. However, in recent years, it is easy to obtain an electrode with high productivity and a high active material filling rate. Many formula (also called paste) electrodes are employed.
[0004]
The non-sintered nickel electrode is a mixed powder obtained by adding and mixing an active material powder mainly composed of nickel hydroxide as an active material and a conductive agent powder or a precursor material of a conductive agent, or a conductive agent or a cobalt compound. An aqueous solution in which a thickener is dissolved in an active material powder whose main component is nickel hydroxide whose surface is coated with a layer of a precursor material of a conductive agent such as a paste is added and kneaded (hereinafter referred to as an active material paste for a nickel electrode). The paste is filled in a porous substrate, dried, and pressed. The thickener also serves as a binder for the nickel electrode.
[0005]
In particular, a conductive agent precursor made of cobalt hydroxide is layered on the surface of an active material powder containing nickel hydroxide as a main component with the intention of suppressing discharge reserve generation in the negative electrode and improving discharge capacity in recent years. After precipitation, oxidize cobalt hydroxide using an oxidizing agent such as hypochlorite to convert it into a conductive higher-order cobalt compound, or oxidize part of nickel hydroxide in addition to cobalt hydroxide Is being considered. As described above, for example, Japanese Patent Application Laid-Open No. 8-213010 and Japanese Patent Application Laid-Open No. 12-307130 have proposed methods for previously oxidizing the nickel electrode active material powder.
[0006]
Recently, a nickel-zinc primary battery (nickel-zinc dry battery), which is superior in high-rate discharge characteristics as compared with conventional manganese dry batteries, is being commercialized. The main component of the positive electrode active material of the primary battery is a high-order nickel compound (a nickel compound having an acid value of 3 and also referred to as nickel oxyhydroxide) obtained by oxidizing nickel hydroxide. Similar to the above, a higher-order compound of cobalt can be generated on the surface of the active material powder to impart conductivity. The difference from a nickel electrode for a secondary battery such as a nickel metal hydride battery is that at least most of the nickel hydroxide is changed to a higher nickel compound by chemical oxidation treatment. As described above, it has become an important technique to subject the active material powder of the nickel electrode to chemical oxidation treatment to oxidize part or almost all of the powder.
[0007]
As the thickener / binder for the paste-type nickel electrode, it is inexpensive, and since an appropriate paste viscosity can be obtained when it is made into an aqueous solution, it is generally used as carboxymethylcellulose (hereinafter referred to as CMC). Organic polymer compounds are used.
[0008]
However, CMC has insufficient oxidation resistance. Therefore, when CMC is applied as the paste thickener when the pre-oxidized nickel electrode active material paste is prepared, the CMC is decomposed by the oxidizing power of the active material powder, and the viscosity of the paste increases with time. descend. As a result, the powder and liquid components contained in the paste are separated, which may interfere with the paste filling process on the porous substrate or may not be able to uniformly fill the porous substrate with the paste.
[0009]
Further, when a nickel electrode containing CMC is assembled and charged in a battery, the oxidative decomposition reaction of the CMC occurs, and a discharge reserve is generated in the negative electrode. In addition, as the oxidative decomposition of CMC progresses, the binding force of the nickel electrode is reduced, resulting in a drawback that the cycle performance is lowered.
[0010]
In order to eliminate such disadvantages of the prior art, Japanese Patent Application Laid-Open No. 2000-58060 discloses that the viscosity of the paste over time is increased by using poly N-vinylacetamide as a thickener for the active material paste of the nickel electrode. It has been proposed to suppress the decrease.
[0011]
However, poly N-vinylacetamide may be subject to hydrolysis in a basic atmosphere. That is, inside the alkaline battery, there is a risk of being subjected to hydrolysis as shown in the following formula by concentrated caustic potassium.
[0012]
[Chemical 1]
Figure 0004341004
[0013]
In a sealed alkaline battery, the amount of electrolyte is limited so that a free electrolyte does not exist in the battery as much as possible. Therefore, in the case of a sealed alkaline battery, there is a high possibility that the internal concentration of the battery increases with the lapse of time after manufacturing the battery because the alkali concentration of the electrolytic solution is lowered and potassium acetate is generated as the reaction proceeds.
[0014]
Acetamide is a compound that is far more stable than formamide, but it has sufficient oxidation resistance for long-term use in the presence of substances with strong oxidizing power such as nickel electrodes. I can't say. Oxidative degradation of the amide compound in the alkaline battery may promote self-discharge of the battery. Furthermore, when polyvinyl acetamide is applied as a thickener for an active material paste containing a higher order nickel compound, the polyvinyl acetamide may be oxidized and deteriorated, and the viscosity of the paste may rapidly decrease with time.
[0015]
[Problems to be solved by the invention]
The present invention has been made in view of the above-mentioned problems of the prior art, and nickel hydroxide, a part of nickel hydroxide, or almost all of nickel hydroxide is chemically oxidized in advance to be converted into a higher nickel compound. When an unsintered nickel electrode for an alkaline battery is prepared by filling a porous metal substrate with the active material powder, an active material paste having a small decrease in viscosity with time is provided. Further, in a sealed alkaline battery equipped with a non-sintered nickel electrode, the internal impedance does not increase even when left for a long time, and an alkaline battery having excellent storage characteristics is to be provided.
[0016]
[Means for Solving the Problems]
The present invention provides a non-sintered nickel electrode for an alkaline battery formed by filling an active material powder mainly composed of nickel hydroxide or higher order nickel compound into the porous metal substrate, the N of the amide groups of the polyvinyl acetamide The above-mentioned problem is solved by providing a nickel electrode comprising a modified polyvinylamide in which the bonded group is substituted with an alkylated or aryl group .
[0017]
The modified polyvinylamide here refers to a group in which an acyl group (—RCO), sulfone group (—RSO 2) or the like bonded to N of the amide group is substituted with the alkyl group or aryl group.
[0018]
The substitution improves the alkali resistance and oxidation resistance of the polyamide and suppresses the reaction of the polyamide with the alkaline electrolyte and the nickel electrode.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
The nickel electrode for alkaline batteries according to the present invention is a non-sintered nickel electrode for alkaline batteries obtained by filling a porous metal substrate with an active material powder mainly composed of nickel hydroxide or a higher nickel compound.
[0020]
The active material powder is a powder having an average particle size of 5 to 50 μm, mainly composed of nickel hydroxide or a higher nickel compound obtained by oxidizing the nickel hydroxide, and the nickel hydroxide and the higher nickel compound are: You may contain dissimilar elements, such as zinc, in the solid solution state of several weight%. The active material powder is formed by forming a cobalt compound layer such as cobalt hydroxide or cobalt monoxide or a higher cobalt compound layer obtained by oxidizing the active material powder at a ratio of 1 to 10% by weight. There may be.
[0021]
The nickel electrode is prepared by filling an active material paste prepared by adding a solution of a polymer compound as a thickener / binder to the active material and kneading the porous paste on a porous substrate such as nickel foam, and drying the solvent. It is made by pressing after removing.
[0022]
Conventionally, water-soluble polymers such as CMC and polyvinylacetamide have been applied as binders for thickener and active material powders in order to produce an active material paste for nickel electrodes at low cost and easily. However, these polymers have the disadvantages described above. In the present invention, the modified polyvinylamide is applied as a binder for the thickener / active material powder of the nickel electrode.
[0023]
The alkyl group used for substituting groups such as the acyl group (—RCO) and sulfone group (—RSO 2) is not particularly limited, but is a methyl group or an ethyl group. A propyl group, a butyl group and the like are included. The aryl group applied to the present invention is not particularly limited, and includes phenyl group, tolyl group, xylyl group, biphenyl group, naphthyl group and the like.
[0024]
A known alkylation or arylation reaction can be applied to replace the acyl group or sulfone group with an alkyl group or an aryl group. Here, the substituted ratio is described as the modification rate. In order to produce the active material paste inexpensively and easily, it is desirable to apply a water-soluble polymer as a thickener. When the modification rate exceeds 70%, the water solubility of the polymer becomes poor. On the other hand, when the modification rate is less than 30%, the effect of improving the alkaline electrolyte resistance and oxidation resistance of the thickener is small. Therefore, it is preferable to set the modification rate in the range of 30 to 70%.
[0025]
The active material paste must have an appropriate viscosity so that the liquid and solid (powder) do not separate, and the paste does not easily flow out of the substrate after the paste is filled into the substrate. In the present invention, the viscosity of the active material paste is set to 3,000 to 10,000 millipascal · second (mPa · second). More desirably, it is set to 4000 to 7000 mPa · sec.
[0026]
The paste viscosity is mainly determined by the molecular weight of the thickener and its concentration. The average molecular weight of the modified polyvinylamide applied to the present invention is not particularly limited, but those having a number average molecular weight of 5,000 to 1,000,000 are preferred. Furthermore, those having a number average molecular weight of 10,000 to 200,000 are preferred. When the number average molecular weight is less than 5,000, it is necessary to increase the concentration of the thickener in order to obtain an appropriate viscosity. Increasing the thickener concentration in the paste is not only the fact that the ratio of the thickener contained in the finished nickel electrode is high, but it also causes a decrease in the conductivity of the electrode and at the same time decreases the active material filling amount. This is not preferable.
[0027]
On the other hand, if the number average molecular weight exceeds 1,000,000, the viscosity of the paste is too high even if the concentration of the thickener is decreased, so that it becomes difficult to fill the porous substrate with the active material paste. Even if the substance powder and the thickener are mixed together, it may be difficult to produce an active material paste having a uniform composition.
[0028]
The ratio of the modified polyvinylamide derivative to the nickel hydroxide powder is desirably 0.05 to 5.0% by weight. When the ratio is less than 0.05% by weight, it is difficult to obtain a solution viscosity necessary for paste formation. Moreover, the defect which the binding property of the completed electrode is inferior tends to arise. On the other hand, if the ratio of the thickener exceeds 5.0% by weight, the paste viscosity is too high and it becomes difficult to fill the porous substrate, and the conductivity of the electrode and the filling amount of the active material powder are reduced, which is preferable. Absent.
[0029]
The procedure for producing the paste is not particularly limited. When applying the higher nickel compound as an active material, a nickel hydroxide powder that has been previously oxidized using an oxidizing agent according to a known method and a modified polyvinylamide powder are mixed in advance, and water is added to the mixed powder. May be added and kneaded, or an aqueous solution of modified polyvinylamide may be prepared in advance, and the aqueous solution may be added to the nickel hydroxide powder and kneaded.
[0030]
The ratio of the moisture contained in the paste is not particularly limited. What is necessary is just to set so that the powder in a paste may not isolate | separate, and it should have the softness which is not bulky and is easy to fill a board | substrate. Specifically, it is appropriate to set the ratio of moisture contained in the paste to a range of 10 to 35% by weight.
[0031]
The active material powder for nickel electrodes mainly composed of nickel hydroxide applied to the present invention is not particularly limited. As described above, a solution in which a different element such as zinc is dissolved in nickel hydroxide can also be applied. However, the present invention is particularly effective when applied to an active material powder intended to increase the capacity of a battery and chemically oxidized in advance using an oxidizing agent.
[0032]
As described above, in the nickel electrode for an alkaline secondary battery, the cobalt compound is deposited on the surface as an active material of the nickel electrode in order to increase its capacity or reduce the generation of discharge reserve, A nickel hydroxide powder in which a part of nickel is oxidized at the same time as the cobalt compound is oxidized by oxidation treatment to form a higher cobalt compound is applied.
[0033]
The degree of oxidation of the nickel hydroxide powder can be expressed by an average oxidation number of nickel and cobalt contained in the nickel hydroxide powder. The degree of oxidation can be controlled by changing the oxidation conditions such as the amount of oxidizing agent added to the reaction bath. In order to increase the capacity of an alkaline secondary battery such as a nickel metal hydride battery that is the subject of the present invention, the average oxidation number is preferably set in the range of 2.04 to 2.4. Further, in the case of a nickel electrode for an alkaline primary battery, it is oxidized almost 100% and almost all of the nickel compound is converted into a higher order nickel compound.
[0034]
The oxidizing agent used for the chemical oxidation treatment is not particularly limited. Specifically, ammonium peroxodisulfate {(NH 4 ) 2 S 2 O 8 }, potassium peroxodisulfate (K 2 S 2 O 8 ), sodium peroxodisulfate (N 2 S 2 O 8 ), hypochlorous acid An oxidizing agent such as sodium (NaClO) or sodium chlorite (NaClO 2 ) can be applied.
[0035]
Hereinafter, a nickel metal hydride battery is taken as an example, and the details of the present invention will be described based on one example. However, the present invention mainly uses nickel hydroxide or a higher-order compound of nickel (nickel oxyhydroxide) as a main active material. It can be applied to all alkaline batteries having a non-sintered nickel electrode. Therefore, the battery configuration, electrode constituent materials, and the like of the present invention are not limited to the examples described below.
[0036]
【Example】
(Preparation of active material powder for nickel electrode)
As the nickel electrode active material, a powder (hereinafter simply referred to as nickel hydroxide powder) composed mainly of high-density nickel hydroxide used as a high-capacity nickel electrode active material was applied. The nickel hydroxide powder is a powder having an average particle diameter of about 10 μm, and nickel hydroxide in which zinc (Zn) and cobalt (Co) are dissolved in 4 wt% and 5 wt%, respectively, in a metal ratio. The core layer is formed by coating the surface with β-cobalt hydroxide {Co (OH) 2 }. The proportion of the cobalt hydroxide in the nickel hydroxide powder was 6% by weight.
[0037]
100 g of the nickel hydroxide powder was put into 200 ml of an aqueous sodium hydroxide solution having a temperature of 90 ° C. and a concentration of 30% by weight, and the powder was dispersed by stirring. While maintaining the temperature of the dispersion at 90 ° C., 50 ml of a sodium hypochlorite solution having a concentration of 5%, which is an oxidizing agent, was gradually added dropwise. The reaction bath was slowly stirred for 2 hours while maintaining the temperature of the reaction bath at the above temperature. The nickel hydroxide powder was separated from the reaction bath solution by filtration, washed with water and then dried. The average oxidation number of the nickel hydroxide powder was 2.17, and the pH of the dispersion obtained when 10 g of the powder was dispersed in 100 ml of water was 11.8.
[0038]
(Example 1)
(Preparation of nickel electrode active material paste)
As a polyvinyl acetamide raw material, an ethyl group is applied as a substituent to synthesize a modified polyvinyl amide having an average molecular weight of 100,000 and a modification rate of 50%, dissolved in the polymer water, and having a concentration of 1.0% by weight. An aqueous solution was prepared. An active material paste for a nickel electrode was prepared by adding and mixing 20 parts by weight of the aqueous solution to 80 parts by weight of the oxidized nickel hydroxide powder.
[0039]
(Investigation of active material paste viscosity of nickel electrode)
The nickel electrode active material paste was allowed to stand at a temperature of 20 ° C., and the change over time after the paste was prepared was examined. A B-type viscometer was used for the viscosity measurement.
[0040]
(Production of nickel electrode)
After 1 hour had elapsed after the paste was prepared, the paste was stirred again and filled into a foamable nickel substrate having a thickness of 1.6 mm, a basis weight of 500 g / m 2 , a width of 50 mm, and a length of 50 m. The filling efficiency of the active material was about 95%. After the paste was filled, it was dried and pressed to adjust the thickness to 0.7 mm to obtain a nickel electrode original plate. The original plate was cut into a predetermined size to obtain a nickel electrode.
[0041]
A hydrogen storage alloy having an average particle diameter of about 50 μm and a composition represented by MmNi 3.55 Co 0.75 Mn 0.4 Al 0.3 (Mm represents a misch metal which is a mixture of rare earth elements such as La, Ce, Pr, and Nd) is used. Then, a hydrogen storage alloy electrode (negative electrode) was produced according to a predetermined method. The filling capacity ratio between the negative electrode and the positive electrode was set to 1.6.
[0042]
(Production of nickel metal hydride battery)
A wound electrode plate group is prepared by combining the nickel electrode and the hydrogen storage alloy electrode, and after applying 1.9 ml of an aqueous solution containing 6.8 M KOH and 1.0 M LiOH, the electrode plate group is applied. AA-sized cylindrical nickel-metal hydride batteries were produced by sealing in a conventional manner.
[0043]
(Example 2)
In Example 1, a modified polyvinylamide having a modification rate of 70% was applied instead of the modified polyvinylamide having a modification rate of 50%. Otherwise, it was the same as Example 1.
(Example 3)
In Example 1, a modified polyvinylamide having a modification rate of 30% was applied instead of the modified polyvinylamide having a modification rate of 50%. Otherwise, it was the same as Example 1.
(Example 4)
In Example 1, a modified polyvinylamide having a modification rate of 15% was applied instead of the modified polyvinylamide having a modification rate of 50%. Otherwise, it was the same as Example 1.
[0044]
(Comparative Example 1)
In Example 1, polyvinyl acetamide was applied instead of the modified polyvinyl amide. Also, immediately after the active material paste was prepared, the substrate was filled (while no noticeable viscosity reduction occurred). Otherwise, it was the same as Example 1.
[0045]
(Example 5)
In Example 1, polysulfonamide was applied in place of polyacetamide as a raw material for the modified polyvinylamide, and an ethyl group was applied as a substituent in the same manner as in Example 1 to synthesize a modified polyvinylamide having a modification rate of 50%. The polymer was applied as a thickener for a nickel electrode active material paste. Otherwise, it was the same as Example 1.
[0046]
(Comparative Example 2)
In Example 1, polyvinyl sulfonamide was applied instead of modified polyvinyl acetamide. Also, immediately after the active material paste was prepared, the substrate was filled (while no noticeable viscosity reduction occurred). Otherwise, it was the same as Example 1.
[0047]
(Example 6)
In Example 1, a phenyl group was applied as a substituent for synthesizing the modified polyvinylamide. Otherwise, it was the same as Example 1.
[0048]
(Initialization)
The nickel-metal hydride battery was charged at a rate of 1/10 ItA (current 160 mA) for 15 hours at a temperature of 20 ° C., and discharged at 1/5 ItA (current 320 mA) final voltage 1 V as one cycle, and charged and discharged repeatedly for 5 cycles.
[0049]
(Nickel electrode active material paste viscosity measurement results)
FIG. 1 shows changes in the viscosity of the palate according to Examples 1 and 5 and Comparative Examples 1 and 2 over time. As shown in FIG. 1, the nickel electrode active material paste according to the embodiment of the present invention has a stable viscosity and a small change with time. This indicates that the separation of the liquid and the solid does not occur for a long time, so that the pot life of the paste is long and the workability is excellent. On the other hand, in any of the comparative examples, the decrease in the viscosity after preparing the paste is abrupt, and when the paste is left for about 5 hours, the viscosity of the paste decreases, so that the liquid and the solid are separated. In the case of the comparative example, it is difficult to leave the paste and workability is inferior.
[0050]
(Storage characteristics evaluation test)
Six battery examples and comparative batteries after completion of the initialization were prepared, charged at 120% of the rated capacity at 1/5 ItA, and left at a temperature of 20 ° C. for 30 days, and then the following (1) and (2) The test shown in FIG.
(1) Three of the six batteries were discharged at a temperature of 20 ° C. at a rate of 1/5 ItA and a final voltage of 1.0 V, and the discharge capacity at that time was determined.
(2) The remaining three of the six were discharged at a temperature of 20 ° C. with a rate of 1 ItA and a termination voltage of 0.9 V, charged again under the above conditions, and then discharged with a rate of 1 ItA and a termination voltage of 0.9 V, The discharge capacity at that time was determined.
[0051]
Table 1 shows the results of the storage characteristic evaluation tests shown in (1) and (2) above. The results were expressed as a ratio (%) of the capacity obtained in the test to the discharge capacity before standing.
[0052]
[Table 1]
Figure 0004341004
[0053]
As shown in Table 1, the battery according to the embodiment of the present invention has a high discharge capacity in simple discharge after discharge and discharge after discharge after discharge. Compared to Example 4, the discharge capacity when discharged after leaving Examples 1 to 3 and after recharging is higher. For this reason, it is preferable that the modification rate of the thickener is 30% or more.
[0054]
FIG. 2 shows discharge curves after charging the battery used in the test (2) of Example 1 and Comparative Example 1 before and after recharging.
[0055]
As shown in FIG. 2, the discharge voltage of the battery according to Example 1 is not significantly different between before and after being left. On the other hand, in the case of the comparative example battery, the discharge voltage after being left is lower than that before being left. In the case of the comparative battery, the discharge voltage was lowered because the internal impedance of the battery was increased when left as it was. The increase in impedance is considered to be due to the reaction between the nickel electrode and the binder contained therein.
【The invention's effect】
[0056]
According to the first aspect of the present invention, it is possible to suppress a decrease in the viscosity of the active material paste with the application of the active material powder obtained by oxidizing at least a part of nickel hydroxide over time. Moreover, it is an alkaline battery provided with the non-sintered nickel electrode, The nickel electrode for implement | achieving the alkaline battery excellent in the storage performance can be provided.
[0057]
According to the second aspect of the present invention, the change in the viscosity of the nickel electrode active material paste with time is suppressed, and the active material paste can be easily produced at low cost.
[0058]
According to claim 3 of the present invention, an alkaline battery provided with a non-sintered nickel electrode and having excellent storage performance can be provided.
[0059]
[Brief description of the drawings]
FIG. 1 is a graph showing a change with time of viscosity of an active material paste of a nickel electrode according to examples and comparative examples of the present invention.
FIG. 2 is a graph showing a discharge curve in a discharge after discharging before and after leaving the nickel-metal hydride batteries according to examples and comparative examples of the present invention.

Claims (3)

水酸化ニッケルまたは高次ニッケル化合物を主成分とする活物質粉末を多孔性金属基板に充填してなるアルカリ電池用非焼結式ニッケル電極において、ポリビニルアセトアミドのアミド基のNに結合している基をアルキルまたはアリール基で置換した変性ポリビニルアミドを含むことを特徴とする非焼結式ニッケル電極。In the non-sintered nickel electrode for an alkaline battery formed by filling an active material powder mainly composed of nickel hydroxide or higher order nickel compound into the porous metal substrate, it is bonded to N of the amide groups of the polyvinyl acetamide non-sintered nickel electrode, characterized in that it comprises a modified polyvinyl amide substituted group with an alkyl group or an aryl group. 前記ポリビニルアセトアミドのアミド基のNに結合している基をアルキル基またはアリール基で置換した変性ポリビニルアミドの変性率が30〜70%であることを特徴とする請求項1記載のアルカリ電池用非焼結式ニッケル電極。The modification rate of the modified polyvinylamide obtained by substituting the group bonded to N of the amide group of the polyvinylacetamide with an alkyl group or an aryl group is 30 to 70%. Sintered nickel electrode. 請求項1記載の非焼結式ニッケル電極を備えたアルカリ電池。An alkaline battery comprising the non-sintered nickel electrode according to claim 1.
JP2002220511A 2002-07-30 2002-07-30 Non-sintered nickel electrode and alkaline battery Expired - Lifetime JP4341004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002220511A JP4341004B2 (en) 2002-07-30 2002-07-30 Non-sintered nickel electrode and alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002220511A JP4341004B2 (en) 2002-07-30 2002-07-30 Non-sintered nickel electrode and alkaline battery

Publications (2)

Publication Number Publication Date
JP2004063287A JP2004063287A (en) 2004-02-26
JP4341004B2 true JP4341004B2 (en) 2009-10-07

Family

ID=31941078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002220511A Expired - Lifetime JP4341004B2 (en) 2002-07-30 2002-07-30 Non-sintered nickel electrode and alkaline battery

Country Status (1)

Country Link
JP (1) JP4341004B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5698067B2 (en) * 2010-04-28 2015-04-08 三洋化成工業株式会社 Thickener for alkaline batteries

Also Published As

Publication number Publication date
JP2004063287A (en) 2004-02-26

Similar Documents

Publication Publication Date Title
JP2012525688A (en) Nickel hydroxide electrode for rechargeable batteries
JPH11149921A (en) Alkali storage battery and surface treatment method of its positive electrode substance
JP3617203B2 (en) Manufacturing method of nickel metal hydride secondary battery
JP4608128B2 (en) Cobalt compound, method for producing the same, positive electrode plate for alkaline storage battery and alkaline storage battery using the same
JP3736842B2 (en) Electrode for alkaline electrolyte battery and alkaline electrolyte battery using the same
JP4341004B2 (en) Non-sintered nickel electrode and alkaline battery
JP4120768B2 (en) Non-sintered nickel electrode and alkaline battery
JP4569068B2 (en) Thickener for nickel electrode, nickel electrode and method for producing the same, and alkaline storage battery
JP2003068292A (en) Electrode and battery using the same
JPH0221098B2 (en)
JPH10106550A (en) Hydrogen storage alloy electrode and its manufacture
JP5061582B2 (en) battery
JPH0950805A (en) Nickel electrode for alkaline storage battery and active material for nickel electrode and its manufacturing method and alkaline storage battery
JP2002279992A (en) Nickel electrode for alkaline storage battery, and alkaline storage battery
JP2003257425A (en) Nickel hydrogen storage battery and manufacturing method thereof
JP5309479B2 (en) Alkaline storage battery
JP3088649B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP5164412B2 (en) Alkaline storage battery and method for manufacturing sintered substrate
JP3942310B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JPH097591A (en) Hydrogen absorbing alloy, its manufacture and hydrogen absorbing alloy electrode using this hydrogen absorbing alloy
JPH11176432A (en) Non-sintered nickel electrode for alkaline storage battery
JP3825612B2 (en) Hydrogen storage alloy powder for hydrogen storage alloy electrode, hydrogen storage alloy electrode, and alkaline storage battery
JP2003045420A (en) Non-sintered positive electrode, its manufacturing method, and alkaline storage battery using same
JPH09219191A (en) Nickel electrode for alkaline storage battery
JP3995288B2 (en) Cadmium negative electrode for alkaline storage battery and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041110

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060404

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4341004

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

EXPY Cancellation because of completion of term