JP4340639B2 - Hydrogen sensor and hydrogen detection method - Google Patents

Hydrogen sensor and hydrogen detection method Download PDF

Info

Publication number
JP4340639B2
JP4340639B2 JP2005119575A JP2005119575A JP4340639B2 JP 4340639 B2 JP4340639 B2 JP 4340639B2 JP 2005119575 A JP2005119575 A JP 2005119575A JP 2005119575 A JP2005119575 A JP 2005119575A JP 4340639 B2 JP4340639 B2 JP 4340639B2
Authority
JP
Japan
Prior art keywords
hydrogen
semiconductor
absorber
sensor
gold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005119575A
Other languages
Japanese (ja)
Other versions
JP2006300585A (en
Inventor
泰一 小野
敏明 紺野
卓雄 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2005119575A priority Critical patent/JP4340639B2/en
Publication of JP2006300585A publication Critical patent/JP2006300585A/en
Application granted granted Critical
Publication of JP4340639B2 publication Critical patent/JP4340639B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、水素センサ及び水素の検知方法に係り、特に、半導体上に付設される水素吸収体の材質に関する。   The present invention relates to a hydrogen sensor and a hydrogen detection method, and more particularly to a material of a hydrogen absorber attached on a semiconductor.

従来より、半導体からなり水素と化学反応する感応体上に、水素吸収体として、或いは感応体への水素吸収反応の触媒作用をもつ触媒層として、パラジウムからなる層を形成した種々の水素ガス検知素子が提案されている(例えば、特許文献1及び特許文献2参照。)。   Conventionally, various hydrogen gas detections have been made in which a layer made of palladium is formed as a hydrogen absorber or as a catalyst layer that catalyzes the hydrogen absorption reaction to the sensitive body on a semiconductor made of a semiconductor and chemically reacts with hydrogen. Elements have been proposed (see, for example, Patent Document 1 and Patent Document 2).

即ち、特許文献1には、絶縁基板と、該絶縁基板上に設けられたSnOやIn等の金属酸化物半導体からなるガス感応体と、該ガス感応体上に設けられた1対の電極及びパラジウムからなる触媒層と、前記絶縁基板の裏面側に配置された発熱体とを備えた水素ガス検知素子が記載されている。この水素ガス検知素子は、素子形成の最終工程において熱処理を施すことにより、水素ガスに対する感度の向上と水素ガス以外のガスに対する感度の低下を図っている。 That is, Patent Document 1 discloses an insulating substrate, a gas sensitive body made of a metal oxide semiconductor such as SnO 2 or In 2 O 3 provided on the insulating substrate, and 1 provided on the gas sensitive body. A hydrogen gas detection element is described that includes a catalyst layer made of a pair of electrodes and palladium, and a heating element disposed on the back side of the insulating substrate. This hydrogen gas detection element is intended to improve sensitivity to hydrogen gas and decrease sensitivity to gases other than hydrogen gas by performing heat treatment in the final step of element formation.

また、特許文献1には、ガス感応体の表面に水素ガス以外の分子の通過を抑制し、水素ガス分子を容易に透過させる燃焼非活性の薄膜、例えばAl、SiO、Si等の薄膜を形成した水素ガス検知素子も記載されている。この水素ガス検知素子は、前記薄膜によってガス感応体の表面に水素ガスを選択的に透過させることができるので、水素ガス以外のガスによる干渉を少なくすることができ、水素ガス検知素子の感度を高めることができる。 Further, Patent Document 1 discloses a combustion-inactive thin film that suppresses the passage of molecules other than hydrogen gas to the surface of a gas sensitive body and easily allows hydrogen gas molecules to pass therethrough, such as Al 2 O 3 , SiO 2 , Si 3. A hydrogen gas sensing element in which a thin film such as N 4 is formed is also described. Since this hydrogen gas detection element can selectively permeate hydrogen gas to the surface of the gas sensing element by the thin film, interference by gases other than hydrogen gas can be reduced, and the sensitivity of the hydrogen gas detection element can be reduced. Can be increased.

一方、特許文献2には、絶縁基板と、該絶縁基板上に設けられたInからなる薄膜状ガス感応体と、該ガス感応体上に設けられた1対の電極及びパラジウムからなる触媒層と、該触媒層の表面に付与されたSi酸化物からなる部分被毒剤と、前記絶縁基板の裏面側に配置された発熱体とを備えた水素ガス検知素子が記載されている。この水素ガス検知素子は、触媒層の表面にSi酸化物からなる部分被毒剤を付与し、触媒層に水素ガスを選択的に吸収させるようにしたので、水素ガス以外のガスによる干渉を少なくすることができ、水素ガス検知素子の感度を高めることができる。
特開平3−259736号公報 特開平6−148112号公報
On the other hand, Patent Document 2 includes an insulating substrate, a thin-film gas sensitive body made of In 2 O 3 provided on the insulating substrate, and a pair of electrodes and palladium provided on the gas sensitive material. There is described a hydrogen gas detection element including a catalyst layer, a partial poisoning agent made of Si oxide applied to the surface of the catalyst layer, and a heating element arranged on the back side of the insulating substrate. In this hydrogen gas detection element, a partial poisoning made of Si oxide is applied to the surface of the catalyst layer, and hydrogen gas is selectively absorbed by the catalyst layer, so that interference by gases other than hydrogen gas is reduced. And the sensitivity of the hydrogen gas sensing element can be increased.
Japanese Patent Laid-Open No. 3-259736 JP-A-6-148112

しかしながら、パラジウムの水素吸収能力は、約0.3%程度の低水素濃度でほぼ飽和状態に達するので、パラジウムを水素吸収体或いは触媒層として備えた水素ガス検知素子では0.3%以上の水素濃度を正確に測定することができない。このため、従来の水素ガス検知素子は、低濃度の水素ガスの有無を検出するためのセンサとしては有効であるが、より高濃度の範囲までの水素を段階的又は連続的に検出可能なセンサとすることは困難であった。   However, since the hydrogen absorption capacity of palladium reaches a nearly saturated state at a low hydrogen concentration of about 0.3%, a hydrogen gas detection element equipped with palladium as a hydrogen absorber or catalyst layer has a hydrogen absorption capacity of 0.3% or more. The concentration cannot be measured accurately. For this reason, the conventional hydrogen gas detection element is effective as a sensor for detecting the presence or absence of low-concentration hydrogen gas, but can detect hydrogen up to a higher concentration range stepwise or continuously. It was difficult.

本発明は、このような従来技術の不備を解決するためになされたもので、その目的は、水素吸収体の水素吸収能力が飽和する水素濃度を高くすることで、雰囲気中の水素ガス濃度を従来より高濃度の範囲まで段階的又は連続的に検出可能とした水素センサを提供することにある。   The present invention has been made to solve such deficiencies in the prior art, and its purpose is to increase the hydrogen concentration at which the hydrogen absorption capacity of the hydrogen absorber is saturated, thereby reducing the hydrogen gas concentration in the atmosphere. An object of the present invention is to provide a hydrogen sensor capable of detecting stepwise or continuously up to a higher concentration range than in the past.

前記課題を解決するため、本発明は、水素センサに関しては、半導体と、当該半導体上に付設された金又は金を主成分とする金とパラジウムとの合金からなる水素吸収体と、当該水素吸収体の付設位置を挟んで前記半導体上の前記水素吸収体と導通しない位置に配置された少なくとも1対の電極とを備えるという構成にした。   In order to solve the above-mentioned problems, the present invention relates to a hydrogen sensor, a semiconductor, a hydrogen absorber made of gold or an alloy of gold and palladium containing gold as a main component, and the hydrogen absorption. A configuration is provided in which at least one pair of electrodes arranged at a position not conducting with the hydrogen absorber on the semiconductor is provided across the attachment position of the body.

実験によると、金にも水素吸収能力があり、金の水素吸収能力は約2.0%程度の濃度まで飽和状態に達しない。したがって、金からなる水素吸収体を備えた水素センサは、パラジウムからなる水素吸収体を用いた場合に比べて水素ガス濃度の検出範囲を拡大することができて、雰囲気中の水素ガス濃度の段階的又は連続的な検出が可能になる。また、金とパラジウムとの合金にも水素吸収能力があり、合金中のパラジウム組成比を10%程度に抑制した場合、その水素吸収能力は約2.0%程度の濃度まで飽和状態に達しない。したがって、金からなる水素吸収体を備えた水素センサと同様に、金とパラジウムとの合金からなる水素吸収体を備えた水素センサについても、パラジウムからなる水素吸収体を用いた場合に比べて水素ガス濃度の検出範囲を拡大することができて、雰囲気中の水素ガス濃度の段階的又は連続的な検出が可能になる。なお、電極は一般に金をもって形成されるので、金をもって水素吸収体を形成すると、水素センサの製造工程を簡略化でき、水素センサの低コスト化を図ることができる。   According to experiments, gold also has a hydrogen absorption capacity, and the hydrogen absorption capacity of gold does not reach saturation until a concentration of about 2.0%. Therefore, the hydrogen sensor provided with the hydrogen absorber made of gold can expand the detection range of the hydrogen gas concentration as compared with the case where the hydrogen absorber made of palladium is used, and the level of the hydrogen gas concentration in the atmosphere. Or continuous detection is possible. An alloy of gold and palladium also has a hydrogen absorption capability, and when the palladium composition ratio in the alloy is suppressed to about 10%, the hydrogen absorption capability does not reach a saturation state to a concentration of about 2.0%. . Therefore, in the same manner as a hydrogen sensor having a hydrogen absorber made of gold, a hydrogen sensor having a hydrogen absorber made of an alloy of gold and palladium can be compared with a case where a hydrogen absorber made of palladium is used. The detection range of the gas concentration can be expanded, and stepwise or continuous detection of the hydrogen gas concentration in the atmosphere becomes possible. In addition, since an electrode is generally formed with gold | metal | money, when a hydrogen absorber is formed with gold | metal | money, the manufacturing process of a hydrogen sensor can be simplified and the cost reduction of a hydrogen sensor can be achieved.

また、本発明は、前記構成の水素センサにおいて、前記半導体として絶縁基板上に層状に形成された半導体を用いるという構成にした。   According to the present invention, in the hydrogen sensor having the above configuration, a semiconductor formed in a layered manner on an insulating substrate is used as the semiconductor.

層状の半導体は、真空蒸着やスパッタリングなどの真空成膜法を適用することにより絶縁基板上に必要な膜厚で容易に形成することができる。したがって、半導体を絶縁基板上に設けられた層状のものとすると、水素センサの製造を容易化できて水素センサを低コスト化できると共に、水素センサの小型化も図ることができる。   A layered semiconductor can be easily formed with a required film thickness over an insulating substrate by applying a vacuum film formation method such as vacuum evaporation or sputtering. Therefore, if the semiconductor is a layered semiconductor provided over an insulating substrate, the manufacture of the hydrogen sensor can be facilitated, the cost of the hydrogen sensor can be reduced, and the size of the hydrogen sensor can be reduced.

また、本発明は、前記構成の水素センサにおいて、前記半導体として非酸化物系の半導体を用いるという構成にした。非酸化物系の半導体としては、シリコン、炭化珪素、ゲルマニウム、シリコンゲルマニウム、ガリウムヒ素、窒化ガリウム、炭素のいずれかを主成分とするものを用いることができる。 Further, according to the present invention, in the hydrogen sensor having the above configuration, a non-oxide semiconductor is used as the semiconductor. The semiconductor non-oxide, silicon, silicon carbide, germanium, silicon germanium, gallium arsenide, gallium nitride, can be used as a main component one of the carbon-containing.

酸化物系の半導体を利用した水素センサは、半導体材料に還元性ガス(可燃性ガス)が作用した場合に、還元性ガスが酸化物半導体材料から酸素を引き剥がす作用を発揮し、酸素にトラップされていた電子が半導体中に残ることによって電気空乏層が薄くなり、荷電キャリアの存在する領域が増して抵抗値が変わるという基本原理を利用するものである。したがって、酸化物系の半導体を利用した水素センサは、原理的に水素ガス以外のメタンガス、プロパンガスやエチルアルコール等の還元性ガスにも必ず反応するので、水素ガスの選択性を向上するための種々の手段を施したとしても、実際上水素ガスのみを検出することができない。また、本構造の水素センサは、酸化物半導体材料と還元性ガスの還元反応を利用するので、200〜300℃の高温で感度が良好となる傾向があり、水素センサに加熱ヒータなどの発熱体を備える必要がある。これに対して、非酸化物系の半導体を用いた水素センサは、酸化又は還元反応に起因するものではない別の抵抗値変動機構によって半導体の内部での電子の移動度に影響が出て抵抗値が変わるものであるので、水素ガス以外の還元性ガスには反応せず、水素ガスのみを検出することができる。また、常温で水素ガスの検出が可能で、加熱ヒータなどの発熱体を備える必要がないので、水素センサの小型化、消費電力の低減、出力の安定性の向上、それにセンサの耐久性の向上などを図ることができる。   Hydrogen sensors using oxide-based semiconductors, when reducing gas (combustible gas) acts on the semiconductor material, the reducing gas exerts the action of stripping oxygen from the oxide semiconductor material and traps in oxygen The basic principle is that the electron depletion layer is thinned by the remaining electrons in the semiconductor, the region where charge carriers are present increases, and the resistance value changes. Therefore, in principle, hydrogen sensors using oxide-based semiconductors always react with reducing gases such as methane gas, propane gas, and ethyl alcohol other than hydrogen gas, which improves the selectivity of hydrogen gas. Even if various means are applied, only hydrogen gas cannot actually be detected. In addition, since the hydrogen sensor of this structure uses a reduction reaction between an oxide semiconductor material and a reducing gas, the sensitivity tends to be good at a high temperature of 200 to 300 ° C., and the hydrogen sensor has a heating element such as a heater. It is necessary to have. In contrast, a hydrogen sensor using a non-oxide semiconductor has resistance due to the influence of electron mobility inside the semiconductor by another resistance value fluctuation mechanism that is not caused by oxidation or reduction reaction. Since the value is changed, only hydrogen gas can be detected without reacting with reducing gas other than hydrogen gas. In addition, hydrogen gas can be detected at room temperature and there is no need to provide a heating element such as a heater, so the hydrogen sensor can be downsized, power consumption can be reduced, output stability can be improved, and sensor durability can be improved. Etc.

また、本発明は、前記構成の水素センサにおいて、前記水素吸収体を前記半導体上に直接形成するという構成にした。   According to the present invention, in the hydrogen sensor having the above-described configuration, the hydrogen absorber is formed directly on the semiconductor.

このように水素吸収体を半導体の表面に直接接触させて形成すると、水素吸収体が吸収した水素の影響を半導体に直に及ぼすことができるので、水素濃度に対応する出力変化を確実に検知することができる。   When the hydrogen absorber is formed in direct contact with the surface of the semiconductor in this way, the influence of the hydrogen absorbed by the hydrogen absorber can be directly exerted on the semiconductor, so that the output change corresponding to the hydrogen concentration can be reliably detected. be able to.

また、本発明は、前記構成の水素センサにおいて、前記半導体と前記水素吸収体との間に薄膜絶縁層を介在するという構成にした。   According to the present invention, in the hydrogen sensor having the above-described configuration, a thin film insulating layer is interposed between the semiconductor and the hydrogen absorber.

このように薄膜絶縁層を介して半導体上に水素吸収体を形成すると、薄膜絶縁層によって半導体の表面が保護されるので、水素センサの耐久性及び信頼性を高めることができる。薄膜絶縁層を介して半導体上に水素吸収体を形成した場合にも、水素を吸収した水素吸収体は薄膜絶縁層を介して半導体に影響を与え、半導体の抵抗値を変化させる。   When the hydrogen absorber is formed on the semiconductor through the thin film insulating layer in this way, the surface of the semiconductor is protected by the thin film insulating layer, so that the durability and reliability of the hydrogen sensor can be improved. Even when a hydrogen absorber is formed on a semiconductor through a thin film insulating layer, the hydrogen absorber that has absorbed hydrogen affects the semiconductor through the thin film insulating layer and changes the resistance value of the semiconductor.

また、本発明は、前記構成の水素センサにおいて、前記水素吸収体の露出面を水素透過性の保護膜により覆うという構成にした。   According to the present invention, in the hydrogen sensor having the above-described configuration, the exposed surface of the hydrogen absorber is covered with a hydrogen-permeable protective film.

このように水素吸収体の露出面を水素透過性の保護膜により覆うと、雰囲気中の水素を選択的に水素吸収体に到達させることができるので、水素センサの感度を高めることができる。また、水素吸収体の露出面が水素透過性の保護膜で覆われて保護されるので、水素センサの耐久性及び信頼性を高めることができる。   If the exposed surface of the hydrogen absorber is covered with a hydrogen-permeable protective film in this manner, hydrogen in the atmosphere can selectively reach the hydrogen absorber, and thus the sensitivity of the hydrogen sensor can be increased. Moreover, since the exposed surface of the hydrogen absorber is protected by being covered with a hydrogen-permeable protective film, the durability and reliability of the hydrogen sensor can be improved.

また、本発明は、前記構成の水素センサにおいて、前記水素透過性の保護膜が、多孔性窒化珪素又は酸化珪素若しくはポリイミドからなるという構成にした。   In the hydrogen sensor having the above-described configuration, the hydrogen-permeable protective film is made of porous silicon nitride, silicon oxide, or polyimide.

多孔性窒化珪素、酸化珪素及びポリイミドは、いずれも水素の選択的透過性に優れるので、これらの各材料からなる保護膜で水素吸収体の露出面を覆うと、他の可燃性ガスの影響を高能率に排除することができ、水素センサの感度を高めることができる。また、これらの各材料は、真空成膜法によって容易に成膜可能であるので、水素センサの生産性の向上を図ることができる。   Porous silicon nitride, silicon oxide, and polyimide are all excellent in hydrogen selective permeability, so if the exposed surface of the hydrogen absorber is covered with a protective film made of each of these materials, the effects of other combustible gases are affected. High efficiency can be eliminated, and the sensitivity of the hydrogen sensor can be increased. In addition, since each of these materials can be easily formed by a vacuum film forming method, the productivity of the hydrogen sensor can be improved.

一方、水素の検知方法に関して本発明は、半導体と、当該半導体上に付設された金又は金とパラジウムとの合金からなる水素吸収体と、当該水素吸収体の付設位置を挟んで前記半導体上の前記水素吸収体と導通しない位置に配置された少なくとも1対の電極とを備えた水素センサを用い、前記少なくとも1対の電極間で計測される前記半導体の抵抗値変化から前記水素吸収体への水素吸収の有無と水素吸収量とを検出するという構成にした。   On the other hand, the present invention relates to a method for detecting hydrogen, in which the present invention relates to a semiconductor, a hydrogen absorber made of gold or an alloy of gold and palladium attached on the semiconductor, and an attachment position of the hydrogen absorber on the semiconductor. Using a hydrogen sensor comprising at least one pair of electrodes arranged at a position not conducting with the hydrogen absorber, the change in resistance value of the semiconductor measured between the at least one pair of electrodes to the hydrogen absorber The configuration is such that the presence or absence of hydrogen absorption and the amount of hydrogen absorption are detected.

このように少なくとも1対の電極間で計測される半導体の抵抗値変化から水素吸収体への水素吸収の有無と水素吸収量とを検出すると、水素ガス利用装置に適用した場合に、例えば低濃度の水素ガスを検出した段階でボンベからの水素ガスの漏れを検出し、高濃度の水素ガスを検出した段階で水素ガス利用装置を強制的に停止させるという制御に適用することができ、水素センサの適用範囲を拡大することができる。   Thus, when the presence / absence of hydrogen absorption into the hydrogen absorber and the hydrogen absorption amount are detected from the change in the resistance value of the semiconductor measured between at least one pair of electrodes, when applied to a hydrogen gas utilization device, for example, a low concentration It can be applied to the control of detecting hydrogen gas leakage from the cylinder at the stage of detecting hydrogen gas and forcibly stopping the hydrogen gas utilization device at the stage of detecting high concentration hydrogen gas. The scope of application can be expanded.

本発明の水素センサは、半導体と、当該半導体上に付設された金又は金とパラジウムとの合金からなる水素吸収体と、当該水素吸収体の付設位置を挟んで前記半導体上の前記水素吸収体と導通しない位置に配置された少なくとも1対の電極とを備えるので、約2.0%程度の濃度まで水素吸収体の水素吸収能力が飽和状態に達せず、パラジウムからなる水素吸収体を用いた場合に比べて水素ガス濃度の検出範囲を拡大することができて、雰囲気中の水素ガス濃度の段階的又は連続的な検出が可能になる。   The hydrogen sensor according to the present invention includes a semiconductor, a hydrogen absorber made of gold or an alloy of gold and palladium attached on the semiconductor, and the hydrogen absorber on the semiconductor across the attachment position of the hydrogen absorber. And at least one pair of electrodes arranged at a position not conducting, the hydrogen absorbing capacity of the hydrogen absorber does not reach a saturation state up to a concentration of about 2.0%, and a hydrogen absorber made of palladium was used. Compared to the case, the detection range of the hydrogen gas concentration can be expanded, and stepwise or continuous detection of the hydrogen gas concentration in the atmosphere becomes possible.

本発明の水素の検知方法は、半導体と、当該半導体上に付設された金又は金とパラジウムとの合金からなる水素吸収体と、当該水素吸収体の付設位置を挟んで前記半導体上の前記水素吸収体と導通しない位置に配置された少なくとも1対の電極とを備えた水素センサを用いるので、パラジウムからなる水素吸収体を用いた場合に比べて水素ガス濃度の検出範囲を拡大することができて、雰囲気中の水素ガス濃度の段階的又は連続的な検出が可能になる。そして、少なくとも1対の電極間で計測される半導体の抵抗値変化から単に水素吸収体への水素吸収の有無を検出するのではなく、水素吸収体への水素吸収量を併せて検出するので、水素ガス利用装置に適用した場合に、例えば低濃度の水素ガスを検出した段階でボンベからの水素ガスの漏れを検出し、高濃度の水素ガスを検出した段階で水素ガス利用装置を強制的に停止させるという制御に適用することができ、水素センサの適用範囲を拡大することができる。   The method for detecting hydrogen according to the present invention includes a semiconductor, a hydrogen absorber made of gold or an alloy of gold and palladium attached on the semiconductor, and the hydrogen on the semiconductor across the attachment position of the hydrogen absorber. Since a hydrogen sensor having at least one pair of electrodes arranged at a position not conducting with the absorber is used, the detection range of the hydrogen gas concentration can be expanded as compared with a case where a hydrogen absorber made of palladium is used. Thus, stepwise or continuous detection of the hydrogen gas concentration in the atmosphere becomes possible. And since it detects not only the presence or absence of hydrogen absorption into the hydrogen absorber from the resistance change of the semiconductor measured between at least one pair of electrodes, but also detects the amount of hydrogen absorption into the hydrogen absorber, When applied to a hydrogen gas utilization device, for example, when a low concentration hydrogen gas is detected, leakage of hydrogen gas from the cylinder is detected, and when a high concentration hydrogen gas is detected, the hydrogen gas utilization device is forcibly detected. This can be applied to the control of stopping, and the application range of the hydrogen sensor can be expanded.

〈第1の実施の形態〉
以下、本発明に係る水素センサの第1例を図1及び図2に基づいて説明する。図1は第1実施形態に係る水素センサの断面図、図2は第1実施形態に係る水素センサの平面図である。
<First Embodiment>
Hereinafter, a first example of a hydrogen sensor according to the present invention will be described with reference to FIGS. FIG. 1 is a cross-sectional view of a hydrogen sensor according to the first embodiment, and FIG. 2 is a plan view of the hydrogen sensor according to the first embodiment.

これらの図から明らかなように、第1実施形態に係る水素センサAは、絶縁基板1と、絶縁基板1の上面のほぼ全面に形成された層状の半導体2と、半導体2の上面中央部に形成された水素吸収体3と、半導体2の表面上であって水素吸収体3の左右両側に形成された内側電極5,5と、半導体2の表面上であって内側電極5,5の外側に形成された外側電極6,6とからなる。前記内側電極5,5及び外側電極6,6は、水素吸収体3と電気的に導通しないように形成される。   As is clear from these drawings, the hydrogen sensor A according to the first embodiment includes an insulating substrate 1, a layered semiconductor 2 formed on substantially the entire upper surface of the insulating substrate 1, and a central portion of the upper surface of the semiconductor 2. The formed hydrogen absorber 3, the inner electrodes 5 and 5 formed on the left and right sides of the hydrogen absorber 3 on the surface of the semiconductor 2, and the outer surfaces of the inner electrodes 5 and 5 on the surface of the semiconductor 2 The outer electrodes 6 and 6 are formed. The inner electrodes 5, 5 and the outer electrodes 6, 6 are formed so as not to be electrically connected to the hydrogen absorber 3.

絶縁基板1は、SiOなどのガラスや石英、Alなどのセラミック、イオンをドープしていないシリコンなどをもって形成することができる。この絶縁基板1は、半導体2及び電極5,6の形成面が絶縁性を有すれば良いので、導電性の基板の表面に絶縁層を被覆したものを用いることもできる。 The insulating substrate 1 can be formed of glass such as SiO 2 , quartz, ceramic such as Al 2 O 3, silicon not doped with ions, or the like. Since the insulating substrate 1 only needs to have insulating properties on the surfaces on which the semiconductor 2 and the electrodes 5 and 6 are formed, a substrate in which an insulating layer is coated on the surface of a conductive substrate can also be used.

半導体2は、ITO(インジウムスズ酸化物)、GaN、或いはPをドープして半導体としたn型Siなどを層状に形成してなる。この半導体として好ましくは、本来絶縁物であるがイオンをドープして半導体としたものが特に望ましい。このタイプの半導体として、シリコンにV族元素であるP,As或いはSbなどの元素をイオンドープしてなるn型半導体や、シリコンにBなどのIII族元素をイオンドープしてなるp型半導体などを用いることができる。さらには、半導体2を構成する半導体材料としては、n型又はp型のSiC,Ge,SiGe,GaAs,GaNなどを用いることができる。   The semiconductor 2 is formed by laminating ITO (indium tin oxide), GaN, or n-type Si doped with P as a semiconductor. This semiconductor is preferably an insulator, but it is particularly desirable to use a semiconductor doped with ions. As this type of semiconductor, an n-type semiconductor in which silicon is ion-doped with an element such as P, As or Sb, which is a group V element, or a p-type semiconductor in which silicon is group-doped with a group III element such as B, etc. Can be used. Furthermore, n-type or p-type SiC, Ge, SiGe, GaAs, GaN, or the like can be used as a semiconductor material constituting the semiconductor 2.

水素吸収体3は、雰囲気中に水素が存在すると水素を吸収し、雰囲気中から水素がなくなると吸収している水素を放出するものであって、金又は金とパラジウムの合金をもって形成される。水素吸収体3を金とパラジウムの合金をもって形成する場合においては、その水素吸収能力を金単体と同程度にするため、パラジウムの組成比を10%程度までに抑制することが望ましい。この水素吸収体3は、電極5,5間及び電極6,6間を導通させないパターンで形成する必要がある。水素吸収体3のパターン形成に当たっては、フォトリソグラフィ法が好適に用いられる。   The hydrogen absorber 3 absorbs hydrogen when hydrogen exists in the atmosphere, and releases the absorbed hydrogen when hydrogen disappears from the atmosphere, and is formed of gold or an alloy of gold and palladium. In the case where the hydrogen absorber 3 is formed of an alloy of gold and palladium, it is desirable to suppress the composition ratio of palladium to about 10% in order to make the hydrogen absorption capacity the same as that of gold alone. The hydrogen absorber 3 needs to be formed in a pattern that does not conduct between the electrodes 5 and 5 and between the electrodes 6 and 6. In the pattern formation of the hydrogen absorber 3, a photolithography method is preferably used.

なお、水素吸収体3は、図1及び図2に示すように連続した膜状に形成することもできるが、電極5,5間及び電極6,6間の導通を防止するため、粒状の水素吸収体材料が島状にとぎれとぎれの状態で分散配置され、全体として絶縁体として機能するように構成することが特に望ましい。   The hydrogen absorber 3 can be formed in a continuous film shape as shown in FIGS. 1 and 2, but in order to prevent conduction between the electrodes 5 and 5 and between the electrodes 6 and 6, It is particularly desirable that the absorber material is dispersed and arranged in an island-like state and functions as an insulator as a whole.

粒状の水素吸収体材料が島状にとぎれとぎれの状態で分散配置された水素吸収体3は、水素吸収体3を真空蒸着法やスパッタリング法などの真空成膜法によって形成する場合に、膜が生成される以前の段階で成膜を中止することで形成することができる。具体的には、半導体2上に堆積される水素吸収体材料の層厚を0.5nm〜5nm程度に抑制することにより、抵抗値が1MΩ程度の絶縁体とすることができる。   The hydrogen absorber 3 in which the granular hydrogen absorber material is dispersed and arranged in an island-like state is formed when the hydrogen absorber 3 is formed by a vacuum film formation method such as a vacuum evaporation method or a sputtering method. The film can be formed by stopping the film formation at a stage before being performed. Specifically, an insulator having a resistance value of about 1 MΩ can be obtained by suppressing the layer thickness of the hydrogen absorber material deposited on the semiconductor 2 to about 0.5 nm to 5 nm.

また、水素吸収体3の縦幅は、絶縁基板1の縦幅よりも若干短く、横幅は絶縁基板1の横幅の数分の1に形成される。これにより、図1及び図2に示すように、水素吸収体3の左右両側には、半導体2が露出される。   Further, the vertical width of the hydrogen absorber 3 is slightly shorter than the vertical width of the insulating substrate 1, and the horizontal width is formed to be a fraction of the horizontal width of the insulating substrate 1. Thereby, as shown in FIGS. 1 and 2, the semiconductor 2 is exposed on both the left and right sides of the hydrogen absorber 3.

内側電極5,5及び外側電極6,6は、Au又はAlなどの任意の良導電材料で形成することができるが、水素センサの製造工程を簡略化してその低コスト化を図るため、水素吸収体3がAuで形成される場合には、電極5,6もAuで形成することが好ましい。これらの各電極5,6は、真空蒸着法、スパッタリング法或いはスクリーン印刷法などで形成することができる。   The inner electrodes 5 and 5 and the outer electrodes 6 and 6 can be made of any good conductive material such as Au or Al. However, in order to simplify the manufacturing process of the hydrogen sensor and reduce its cost, hydrogen absorption When the body 3 is made of Au, the electrodes 5 and 6 are also preferably made of Au. Each of these electrodes 5 and 6 can be formed by a vacuum deposition method, a sputtering method, a screen printing method, or the like.

以上のごとく構成された第1実施形態に係る水素センサAは、測定環境に設置し、外側電極6,6間に所定の電流を印加しながら内側電極5,5間の電圧を測定することで水素の検出を行うことができる。即ち、水素センサAの設置環境に水素ガスが存在すると、水素センサAの水素吸収体3に水素が取り込まれ、半導体2の水素吸収体3と接している部分は水素吸収体3への水素の吸収により荷電キャリアの状態が変化するので、これに応じて半導体2の抵抗値が変化する。また、水素センサAの設置環境から水素ガスがなくなると、水素吸収体3から水素が放出されるので、半導体2の抵抗値は原点に復帰し、再度使用できる状態となる。この場合、第1実施形態に係る水素センサAは、従来の水素センサとは異なり、酸化還元反応に基づいて水素を検出するものではないので、従来の水素センサのように水素の検知後に水素センサを200℃〜300℃の高温に加熱して再酸化する必要がなく、検知後に水素のない常温の環境に放置するだけで再使用が可能になる。   The hydrogen sensor A according to the first embodiment configured as described above is installed in a measurement environment, and measures the voltage between the inner electrodes 5 and 5 while applying a predetermined current between the outer electrodes 6 and 6. Hydrogen can be detected. That is, when hydrogen gas exists in the installation environment of the hydrogen sensor A, hydrogen is taken into the hydrogen absorber 3 of the hydrogen sensor A, and the portion of the semiconductor 2 that is in contact with the hydrogen absorber 3 is the hydrogen to the hydrogen absorber 3. Since the state of the charge carrier changes due to absorption, the resistance value of the semiconductor 2 changes accordingly. Further, when the hydrogen gas is exhausted from the installation environment of the hydrogen sensor A, hydrogen is released from the hydrogen absorber 3, so that the resistance value of the semiconductor 2 returns to the origin and becomes usable again. In this case, unlike the conventional hydrogen sensor, the hydrogen sensor A according to the first embodiment does not detect hydrogen based on the oxidation-reduction reaction. Therefore, unlike the conventional hydrogen sensor, the hydrogen sensor A is detected after the detection of hydrogen. It is not necessary to re-oxidize by heating at a high temperature of 200 ° C. to 300 ° C., and it can be reused by simply leaving it in a room temperature environment without hydrogen after detection.

なお、第1実施形態に係る水素センサAは、従来の水素センサとは異なり常温で水素の検出を行うことができる点に大きな特徴を有するが、高温の雰囲気中でも水素の検出を行うことができることはもちろんである。   The hydrogen sensor A according to the first embodiment has a great feature in that hydrogen can be detected at room temperature unlike a conventional hydrogen sensor, but hydrogen can be detected even in a high-temperature atmosphere. Of course.

〈第2の実施の形態〉
以下、本発明に係る水素センサの第2例を図3及び図4に基づいて説明する。図3は第2実施形態に係る水素センサの断面図、図4は第2実施形態に係る水素センサの平面図である。
<Second Embodiment>
Hereinafter, a second example of the hydrogen sensor according to the present invention will be described with reference to FIGS. FIG. 3 is a cross-sectional view of the hydrogen sensor according to the second embodiment, and FIG. 4 is a plan view of the hydrogen sensor according to the second embodiment.

これらの図から明らかなように、第2実施形態に係る水素センサBは、水素吸収体の露出面を水素透過性の保護膜17にて覆うと共に、半導体2と水素吸収体3の間に薄膜絶縁層14を介在させ、かつ電極5,6の一部及び半導体2の上面の露出面を薄膜絶縁層14で覆ったことを特徴とする。その他については、第1実施形態に係る水素センサAと同じである。   As is clear from these drawings, the hydrogen sensor B according to the second embodiment covers the exposed surface of the hydrogen absorber with a hydrogen-permeable protective film 17 and a thin film between the semiconductor 2 and the hydrogen absorber 3. The insulating layer 14 is interposed, and the exposed surfaces of the electrodes 5 and 6 and the upper surface of the semiconductor 2 are covered with the thin film insulating layer 14. Others are the same as the hydrogen sensor A according to the first embodiment.

水素透過性の保護膜17は、多孔性窒化珪素又は酸化珪素若しくはポリイミドなどをもって形成することができる。これらの各材料は、いずれも水素の選択的透過性に優れるので、これらの各材料からなる保護膜17で水素吸収体3の露出面を覆うと、雰囲気中の水素を選択的に水素吸収体に到達させることができて他の可燃性ガスの影響を高能率に排除することができ、水素センサの感度をより高めることができる。また、これらの各材料は、真空成膜法によって容易に成膜可能であるので、水素センサの生産性の向上を図ることができる。さらに、保護膜17で覆うことにより、水素吸収体3の露出面を保護することができるので、水素センサの耐久性及び信頼性を高めることができる。   The hydrogen permeable protective film 17 can be formed of porous silicon nitride, silicon oxide, polyimide, or the like. Since each of these materials is excellent in selective hydrogen permeability, when the exposed surface of the hydrogen absorber 3 is covered with the protective film 17 made of these materials, the hydrogen in the atmosphere is selectively absorbed. Therefore, the influence of other combustible gases can be eliminated efficiently, and the sensitivity of the hydrogen sensor can be further increased. In addition, since each of these materials can be easily formed by a vacuum film forming method, the productivity of the hydrogen sensor can be improved. Furthermore, since the exposed surface of the hydrogen absorber 3 can be protected by covering with the protective film 17, the durability and reliability of the hydrogen sensor can be improved.

また、薄膜絶縁層14も、多孔性窒化珪素又は酸化珪素若しくはポリイミドなどをもって形成することができる。このように所定の面に薄膜絶縁層14を形成すると、薄膜絶縁層14によって半導体2の表面が保護されるので、水素センサの耐久性及び信頼性を高めることができる。   The thin film insulating layer 14 can also be formed of porous silicon nitride, silicon oxide, polyimide, or the like. When the thin film insulating layer 14 is formed on the predetermined surface in this manner, the surface of the semiconductor 2 is protected by the thin film insulating layer 14, so that the durability and reliability of the hydrogen sensor can be improved.

なお、前記各実施形態においては、絶縁基板1上に膜状の半導体2を形成したが、半導体2の構成に関してはこれに限定されるものではなく、バルク状の半導体や、半導体粒子を圧密して所望の形状に成形した成形体を用いることもできる。   In each of the above embodiments, the film-like semiconductor 2 is formed on the insulating substrate 1, but the configuration of the semiconductor 2 is not limited to this, and a bulk semiconductor or semiconductor particles are consolidated. It is also possible to use a molded body molded into a desired shape.

〈実験例〉
水素吸収体3の材質が異なる各種の水素センサを作製し、水素ガスの検出実験を行った。以下に、試料である各種水素センサの構成と実験結果とを挙げ、本発明に係る水素センサの効果を明らかにする。
<Experimental example>
Various hydrogen sensors having different materials for the hydrogen absorber 3 were produced, and hydrogen gas detection experiments were performed. The effects of the hydrogen sensor according to the present invention will be clarified with the configuration and experimental results of various hydrogen sensors as samples.

試料である水素センサは、縦16mm、横9mmのサファイア基板上に半導体2として厚さ0.1μmのSiをドープしたGaN膜を形成し、GaN膜の中央部に縦5mm、横7mmの水素吸収体3を形成した。また、GaN膜上の水素吸収体3と接しない位置に縦7.5mm、横1.2mmで、下地がTi、上層がAuからなる2層構造の内側電極5と外側電極6とを形成し、第1実施形態に係る水素センサAの外観構成を有するものとした。   A hydrogen sensor as a sample is formed by forming a GaN film doped with Si having a thickness of 0.1 μm as a semiconductor 2 on a sapphire substrate 16 mm long and 9 mm wide, and absorbing hydrogen 5 mm long and 7 mm wide in the center of the GaN film Body 3 was formed. In addition, the inner electrode 5 and the outer electrode 6 having a two-layer structure in which the base is made of Ti and the upper layer is made of Au are formed at a position not in contact with the hydrogen absorber 3 on the GaN film with a length of 7.5 mm and a width of 1.2 mm. The external configuration of the hydrogen sensor A according to the first embodiment is assumed.

各試料における水素吸収体3の組成を図5に示す。試料B0はPd100%、試料B1はPd95%でAu5%、試料B2はPd80%でAu20%、試料B3はPd77%でAu23%、試料B4はPd64.5%でAu35.5%、試料B5はPd44%でAu56%、試料B6はPd27%でAu73%、試料B7はPd11.5%でAu88.5%、試料B8はPd5%でAu95%、試料B9はPd3%でAu97%、試料BAはAu100%である。ここで、比率は原子比率である。   The composition of the hydrogen absorber 3 in each sample is shown in FIG. Sample B0 is Pd 100%, Sample B1 is Pd 95% and Au 5%, Sample B2 is Pd 80% and Au 20%, Sample B3 is Pd 77% and Au 23%, Sample B4 is Pd 64.5% and Au 35.5%, Sample B5 is Pd44 Sample B6 is Pd27% and Au73%, Sample B7 is Pd11.5% and Au is 88.5%, Sample B8 is Pd5% and Au is 95%, Sample B9 is Pd3% and Au is 97%, Sample BA is Au100% It is. Here, the ratio is an atomic ratio.

水素吸収体3の形成は、サンユー電子株式会社製のスパッタリング装置SC−701HMCを用い、電流値が15mA、スパッタガスがAr、真空度が15Pa、スパッタ時間が15分間の成膜条件で行った。ターゲットの構成については、図6に示す通りである。試料B0についてはPdターゲットを用いて成膜した。試料BAについてはAuターゲットを用いて成膜した。また、試料B1〜試料B9については、Pdターゲットの表面に1辺が10mmで厚さが0.7mmのAuチップを図6に示す所要の配列で張り付けたターゲットを用いた。図6でドーナツ上の部位は、ターゲット上でスパッタされる量の多い場所である。   The hydrogen absorber 3 was formed using a sputtering apparatus SC-701HMC manufactured by Sanyu Electronics Co., Ltd. under film forming conditions in which the current value was 15 mA, the sputtering gas was Ar, the degree of vacuum was 15 Pa, and the sputtering time was 15 minutes. The configuration of the target is as shown in FIG. Sample B0 was formed using a Pd target. Sample BA was formed using an Au target. For Samples B1 to B9, a target in which an Au chip having a side of 10 mm and a thickness of 0.7 mm was attached to the surface of the Pd target in the required arrangement shown in FIG. 6 was used. In FIG. 6, the part on the donut is a place where a large amount of sputtering is performed on the target.

これらの各資料を水素センサ測定用のチャンバー内に同時に収容し、130℃で大気雰囲気中及び水素ガス含有大気雰囲気中におけるセンサ出力を測定した。その結果を図7及び図8に示す。図7は試料B0,B7,BAについて、大気雰囲気中におけるセンサ出力が2.5Vであることを確認した後に、大気中の水素ガス濃度を3%、2%、1%、0.5%、0.3%、0%と減少させたときのセンサ出力の変化を示す図であり、図8は各水素ガス濃度で平衡状態となったときのセンサ出力をプロットしたものである。なお、各水素ガス濃度の切り替えは、センサ出力が十分に平衡状態になった後に行った。   Each of these materials was simultaneously housed in a hydrogen sensor measurement chamber, and the sensor output was measured at 130 ° C. in an air atmosphere and a hydrogen gas-containing air atmosphere. The results are shown in FIGS. FIG. 7 shows that for samples B0, B7, and BA, after confirming that the sensor output in the atmosphere is 2.5 V, the hydrogen gas concentration in the atmosphere is 3%, 2%, 1%, 0.5%, It is a figure which shows the change of the sensor output when it reduces with 0.3% and 0%, and FIG. 8 plots the sensor output when it will be in an equilibrium state with each hydrogen gas concentration. Each hydrogen gas concentration was switched after the sensor output was in a sufficiently balanced state.

図7及び図8から明らかなように、Pd100%の試料B0は約0.3%の水素ガス濃度で水素ガス吸収能力が飽和し、水素ガス濃度を0.3%〜3%の範囲で変更したときのセンサ出力変化が小さいので、0.3%以上の水素ガス濃度を検出することが困難である。これに対して、Pd11.5%でAu88.5%の試料B7及びAu100%の試料BAは約2%の水素ガス濃度まで水素ガス吸収能力が飽和せず、0.3%〜2%の範囲の水素ガス濃度を検出することができる。よって、この範囲における水素ガス濃度の段階的又は連続的な検出が可能になり、水素センサの適用範囲を拡大することができる。   As is clear from FIGS. 7 and 8, the sample B0 with 100% Pd is saturated with hydrogen gas absorption capacity at a hydrogen gas concentration of about 0.3%, and the hydrogen gas concentration is changed within the range of 0.3% to 3%. Therefore, it is difficult to detect a hydrogen gas concentration of 0.3% or more. In contrast, the sample B7 of Pd 11.5% and Au 88.5% and the sample BA of Au 100% do not saturate the hydrogen gas absorption capacity up to a hydrogen gas concentration of about 2%, and range from 0.3% to 2%. The hydrogen gas concentration can be detected. Therefore, stepwise or continuous detection of the hydrogen gas concentration in this range is possible, and the application range of the hydrogen sensor can be expanded.

なお、試料B8,B9についてはほぼ試料B7と等価であり、試料B1〜B6については試料B0に近い値となった。また、第2実施形態に係る水素センサについて同様の実験を行ったところ、前記実験例と同様の結果が得られた。   Samples B8 and B9 are substantially equivalent to sample B7, and samples B1 to B6 have values close to sample B0. Moreover, when the same experiment was conducted about the hydrogen sensor which concerns on 2nd Embodiment, the result similar to the said experimental example was obtained.

第1実施形態に係る水素センサの断面図である。It is sectional drawing of the hydrogen sensor which concerns on 1st Embodiment. 第1実施形態に係る水素センサの平面図である。It is a top view of the hydrogen sensor concerning a 1st embodiment. 第2実施形態に係る水素センサの断面図である。It is sectional drawing of the hydrogen sensor which concerns on 2nd Embodiment. 第2実施形態に係る水素センサの平面図である。It is a top view of the hydrogen sensor concerning a 2nd embodiment. 各試料の水素吸収体の組成を示す表図である。It is a table | surface figure which shows the composition of the hydrogen absorber of each sample. 各試料の水素吸収体を製造するに用いたターゲットの構成図である。It is a block diagram of the target used for manufacturing the hydrogen absorber of each sample. 本発明に係る水素センサの効果を比較例に係る水素センサと比較して示すグラフ図である。It is a graph which shows the effect of the hydrogen sensor which concerns on this invention compared with the hydrogen sensor which concerns on a comparative example. 本発明に係る水素センサの効果を比較例に係る水素センサと比較して示すグラフ図である。It is a graph which shows the effect of the hydrogen sensor which concerns on this invention compared with the hydrogen sensor which concerns on a comparative example.

符号の説明Explanation of symbols

A,B 水素センサ
1 絶縁基板
2 半導体
3 水素吸収体
5 内側電極
6 外側電極
14 薄膜絶縁層
17 水素透過性の保護膜
A, B Hydrogen sensor 1 Insulating substrate 2 Semiconductor 3 Hydrogen absorber 5 Inner electrode 6 Outer electrode 14 Thin film insulating layer 17 Hydrogen permeable protective film

Claims (9)

半導体と、当該半導体上に付設された金又は金を主成分とする金とパラジウムとの合金からなる水素吸収体と、当該水素吸収体の付設位置を挟んで前記半導体上の前記水素吸収体と導通しない位置に配置された少なくとも1対の電極とを備えたことを特徴とする水素センサ。   A semiconductor, a hydrogen absorber made of gold or an alloy of gold and palladium containing gold as a main component, and the hydrogen absorber on the semiconductor across the attachment position of the hydrogen absorber; A hydrogen sensor comprising: at least one pair of electrodes disposed at a position where electrical connection is not established. 前記半導体として、絶縁基板上に層状に形成された半導体を用いたことを特徴とする請求項1に記載の水素センサ。   The hydrogen sensor according to claim 1, wherein a semiconductor formed in a layered manner on an insulating substrate is used as the semiconductor. 前記半導体として、非酸化物系の半導体を用いたことを特徴とする請求項1又は請求項2に記載の水素センサ。   The hydrogen sensor according to claim 1, wherein a non-oxide semiconductor is used as the semiconductor. 前記非酸化物系の半導体として、シリコン、炭化珪素、ゲルマニウム、シリコンゲルマニウム、ガリウムヒ素、窒化ガリウム、炭素のいずれかを主成分とする非酸化物系の半導体を用いたことを特徴とする請求項3に記載の水素センサ。 Claims wherein the non-oxide semiconductor, silicon, and wherein the silicon carbide, germanium, silicon germanium, gallium arsenide, gallium nitride, that one of the carbon-containing with non-oxide semiconductor whose main component Item 4. The hydrogen sensor according to Item 3. 前記水素吸収体を前記半導体上に直接形成したことを特徴とする請求項1乃至請求項4のいずれか1項に記載の水素センサ。   The hydrogen sensor according to claim 1, wherein the hydrogen absorber is formed directly on the semiconductor. 前記半導体と前記水素吸収体との間に薄膜絶縁層を介在したことを特徴とする請求項1乃至請求項4のいずれか1項に記載の水素センサ。   The hydrogen sensor according to any one of claims 1 to 4, wherein a thin film insulating layer is interposed between the semiconductor and the hydrogen absorber. 前記水素吸収体の露出面を水素透過性の保護膜により覆ったことを特徴とする請求項1乃至請求項6のいずれか1項に記載の水素センサ。   The hydrogen sensor according to claim 1, wherein an exposed surface of the hydrogen absorber is covered with a hydrogen-permeable protective film. 前記水素透過性の保護膜が、窒化珪素又は酸化珪素若しくはポリイミドからなることを特徴とする請求項7に記載の水素センサ。   The hydrogen sensor according to claim 7, wherein the hydrogen-permeable protective film is made of silicon nitride, silicon oxide, or polyimide. 半導体と、当該半導体上に付設された金又は金とパラジウムとの合金からなる水素吸収体と、当該水素吸収体の付設位置を挟んで前記半導体上の前記水素吸収体と導通しない位置に配置された少なくとも1対の電極とを備えた水素センサを用い、前記少なくとも1対の電極間で計測される前記半導体の抵抗値変化から前記水素吸収体への水素吸収の有無と水素吸収量とを検出することを特徴とする水素の検知方法。   A semiconductor, a hydrogen absorber made of gold or an alloy of gold and palladium attached to the semiconductor, and a position where the hydrogen absorber on the semiconductor is not electrically conductive with the hydrogen absorber attached. Using a hydrogen sensor provided with at least one pair of electrodes, the presence or absence of hydrogen absorption into the hydrogen absorber and the amount of hydrogen absorption are detected from the change in resistance of the semiconductor measured between the at least one pair of electrodes. A method for detecting hydrogen.
JP2005119575A 2005-04-18 2005-04-18 Hydrogen sensor and hydrogen detection method Expired - Fee Related JP4340639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005119575A JP4340639B2 (en) 2005-04-18 2005-04-18 Hydrogen sensor and hydrogen detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005119575A JP4340639B2 (en) 2005-04-18 2005-04-18 Hydrogen sensor and hydrogen detection method

Publications (2)

Publication Number Publication Date
JP2006300585A JP2006300585A (en) 2006-11-02
JP4340639B2 true JP4340639B2 (en) 2009-10-07

Family

ID=37469065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005119575A Expired - Fee Related JP4340639B2 (en) 2005-04-18 2005-04-18 Hydrogen sensor and hydrogen detection method

Country Status (1)

Country Link
JP (1) JP4340639B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210116405A1 (en) * 2018-08-07 2021-04-22 New Cosmos Electric Co., Ltd. Mems type semiconductor gas detection element

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240462A (en) * 2006-03-10 2007-09-20 Tokyo Univ Of Science Gas detecting element, hydrogen sensor, and manufacturing method for gas detecting element
JP7304606B2 (en) * 2017-08-10 2023-07-07 国立研究開発法人物質・材料研究機構 Hydrogen sensor and hydrogen detection method using membrane-type surface stress sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210116405A1 (en) * 2018-08-07 2021-04-22 New Cosmos Electric Co., Ltd. Mems type semiconductor gas detection element

Also Published As

Publication number Publication date
JP2006300585A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
US8025843B2 (en) Hydrogen sensor
EP3267187B1 (en) Silicon carbide based field effect gas sensor for high temperature applications
US4892834A (en) Chemical sensor
CN109580725B (en) Two-dimensional transition metal sulfide gas sensor based on antenna structure and preparation
JP2011203256A (en) Amorphous thin film for sensing
EP1693667B1 (en) Gas sensor
US20110138882A1 (en) Semiconductor gas sensor having low power consumption
Kaur et al. Novel christmas branched like NiO/NiWO4/WO3 (p–p–n) nanowire heterostructures for chemical sensing
EP3786627B1 (en) Mems type semiconductor gas detection element
JP5352049B2 (en) Hydrogen sensor
WO2016143053A1 (en) Gas sensor and sensor device
JP4355300B2 (en) Hydrogen permeable membrane, hydrogen sensor, and hydrogen detection method
JP4340639B2 (en) Hydrogen sensor and hydrogen detection method
KR20110066849A (en) Semiconductor gas sensor with low power consumption
JP2000298108A (en) Gas sensor
JP6372686B2 (en) Gas detection device and gas detection method
Kim Capacitance response characteristics of hydrogen sensor with tantalum oxide dielectric layer
KR100906496B1 (en) Gas sensor and method for manufacturing the same
JP4870938B2 (en) Manufacturing method of semiconductor gas detection element
Schalwig et al. A solid-state gas sensor array for monitoring NOx storage catalytic converters
JP2009042213A (en) Gas sensor element
JP2005030907A (en) Gas sensor
KR102228652B1 (en) Photodiode type self-powered gas sensor and preparation method thereof
JP2007017217A (en) Thin film gas sensor
JP2005249722A (en) Semiconductor type gas sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090706

R150 Certificate of patent or registration of utility model

Ref document number: 4340639

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees