JP4338870B2 - Flexible structure by PSC method - Google Patents

Flexible structure by PSC method Download PDF

Info

Publication number
JP4338870B2
JP4338870B2 JP2000086599A JP2000086599A JP4338870B2 JP 4338870 B2 JP4338870 B2 JP 4338870B2 JP 2000086599 A JP2000086599 A JP 2000086599A JP 2000086599 A JP2000086599 A JP 2000086599A JP 4338870 B2 JP4338870 B2 JP 4338870B2
Authority
JP
Japan
Prior art keywords
members
sheath tube
steel material
flexible structure
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000086599A
Other languages
Japanese (ja)
Other versions
JP2001271367A (en
Inventor
敏夫 太鼓地
栄世 岩村
久夫 今藤
弘 横田
理 清宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INDEPENDENT ADMINISTRATIVE INSTITUTION PORT AND AIRPORT RESEARCH INSTITUTE
Kajima Corp
Original Assignee
INDEPENDENT ADMINISTRATIVE INSTITUTION PORT AND AIRPORT RESEARCH INSTITUTE
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INDEPENDENT ADMINISTRATIVE INSTITUTION PORT AND AIRPORT RESEARCH INSTITUTE, Kajima Corp filed Critical INDEPENDENT ADMINISTRATIVE INSTITUTION PORT AND AIRPORT RESEARCH INSTITUTE
Priority to JP2000086599A priority Critical patent/JP4338870B2/en
Publication of JP2001271367A publication Critical patent/JP2001271367A/en
Application granted granted Critical
Publication of JP4338870B2 publication Critical patent/JP4338870B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Rod-Shaped Construction Members (AREA)
  • Reinforcement Elements For Buildings (AREA)
  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、プレストレストコンクリート(以下「PSC」という)工法による柔構造物に関し、特に水底地盤の不等沈下や大地震時の地殻変動にも自由に追従できるようにした柔構造式沈埋トンネル、またはかなりのたわみが想定される大スパン橋梁などの施工で実施される。
【0002】
【従来の技術】
プレキャストコンクリート(以下「PC」という)部材を複数、PCケーブルで結合して一体構造物を構築するPSC工法は、工期の短縮化、工費の低減化などの点で非常にすぐれ、特にPSC橋梁の分野で豊富な実績を上げている。
【0003】
また、PC部材間の継手部に可とう性をもたせることで、一体化された構造物を柔構造化して耐震性を著しく高めることができる。
【0004】
ところで、複数のPC部材をPCケーブルで結合する場合、コクリートとPC鋼材とを一体的に付着させるボンド方式と付着させないアンボンド方式とがあり、この両者には引っ張りが生じた後の挙動に大きな相違がある。
【0005】
すなわち、ボンド方式のものは曲げMモーメント(M)が作用した場合に生じるひずみ(Φ)が平面保持するため、引っ張りが生じたとしても材料が弾性領域にある場合はそれ程部材剛性は低下しない(図8参照)。
一方、アンボンド方式のものは、部材断面に引っ張りが生じた後のコクリートとPC鋼材とのひずみが異なるため、アンボド長が長いほどひずみ増分が小さく引っ張りばねとして柔らかいものとなり、部材剛性は低下する。(図8参照)
したがって、PSC工法で柔構造を実現するためには、アンボンド構造とするのが有利であり、アンボンド構造とすることによりボルトで接合するものと同様の柔構造とすることができる。
【0006】
ところで、これまでのアンボンドPSC工法では、PC部材間のアンボンド自由長を任意に設定するためには、例えば図9(a)に図示するようにPC部材20ごとにPC鋼材21を配置する必要があり、このためPC鋼21の使用量が嵩むとPC鋼材21の配置、緊張作業などの手間が大がかりになる等の課題があった。
【0007】
また、このPSC工法で柔構造とするためには、図9(b)に図示するように引っ張りに対してPC部材間の目開きを許す必要があるため、PC部材間に単にPC鋼材を設置しただけでは、PC鋼材が永年の経過とともに腐食し、破断することがあり、このためPC鋼材の腐食防止手段を講ずる必要があった。
【0008】
この発明は以上の課題を解決するためになされたもので、PSC工法による柔構造物を容易に構築できるようにしたPSC工法による柔構造物を提供することを課題とする。
【0009】
【課題を解決するための手段】
以上の課題を解決するための手段として、この発明に係るPSC工法による柔構造物は、複数のPC部材をその軸方向に連続して挿通されるPC鋼材で連結するとともに、各PC部材の両端部をアンボンド構造、両端部より内側部をボンド構造とする。
【0010】
請求項2として、請求項1のPSC工法による柔構造物において、各PC部材に埋設されたシース管にPC鋼材を連続して挿通し、各シース管の両端部に伸縮自在部とこの伸縮自在部の覆部をそれぞれ設け、かつ隣接する各シース管の伸縮部どうしを互いに連結する。
【0011】
請求項3として、請求項1のPSC工法による柔構造物において、隣接する複数のPC部材にシース管を連続して埋設し、このシース管にPC鋼材を連続して挿通し、かつPC鋼材およびシース管の各PC部材の両端部を貫通する部分にPC鋼材およびシース管の付着を縁切る縁切り部材を取り付ける。
【0012】
【発明の実施の形態】
図1〜図3はこの発明の一例を示し、図において複数のPC部材1が互いに隣接して設置され、かつ隣接する複数のPC部材1にその隣接する方向に連続して複数のPC鋼材2(以下「PCケーブル2」という)が挿通されている。
【0013】
PC部材1は建築構造物の梁や土木構造物の橋桁、あるいは海底構物の沈埋函などの単位構造部材として使用されるもので、例えばRC構造、PC構造、SRC構造、または鋼板型枠の中にコンクリートを打設する鋼・コンクリート合成構造などによって数m〜数十m単位の長さに構築されている。
【0014】
PCケーブル2は各PC部材1に埋設されたシース管3内に連続して挿通され、その両端2aは一番外側に設置されているPC部材1の端部にて緊張された後、定着ナットやくさび等の定着部材4によってそれぞれ定着されている。
【0015】
また、PCケーブル2の周囲にはセメントモルタル等のグラウト材5がその全長にわたって充填されている。
【0016】
さらに、PCケーブル2の各PC部材1の両端を貫通する部分A、すなわち各PC部材1,1間の継手部Aは、PC部材1に付着されないアンボンド構造として構成され、また各PC部材1の両端より内側を貫通する部分BはPC部材1と一体的に付着されるボンド構造として構成されている。
【0017】
各PC部材1,1間の継手部Aをアンボンド構造とするために、例えば図2(b)に図示するように各PC部材1に埋設されたシース管3の両端部に蛇腹状をなして伸縮自在な伸縮自在部6とこの伸縮自在部6の外側に伸縮自在部の覆部7が伸縮自在部6を覆うように形成されている。これにより、各シース管3の両端部は伸縮自在部6と伸縮自在部の覆部7とから二重構造になっている。
【0018】
また、伸縮自在部6の先端部に鍔状に突出する継手フランジ6aが伸縮自在部6の周方向に連続して形成され、この継手フランジ6aどうしが複数の継手ボルト8または高強度の接着材で接合されていることで、各シース管3が1本に連続している。
【0019】
このような構成において、複数のPCケーブル2で結合された複数のPC部材1に曲げ外力による軸力として引張力が作用した場合、各PC部材1の両端より内側Bを貫通する部分では、PCケーブル2はボンド構造をなしていることからPC部材1の断面に生じるひずみは平面を保持するため、部材剛性はそれ程低下しない。
【0020】
一方、各PC部材1の両端部Aを貫通する部分では、PCケーブル2はアンボンド構造をなしていることから、アンボンド長が長いほど、ひずみ増分は小さく引張りばねとして柔らかいものとなるため、部材剛性は低下する。
【0021】
また、各PC部材1の両端部A、すなわち隣接するPC部材1,1間の継手部において、PCケーブル2は伸縮自在な伸縮自在部6で完全に被覆されているので、継手部に図9(b)に図示するような目開きが生じても、PCケーブル2が露出して腐食する心配はない。
【0022】
図3(a),(b)は、各PC部材1のシース管3どうしを連結する他の例を示し、図3(a)においては、伸縮自在部6の先端部がねじカップラー9で連結されている。この場合のねじカップラー9は、中央より両側が逆ねじになっていて一方にまわすと両側の伸縮自在部6を引き寄せながら連結できるようになっている。
【0023】
また、図3(b)においては、互いに連結される伸縮自在部6の一方の端部6bが他方の端部5cよりやや大きい径に形成され、かつ伸縮自在部6の一方の端部6bには内側に突出するストッパー10が、他方の端部6cには外側に突出するストッパー11がそれぞれ鍔状に突出されている。
【0024】
そして、一方の伸縮自在部6の端部6bに他方の伸縮自在部6の端部6cが挿入され、かつストッパー10と11が係合されていることで、各PC部材1のシース管3どうしが連結されている。なお、ストッパー10と11間には止水を目的とするガスケットまたは水膨張性ゴム等からなる止水部材12が充填されている。
【0025】
このような構成において、次に施工方法を説明する。
▲1▼ 最初に、型枠(図省略)の中にシース管3をセットし、その周囲にコンクリート13を打設して、シース管3を埋設したPC部材1を成形する。その際、各PC部材1のシース管3の材軸が一致するように、各シース管3の端部に突設された伸縮自在部6どうし、伸縮自在部の覆部7どうしをそれぞれ、実際に突き合わせて位置を確認しながらコンクリート13を打設する。
【0026】
▲2▼ 次に、こうして成形された複数のPC部材1を、隣接するPC部材1,1間に一定の作業空間Aを確保しながら所定間隔おきに設置する。
【0027】
▲3▼ 次に、隣接するPC部材1,1間の各作業空間Aにおいて、継手フランジ6aどうしを継手ボルトまたは接着剤でそれぞれ連結して各PC部材1のシース管3を1本のシース管に連続させる。
なお、接着材およびカプラー形式の接続の場合は、継手フランジ6aは端面より突出しているため、PC部材1どうしを連結すると自動的に継手フランジ6aは圧着され、シース管3の連結作業は不要である。
一方、継手ボルト等による接続の場合は、PC部材1の成(高さ)が数m〜十数mと非常に高いために高所作業を強いられるときは、例えば図6(e)に図示するようなリフトを備えた高所作業車14を利用して作業の効率化と安全を図るものとする。
【0028】
▲4▼ 次に、隣接するPC部材1どうしを互いに密着させて、複数のPC部材1を軸方向に連続させる。
【0029】
▲5▼ 次に、複数のPC部材1のシース管3にPCケーブル2を連続して挿通し、その両端2aを一番外側に設置された両端のPC部材1の端部に定着ナットまたはくさび等の定着部材4によって緊張定着する。そして、最後にシース管3内にセメントモルタル等のグラウト材5を充填する。
【0030】
図7(a),(b)は、各PC部材1,1間の継手部Aをアンボンド構造とするための他の例を示し、図7(a)においては、隣接する複数のPC部材1,1間にシース管3が連続して埋設され、このシース管3内にPCケーブル2が連続して挿通され、さらにその周囲にグラウト材5が充填されている。
【0031】
また、各PC部材1,1間の継手部Aにおいて、シース管3の外周にシース管3とコンクリート14間の付着を縁切るための縁切り部材15が取り付けられている。また、PCケーブル2の外周にはPCケーブル2とグラウト材5間の付着を縁切るための縁切り部材16が取り付けられている。
【0032】
縁切り部材15および16としては、例えばウレタン系、アスファルト系、ゴム系、あるいはシリコン系などの材料が使用されている。
また、図7(b)においては、特に各PC部材1,1間の継手部Aにおいて、シース管3の外周にシース管3とコンクリート14間の付着を縁きるための縁切り部材として外シース管17が取り付けられ、かつシース管3と外シース管17間にグリース等が摩擦低減材18として充填されている。
【0033】
【発明の効果】
この発明は以上説明した通りであり、特に複数のPC部材をその軸方向に連続して挿通されるPC鋼材で連結するとともに、各PC部材の両端部をアンボンド構造、両端部より内側部をボンド構造とすることにより構成してあるので、曲げ外力による引張力が作用した場合、各PC部材の両端より内側を貫通する部分では、PC鋼材はボンド構造をなしていることからPC部材の断面に生じるひずみは平面を保持するため、部材剛性はそれ程低下しない。
【0034】
一方、各PC部材の両端部を貫通する部分では、PC鋼材はアンボンド構造をなしていることから、アンボンド長が長いほど、ひずみ増分は小さく引張りばねとして柔らかいものとなるため、部材剛性は低下する。
【0035】
したがって、アンボンド構造の部分の長さを適当に増減することで、必要な条件の柔構造物を容易に構築できる。
【0036】
また、各PC部材の両端部、すなわち隣接するPC部材間の継手部において、PC鋼材は伸縮自在な伸縮自在部で完全に被覆されているので、継手部に目開きが生じても、PC鋼材が露出して腐食する心配もない。
【図面の簡単な説明】
【図1】PC工法による柔構造物の一例を示し、(a)はその全体を示す断面図、(b)は各PC部材間の継手部の構造を示す断面図である。
【図2】シース管の端部を示し、(a)はその斜視図、(b)は断面図である。
【図3】(a)、(b)は各PC部材間の継手部の構造を示す断面図である。
【図4】(a)〜(d)は、PC部材どうしを接合する施工工程を示す断面図である。
【図5】(a)〜(c)は、PC部材どうしを接合する施工工程を示す断面図である。
【図6】(a)〜(d)は、PC部材どうしを接合する施工工程を示す断面図、(e)は高所作業を行なう場合を示す断面図である。
【図7】(a)、(b)は各PC部材間の継手部の構造を示す断面図である。
【図8】曲げ応力とひずみとの関係を示すグラフである。
【図9】(a)は柔構造物の従来例を示す断面図、(b)は隣接するPC部材間の目開き状態を示す拡大図である。
【符号の説明】
1 PC部材
2 PCケーブル(PC鋼材)
3 シース管
4 定着部材
5 グラウト材
6 伸縮自在部
6a 継手フランジ
7 伸縮自在部の覆部
8 継手ボルト
9 ねじカップラー
10 ストッパー
11 ストッパー
12 止水部材
13 コンクリート
14 高所作業車
15 縁切り部材
16 縁切り部材
17 外シース管
18 摩擦低減材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flexible structure by a prestressed concrete (hereinafter referred to as “PSC”) construction method, and more particularly, a flexible structure type buried tunnel that can freely follow uneven subsidence of submarine ground and crustal deformation during a large earthquake, or It will be implemented in construction of large span bridges where considerable deflection is assumed.
[0002]
[Prior art]
The PSC construction method that builds an integrated structure by connecting multiple precast concrete (hereinafter referred to as “PC”) members with PC cables is very good in terms of shortening the construction period and reducing construction costs. Has a rich track record in the field.
[0003]
Moreover, by giving flexibility to the joint part between PC members, the integrated structure can be made flexible and the earthquake resistance can be remarkably enhanced.
[0004]
By the way, when a plurality of PC members are connected with a PC cable, there are a bond method in which cocrete and PC steel material are integrally attached and an unbond method in which the cocrete and the PC steel material are not attached. There is.
[0005]
That is, since the strain (Φ) generated when the bending M moment (M) is applied is held flat in the case of the bond type, the rigidity of the member does not decrease that much when the material is in the elastic region even if the tension is generated ( (See FIG. 8).
Whilst those unbonded manner, since the distortion of Kokurito and PC steel after tensile member section occurs is different, become softer as small tension spring Ambo down de lengths longer incremental strain, member stiffness reduction To do. (See Figure 8)
Therefore, in order to realize a flexible structure by the PSC method, it is advantageous to use an unbonded structure. By using the unbonded structure, a flexible structure similar to that joined by bolts can be obtained.
[0006]
By the way, in the conventional unbonded PSC method, in order to arbitrarily set the unbond free length between the PC members, it is necessary to arrange the PC steel material 21 for each PC member 20 as shown in FIG. For this reason, when the amount of use of the PC steel 21 is increased, there are problems such as the time and labor required for the placement and tensioning of the PC steel material 21.
[0007]
In addition, in order to make a flexible structure by this PSC method, it is necessary to allow the opening between the PC members to be pulled as shown in FIG. 9B, so PC steel is simply installed between the PC members. As a result, the PC steel material may corrode and break with the passage of time, and therefore it is necessary to take measures to prevent the corrosion of the PC steel material.
[0008]
This invention was made in order to solve the above subject, and makes it a subject to provide the flexible structure by the PSC method which made it possible to construct | assemble the flexible structure by the PSC method easily.
[0009]
[Means for Solving the Problems]
As means for solving the above problems, the flexible structure by the PSC method according to the present invention connects a plurality of PC members with a PC steel material that is continuously inserted in the axial direction, and both ends of each PC member. The part has an unbonded structure, and the inner part from both ends has a bonded structure.
[0010]
As a second aspect, in the flexible structure by the PSC method according to the first aspect, a PC steel material is continuously inserted into a sheath tube embedded in each PC member, and an expandable portion and an expandable portion are provided at both ends of each sheath tube. The cover part of each part is provided, and the expansion and contraction parts of the adjacent sheath tubes are connected to each other.
[0011]
As a third aspect, in the flexible structure according to the PSC method of the first aspect, a sheath tube is continuously embedded in a plurality of adjacent PC members, and a PC steel material is continuously inserted into the sheath tube, and the PC steel material and Edge cutting members for attaching the PC steel material and the sheath tube are attached to portions of the sheath tube that pass through both end portions of each PC member.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
1 to 3 show an example of the present invention. In the drawings, a plurality of PC members 1 are installed adjacent to each other, and a plurality of PC steel materials 2 are continuously connected to the adjacent PC members 1 in the adjacent direction. (Hereinafter referred to as “PC cable 2”) is inserted.
[0013]
The PC member 1 is used as a unit structural member such as a beam of a building structure, a bridge girder of a civil engineering structure, or a submerged box of a submarine structure. For example, an RC structure, a PC structure, an SRC structure, or a steel plate formwork It is constructed to a length of several meters to several tens of meters by a steel / concrete composite structure in which concrete is placed.
[0014]
The PC cable 2 is continuously inserted into the sheath tube 3 embedded in each PC member 1, and both ends 2a are tensioned at the end of the PC member 1 installed on the outermost side, and then the fixing nut. It is fixed by a fixing member 4 such as a wedge.
[0015]
Further, a grout material 5 such as cement mortar is filled around the PC cable 2 over its entire length.
[0016]
Further, the portion A of each PC member 1 of the PC cable 2 that penetrates both ends, that is, the joint portion A between the PC members 1, 1 is configured as an unbonded structure that is not attached to the PC member 1. A portion B that penetrates the inside from both ends is configured as a bond structure that is integrally attached to the PC member 1.
[0017]
In order to make the joint portion A between the PC members 1 and 1 have an unbonded structure, for example, as shown in FIG. 2B, the bellows are formed at both ends of the sheath tube 3 embedded in each PC member 1. A stretchable portion 6 that can be stretched and a cover portion 7 of the stretchable portion are formed outside the stretchable portion 6 so as to cover the stretchable portion 6. As a result, both end portions of each sheath tube 3 have a double structure including the stretchable portion 6 and the cover portion 7 of the stretchable portion.
[0018]
Also, a joint flange 6a protruding like a hook at the tip of the telescopic part 6 is formed continuously in the circumferential direction of the telescopic part 6, and the joint flanges 6a are a plurality of joint bolts 8 or a high-strength adhesive. As a result, the sheath tubes 3 are connected to each other.
[0019]
In such a configuration, when a tensile force is applied as an axial force by a bending external force to a plurality of PC members 1 coupled by a plurality of PC cables 2, the PC member 1 has a portion penetrating the inner side B from both ends. Since the cable 2 has a bond structure, strain generated in the cross section of the PC member 1 maintains a flat surface, so that the member rigidity does not decrease so much.
[0020]
On the other hand, since the PC cable 2 has an unbonded structure in the portion penetrating both end portions A of each PC member 1, the longer the unbond length, the smaller the strain increase and the softer the tension spring. Will decline.
[0021]
Further, since the PC cable 2 is completely covered with the extendable / contractible part 6 at both ends A of each PC member 1, that is, the joint part between the adjacent PC members 1 and 1, the joint part is shown in FIG. Even if an opening as shown in FIG. 5B occurs, there is no concern that the PC cable 2 is exposed and corroded.
[0022]
3A and 3B show another example in which the sheath tubes 3 of the PC members 1 are connected to each other. In FIG. 3A, the distal end portion of the expandable portion 6 is connected by a screw coupler 9. Has been. In this case, the screw coupler 9 is reversely threaded on both sides from the center, and can be connected while pulling the stretchable parts 6 on both sides when turned to one side.
[0023]
Further, in FIG. 3B, one end 6b of the telescopic part 6 connected to each other is formed to have a slightly larger diameter than the other end part 5c, and the one end part 6b of the telescopic part 6 is A stopper 10 that protrudes inwardly protrudes, and a stopper 11 that protrudes outwardly protrudes in a hook shape at the other end 6c.
[0024]
And the end part 6c of the other telescopic part 6 is inserted in the end part 6b of one telescopic part 6, and the stoppers 10 and 11 are engaged, so that the sheath tubes 3 of the PC members 1 are connected to each other. Are connected. In addition, between the stoppers 10 and 11, the water stop member 12 which consists of a gasket for the purpose of water stop or water-expandable rubber is filled.
[0025]
Next, a construction method in such a configuration will be described.
{Circle around (1)} First, the sheath tube 3 is set in a mold (not shown), concrete 13 is placed around it, and the PC member 1 in which the sheath tube 3 is embedded is molded. At that time, the extendable portions 6 projecting from the end portions of the sheath tubes 3 and the cover portions 7 of the extendable portions are actually connected so that the material axes of the sheath tubes 3 of the PC members 1 coincide with each other. The concrete 13 is placed while checking the position.
[0026]
(2) Next, a plurality of PC members 1 formed in this way are installed at predetermined intervals while ensuring a constant work space A between the adjacent PC members 1, 1.
[0027]
(3) Next, in each work space A between the adjacent PC members 1 and 1, the joint flanges 6a are connected to each other with joint bolts or an adhesive, and the sheath tube 3 of each PC member 1 is connected to one sheath tube. To be continuous.
In the case of an adhesive and coupler type connection, since the joint flange 6a protrudes from the end face, the joint flange 6a is automatically crimped when the PC members 1 are connected to each other, and the connecting operation of the sheath tube 3 is unnecessary. is there.
On the other hand, in the case of connection using a joint bolt or the like, when the height (working height) of the PC member 1 is very high, from several meters to several tens of meters, for example, shown in FIG. The aerial work vehicle 14 equipped with such a lift is used to improve work efficiency and safety.
[0028]
(4) Next, adjacent PC members 1 are brought into close contact with each other, and a plurality of PC members 1 are continued in the axial direction.
[0029]
(5) Next, the PC cable 2 is continuously inserted into the sheath tube 3 of the plurality of PC members 1, and both ends 2a thereof are fixed to the ends of the PC members 1 at the outermost ends by fixing nuts or wedges. The tension is fixed by the fixing member 4 such as. Finally, the sheath tube 3 is filled with a grout material 5 such as cement mortar.
[0030]
7 (a) and 7 (b) show another example for making the joint portion A between the PC members 1 and 1 have an unbonded structure. In FIG. 7 (a), a plurality of adjacent PC members 1 are shown. , 1, the sheath tube 3 is continuously embedded, the PC cable 2 is continuously inserted into the sheath tube 3, and the surroundings are filled with the grout material 5.
[0031]
Further, in the joint portion A between the PC members 1 and 1, an edge cutting member 15 is attached to the outer periphery of the sheath tube 3 for cutting off the adhesion between the sheath tube 3 and the concrete 14. In addition, an edge cutting member 16 for cutting off the adhesion between the PC cable 2 and the grout material 5 is attached to the outer periphery of the PC cable 2.
[0032]
As the edge cutting members 15 and 16, for example, urethane, asphalt, rubber, or silicon materials are used.
In FIG. 7B, the outer sheath tube is used as an edge cutting member for bordering the adhesion between the sheath tube 3 and the concrete 14 on the outer periphery of the sheath tube 3, particularly in the joint portion A between the PC members 1 and 1. 17 is attached, and grease or the like is filled between the sheath tube 3 and the outer sheath tube 17 as a friction reducing material 18.
[0033]
【The invention's effect】
The present invention is as described above, and in particular, a plurality of PC members are connected by a PC steel material inserted continuously in the axial direction, and both ends of each PC member are unbonded, and the inner side from both ends is bonded. Since it is configured by the structure, when a tensile force due to bending external force is applied, the PC steel material has a bond structure in the part penetrating the inside from both ends of each PC member. Since the generated strain maintains a flat surface, the member rigidity does not decrease so much.
[0034]
On the other hand, since the PC steel material has an unbonded structure in the part penetrating both ends of each PC member, the longer the unbond length, the smaller the strain increase and the softer the tension spring, the lower the member rigidity. .
[0035]
Therefore, a flexible structure having the necessary conditions can be easily constructed by appropriately increasing or decreasing the length of the unbonded structure.
[0036]
In addition, since the PC steel material is completely covered with the extendable / contractible part at both ends of each PC member, that is, the joint part between adjacent PC members, even if the joint part is opened, the PC steel material There is no worry of being exposed and corroding.
[Brief description of the drawings]
FIG. 1 shows an example of a flexible structure by a PC method, (a) is a sectional view showing the whole, and (b) is a sectional view showing a structure of a joint portion between PC members.
FIG. 2 shows an end of a sheath tube, (a) is a perspective view thereof, and (b) is a cross-sectional view.
FIGS. 3A and 3B are cross-sectional views showing the structure of a joint portion between PC members.
4A to 4D are cross-sectional views showing a construction process for joining PC members together.
FIGS. 5A to 5C are cross-sectional views showing a construction process for joining PC members together.
FIGS. 6A to 6D are cross-sectional views showing a construction process for joining PC members together, and FIG. 6E is a cross-sectional view showing a case of performing work at a high place.
7A and 7B are cross-sectional views showing the structure of a joint portion between PC members.
FIG. 8 is a graph showing the relationship between bending stress and strain.
9A is a cross-sectional view showing a conventional example of a flexible structure, and FIG. 9B is an enlarged view showing an open state between adjacent PC members.
[Explanation of symbols]
1 PC member 2 PC cable (PC steel)
DESCRIPTION OF SYMBOLS 3 Sheath pipe 4 Fixing member 5 Grout material 6 Telescopic part 6a Joint flange 7 Cover part of telescopic part 8 Joint bolt 9 Screw coupler 10 Stopper 11 Stopper 12 Water stop member 13 Concrete 14 Height work vehicle 15 Edge cutting member 16 Edge cutting member 16 17 Outer sheath tube 18 Friction reducing material

Claims (3)

複数のPC部材をその軸方向に連続して挿通されるPC鋼材で連結するとともに、各PC部材の両端部をアンボンド構造、両端部より内側部をボンド構造とそれぞれしたことを特徴とするPSC工法による柔構造物。  A PSC method characterized in that a plurality of PC members are connected by a PC steel material that is continuously inserted in the axial direction, and both end portions of each PC member have an unbonded structure and an inner side portion from both end portions has a bonded structure. Flexible structure by. 各PC部材に埋設されたシース管にPC鋼材を連続して挿通し、各シース管の両端部に伸縮自在部とこの伸縮自在部の覆部をそれぞれ設け、かつ隣接する各シース管の伸縮自在部どうしを互いに連結してあることを特徴とする請求項1記載のPSC工法による柔構造物。PC steel material is continuously inserted into the sheath tube embedded in each PC member, and each sheath tube is provided with a stretchable portion and a cover portion of this stretchable portion, and each sheath tube adjacent to each other is stretchable. The flexible structure by the PSC method according to claim 1, wherein the parts are connected to each other. 隣接する複数のPC部材にシース管を連続して埋設し、このシース管にPC鋼材を連続して挿通し、かつPC鋼材およびシース管の各PC部材の両端部を貫通する部分にPC鋼材およびシース管の付着を縁切る縁切り部材を取り付けてあることを特徴とする請求項1記載のPSC工法による柔構造物。  A sheath tube is continuously embedded in a plurality of adjacent PC members, a PC steel material is continuously inserted into the sheath tube, and a PC steel material and a portion that penetrates both ends of each PC member of the PC steel material and the sheath tube The flexible structure by the PSC method according to claim 1, wherein an edge cutting member for attaching the sheath tube is attached.
JP2000086599A 2000-03-27 2000-03-27 Flexible structure by PSC method Expired - Fee Related JP4338870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000086599A JP4338870B2 (en) 2000-03-27 2000-03-27 Flexible structure by PSC method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000086599A JP4338870B2 (en) 2000-03-27 2000-03-27 Flexible structure by PSC method

Publications (2)

Publication Number Publication Date
JP2001271367A JP2001271367A (en) 2001-10-05
JP4338870B2 true JP4338870B2 (en) 2009-10-07

Family

ID=18602733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000086599A Expired - Fee Related JP4338870B2 (en) 2000-03-27 2000-03-27 Flexible structure by PSC method

Country Status (1)

Country Link
JP (1) JP4338870B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3653268B2 (en) * 2003-07-31 2005-05-25 極東鋼弦コンクリート振興株式会社 Tensile material and method for manufacturing the same
JP4404934B2 (en) * 2007-11-01 2010-01-27 極東鋼弦コンクリート振興株式会社 Prestressed structure
FR2970724B1 (en) * 2008-10-06 2014-01-03 Freyssinet CONNECTING PRECASTRAIN SHEATH STRINGS OF A WORK HAVING A SERIES OF PREFABRICATED ELEMENTS.
CN104863615B (en) * 2015-06-16 2017-03-08 西南交通大学 Across large-scale activity fracture belt tunnel Anti-seismic structure

Also Published As

Publication number Publication date
JP2001271367A (en) 2001-10-05

Similar Documents

Publication Publication Date Title
JP3765882B2 (en) Reinforcement structure of existing concrete columnar body
JPS61502697A (en) Large cross-section conduit for burial
JP4338870B2 (en) Flexible structure by PSC method
JP3880738B2 (en) Reinforcement method of concrete structure by cement mortar composite board with carbon fiber sheet
KR100492335B1 (en) Reinforcement method to resist earthquakes for lower structure of bridge and there of apparatus
JP4432597B2 (en) Joint structure of foundation pile head and upper foundation
JPH11280021A (en) Saddle structural body for cable stayed bridge cable
JPH0324665Y2 (en)
JP4452060B2 (en) Steel pipe pile head joint structure and steel pipe pile head construction method
JPH10227040A (en) Pile foundation structure
JP3113980B2 (en) Connecting device for preventing bridge drop and method for preventing bridge drop using the same
JPH1150673A (en) Reinforcing structure for concrete structure
JPH07317087A (en) Connecting structure of wall made of steel and reinforced concrete floor slab
JP3446640B2 (en) Flexible submerged tunnel and its construction method
KR100720730B1 (en) Concrete filled composite double tube and method connecting the tube with the other
JP3858162B2 (en) Underwater structure bonding equipment
JP2000096834A (en) Reinforcing structure of concrete member
KR101991071B1 (en) Corrugated steel plate concrete composite structure reinforced with anchor and stud
JP5756719B2 (en) Precast concrete floor slab and its design method
JPS5853286Y2 (en) Composite girder with PC precast concrete blocks in the tension section
KR200167832Y1 (en) Structures for composite corrugated steel concrete plate
JP2007211450A (en) Structure for joining precast column and steel-frame beam together
KR20010029124A (en) Compression bracket for external prestressing reinforcement of girder
JP4920348B2 (en) Fixing device for tendon and fixing method for tendon
JP4884200B2 (en) Seismic reinforcement structure for existing columns and construction method of the seismic reinforcement structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090701

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150710

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees