JP4335957B1 - Large optical plate - Google Patents

Large optical plate Download PDF

Info

Publication number
JP4335957B1
JP4335957B1 JP2008135581A JP2008135581A JP4335957B1 JP 4335957 B1 JP4335957 B1 JP 4335957B1 JP 2008135581 A JP2008135581 A JP 2008135581A JP 2008135581 A JP2008135581 A JP 2008135581A JP 4335957 B1 JP4335957 B1 JP 4335957B1
Authority
JP
Japan
Prior art keywords
optical plate
optical
optical system
plate
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008135581A
Other languages
Japanese (ja)
Other versions
JP2009282391A (en
Inventor
規 有賀
Original Assignee
規 有賀
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 規 有賀 filed Critical 規 有賀
Priority to JP2008135581A priority Critical patent/JP4335957B1/en
Application granted granted Critical
Publication of JP4335957B1 publication Critical patent/JP4335957B1/en
Publication of JP2009282391A publication Critical patent/JP2009282391A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】種々のカメラ、望遠鏡、人間の目などの撮像光学系に付加することで、焦点深度や、対象物を見る際の被写界深度を伸ばす大型光学板を提供する。
【解決手段】この大型光学板は、入射する光波について撮像光学系である第1光学系の前に配置する第2光学系である。そのサイズは、第1光学系の入射開口径よりも大きくとり、光学板の一部分を透過した光束がこの開口に入射した後結像される構成とする。この光学板は、その厚さの変化あるいは透過光の波面の曲率が光学板内の基点からの距離に比例して、または距離の3次の冪関数に比例して、大きくなるものである。その厚みの限度は、上記の構成で第1光学系の前に第2光学系を設けた場合の焦点深度が、第1光学系のみの場合に比べて大きくなる特性を示す範囲を限度として決定する。
【選択図】図1
Provided is a large optical plate that is added to an imaging optical system such as various cameras, telescopes, and human eyes to increase the depth of focus and the depth of field when viewing an object.
The large optical plate is a second optical system arranged in front of the first optical system that is an imaging optical system for incident light waves. The size is larger than the incident aperture diameter of the first optical system, and the light beam that has passed through a part of the optical plate is incident on the aperture and then imaged. In this optical plate, the change in thickness or the curvature of the wavefront of transmitted light increases in proportion to the distance from the base point in the optical plate or in proportion to the third power function of the distance. The limit of the thickness is determined by limiting the range in which the depth of focus when the second optical system is provided in front of the first optical system in the above configuration is larger than that of the first optical system alone. To do.
[Selection] Figure 1

Description

この発明は、種々のカメラ、望遠鏡、人間の目などの撮像光学系に付加することで、上記撮像光学系の焦点深度を伸ばし、対象物を見る際の被写界深度を伸ばすことができる大型光学板に関している。   The present invention can be added to imaging optical systems such as various cameras, telescopes, and human eyes to increase the depth of focus of the imaging optical system and extend the depth of field when viewing an object. It relates to an optical plate.

一般に、撮像光学系では入射光は撮像面のそれぞれの点に集光されるが、対象物までの距離によって結像位置がその撮像面の前後にシフトする。しかし、レンズの焦点深度は限られているので、ぼけのない画像を得るためには対象物までの距離に合わせて撮像光学系のレンズと撮像面間の距離を調整する必要がある。   In general, in an imaging optical system, incident light is collected at each point on the imaging surface, but the imaging position shifts back and forth on the imaging surface depending on the distance to the object. However, since the depth of focus of the lens is limited, in order to obtain a blur-free image, it is necessary to adjust the distance between the lens of the imaging optical system and the imaging surface in accordance with the distance to the object.

焦点深度を伸ばす方法として、例えば、開口を絞る(つまり開口径を小さくする)という方法は古くから知られている。しかし、この方法では、入射光量が減少し分解能が低下する、という不利な効果がある。   As a method for extending the depth of focus, for example, a method of narrowing the aperture (that is, reducing the aperture diameter) has been known for a long time. However, this method has the disadvantageous effect that the amount of incident light is reduced and the resolution is lowered.

特許文献1(特開2004−77914号公報)には、焦点深度を伸ばして一つの固定焦点で広範囲の距離の対象物を撮像する技術が開示されている。この技術は、撮像光学系の前に負の球面収差を持つレンズ系あるいは等価機能を有する光学板を付けて焦点深度を深くするものである。例えば光学板の場合、それを透過した光の波面の曲率を中心から周辺に行くほど大きし、その結果、撮像光学系の結像の波面の曲率が、周辺ほど小さくなる歪んだ球面になるようにすることにより、その焦点深度を伸ばす、というものである。   Patent Document 1 (Japanese Patent Application Laid-Open No. 2004-77914) discloses a technique for imaging an object with a wide range of distance with a single fixed focus by extending the depth of focus. This technique increases the depth of focus by attaching a lens system having negative spherical aberration or an optical plate having an equivalent function in front of the imaging optical system. For example, in the case of an optical plate, the curvature of the wavefront of the light transmitted therethrough increases from the center to the periphery, and as a result, the curvature of the imaging wavefront of the imaging optical system becomes a distorted spherical surface that decreases toward the periphery. By increasing the depth of focus, the depth of focus is extended.

一般に、撮像光学系の焦点深度を深くすることにより、対象物を見る場合の被写界深度を伸ばすことができる。例えば、メガネは撮像光学系の開口より大きな光学板の範疇に含まれるが、撮像光学系である目の被写界深度を伸ばすために、遠近両用レンズを基本とした累進型のメガネが各種提案されている。この技術は、光学板内部の遠近に対応する場所で多焦点的なレンズ機能をもたせるものであり、光学板内部の位置を変えて見ることにより、少ない目の負担で広範囲の遠近対象物を見られるようにしたものである。しかし、遠近両用レンズを用いた累進型のメガネでは、光学板内の位置を変えて見ない限り光学板内の同じ場所では視線方向に対して、被写界深度を伸ばすことはできない。   In general, by increasing the depth of focus of the imaging optical system, it is possible to extend the depth of field when viewing an object. For example, glasses are included in the category of optical plates that are larger than the aperture of the imaging optical system, but in order to extend the depth of field of the eye, which is the imaging optical system, various progressive glasses based on bifocal lenses are proposed. Has been. This technology provides a multifocal lens function at a location corresponding to the perspective inside the optical plate. By viewing the optical plate while changing its position, a wide range of perspective objects can be viewed with little eye strain. It is intended to be. However, in progressive glasses using a bifocal lens, the depth of field cannot be extended with respect to the line-of-sight direction at the same location in the optical plate unless the position in the optical plate is changed.

これに対し、本発明の光学板では、撮像光学系(目を含む一般の撮像光学系)の開口を通して光学板内の何処の場所で見ても、ほぼ均一に焦点深度を伸ばすことができる。光学板の大きさは、通常のメガネサイズに留まらず、例えば、車、電車、汽車、あるいは飛行機などのフロントガラスに付けて使用できる程度の大型のサイズでもよい。これは、従来の概念に無い新しい種類の光学板である。   On the other hand, in the optical plate of the present invention, the depth of focus can be extended almost uniformly through any aperture in the optical plate through the aperture of the imaging optical system (a general imaging optical system including eyes). The size of the optical plate is not limited to the normal glasses size, and may be a large size that can be attached to a windshield of a car, a train, a train, an airplane, or the like. This is a new type of optical plate not present in the conventional concept.

特開2004−77914号公報JP 2004-77914 A T. Aruga, Applied Optics, Vol. 36, 3762-3768 (1997)T. Aruga, Applied Optics, Vol. 36, 3762-3768 (1997) 有賀 規, レーザー研究、Vol. 32, 352-356 (2004)Ariga Nori, Laser Research, Vol. 32, 352-356 (2004)

光学板で、その何処の場所を通して見てもほぼ同様に撮像光学系の焦点深度を伸ばすことができるものを提供する。   An optical plate that can extend the depth of focus of an imaging optical system in almost the same manner regardless of where the optical plate is viewed is provided.

本発明の大型光学板を使用することにより、撮像光学系の焦点深度を伸ばし、同様に、対象物を見る際の被写界深度を伸ばすことができる。   By using the large optical plate of the present invention, the depth of focus of the imaging optical system can be increased, and similarly, the depth of field when viewing an object can be increased.

本発明の大型光学板は、入射する光波について撮像光学系である第1光学系の前に配置する第2光学系である。その第2光学系のサイズは、第1光学系の入射開口径よりも大きくとる。この第2光学系と、第1光学系とは、第2光学系である光学板内の透過光の一部分が第1光学系の開口に入射して予め決められた撮像面に結像する構成である。前記の第2光学系である光学板は、その厚さの変化あるいは透過光の波面の曲率が光学板内の基点からの距離に比例して線形に大きくなるものである。その際、第1光学系の前に第2光学系を設けた場合の焦点深度が、第1光学系のみの場合に比べて大きくなる特性を示す範囲を限度として上記光学板の厚さを決定する。   The large optical plate of the present invention is a second optical system that is arranged in front of the first optical system that is an imaging optical system for incident light waves. The size of the second optical system is larger than the incident aperture diameter of the first optical system. The second optical system and the first optical system are configured such that a part of the transmitted light in the optical plate which is the second optical system is incident on the aperture of the first optical system and forms an image on a predetermined imaging surface. It is. The optical plate as the second optical system has a change in thickness or a wavefront curvature of transmitted light that increases linearly in proportion to the distance from the base point in the optical plate. At that time, the thickness of the optical plate is determined up to a range in which the depth of focus when the second optical system is provided before the first optical system is larger than that when only the first optical system is shown. To do.

より具体的には、上記の第2光学系である光学板の厚さの変化は、上記の基点からの距離の3次の冪関数に概略比例するようにする。   More specifically, the change in the thickness of the optical plate as the second optical system is approximately proportional to the third-order power function of the distance from the base point.

以下に、この発明の実施の形態を図面に基づいて詳細に説明する。以下の説明においては、同じ機能あるいは類似の機能をもった装置に、特別な理由がない場合には、同じ符号を用いるものとする。   Embodiments of the present invention will be described below in detail with reference to the drawings. In the following description, devices having the same function or similar functions are denoted by the same reference numerals unless there is a special reason.

[発明の原理]
本発明は、撮像光学系の開口より大きな光学板を撮像光学系の前に置いて用いることにより、撮像光学系の焦点深度を深くするものである。例えば、図1に示すように撮像光学系1の前に、その開口より大きな光学板2を配置し、入射光3が光学板2を通過後に撮像される構成とする。光学板2の一部分を通過した透過光4は撮像光学系のレンズ5により撮像面6に結像する。この光学板2によって、撮像光学系1の焦点深度を深くすることができる。このように焦点深度を深くすることにより対象物を見た場合の被写界深度を伸ばすことができる。つまり、光学板の厚さの変化あるいは表面形状の曲率が光学板内の基点からの距離に比例して線形に大きくなるという特性を持たせることで、撮像光学系の結像光の波面の曲率が変化し、その結果、焦点深度が深くなる、という原理である。波面に注目すると、光学板の特性により、光学板透過後の波面の曲率が基点からある方向に行くほど大きくなるので、次の撮像光学系で結像光の波面の曲率はその方向に沿って小さくなり、光学板無しの結像光本来の球面の波面に比べて歪んだ球面となる。
[Principle of the Invention]
The present invention increases the depth of focus of an imaging optical system by using an optical plate larger than the aperture of the imaging optical system in front of the imaging optical system. For example, as shown in FIG. 1, an optical plate 2 larger than the opening is disposed in front of the imaging optical system 1 so that incident light 3 is imaged after passing through the optical plate 2. The transmitted light 4 that has passed through a part of the optical plate 2 forms an image on the imaging surface 6 by the lens 5 of the imaging optical system. With this optical plate 2, the depth of focus of the imaging optical system 1 can be increased. By increasing the depth of focus in this way, the depth of field when the object is viewed can be extended. In other words, the curvature of the wavefront of the imaging light of the imaging optical system is given by giving the property that the change in the thickness of the optical plate or the curvature of the surface shape increases linearly in proportion to the distance from the base point in the optical plate. Changes, and as a result, the depth of focus increases. Paying attention to the wavefront, due to the characteristics of the optical plate, the curvature of the wavefront after passing through the optical plate increases as it goes in a certain direction from the base point, so the curvature of the wavefront of the imaging light in the next imaging optical system is along that direction. It becomes smaller and becomes a distorted spherical surface compared to the original spherical wavefront of the imaging light without an optical plate.

次に、本発明の原理について数式などを用いて物理的に説明する。
一般の面の形状を考える。基本軸(光学系の場合は光軸)に直交するように面が存在するとし、基本軸をzとする。面の形状を曲線で表し、z軸に直行するある方向、例えばr方向、に沿って連続している曲線のz方向変化を曲線形状の関数としてZ(r)と定義する。曲線上のある点の接線方向の距離をsとし、線素をdsとすると、
ds={1+(dZ/dr)21/2dr、
であり、曲線のz方向の変化が十分小さい場合((dZ/dr)2《1)は、dsが近似的にdrと等しくなり、ds≒dr、となる。
Next, the principle of the present invention will be physically described using mathematical formulas and the like.
Consider the shape of a general surface. It is assumed that a surface exists so as to be orthogonal to the basic axis (optical axis in the case of an optical system), and the basic axis is z. The shape of the surface is represented by a curve, and a change in the z direction of a curve continuous along a certain direction perpendicular to the z axis, for example, the r direction, is defined as Z (r) as a function of the curve shape. If the distance in the tangential direction of a point on the curve is s and the line element is ds,
ds = {1+ (dZ / dr) 2 } 1/2 dr,
When the change in the z direction of the curve is sufficiently small ((dZ / dr) 2 << 1), ds is approximately equal to dr and ds≈dr.

また、曲線の接線のr方向に対する傾き角をθとすると、rを変数とした傾き角θ(r)はZ(r)の微分として、次のように表される。

Figure 0004335957
Further, if the inclination angle of the tangent line of the curve with respect to the r direction is θ, the inclination angle θ (r) with r as a variable is expressed as follows as a derivative of Z (r).
Figure 0004335957

ここで、曲線の曲率をCとすると、曲率はC=dθ/dsで定義さる。上記の条件ではds≒drであるので、rを変数とした曲率C(r)は近似的に次式で表される。   Here, if the curvature of the curve is C, the curvature is defined by C = dθ / ds. Since ds≈dr under the above conditions, the curvature C (r) with r as a variable is approximately expressed by the following equation.

Figure 0004335957
Figure 0004335957

数1と数2より、曲率C(r)はZ(r)を用いて、次の様になる。

Figure 0004335957
From Equations 1 and 2, the curvature C (r) is as follows using Z (r).
Figure 0004335957

即ち、曲線のz方向の変化が十分小さい場合、曲率C(r)は曲線の形状Z(r)の2階微分で表される。数1と数2で表されるように、接線の傾き角θは形状Zの微分であり、曲率Cはθの微分である、故である。   That is, when the change in the z direction of the curve is sufficiently small, the curvature C (r) is represented by the second derivative of the curve shape Z (r). This is because the tangential inclination angle θ is a derivative of the shape Z, and the curvature C is a derivative of θ, as expressed by the equations 1 and 2.

面の形状は、上記のような曲線の形状として扱うことができる。本発明の光学板は、その厚さの変化が光学板内の基点からの距離に比例して線形に大きくなるものである。これは、同等なことであるが、透過光の波面の曲率が光学板内の基点からの距離に比例して線形に大きくなるものでもある。この条件を満たす波面の形状を、数3を基に考えると、面形状Z(r)が、例えば、3次関数になっていればよい。何故ならば、3次関数の2階微分は1次関数になるので、曲率C(r)はrの1次関数となり線形に変化するからである。   The shape of the surface can be treated as the shape of a curve as described above. In the optical plate of the present invention, the change in thickness increases linearly in proportion to the distance from the base point in the optical plate. This is equivalent, but the curvature of the wavefront of the transmitted light also increases linearly in proportion to the distance from the base point in the optical plate. Considering the shape of the wavefront satisfying this condition based on Equation 3, the surface shape Z (r) may be a cubic function, for example. This is because the second-order differentiation of the cubic function becomes a linear function, and the curvature C (r) becomes a linear function of r and changes linearly.

簡単に扱うため、光学板は軸対称とし、また、その有効半径をaとする。ρ=r/aとするとき、上記の3次関数の面形状は、次の様になる。   For easy handling, the optical plate is axisymmetric and its effective radius is a. When ρ = r / a, the surface shape of the cubic function is as follows.

Figure 0004335957
ここで、Aは3次関数の係数であり、定数である。また、変数rを用いると数4は、Z(r)=A(r/a)3、と表される。
Figure 0004335957
Here, A is a coefficient of a cubic function and is a constant. When the variable r is used, Equation 4 is expressed as Z (r) = A (r / a) 3 .

面形状が変数rの3次関数である数4を基に曲率を考えると、上述のように曲率は面形状の2階微分であるので、曲率はZ(ρ)の2階微分として、次式のように1次関数になる。   Considering the curvature based on Equation 4 where the surface shape is a cubic function of the variable r, as described above, the curvature is a second-order derivative of the surface shape. Therefore, the curvature is expressed as a second-order derivative of Z (ρ). It becomes a linear function as shown in the equation.

Figure 0004335957
Figure 0004335957

光学板内で、撮像光学系の口径に相当する部分の動径変化量を、
Δρ=ρ1−ρ2
とし、Δρでの曲率の変化量を、
ΔC(ρ)=C(ρ1)−C(ρ2)、
とする。このとき、数5より、
ΔC(ρ)=C(ρ1)−C(ρ2)=6A(ρ1−ρ2)=6AΔρ、
となるので、部分的な曲率の変化量は、次の様になる。
In the optical plate, the amount of change in radial radius corresponding to the aperture of the imaging optical system
Δρ = ρ 1 −ρ 2 ,
And the amount of change in curvature at Δρ,
ΔC (ρ) = C (ρ 1 ) −C (ρ 2 ),
And At this time, from Equation 5,
ΔC (ρ) = C (ρ 1 ) −C (ρ 2 ) = 6A (ρ 1 −ρ 2 ) = 6AΔρ,
Therefore, the amount of change in the partial curvature is as follows.

Figure 0004335957
Figure 0004335957

従って、数5のように曲率C(ρ)がρの1次関数の場合は、曲率が半径方向に対して線形に変化するので、曲率の変化量はρによって変わらず何処の部分でも等しくなる。数6はこのことを意味している。このことは、1次関数の微分が定数になることからも理解できる。また、光学板を透過した光の波面の曲率が変化すると、撮像光学系の結像光の波面の曲率も変化する。この効果は光学板の何処の場所でも同様である。その結果、光学板の何処の場所を通して見てもほぼ同様に撮像光学系の焦点深度を伸ばすことができる。   Therefore, when the curvature C (ρ) is a linear function of ρ as shown in Equation 5, the curvature changes linearly with respect to the radial direction, so the amount of change in the curvature does not change with ρ and is equal in any part. . Equation 6 means this. This can be understood from the fact that the derivative of the linear function becomes a constant. Further, when the curvature of the wavefront of the light transmitted through the optical plate changes, the curvature of the wavefront of the imaging light of the imaging optical system also changes. This effect is the same everywhere on the optical plate. As a result, it is possible to extend the depth of focus of the imaging optical system in substantially the same manner regardless of where the optical plate is viewed.

撮像光学系の結像光の波面の曲率を変えて焦点深度を深くする、という原理は、ΔCを撮像光学系のレンズに入射する光の波面の曲率の変化量、fをレンズの焦点距離、Δfを入射光の波面の曲率の変化によって生ずる焦点のシフト量、とするとき、既によく知られた次式に基づいている。   The principle of changing the curvature of the wavefront of the imaging light of the imaging optical system to increase the depth of focus is that ΔC is the amount of change in the curvature of the wavefront of the light incident on the lens of the imaging optical system, f is the focal length of the lens, When Δf is a focal shift amount caused by a change in the curvature of the wavefront of incident light, it is based on the following well-known formula.

Figure 0004335957
Figure 0004335957

数7と類似の数式が、特許文献1の数21にも示されている。部分的な波面の曲率の変化による焦点のシフト量は、焦点深度延伸に相当し、焦点のシフト量が大きいほど焦点深度は深くなる。また、ΔCは数6に示す様に、係数Aに比例して変化するので、焦点深度はAの値を変えることによって自由に調整できる。 An equation similar to Equation 7 is also shown in Equation 21 of Patent Document 1. The focal shift amount due to the partial change in the curvature of the wavefront corresponds to the focal depth extension, and the greater the focal shift amount, the deeper the focal depth. Since ΔC changes in proportion to the coefficient A as shown in Equation 6, the depth of focus can be freely adjusted by changing the value of A.

本発明の光学板では、透過した光の位相を光学板の通過位置に応じて変化させることにより、波面の曲率を変化させる。通常は撮像光学系の口径に対して対象物までの距離は十分大きいので、入射光の波面は近似的に平面である。波面は、光の等位相面であるので、入射光が光学板を透過した後、波面の曲率を光学板内の基点からの距離が大きくなるほど大きくさせるためには、この距離が大きくなるほど光学板の厚さを大きくすれば良い。   In the optical plate of the present invention, the curvature of the wavefront is changed by changing the phase of the transmitted light in accordance with the passing position of the optical plate. Usually, since the distance to the object is sufficiently large with respect to the aperture of the imaging optical system, the wavefront of the incident light is approximately flat. Since the wavefront is an equiphase surface of light, after the incident light is transmitted through the optical plate, in order to increase the curvature of the wavefront as the distance from the base point in the optical plate increases, the optical plate increases as this distance increases. The thickness of the can be increased.

次に、一様な媒質の光学板の厚さが大きくなるほど透過光の位相は遅れることを、数式を用いて説明する。   Next, the fact that the phase of transmitted light is delayed as the thickness of the optical plate of a uniform medium increases will be described using mathematical expressions.

ρの値に従って変化する光学板の厚さ(幾何学的な長さ)を関数でw(ρ)と表し、w(ρ)に対応する透過光の光路長(光学的長さ)をS(ρ)とし、nを光学板の材料の屈折率とするとき、一般に次式が成立することが知られている。   The thickness (geometric length) of the optical plate that changes according to the value of ρ is expressed as a function w (ρ), and the optical path length (optical length) of transmitted light corresponding to w (ρ) is S ( It is known that the following equation is generally established, where ρ) and n is the refractive index of the optical plate material.

Figure 0004335957
Figure 0004335957

また、波数をk(=2π/λ,λは波長)とし、位相をζとすると、位相の遅れは次式で与えられる。

Figure 0004335957
このように、光学板による透過光の位相の遅れは、光路長に比例する。 If the wave number is k (= 2π / λ, where λ is the wavelength) and the phase is ζ, the phase delay is given by the following equation.
Figure 0004335957
Thus, the phase delay of the transmitted light by the optical plate is proportional to the optical path length.

ここで、数8に於いて(n−1)は定数であるので、S(ρ)、w(ρ)の形状は係数を除いて等価になる。つまり、関数w(ρ)が3次関数ならば、S(ρ)も3次関数になる。即ち、光学板の面形状を3次関数にすると、透過光の波面の曲率も3次関数になる。 Here, since (n-1) is a constant in Equation 8, the shapes of S (ρ) and w (ρ) are equivalent except for the coefficients. That is, if the function w (ρ) is a cubic function, S (ρ) is also a cubic function. That is, when the surface shape of the optical plate is a cubic function, the curvature of the wavefront of the transmitted light is also a cubic function.

光学板の面形状を3次関数にした状態を簡単に扱うため、光学板を軸対称とし、数4の場合と同様に光学板内の基点(軸対称の場合は中心)からの距離を動径変数ρで表し、光学板の厚さの変化をw(ρ)とする。w(0)は基点(中心)での厚みである。光学板の一方の面を平面とし、他方の面を変化させて厚さを変える場合は、w(ρ)は光学板の表面の形状を表す関数となり、数4のZ(ρ)と等価となる。従って、光学板の表面の形状w(ρ)は数4と同様に、次式で表すことができる。   In order to easily handle the state in which the surface shape of the optical plate is a cubic function, the optical plate is axially symmetric, and the distance from the base point (center in the case of axial symmetry) in the optical plate is changed as in the case of Equation 4. The change in thickness of the optical plate is represented by w (ρ). w (0) is the thickness at the base point (center). When one surface of the optical plate is a flat surface and the thickness is changed by changing the other surface, w (ρ) is a function representing the shape of the surface of the optical plate, and is equivalent to Z (ρ) in Equation 4. Become. Therefore, the shape w (ρ) of the surface of the optical plate can be expressed by the following equation, as in Equation 4.

Figure 0004335957
Figure 0004335957

この場合、面形状は凹面となり、w(ρ)はρでの凹面の底からの高さを与える関数となる。係数Aはw(1)と等しく、光学板の端ρ=1での底面からの高さである。Aの値が大きいほど焦点深度を深くすることができるので、以下、Aを光学板の度数とも呼ぶことにする。   In this case, the surface shape is concave, and w (ρ) is a function that gives the height from the bottom of the concave surface at ρ. The coefficient A is equal to w (1) and is the height from the bottom surface at the end ρ = 1 of the optical plate. The greater the value of A, the deeper the depth of focus. Therefore, hereinafter, A will be referred to as the power of the optical plate.

本発明では、図1に示すように撮像光学系1の前に、その開口より大きな光学板2を配置するが、例えば撮像光学系として目を想定する場合は、メガネのみならず車や電車などのフロントガラスに取り付けても使用できる機能を有するので、その大きさは、目の開口径(瞳の大きさ)よりはるかに大きくなる。実際に本発明を応用する際、光学板の設計・製造は数10に従って実行する。その際、形状は決まっているので、光学板の度数として定義している数10の係数A、即ち凹面の中心(底)に対する凹面の端の高さを定めればよい。撮像光学系のレンズの開口と同じ大きさの光学板を付けて使用する場合に比較して、本発明光学板のサイズは十分大きくなるので、係数Aの値の設定が重要である。   In the present invention, as shown in FIG. 1, an optical plate 2 larger than the aperture is disposed in front of the imaging optical system 1. For example, when an eye is assumed as the imaging optical system, not only glasses but also a car or a train Since it has a function that can be used even if it is attached to the front glass, the size thereof is much larger than the opening diameter of the eye (the size of the pupil). In actual application of the present invention, the optical plate is designed and manufactured according to Equation 10. At that time, since the shape is determined, the coefficient A defined as the frequency of the optical plate, that is, the height of the end of the concave surface with respect to the center (bottom) of the concave surface may be determined. Since the size of the optical plate of the present invention is sufficiently large compared to the case where an optical plate having the same size as the aperture of the lens of the imaging optical system is used, the setting of the value of the coefficient A is important.

ここで、係数Aの値の設定に関して、試作した種々の本発明光学板の実験結果から、光学板の大きさを変えた場合に同じ焦点深度を得るための経験則として、「光学板の大きさをある値からm倍にした場合、光学板の度数である数式10でのAの値をm倍に定めればよい」、ということが分かっている。さらに、本発明では光学板の1部分を通して撮像レンズの開口で見るので、撮像レンズの開口は光学板の厚さが基点から増加している傾斜部分と重なることになるが、この場合、「撮像レンズの開口に対してm倍の大きさの軸対称の光学板では、光学板の直径が撮像レンズの開口径と同じ場合に対して、Aの値を2m倍にすればよい」、という経験則も得られている。   Here, regarding the setting of the value of the coefficient A, as an empirical rule for obtaining the same depth of focus when the size of the optical plate is changed from the experimental results of various prototype optical plates of the present invention, It is known that if the value is increased from a certain value to m times, the value of A in Formula 10 that is the power of the optical plate may be set to m times. " Further, in the present invention, since the image pickup lens is viewed through the optical plate through one portion of the optical plate, the image pickup lens opening overlaps with the inclined portion where the thickness of the optical plate increases from the base point. In the case of an axially symmetric optical plate that is m times as large as the lens aperture, the value of A should be increased by 2 m compared to the case where the diameter of the optical plate is the same as the aperture diameter of the imaging lens. Laws are also obtained.

この経験則に関して、即ち、光学板の直径を元の直径のm倍にし、しかも、そのm倍の直径をもつ光学板の度数Aをm倍にした場合(つまり、数4で、aとAがm倍の場合)については、以下のように説明することができる。   With regard to this rule of thumb, that is, when the diameter of the optical plate is m times the original diameter, and the power A of the optical plate having the diameter m times that of the optical plate is m times (that is, in Equation 4, a and A Can be explained as follows.

まず、大きさの異なる二つの光学板に対して、同じ開口径の撮像カメラを使用するものとする。上記の説明から、上記曲率の変化は異なり同じ開口をもった二つの光学板で焦点深度延伸効果が等しくなるためには、波面の開口内での曲率の積分、即ち、曲線の接線の傾き角が二つの光学板で等しくなっていればよい。これは、数7において、部分的な波面の曲率の変化による焦点のシフト量Δfが、焦点深度延伸に相当するが、このシフト量Δfの開口のあらゆる点からの寄与によって焦点深度延伸効果の全体が決まるためである。   First, it is assumed that imaging cameras having the same aperture diameter are used for two optical plates having different sizes. From the above description, in order to make the depth of focus extension effect equal between two optical plates with different curvatures but with the same aperture, the integral of the curvature within the wavefront aperture, that is, the inclination angle of the tangent of the curve Should be equal between the two optical plates. This is because, in Equation 7, the focal shift amount Δf due to a partial change in the curvature of the wavefront corresponds to the focal depth extension, but the contribution of the shift amount Δf from all points of the aperture increases the entire focal depth extension effect. This is because it is determined.

さらに、数2からも明らかなように、曲率Cの積分は傾き角θである。曲率Cが1次関数の場合は、傾き角θは2次関数になる。また、数1からも明らかなように、曲率が小さい場合、傾き角θは曲線の形状Zの微分である。   Further, as apparent from Equation 2, the integral of the curvature C is the inclination angle θ. When the curvature C is a linear function, the inclination angle θ is a quadratic function. As is clear from Equation 1, when the curvature is small, the inclination angle θ is a derivative of the curve shape Z.

曲線の形状Zがρの3次関数という本発明光学板の条件では、ρの関数と見た場合、aとAを同時にm倍にすることで、上記関数θ(ρ)を元の関数と同じにすることができる。つまり、サイズの異なる二つの光学板に対してZを半径rの3次関数として各々、A(r/a)3、mA(r/ma)3、とし、ρをそれぞれ、r/a、r/ma、とする。このとき傾き角θは双方とも、θ(r)=θ(ρ)=(3A/a)ρ2 で、同じである。 Under the condition of the optical plate of the present invention in which the shape Z of the curve is a cubic function of ρ, when viewed as a function of ρ, a and A are simultaneously multiplied by m, so that the function θ (ρ) is changed to the original function. Can be the same. That is, for two optical plates of different sizes, Z is set to A (r / a) 3 and mA (r / ma) 3 as cubic functions of radius r, and ρ is r / a, r, respectively. / Ma. At this time, the inclination angle θ is the same as θ (r) = θ (ρ) = (3A / a) ρ 2 in both cases.

また、撮像光学系のレンズは軸対称とするが、これに対して、撮像で撮像レンズの開口を透過する光が透過する光学板の領域内では、中心部以外は形状が軸対称でない。これは即ち、撮像レンズの開口内で作用する光学板領域の形状は、撮像レンズの中心が光学板の基点(軸対称の場合は中心)と一致した場合を除いて、軸対称でないからである。この場合は、大きな光学板に対するAの設定条件を数学的に正確に導入するのは困難である。しかし、上記のようにAを設定することは、発明者の経験では、種々の実験結果と良く合致している。   In addition, the lens of the imaging optical system is axially symmetric. On the other hand, in the region of the optical plate that transmits light that passes through the aperture of the imaging lens during imaging, the shape is not axially symmetric except for the central portion. This is because the shape of the optical plate region acting in the aperture of the imaging lens is not axially symmetric unless the center of the imaging lens coincides with the base point of the optical plate (center in the case of axial symmetry). . In this case, it is difficult to mathematically accurately introduce the setting condition A for a large optical plate. However, setting A as described above is in good agreement with various experimental results in the inventor's experience.

本発明光学板の実例及び計算機シミュレーションの結果を示す。撮像光学系への応用例として、最初に、(1)通常の撮像カメラの前に置く光学板の例とその計算機シミュレーションの結果を示し、次に、(2)人間の目で見る場合のメガネやさらに大きなサイズの光学板の例とその計算機シミュレーションの結果を示す。いずれも、計算機シミュレーションの結果は、ほぼ実験結果と一致している。   The example of this invention optical plate and the result of a computer simulation are shown. As an application example to an imaging optical system, first, (1) an example of an optical plate placed in front of a normal imaging camera and the result of a computer simulation thereof are shown, and then (2) glasses when viewed with human eyes An example of a slightly larger optical plate and the result of the computer simulation are shown. In both cases, the results of the computer simulation almost coincide with the experimental results.

本明細書の図で表示されている集光ビームの強度は、長さの単位としてメートル(m)を用いて計算された単位平方メートル当たりのエネルギー密度を示す数値であり、入射光の強度を1とした時の相対強度である。また、対象物の距離は無限大(∞)として計算する。集光ビームの強度は、非特許文献1(T. Aruga, Applied Optics, Vol. 36, 3762-3768 (1997))あるいは非特許文献2(有賀 規, レーザー研究、Vol. 32, 352-356 (2004))に記載された数式によるフレネル積分及びこれらを非軸対称用に改良した数式によって計算する。   The intensity of the focused beam displayed in the figure of this specification is a numerical value indicating the energy density per unit square meter calculated using meters (m) as a unit of length, and the intensity of incident light is 1 Relative strength. The distance of the object is calculated as infinity (∞). Non-Patent Document 1 (T. Aruga, Applied Optics, Vol. 36, 3762-3768 (1997)) or Non-Patent Document 2 (Nori Ariga, Laser Research, Vol. 32, 352-356 ( 2004))) and the formula improved for non-axisymmetric calculation.

撮像光学系の前に本発明の光学板を置く例として、撮像カメラ及び目の二つの応用例を示す。   As an example of placing the optical plate of the present invention in front of an imaging optical system, two application examples of an imaging camera and an eye are shown.

撮像カメラの例として、レンズの焦点距離7.5cm、有効開口径2.5cm(F3)、の場合を考える。ここでは、有効開口径は焦点距離をF値で割った値として定義している。同様に、目としては、水晶体レンズの焦点距離24mm、平均的な瞳の口径として有効開口径3mm(F8)、の場合を考える。   As an example of the imaging camera, consider a case where the focal length of the lens is 7.5 cm and the effective aperture diameter is 2.5 cm (F3). Here, the effective aperture diameter is defined as a value obtained by dividing the focal length by the F value. Similarly, consider the case where the focal length of the crystalline lens is 24 mm and the effective pupil diameter is 3 mm (F8) as the average pupil diameter.

光学板を設定する場合のパラメータとして、光学板のサイズ、度数A、材料の屈折率、が必要である。度数Aに関しては、上述の経験則に従って定める。簡単に扱うため、軸対称の光学板を考えることにする。ここでは、撮像光学系の開口径に等しい直径の光学板を付けた場合を基準状態として考える。過去の理論解析や実験から、画質をほとんど劣化させないで焦点深度を深くできる光学板の度数は、撮像カメラの場合は5μm程度、目の場合は4μm程度、であることが分かっている。そこで、撮像カメラの場合は直径2.5cmで度数Aは5μm、目の場合は直径3mmで度数Aは4μm、を光学板の基準状態として以後扱うことにする。   As parameters for setting the optical plate, the size of the optical plate, the frequency A, and the refractive index of the material are required. The frequency A is determined according to the above rule of thumb. For simplicity, we will consider an axisymmetric optical plate. Here, the case where an optical plate having a diameter equal to the aperture diameter of the imaging optical system is attached is considered as a reference state. From past theoretical analysis and experiments, it has been found that the optical plate power that can increase the depth of focus without substantially degrading the image quality is about 5 μm for the imaging camera and about 4 μm for the eyes. Therefore, in the case of the imaging camera, the diameter A is 2.5 cm and the frequency A is 5 μm, and in the case of the eye, the diameter 3 mm and the frequency A is 4 μm is treated as the reference state of the optical plate.

利用する光学板の直径を、撮像カメラの場合、例えば、有効開口径2.5cmの4倍の10cm、10倍の25cmとすると、度数Aは、上記の経験則より、各々、40μm(5μm×2×10/2.5)、100μm(5μm×2×25/2.5)、となる。目の場合も同様に、例えば、有効開口径(瞳の口径)3mm(=0.3cm)の10倍の直径3cm、100倍の直径30cmの光学板を付けるとすると、度数Aは、各々、80μm(4μm×2×3/0.3)、800μm(4μm×2×30/0.3)、となる。これらのうち、2番目の例の値、つまり撮像カメラの場合は直径10cm、目の場合は直径3cm、を例として選び、光学板を付けない場合などと比較して、計算機シミュレーションの結果を以下に示す。   In the case of an imaging camera, for example, when the diameter of the optical plate to be used is 10 cm, which is 4 times the effective aperture diameter of 2.5 cm, and 25 cm, which is 10 times, the frequency A is 40 μm (5 μm × 2 × 10 / 2.5) and 100 μm (5 μm × 2 × 25 / 2.5). Similarly, in the case of the eye, for example, if an optical plate having a diameter of 3 cm, which is 10 times the effective aperture diameter (pupil diameter) of 3 mm (= 0.3 cm), and a diameter of 30 cm, which is 100 times, is attached, 80 μm (4 μm × 2 × 3 / 0.3) and 800 μm (4 μm × 2 × 30 / 0.3). Among these, the value of the second example, that is, the diameter of 10 cm for the imaging camera and the diameter of 3 cm for the eyes is selected as an example, and the result of the computer simulation is as follows compared with the case where no optical plate is attached. Shown in

先ず、撮像カメラの利用例として、図2(a)には光学板を付けない場合について、焦点深度を示すための集光ビーム中心強度の光軸方向分布、図2(b)には焦点深度の中心付近の集光ビーム断面プロファイル、を示す。波長は中心波長0.6μmを仮定し、光学板の屈折率は、標準的な値として1.5を仮定している。   First, as an application example of the imaging camera, FIG. 2A shows the distribution of the intensity of the focused beam in the optical axis direction to indicate the depth of focus when no optical plate is attached, and FIG. 2B shows the depth of focus. A focused beam cross-sectional profile in the vicinity of the center of is shown. The wavelength is assumed to be a center wavelength of 0.6 μm, and the refractive index of the optical plate is assumed to be 1.5 as a standard value.

図3には、比較のため、撮像カメラの有効開口径と等しい直径2.5cm、度数5μmの光学板を付けた場合の、(a)集光ビーム中心強度の光軸方向分布、(b)焦点深度の中心付近の集光ビーム断面プロファイル、を示す。図3を図2と比較すると、光学板を付けることによって焦点深度が深くなることが分かる。図2(a)、図3(a)ともに、光軸方向強度分布の表示領域は500μmである。光学板を付けた場合は、副作用として焦点領域が前方(つまり光学板から離れる方向)へシフトする。   For comparison, FIG. 3 shows (a) the distribution of the central intensity of the focused beam in the direction of the optical axis when an optical plate having a diameter of 2.5 cm and a frequency of 5 μm, which is equal to the effective aperture diameter of the imaging camera, is attached. A focused beam cross-sectional profile near the center of the focal depth is shown. Comparing FIG. 3 with FIG. 2, it can be seen that the depth of focus is increased by attaching the optical plate. In both FIG. 2A and FIG. 3A, the display area of the intensity distribution in the optical axis direction is 500 μm. When the optical plate is attached, the focal region shifts forward (that is, away from the optical plate) as a side effect.

図4には、撮像カメラの有効開口径2.5cmの4倍の直径10cmの撮像カメラ用光学板の例として、度数Aを40μmとした場合の面形状を示した。面形状を3次関数にしているのが本発明の重要な特徴である。光学板の片面を平面とした場合は、他方の面はこのような凹面の形状になる。   FIG. 4 shows a surface shape when the power A is set to 40 μm as an example of an imaging camera optical plate having a diameter of 10 cm, which is four times the effective aperture diameter of 2.5 cm of the imaging camera. An important feature of the present invention is that the surface shape is a cubic function. When one surface of the optical plate is a flat surface, the other surface has such a concave shape.

図5には、直径10cm、度数40μmの光学板(図4の場合と同じ)を有効開口径2.5cmの撮像カメラの前に設置し、光学板を通して見た場合の集光ビーム中心強度の光軸方向分布を示した。撮像カメラの中心を軸対称の光学板の中心から半径の約1/3、2/3の距離の、図5(a)1.6cm、図5(b)3.2cm、の位置に置いた場合を示して比較している。強度分布の表示領域は、図2、図3と同様、500μmである。   In FIG. 5, an optical plate (same as in FIG. 4) having a diameter of 10 cm and a frequency of 40 μm is installed in front of an imaging camera having an effective aperture diameter of 2.5 cm, and the central intensity of the focused beam when viewed through the optical plate The optical axis direction distribution was shown. The center of the imaging camera was placed at a distance of about 1/3 and 2/3 of the radius from the center of the axisymmetric optical plate, at a position of 1.6 cm in FIG. 5 (a) and 3.2 cm in FIG. 5 (b). Show the case and compare. The display area of the intensity distribution is 500 μm, as in FIGS.

図5を図2と比較すると、光学板によって焦点深度が深くなることが分かる。さらに、図5で(a)と(b)を比較すると、強度分布では(b)の方がピーク値は小さくなり、その分、一見幅が広くなっているように思えるが、同じ強度レベル、例えば1.75×1010程度のレベルでは幅がほぼ等しくなっている(振動状の部分は平滑化した曲線で考える)。このことから、ここでは示さないが実験でも実証されているように、光学板内でカメラレンズの位置を変えて見てもほぼ同様の焦点深度延伸効果が得られる、ことが分かる。また、この強度レベルで図3(a)の場合と比較すると、焦点深度がほぼ同程度に延伸されていることが分かる。さらに、図5を図3(カメラの開口径と同じ直径の光学板を付けた場合)と比較すると、焦点領域の前方へのシフト量が小さく、光学板の副作用が小さいことが分かる。 Comparing FIG. 5 with FIG. 2, it can be seen that the depth of focus is increased by the optical plate. Further, when comparing (a) and (b) in FIG. 5, the peak value in (b) is smaller in the intensity distribution, and it seems that the width is broadened, but the same intensity level, For example, the width is almost equal at a level of about 1.75 × 10 10 (the vibration-like portion is considered as a smoothed curve). From this, it can be seen that although not shown here, as demonstrated by experiments, substantially the same depth of focus extension effect can be obtained even when the position of the camera lens is changed in the optical plate. In addition, it can be seen that the depth of focus is extended to substantially the same level as compared with the case of FIG. 3A at this intensity level. Further, comparing FIG. 5 with FIG. 3 (when an optical plate having the same diameter as the aperture of the camera is attached), it can be seen that the amount of shift of the focal region to the front is small and the side effects of the optical plate are small.

図6に、光学板を付けた場合で、その光学板の面に垂直な方向の集光ビーム断面プロファイルの例を示す。この例は、図5(a)の場合の焦点深度の中央付近の断面プロファイルである。表示幅は図2(b)、図3(b)、の場合と同様50μmである。撮像カメラの開口内に入る光学板の部分の面形状は非軸対称のため、集光ビーム断面プロファイルも非対称となる。軸対称の場合は図2、図3のようにベッセル関数により主ローブの周辺にサイドローブが生成される断面プロファイルとなるのに対して、非軸対称の場合は図6のように主ローブのみの単調減少の断面プロファイルになるのが特徴である。また、図6のように主ローブの幅が光学板を付けない時と同程度であるので、高い分解能が保持されることが理解できる。さらに、光学板の面形状変化の傾斜部分を通して見ることから、ティルト(tilt)効果が生じて、光学板の副作用として集光ビームの中心が横にシフトすることも図6から分かる。   FIG. 6 shows an example of a focused beam cross-sectional profile in the direction perpendicular to the surface of the optical plate when the optical plate is attached. This example is a cross-sectional profile near the center of the focal depth in the case of FIG. The display width is 50 μm as in the case of FIGS. 2B and 3B. Since the surface shape of the portion of the optical plate that enters the aperture of the imaging camera is non-axisymmetric, the focused beam cross-sectional profile is also asymmetric. In the case of axial symmetry, a cross-sectional profile is generated in which side lobes are generated around the main lobe by the Bessel function as shown in FIGS. 2 and 3, whereas in the case of non-axisymmetric, only the main lobe is obtained as shown in FIG. The characteristic is that the cross-sectional profile is monotonically decreasing. In addition, it can be understood that high resolution is maintained because the width of the main lobe is similar to that when the optical plate is not attached as shown in FIG. Furthermore, it can also be seen from FIG. 6 that a tilt effect occurs and the center of the focused beam shifts laterally as a side effect of the optical plate because it is viewed through the inclined portion of the surface shape change of the optical plate.

次に、メガネ用光学板の利用例を示す。比較のため、図7には目に光学板を付けない場合について、(a)焦点深度を示すための集光ビーム中心強度の光軸方向分布、(b)焦点深度の中心付近の集光ビーム断面プロファイル、を示す。波長は目の感度の中心波長0.55μmを仮定し、光学板の屈折率は、標準的な値として1.5を仮定している。   Next, a usage example of the optical plate for glasses will be described. For comparison, FIG. 7 shows a case in which an optical plate is not attached to the eye. (A) Concentrated beam center intensity distribution in the optical axis direction to indicate the depth of focus; A cross-sectional profile is shown. The wavelength is assumed to be the center wavelength of the eye sensitivity of 0.55 μm, and the refractive index of the optical plate is assumed to be 1.5 as a standard value.

図8には、目の有効開口径と同じ直径3mm、度数4μmの光学板を目の前に付けた場合の、(a)集光ビーム中心強度の光軸方向分布、(b)焦点深度の中心付近の集光ビーム断面プロファイル、を示す。図8を図7と比較すると、光学板を付けることによって焦点深度が深くなることが分かる。図7(a)と図8(a)とに示す光軸方向強度分布の表示領域は200μmである。光学板を付けた場合は、副作用として焦点領域が前方へシフトする。   FIG. 8 shows (a) the distribution of the central intensity of the focused beam in the direction of the optical axis and (b) the depth of focus when an optical plate having a diameter of 3 mm and a frequency of 4 μm is attached in front of the eye. A focused beam cross-sectional profile near the center is shown. Comparing FIG. 8 with FIG. 7, it can be seen that the depth of focus is increased by attaching the optical plate. The display area of the intensity distribution in the optical axis direction shown in FIGS. 7A and 8A is 200 μm. When an optical plate is attached, the focal area shifts forward as a side effect.

図9には、目の有効開口径3mmの10倍の直径30mmのメガネ用光学板の例として、度数Aを80μmとした場合の面形状を示す。面形状を3次関数にしているのが本発明の重要な特徴である。光学板の片面を平面とした場合は、他方の面はこのような凹面の形状になる。   FIG. 9 shows a surface shape when the power A is 80 μm as an example of an optical plate for eyeglasses having a diameter of 30 mm, which is 10 times the effective aperture diameter of 3 mm. An important feature of the present invention is that the surface shape is a cubic function. When one surface of the optical plate is a flat surface, the other surface has such a concave shape.

図10には、直径30mm、度数80μmの光学板(図9の場合と同じ)を目の前に付けて、光学板を通して見た場合の集光ビーム中心強度の光軸方向分布を示す。目の中心を軸対称の光学板の中心から半径の約1/3、2/3の距離の、(a)5mm、(b)10mm、の位置に置いた場合を、比較している。光軸方向強度分布の表示領域は、図7(a)、図8(a)と同様、200μmである。   FIG. 10 shows an optical axis direction distribution of the focused beam center intensity when an optical plate (same as in FIG. 9) having a diameter of 30 mm and a frequency of 80 μm is attached in front of the eye and viewed through the optical plate. The case where the center of the eye is placed at the position of (a) 5 mm and (b) 10 mm at a distance of about 1/3 and 2/3 of the radius from the center of the axisymmetric optical plate is compared. The display area of the intensity distribution in the optical axis direction is 200 μm as in FIGS. 7 (a) and 8 (a).

図10を図7と比較すると、光学板によって焦点深度が深くなることが分かる。さらに、図10で(a)と(b)とを比較すると、強度分布では(b)の方がピーク値は小さくなり、一見、その分幅が広くなっているように見えるが、同じ強度レベル、例えば0.75×1010程度のレベルでは、幅がほぼ等しくなっている。このことから、ここでは示さないが実験でも実証されているように、光学板内でカメラレンズの位置を変えて見てもほぼ同様の焦点深度延伸効果が得られる、ことが分かる。また、この強度レベルで図8(a)の場合と比較すると、焦点深度がほぼ同程度に延伸されていることが分かる。さらに、図10を図8(目の開口径と同じ直径の光学板を付けた場合)と比較すると、上述の撮像カメラの場合と同様、焦点領域の前方へのシフト量が小さく、光学板の副作用が小さいことが分かる。 Comparing FIG. 10 with FIG. 7, it can be seen that the depth of focus is increased by the optical plate. Further, comparing (a) and (b) in FIG. 10, the peak value is smaller in (b) in the intensity distribution, and at first glance, it seems that the width is wider, but the same intensity level. For example, at a level of about 0.75 × 10 10 , the widths are almost equal. From this, it can be seen that although not shown here, as demonstrated by experiments, substantially the same depth of focus extension effect can be obtained even when the position of the camera lens is changed in the optical plate. In addition, it can be seen that the depth of focus is extended to substantially the same level as compared with the case of FIG. 8A at this intensity level. Further, comparing FIG. 10 with FIG. 8 (when an optical plate having the same diameter as the opening diameter of the eye is attached), as in the case of the above-described imaging camera, the amount of shift to the front of the focal region is small, and the optical plate It can be seen that the side effects are small.

図11には、光学板を付けた場合で光学板の面に垂直な方向の集光ビーム断面プロファイルの例を示した。この例は、図10(a)に示す場合の焦点深度中央付近の断面プロファイルである。表示幅は図7(b)、図8(b)、の場合と同様100μmである。目の開口内に入る光学板の部分の面形状は非軸対称のため、集光ビーム断面プロファイルも非対称となる。(1)軸対称の場合は、図7、図8のようにベッセル関数により主ローブの周辺にサイドローブが生成される断面プロファイルとなるのに対して、(2)非軸対称の場合は、図11のように主ローブのみの単調減少の断面プロファイルになるのが特徴である。また、図11のように主ローブの幅が光学板を付けない時と同程度であるので、高い分解能が保持されることが理解できる。さらに、上述の撮像カメラの場合と同様、光学板の面形状変化の傾斜部分を通して見ることから、ティルト(tilt)効果が生じて、光学板の副作用として集光ビームの中心が横に少しシフトすることも図11から分かる。   FIG. 11 shows an example of a focused beam cross-sectional profile in a direction perpendicular to the surface of the optical plate when the optical plate is attached. This example is a cross-sectional profile near the center of the focal depth in the case shown in FIG. The display width is 100 μm as in the case of FIGS. 7B and 8B. Since the surface shape of the portion of the optical plate that enters the eye opening is non-axisymmetric, the focused beam cross-sectional profile is also asymmetric. (1) In the case of axial symmetry, a cross-sectional profile in which side lobes are generated around the main lobe by the Bessel function as shown in FIGS. 7 and 8, whereas (2) in the case of non-axial symmetry, As shown in FIG. 11, the profile is a monotonically decreasing cross-sectional profile of only the main lobe. In addition, it can be understood that high resolution is maintained because the width of the main lobe is similar to that when no optical plate is attached as shown in FIG. Further, as in the case of the above-described imaging camera, since the image is viewed through the inclined portion of the surface shape change of the optical plate, a tilt effect occurs, and the center of the focused beam is slightly shifted to the side as a side effect of the optical plate. This can also be seen from FIG.

本発明の光学板を製造する際、光学板の度数Aを適度な値に設定する必要がある。度数Aを大きくすると、焦点深度は深くなるが画像のコントラストが悪くなり、画質が劣化する。即ち、焦点深度と画質は二律背反の関係にある。従って、利用者の目的に合った最適な状態を得るためには、光学板の度数Aを適度な値に設定することが望まれる。   When manufacturing the optical plate of the present invention, it is necessary to set the power A of the optical plate to an appropriate value. When the frequency A is increased, the depth of focus is increased, but the contrast of the image is deteriorated, and the image quality is deteriorated. That is, the depth of focus and the image quality are in a trade-off relationship. Therefore, in order to obtain an optimum state that suits the user's purpose, it is desirable to set the power A of the optical plate to an appropriate value.

上記の原理の説明での数式や実施例では、簡単に扱うために、軸対称の光学板を扱った。しかし、本発明の光学板の特徴である3次関数の形状は軸対称である必要はなく、半径方向に代わって、光軸に直交する1軸方向に対して3次関数であっても本発明の原理は同様に成立する。この場合、上記の定義で用いた光学板内の基点は、中心に代えて端に設定してもよい。   In the above formulas and examples in the explanation of the principle, an axially symmetric optical plate is used for easy handling. However, the shape of the cubic function, which is a feature of the optical plate of the present invention, does not need to be axially symmetric, and even if it is a cubic function with respect to one axial direction orthogonal to the optical axis, instead of the radial direction, The principle of the invention is similarly established. In this case, the base point in the optical plate used in the above definition may be set at the end instead of the center.

本発明の光学板は撮像光学系の開口より十分大きくしても使用できるが、光学板のサイズが大きくなるほど、光学板内の基点(あるいは中心)に近い領域での厚みあるいは形状の変化がより小さくなるので、精度上、そのような面形状の加工が困難になり、効果が劣化する。この場合の対応として、基点で動径変数ρを0とする代わりに適度に大きな値にして、例えば基点でのρの値を0.1として、ρ=0.1〜1.0で、形状を定める方法が良い。   The optical plate of the present invention can be used even if it is sufficiently larger than the aperture of the imaging optical system. However, the larger the size of the optical plate, the more the change in thickness or shape in the region near the base point (or center) in the optical plate. Since it becomes small, processing of such a surface shape becomes difficult with accuracy, and the effect deteriorates. As a countermeasure in this case, instead of setting the radial variable ρ to 0 at the base point, the value is set to a moderately large value. For example, the value of ρ at the base point is 0.1, and ρ = 0.1 to 1.0. The method of determining is good.

上記の、本発明の光学板は、大型で何処の部分で見てもほぼ同様に焦点深度が深くなる、という機能を有することが特徴である。この特徴は他の面でも利用できる。   The above-described optical plate of the present invention is large and has the function of increasing the depth of focus almost similarly regardless of where it is seen. This feature can be used in other ways as well.

例えば、広視野の撮像カメラの場合は、レンズの開口径は有効開口径(F値/焦点距離)よりはるかに大きくなる。広視野カメラで軸対称の光学板を使用した場合は、広視野に相当する大きな入射角の光線に対して光学板の度数が等価的に大きくなり、結果として視野角によって対象物の画質が変化してしまう、ということが起こる。   For example, in the case of a wide-field imaging camera, the aperture diameter of the lens is much larger than the effective aperture diameter (F value / focal length). When an axisymmetric optical plate is used with a wide-field camera, the power of the optical plate is equivalently increased with respect to a light beam with a large incident angle corresponding to a wide field of view. That happens.

しかし、この問題は、本発明の光学板を用いることで解決することができる。この解決には、例えば、適度に大きな直径の軸対称の光学板を製造し、中心と端の間の領域で必要な開口径だけを切り取って使用すればよい。この場合、切り取った光軸から外れた(つまり、オフアクシス(off-axis)の)開口径内では何処の位置で見てもほぼ同様に焦点深度が深くなる。   However, this problem can be solved by using the optical plate of the present invention. In order to solve this problem, for example, an axially symmetric optical plate having a reasonably large diameter may be manufactured, and only a necessary aperture diameter may be cut and used in a region between the center and the end. In this case, the depth of focus becomes substantially the same regardless of the position within the aperture diameter deviated from the cut optical axis (that is, off-axis).

本発明の光学板を、目の前に置く光学板として利用する場合には、焦点深度を伸ばすことができる機能に加えて、他の技術では得られない利便性を得ることができる。それは、メガネの場合でも、車や電車のフロントガラスなどに付けて利用する場合でも、目が良い裸眼の人のみならず、遠視、近視、乱視、遠近両用、などのメガネで目が矯正されている人にも、本発明の光学板を使用して効果が得られるということである。上記のようなメガネに利用する場合、既に使用している矯正メガネに連ねて使用しても、メガネレンズの面形状に本発明の光学板の面形状を重畳した面形状としても、よい。   When the optical plate of the present invention is used as an optical plate placed in front of the eyes, in addition to the function of extending the depth of focus, it is possible to obtain convenience that cannot be obtained by other techniques. Whether it is glasses or when attached to the windshield of a car or train, the eyes are corrected not only for people with good eyes but also for glasses with hyperopia, myopia, astigmatism, and bifocals. This also means that an effect can be obtained by using the optical plate of the present invention. When used for the above glasses, it may be used in connection with the already used correction glasses, or may be a surface shape in which the surface shape of the optical plate of the present invention is superimposed on the surface shape of the eyeglass lens.

本発明の光学板は撮像光学系の光軸に対して直交している必要はなく、傾いた状態で置いてもかまわない。車や電車のフロントガラスなどに付けて利用する場合には、光学板が観察者から見て、斜めに設置される事が多い。これは、光軸に対して光学板を斜めに設置することになるが、数8に基いて光学板が光軸に垂直な場合の光路長と同じになるように、光軸に対する光学板の角度に応じて上記度数Aを設定することが望ましい。   The optical plate of the present invention does not need to be orthogonal to the optical axis of the imaging optical system, and may be placed in an inclined state. When attached to the windshield of a car or train, the optical plate is often installed at an angle when viewed from the observer. This is because the optical plate is installed obliquely with respect to the optical axis, but based on Equation 8, the optical plate with respect to the optical axis is equal to the optical path length when the optical plate is perpendicular to the optical axis. It is desirable to set the frequency A according to the angle.

また、光学板のサイズが大きくなると度数を大きくする必要があることから、光学板の中心に近い領域での焦点深度延伸効果の劣化と端に近い領域での画質の劣化が増加し、応用できる光学板のサイズには限度があるので、工夫が必要である。上記の様に、フロントガラスなどに使用する場合や、建物等の窓ガラスに用いる場合は、ガラス1枚について、複数の光学板領域を設けることもできる。例えば、行列状に並べた構成にすることによって、本発明の光学板の大型化がより容易になる。   In addition, since it is necessary to increase the frequency when the size of the optical plate is increased, the deterioration of the focal depth extension effect in the region close to the center of the optical plate and the deterioration of the image quality in the region close to the edge can be applied. Since there is a limit to the size of the optical plate, it must be devised. As described above, when used for a windshield or for a window glass of a building or the like, a plurality of optical plate regions can be provided for one glass. For example, the configuration of the optical plate according to the present invention can be easily increased by adopting the arrangement in a matrix.

最近立体画像表示技術が進歩してきているが、本発明の光学板の技術は立体画像を見る場合の目の筋肉疲労の低減にも効果が期待できる。光学板の何処を通して見てもほぼ同様に被写界深度が延伸される効果があることから、立体映画用のメガネ型の光学板のみならず、3次元画像用のPCやDVD機器のディスプレイ面に光学板を付けることも、新たな応用として期待できる。   Although the stereoscopic image display technology has recently advanced, the technology of the optical plate of the present invention can be expected to be effective in reducing eye muscle fatigue when viewing a stereoscopic image. Since the depth of field is almost the same regardless of where the optical plate is viewed, not only the glasses-type optical plate for 3D movies but also the display surface of PCs and DVD devices for 3D images An optical plate can also be expected as a new application.

本発明大型光学板の利用概念図である。It is a utilization conceptual diagram of this invention large sized optical board. 撮像カメラによる(光学板を付けない)集光ビームの例で、有効開口径2.5cm、焦点距離7.5cmを仮定し、(a)集光ビーム中心強度の光軸方向分布、(b)集光ビーム断面プロファイル、を示す図である。An example of a focused beam by an imaging camera (without an optical plate), assuming an effective aperture diameter of 2.5 cm and a focal length of 7.5 cm, (a) optical axis direction distribution of focused beam center intensity, (b) It is a figure which shows a condensing beam cross-sectional profile. 撮像カメラの有効開口径と同じ直径の光学板を用いて得られる集光ビームの例で、(a)集光ビーム中心強度の光軸方向分布、(b)集光ビーム断面プロファイル、を示す図である。Examples of a focused beam obtained using an optical plate having the same diameter as the effective aperture diameter of the imaging camera, showing (a) the distribution of the focused beam center intensity in the optical axis direction and (b) the focused beam cross-sectional profile. It is. 撮像カメラの前に置く本発明光学板の面形状の例を示す図である。It is a figure which shows the example of the surface shape of this invention optical plate put in front of an imaging camera. 撮像カメラの前に本発明光学板を置いて光学板を通して見た場合の集光ビーム中心強度の光軸方向分布の例で、直径10cmの光学板を仮定し、(a)カメラの中心位置が光学板の中心から1.6cmの距離の場合、(b)カメラの中心位置が光学板の中心から3.2cmの距離の場合、を示す図である。An example of the distribution of the central intensity of the focused beam in the optical axis direction when the optical plate of the present invention is placed in front of the imaging camera and viewed through the optical plate, assuming an optical plate with a diameter of 10 cm, and (a) the center position of the camera is When the distance is 1.6 cm from the center of the optical plate, (b) shows the case where the center position of the camera is a distance of 3.2 cm from the center of the optical plate. 撮像カメラの前に本発明光学板を置いて光学板を通して見た場合の集光ビーム断面プロファイルの例を示す図で、直径10cmの光学板を仮定している。It is a figure which shows the example of a condensing beam cross-sectional profile at the time of seeing through an optical plate by placing the optical plate of this invention in front of an imaging camera, and assumes an optical plate with a diameter of 10 cm. 目による(光学板を付けない)集光ビームの例で、有効開口径(瞳口径)3mm、焦点距離24mmを仮定し、(a)集光ビーム中心強度の光軸方向分布、(b)集光ビーム断面プロファイル、を示す図である。An example of a focused beam by eyes (without an optical plate), assuming an effective aperture diameter (pupil diameter) of 3 mm and a focal length of 24 mm, (a) optical axis direction distribution of focused beam center intensity, (b) It is a figure which shows a light beam cross-sectional profile. 目の有効開口径と同じ直径の光学板を用いて得られる集光ビームの例で、(a)集光ビーム中心強度の光軸方向分布、(b)集光ビーム断面プロファイル、を示す図である。It is an example of a focused beam obtained by using an optical plate having the same diameter as the effective aperture diameter of the eye, and shows (a) the distribution of the focused beam center intensity in the optical axis direction and (b) the focused beam cross-sectional profile. is there. 目の前に置くメガネ用の本発明光学板の面形状の例を示す図である。It is a figure which shows the example of the surface shape of this invention optical plate for glasses put in front of eyes. 目の前に本発明光学板を置いて光学板を通して見た場合の集光ビーム中心強度の光軸方向分布の例で、直径30mmの光学板を仮定し、(a)目の中心位置が光学板の中心から5mmの距離の場合、(b)目の中心位置が光学板の中心から10mmの距離の場合、を示す図である。An example of the distribution of the central intensity of the focused beam in the optical axis direction when the optical plate of the present invention is placed in front of the eye and viewed through the optical plate, assuming an optical plate with a diameter of 30 mm, and (a) the center position of the eye is optical When the distance is 5 mm from the center of the plate, (b) is a diagram showing the case where the center position of the eye is a distance of 10 mm from the center of the optical plate. 目の前に本発明光学板を置いて光学板を通して見た場合の集光ビーム断面プロファイルの例を示す図で、直径30mmの光学板を仮定している。It is a figure which shows the example of a condensing beam cross-sectional profile at the time of putting the optical board of this invention in front of eyes and seeing through an optical board, and assumes an optical board with a diameter of 30 mm.

符号の説明Explanation of symbols

1 撮像光学系
2 大型光学板
3 入射光
4 透過光
5 結像レンズ
6 撮像面
DESCRIPTION OF SYMBOLS 1 Imaging optical system 2 Large optical plate 3 Incident light 4 Transmitted light 5 Imaging lens 6 Imaging surface

Claims (1)

入射する光波について撮像光学系である第1光学系の前に配置する第2光学系であって、
第2光学系は光学板であり、そのサイズは、第1光学系の入射開口径よりも大きく、
上記の第2光学系と、第1光学系とは、第2光学系である光学板内の透過光の一部分が第1光学系の開口に入射して予め決められた撮像面に結像する構成であり、
光学板である上記の第2光学系は、その厚さの変化が光学板内の基点からの距離の3次の冪関数に概略比例して軸対称に上記厚さが増加する特性を持ち、
上記光学板内の基点が第1光学系の光軸とずれた構成であり、上記光学板の厚さの変化は、上記第1光学系の前に第2光学系を設けた場合の焦点深度が、第1光学系のみの場合に比べて大きくなる特性を示す範囲を限度とすることを特徴とする第2光学系である大型光学板。
A second optical system arranged in front of the first optical system which is an imaging optical system for incident light waves,
The second optical system is an optical plate, the size of which is larger than the incident aperture diameter of the first optical system,
In the second optical system and the first optical system, a part of the transmitted light in the optical plate which is the second optical system is incident on the opening of the first optical system and forms an image on a predetermined imaging surface. Configuration,
It said second optical system is an optical plate, Chi lifting the characteristic change in the thickness is schematically proportional to the thickness of the axial symmetry to the third-order power function of the distance from the base point in the optical plate is increased ,
The base point in the optical plate is shifted from the optical axis of the first optical system , and the change in the thickness of the optical plate is caused by the depth of focus when the second optical system is provided in front of the first optical system. However, the large optical plate which is the second optical system is limited to a range showing a characteristic that is larger than that of the first optical system alone.
JP2008135581A 2008-05-23 2008-05-23 Large optical plate Active JP4335957B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008135581A JP4335957B1 (en) 2008-05-23 2008-05-23 Large optical plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008135581A JP4335957B1 (en) 2008-05-23 2008-05-23 Large optical plate

Publications (2)

Publication Number Publication Date
JP4335957B1 true JP4335957B1 (en) 2009-09-30
JP2009282391A JP2009282391A (en) 2009-12-03

Family

ID=41190693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008135581A Active JP4335957B1 (en) 2008-05-23 2008-05-23 Large optical plate

Country Status (1)

Country Link
JP (1) JP4335957B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109196407A (en) * 2016-11-25 2019-01-11 伊藤光学工业株式会社 The design method and vision correction eyeglass of vision correction eyeglass

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6374345B2 (en) * 2015-04-20 2018-08-15 伊藤光学工業株式会社 Vision correction lens design method and vision correction lens
EP3739375A4 (en) 2018-07-03 2021-10-20 National University Corporation Tokyo University of Agriculture and Technology Stereoscopic glasses, method for designing spectacle lens used in same, and method for observing stereoscopic image

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109196407A (en) * 2016-11-25 2019-01-11 伊藤光学工业株式会社 The design method and vision correction eyeglass of vision correction eyeglass
US11131868B2 (en) 2016-11-25 2021-09-28 Itoh Optical Industrial Co., Ltd. Method for corrective lens and corrective lens

Also Published As

Publication number Publication date
JP2009282391A (en) 2009-12-03

Similar Documents

Publication Publication Date Title
US11802997B2 (en) Optical apparatus with structure for liquid invariant performance
US9453986B2 (en) Imaging apparatus having a curved image surface
CN1132025C (en) Zoned lends
EP3462228A1 (en) Near-eye light field display device and near-eye display device
TWI594015B (en) Ocular optical system
JP2006215303A (en) Method for designing spectacle lens
WO2014206013A1 (en) Imaging adjustment device and imaging adjustment method
KR20170001640U (en) Near-infrared imaging lens
JP2017509024A (en) Improved ophthalmic lens for presbyopia correction
CN108107566B (en) Eyepiece optical system
KR20170107567A (en) Focusing Assist Lens
JP2011508266A (en) Customized Z lens design program
JP2008058576A (en) Spectacle lens design method
JP4335957B1 (en) Large optical plate
JP2018084788A (en) Progressive refractive power lens design method, and progressive refractive power lens
TW201901217A (en) Eyepiece optical system
JP3724520B2 (en) Infrared optics
JP2002107679A (en) Method for evaluating performance of lens
EP4152081A1 (en) Spectacle lens
JP3635079B2 (en) Imaging device and its optical system
US11448799B2 (en) Device and method for altering the vergence of light to improve human vision of an electronic display
US11194175B2 (en) Method for providing a selection chart of nonprescription ophthalmic lenses
JP5557144B2 (en) Optical instruments
CN115097622A (en) Eyepiece optical system
EP4307032A1 (en) Spectacle lens and method for designing same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4335957

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250