JP4335413B2 - Assembly method of motor rotating shaft - Google Patents

Assembly method of motor rotating shaft Download PDF

Info

Publication number
JP4335413B2
JP4335413B2 JP2000160390A JP2000160390A JP4335413B2 JP 4335413 B2 JP4335413 B2 JP 4335413B2 JP 2000160390 A JP2000160390 A JP 2000160390A JP 2000160390 A JP2000160390 A JP 2000160390A JP 4335413 B2 JP4335413 B2 JP 4335413B2
Authority
JP
Japan
Prior art keywords
rotating shaft
resistant resin
motor
resin
motor rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000160390A
Other languages
Japanese (ja)
Other versions
JP2001339903A (en
Inventor
和貴 迫平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asmo Co Ltd
Original Assignee
Asmo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asmo Co Ltd filed Critical Asmo Co Ltd
Priority to JP2000160390A priority Critical patent/JP4335413B2/en
Publication of JP2001339903A publication Critical patent/JP2001339903A/en
Application granted granted Critical
Publication of JP4335413B2 publication Critical patent/JP4335413B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、モータハウジングに設けられた軸孔内に充填固化された樹脂によって、一端部が軸孔内に挿入されたモータ回転軸のスラスト荷重が支持されるモータ回転軸の組付方法に関する。
【0002】
【従来の技術】
モータの回転子(アーマチャー)はハウジング内に収容されており、その回転軸(アーマチャーシヤフト)はハウジングに回転可能に支持されている。この場合、簡単な方法で回転軸のスラスト荷重を支持する回転軸の組付方法として、回転軸の先端部にゴムクッションを配置し、このゴムクッションを回転軸により押圧した状態で組付け、このゴムクッション弾性力により回転軸のスラスト荷重を支持する方法が知られている。この種の組付方法では、組付が容易であるが、反面、ゴムクッションの弾性変形に伴ってスラストガタが発生するため、モータ反転時に反転音が生じるという問題があった。
【0003】
そこで、スラストガタの発生を防止してスラスト荷重を支持する回転軸の組付方法として、回転軸の先端部にポリアセタール等の樹脂を充填し、この樹脂を硬化させ回転軸を支持する方法が知られている。この種の組付方法では、部品個々の寸法精度のばらつきを吸収することができ、簡単な方法で回転軸のスラスト力に対応した状態で回転軸を支持することができる。
【0004】
しかしながら、このような従来の組付方法では、回転軸の先端部への樹脂の充填を回転軸のモータ本体への組付後に行うため、樹脂充填のためのインジェクション成形機が必要であり設備コストが高く、また、作業工数も多くなる、という問題があった。
【0005】
さらに、このような従来の組付方法では、回転軸の先端部へ充填する樹脂として、熱可塑性樹脂を用いているため、スラスト荷重支持部の発熱により樹脂が溶け出す恐れがあった。このため、回転軸と樹脂との間に断熱板を配置する必要があり、部品点数が増加すると共に作業工数がさらに多くなるという問題があった。また、このような断熱板によっても樹脂の溶け出しを防止できず、回転軸のスラスト荷重が支持された状態を維持できなくなる可能性があった。すなわち、スラストガタの発生を防止できない場合があった。
【0006】
【発明が解決しようとする課題】
本発明は上記事実を考慮し、回転軸組付時の作業工数が少なく作業が容易で、かつ設備コストが低く、スラストガタが発生しないモータ回転軸の組付方法を得ることが目的である。
【0007】
【課題を解決するための手段】
請求項1に係る発明のモータ回転軸の組付方法は、回転子に連結されると共に回転伝達部が設けられたモータ回転軸の一端部が、モータハウジングに設けられた軸孔内に位置し、前記軸孔内に充填固化された樹脂によって前記モータ回転軸のスラスト荷重が支持されるモータ回転軸の組付方法において、前記樹脂材を耐熱性樹脂とし、前記耐熱性樹脂を塑性変形可能な状態とすると共に前記耐熱性樹脂を前記モータ回転軸の先端に載置した状態で前記モータ回転軸を前記軸孔へ挿入しながらこのモータ回転軸によって前記耐熱性樹脂を押圧して前記軸孔内に充填する、ことを特徴としている。
【0008】
請求項1記載のモータ回転軸の組付方法では、モータ組付の際に、塑性変形可能な状態の耐熱性樹脂をモータ回転軸より先にモータハウジングに設けられた軸孔内へ挿入する。すなわち、例えば、モータ回転軸の先端に耐熱性樹脂が予め載置された状態とする
【0009】
この状態でモータ回転軸を軸孔へ挿入しながらこのモータ回転軸で耐熱性樹脂を押圧し軸孔内に充填する。また、この耐熱性樹脂を軸孔内において所定の温度で固化(硬化)させる。
【0010】
これにより、モータ回転軸は、硬化した耐熱性樹脂と直接的または間接的に当接し、そのスラスト荷重に対応した状態で支持される。
【0011】
このように、モータ回転軸を軸孔へ挿入しながら耐熱性樹脂を軸孔内へ充填するため、モータ回転軸組付の際に容易にスラスト荷重の支持構造が得られると共にモータ回転軸の組付後の作業が不要となる。また、耐熱性樹脂を軸孔内へ充填するためのインジェクション成形機も不要となる。
【0012】
さらに、耐熱性樹脂を用いてモータ回転軸の支持を行うため、支持部の発熱に伴って樹脂が溶け出す恐れもなく、スラスト荷重を支持された状態が維持される。また、モータ回転軸と耐熱性樹脂との間の断熱板が不要となり、部品点数が削減され、組付工数がさらに削減される。
【0013】
このように、請求項1記載のモータ回転軸の組付方法では、回転軸組付時の作業工数が少なく作業が容易で、かつ設備コストが低く、スラストガタが発生しない。
【0014】
請求項2記載の発明に係るモータ回転軸の組付方法は、請求項1記載のモータ回転軸の組付方法において、前記モータ回転軸の先端に中間部材を介して前記耐熱性樹脂を載置した状態で前記モータ回転軸を前記軸孔へ挿入する、ことを特徴としている。
【0015】
請求項2記載のモータ回転軸の組付方法では、モータ組付の際に、モータ回転軸の先端に中間部材を介して耐熱性樹脂を載置した状態でモータ回転軸を前記軸孔へ挿入し、この中間部材を介してモータ回転軸で耐熱性樹脂を押圧し軸孔内に充填する。
【0016】
このため、例えば、中間部材を耐熱性樹脂の載置に適した形状に形成しておくことにより耐熱性樹脂の脱落を防止するための慎重な作業が要求されることがなく、容易に耐熱性樹脂を軸孔内へ挿入することができる。また、例えば、中間部材を軸孔に対応した寸法形状とすれば、耐熱性樹脂を軸孔内で押圧し充填する際に耐熱性樹脂がモータ回転軸側に漏れ出すことが防止でき、これを防止するための慎重な作業が要求されることがなく、容易に耐熱性樹脂を軸孔内へ充填することができる。
【0017】
このように、請求項2記載のモータ回転軸の組付方法では、回転軸組付時の作業工数が少なく作業が一層容易で、かつ設備コストが低く、スラストガタが発生しない。
【0018】
【発明の実施の形態】
本発明の実施の形態を図1乃び図2に基づいて説明する。
【0019】
図1には、本発明の実施の形態に係るモータ回転軸の組付方法が適用されたギヤードモータ10が一部破断した正面図によって示されている。また、図2には、ギヤードモータ10の軸受部22が平面断面図及び側面断面図によって示されている。
【0020】
ギヤードモータ10は、モータ部10Aとこのモータ部10Aに連結するギヤ部10Bとによって構成されている。モータ部10Aのヨーク12内には、アーマチャー14のアーマチャーシャフト16の一端部が軸受部(図示省略)によって支持されている。
【0021】
アーマチャーシャフト16の先端部は、ヨーク12に連結されたギヤ部10Bのモータハウジング18内へ延出されている。
【0022】
一方、ギヤ部10Bでは、モータ回転軸としてのウォームギヤ20がアーマチャーシャフト16に連結されており、このウォームギヤ20の先端部20Aが軸受部22によってモータハウジング18に支持されている。モータハウジング18は、ウォームギヤ20及びこのウォームギヤ20に噛合するホイールギヤ24を収容する略カップ状を成しており、カップ状の開口部をカバー26にて閉鎖されている。また、ホイールギヤ24の出力軸には、例えばパワーウインドレギュレータやサンルーフ等の被駆動系が連結される。
【0023】
ウォームギヤ20の先端部20Aを支持する軸受部22では、図2に詳細に示される如く、モータハウジング18に軸孔28が設けられている。軸孔28は、モータハウジングの内側が開口してウォームギヤ20の軸線に沿って設けられ、円形断面の大径部28A及び六角断面部28Bが形成されている。また、六角断面部28Bには、この軸線と直交する軸線を有し、モータハウジング18のカップ状の開口部側(図2(B)の上側)に開口した連通孔28Cが連通されている。
【0024】
また、軸受部22では、軸孔28の大径部28A内にラジアル軸受30が配置され、このラジアル軸受30にウォームギヤ20の先端部20Aが挿通され、ウォームギヤ20のラジアル荷重が支持されるようになっている。
【0025】
さらに、ウォームギヤ20の先端部20Aには、金属プレート32が当接するようになっている。金属プレート32は、六角断面部28Bに挿入可能に断面が略六角形に形成され、その一端部には耐熱性樹脂34を載置可能な凹部が形成されている。
【0026】
これにより、軸受部22では、ギヤードモータ10の組付状態では軸孔28の六角断面部28Bに金属プレート32が挿入され、この金属プレート32が軸孔28の六角断面部28B及び連通孔28Cに充填され硬化された耐熱性樹脂34によりウォームギヤ20の先端部20Aに当接して保持され、ウォームギヤ20のスラスト荷重を支持する構成となっている。
【0027】
なお、耐熱性樹脂34としては、冷却状態では塑性変形可能な状態(粘土状)であり、常温に放置すると硬化する常温硬化性樹脂や、常温では塑性変形可能な状態であり、ある一定以上の熱を加えると硬化する熱硬化性樹脂を用いることができる。
【0028】
次に、図3及び図4に基づいて本実施の形態の作用を説明する。
【0029】
上記構成のギヤードモータ10では、ウォームギヤ20のスラスト調整(ギヤードモータ10の組付)にあたっては、図3に示される如く、ウォームギヤ20が連結されたアーマチャーシャフト16と一体のアーマチャー14をヨーク12内に組付ける。一方、モータハウジング18にはラジアル軸受30等を組み付ける。
【0030】
次いで、図4(A)、(B)にも示される如く、塑性変形可能な状態の(粘土状の)適量の耐熱性樹脂34を軸孔28内へ挿入可能な円筒状に形成する。円筒状に形成された耐熱性樹脂34を金属プレート32の凹部に載置し、さらに、耐熱性樹脂34を載置した状態の金属プレート32をウォームギヤ20の先端部20Aに載置する。この状態で、ヨーク12の端面12Aとモータハウジング18の端面18Aとが当接するまで、ウォームギヤ20をモータハウジング18内へ挿入する。これにより、耐熱性樹脂34がウォームギヤ20の先端部20Aより先に軸孔28内へ挿入されることとなる。
【0031】
ウォームギヤ20をモータハウジング18内へ挿入していくと、耐熱性樹脂34は軸孔28の大径部28Aに設けられたラジアル軸受30内を通過(図4(C)、(D)の状態)し、軸孔28の六角断面部28Bの端部に当接する(図4(E)、(F)の状態)。この状態から、さらにウォームギヤ20をモータハウジング18内へ挿入していくと、耐熱性樹脂34は、ウォームギヤ20の先端部20A(金属プレート32)によって押圧され、軸孔28の六角断面部28B内で変形して充填され始める。
【0032】
ヨーク12の端面12Aとモータハウジング18の端面18Aとが当接すると、ウォームギヤ20のモータハウジング18内への挿入(ウォームギヤ20の先端部20Aによる耐熱性樹脂34の押圧)が終了される。このとき、金属プレート32が六角断面部28Bに挿入されると共にウォームギヤ20の先端部20Aがラジアル軸受30内に挿通された状態となる。一方、耐熱性樹脂34は六角断面部28B内に充填され、その一部が連通孔28Cの開口部からはみ出す(図4(G)、(H)の状態)。
【0033】
連通孔28Cからはみ出した耐熱性樹脂34をカットし、ヨーク12とモータハウジング18とを固定ねじ27で固定する。
【0034】
ここで、耐熱性樹脂34として室温で硬化する常温硬化性樹脂を使用する場合は、組付時にこの耐熱性樹脂34が塑性変形可能な状態となるように室温より低温状態で耐熱性樹脂34の円筒状への形成作業、ウォームギヤ20のモータハウジング18内への挿入作業等を行い、その後、室温にて放置し耐熱性樹脂34を硬化させる。一方、耐熱性樹脂34として熱硬化性樹脂を使用する場合は、常温(室温)で耐熱性樹脂34の円筒状への形成作業、ウォームギヤ20のモータハウジング18内への挿入作業等を行い、その後、モータハウジング18の外部より耐熱性樹脂34が充填された軸受部22近傍を加熱し耐熱性樹脂34を硬化させる。
【0035】
さらに、耐熱性樹脂34の硬化後、モータハウジング18内にホイールギヤ24を組付け、モータハウジング18の開口部をカバー26にて閉鎖する。
【0036】
このように、ウォームギヤ20を軸孔28へ挿入しながらウォームギヤ20上に載置した耐熱性樹脂34を押圧して軸孔28の六角断面部28B内へ充填するため、ギヤードモータ10の組付の際に容易にスラスト調整が実施されると共に組付後の作業が不要となる。また、耐熱性樹脂34を六角断面部28B内へ充填するためのインジェクション成形機も不要となる。
【0037】
さらに、耐熱性樹脂34を用いてウォームギヤ20の支持を行うため、支持部の発熱に伴って樹脂が溶け出す恐れもなく、スラスト調整された状態が維持される。また、これに伴い、ウォームギヤ20の先端部20A(金属プレート32)と耐熱性樹脂34との間の断熱板が不要となり、部品点数が削減され、組付工数がさらに削減される。
【0038】
さらにまた、耐熱性樹脂34が金属プレート32を介して回転軸に間接的に当接するため、回転軸に回転による耐熱性樹脂34の磨耗が防止される。また、金属プレート32は断面が略六角形であり六角断面部28Bへ挿入されるため、金属プレート32のウォームギヤ20の回転に伴う連れ回りも防止される。さらに、金属プレート32によりウォームギヤ20の先端部20Aと軸孔28との隙間に耐熱性樹脂34が漏れ出すことが防止され、耐熱性樹脂34が漏れ出さないように慎重な作業を要求されることがなくなり、スラスト調整(ギヤードモータ10の組付)が一層容易になる。
【0039】
なお、押圧され充填される前における耐熱性樹脂の形状は円筒状に限定されることはなく、例えば、直方体や三角錐、不定形等の任意の形状とすることができる。さらに、本実施の形態では、耐熱性樹脂34を用いて適用したが、本発明はこれに限定されず、耐熱性樹脂に代えて、例えば、熱可塑性樹脂等を用いて適用することもできる。この場合、ウォームギヤ20の先端部20Aと熱可塑性樹脂等との間に断熱板を備えることが望ましい。
【0040】
また、本実施の形態では、金属プレート32を介して耐熱性樹脂34をウォームギヤ20の先端部20Aに載置する方法としたが、本発明はこれに限定されず、金属プレート32を用いずに耐熱性樹脂34をウォームギヤ20の先端部20Aに直接載置する方法としても良く、他の部材を介して耐熱性樹脂34をウォームギヤ20の先端部20Aに載置する方法としても良い。
【0041】
さらに、金属製プレート32が六角断面を有し、これを軸孔28の六角断面部28Bに挿入して連れ回りを防止する方法としたが、本発明はこれに限定されず、例えば、金属プレートの断面が円形に形成されると共に中心から偏心した位置に凹部が形成され、この凹部に挿入した樹脂が硬化して連れ回りを防止する方法を採っても良い。
【0042】
さらにまた、本実施の形態では、軸孔28と直行方向に連通孔28Cを設け、この連通孔28Cから余分な耐熱性樹脂34が排出される方法としたが、本発明はこれに限定されず、例えば、連通孔は軸孔の軸線方向に設けても良く、また、耐熱性樹脂の使用量を管理することにより連通孔を設けずに耐熱性樹脂を排出しない方法としても良い。
【0043】
このように、本実施の形態に係るギヤードモータ10に適用した回転軸の組付方法では、スラスト調整がギヤードモータ10の組付の際に容易に行われると共に組付後の作業が不要で作業工数が少なく、かつインジェクション成形機が不要で設備コストが低く、樹脂の溶け出しに伴うスラストガタが発生しない。
【図面の簡単な説明】
【図1】本発明の実施の形態に係るモータ回転軸の組付方法が適用されたギヤードモータの一部破断した正面図である。
【図2】(A)は、本発明の実施の形態に係るモータ回転軸の組付方法が適用されたギヤードモータの軸受部の構成を示す正面断面図、(B)は、側面断面図である。
【図3】本発明の実施の形態に係るモータ回転軸の組付方法が適用されるギヤードモータの組付前の状態を示す一部破断した正面図である。
【図4】本発明の実施の形態に係るモータ回転軸の組付方法が適用されるギヤードモータの組付過程を示す図であり、(A)はウォームギヤ状に樹脂が載置された状態を示す正面図、(B)は同平面図、(C)はウォームギヤが軸孔に挿入される際の正面図、(D)は同平面図、(E)は樹脂が軸孔壁面に当接した状態を示す正面図、(F)は同平面図、(G)は樹脂が軸孔内に充填された状態を示す正面図、(H)は同平面図、である。
【符号の説明】
10 ギヤードモータ
18 モータハウジング
20 ウォームギヤ(モータ回転軸)
22 軸受部
28 軸孔
32 金属プレート(中間部材)
34 耐熱性樹脂(樹脂)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of assembling a motor rotating shaft in which a thrust load of a motor rotating shaft having one end inserted into the shaft hole is supported by a resin filled and solidified in a shaft hole provided in the motor housing.
[0002]
[Prior art]
The rotor (armature) of the motor is accommodated in the housing, and the rotation shaft (armature shaft) is rotatably supported by the housing. In this case, as a method of assembling the rotating shaft that supports the thrust load of the rotating shaft by a simple method, a rubber cushion is disposed at the tip of the rotating shaft, and the rubber cushion is assembled while being pressed by the rotating shaft. A method of supporting a thrust load of a rotating shaft by a rubber cushion elastic force is known. This type of assembly method is easy to assemble, but on the other hand, there is a problem that a reverse noise is generated when the motor is reversed because thrust backlash is generated along with the elastic deformation of the rubber cushion.
[0003]
Therefore, as a method of assembling the rotating shaft that prevents the occurrence of thrust play and supports the thrust load, a method of filling the tip of the rotating shaft with a resin such as polyacetal and curing the resin to support the rotating shaft is known. ing. With this type of assembly method, variations in the dimensional accuracy of individual parts can be absorbed, and the rotating shaft can be supported in a state corresponding to the thrust force of the rotating shaft by a simple method.
[0004]
However, in such a conventional assembling method, since the resin is filled into the tip of the rotating shaft after the assembling of the rotating shaft to the motor body, an injection molding machine for filling the resin is necessary and the equipment cost is reduced. However, there is a problem that the number of work steps is increased.
[0005]
Further, in such a conventional assembling method, since a thermoplastic resin is used as the resin to be filled in the tip end portion of the rotating shaft, there is a possibility that the resin melts due to heat generated by the thrust load support portion. For this reason, it is necessary to arrange a heat insulating plate between the rotating shaft and the resin, and there is a problem that the number of parts increases and the number of work steps further increases. Further, even with such a heat insulating plate, it is impossible to prevent the resin from being melted out, and there is a possibility that the state where the thrust load of the rotating shaft is supported cannot be maintained. That is, the occurrence of thrust backlash may not be prevented.
[0006]
[Problems to be solved by the invention]
In view of the above facts, an object of the present invention is to provide a method for assembling a motor rotating shaft that requires less man-hours when assembling the rotating shaft, is easy to work, has low equipment costs, and does not generate thrust backlash.
[0007]
[Means for Solving the Problems]
In the motor rotating shaft assembling method according to the first aspect of the present invention, one end of the motor rotating shaft connected to the rotor and provided with the rotation transmitting portion is located in a shaft hole provided in the motor housing. In the method of assembling the motor rotating shaft in which the thrust load of the motor rotating shaft is supported by the resin filled and solidified in the shaft hole, the resin material is a heat resistant resin, and the heat resistant resin can be plastically deformed. In the state where the heat-resistant resin is placed on the tip of the motor rotation shaft, the motor rotation shaft is inserted into the shaft hole and the heat-resistant resin is pressed by the motor rotation shaft. It is characterized by filling.
[0008]
In the method of assembling the motor rotating shaft according to the first aspect, when the motor is assembled, the heat-resistant resin in a plastically deformable state is inserted into the shaft hole provided in the motor housing before the motor rotating shaft. That is, for example, a state in which the leading end to the heat-resistant resin of the motor rotation shaft is pre-mounted.
[0009]
In this state, while inserting the motor rotation shaft into the shaft hole, the motor rotation shaft is pressed with the heat resistant resin to fill the shaft hole. The heat resistant resin is solidified (cured) at a predetermined temperature in the shaft hole.
[0010]
As a result, the motor rotating shaft directly or indirectly contacts the cured heat-resistant resin and is supported in a state corresponding to the thrust load.
[0011]
As described above, since the heat-resistant resin is filled into the shaft hole while the motor rotating shaft is inserted into the shaft hole, a support structure for the thrust load can be easily obtained when the motor rotating shaft is assembled, and the motor rotating shaft is assembled. The work after attachment becomes unnecessary. In addition, an injection molding machine for filling the shaft hole with the heat resistant resin is also unnecessary.
[0012]
Furthermore, since the motor rotating shaft is supported using the heat resistant resin, there is no fear that the resin melts with the heat generation of the support portion, and the state where the thrust load is supported is maintained. Further, a heat insulating plate between the motor rotating shaft and the heat resistant resin is not required, the number of parts is reduced, and the number of assembling steps is further reduced.
[0013]
As described above, in the method for assembling the motor rotating shaft according to the first aspect, the number of work steps when assembling the rotating shaft is small, the operation is easy, the equipment cost is low, and the thrust play does not occur.
[0014]
A motor rotating shaft assembling method according to a second aspect of the present invention is the motor rotating shaft assembling method according to the first aspect , wherein the heat resistant resin is placed on the tip of the motor rotating shaft via an intermediate member. In this state, the motor rotating shaft is inserted into the shaft hole.
[0015]
3. The motor rotating shaft assembling method according to claim 2, wherein when the motor is assembled, the motor rotating shaft is inserted into the shaft hole in a state where a heat resistant resin is placed on the tip of the motor rotating shaft via an intermediate member. Then, the heat-resistant resin is pressed by the motor rotation shaft through this intermediate member to fill the shaft hole.
[0016]
For this reason, for example, by forming the intermediate member in a shape suitable for the placement of the heat resistant resin, a careful work for preventing the heat resistant resin from falling off is not required, and the heat resistance is easily achieved. The resin can be inserted into the shaft hole. Further, for example, if the intermediate member has a dimension and shape corresponding to the shaft hole, the heat resistant resin can be prevented from leaking to the motor rotating shaft side when the heat resistant resin is pressed and filled in the shaft hole. Careful work to prevent this is not required, and the heat-resistant resin can be easily filled into the shaft hole.
[0017]
As described above, in the method for assembling the motor rotating shaft according to claim 2, the number of work steps for assembling the rotating shaft is small, the operation is further facilitated, the equipment cost is low, and thrust play does not occur.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to FIGS.
[0019]
FIG. 1 is a front view in which a geared motor 10 to which a motor rotating shaft assembling method according to an embodiment of the present invention is applied is partially broken. Moreover, the bearing part 22 of the geared motor 10 is shown by the plane sectional view and the side sectional view in FIG.
[0020]
The geared motor 10 includes a motor unit 10A and a gear unit 10B connected to the motor unit 10A. One end of the armature shaft 16 of the armature 14 is supported in the yoke 12 of the motor unit 10A by a bearing unit (not shown).
[0021]
The distal end portion of the armature shaft 16 extends into the motor housing 18 of the gear portion 10B connected to the yoke 12.
[0022]
On the other hand, in the gear portion 10B, a worm gear 20 as a motor rotation shaft is connected to the armature shaft 16, and a tip portion 20A of the worm gear 20 is supported on the motor housing 18 by a bearing portion 22. The motor housing 18 has a substantially cup shape that houses the worm gear 20 and the wheel gear 24 that meshes with the worm gear 20, and the cup-shaped opening is closed by a cover 26. Further, a driven system such as a power window regulator or a sunroof is connected to the output shaft of the wheel gear 24.
[0023]
As shown in detail in FIG. 2, the motor housing 18 is provided with a shaft hole 28 in the bearing portion 22 that supports the tip portion 20 </ b> A of the worm gear 20. The shaft hole 28 is opened along the axis of the worm gear 20 with the inside of the motor housing being opened, and has a large-diameter portion 28A and a hexagonal cross-sectional portion 28B having a circular cross section. Further, the hexagonal cross section 28 </ b> B communicates with a communication hole 28 </ b> C that has an axis perpendicular to the axis and opens on the cup-shaped opening side (upper side in FIG. 2B) of the motor housing 18.
[0024]
In the bearing portion 22, a radial bearing 30 is disposed in the large-diameter portion 28 </ b> A of the shaft hole 28, and the distal end portion 20 </ b> A of the worm gear 20 is inserted into the radial bearing 30 so that the radial load of the worm gear 20 is supported. It has become.
[0025]
Further, the metal plate 32 comes into contact with the tip portion 20 </ b> A of the worm gear 20. The metal plate 32 is formed in a substantially hexagonal cross section so that it can be inserted into the hexagonal cross section 28B, and a recess in which the heat resistant resin 34 can be placed is formed at one end thereof.
[0026]
Thereby, in the bearing portion 22, in the assembled state of the geared motor 10, the metal plate 32 is inserted into the hexagonal cross section 28B of the shaft hole 28, and this metal plate 32 is inserted into the hexagonal cross section 28B and the communication hole 28C of the shaft hole 28. The heat-resistant resin 34 filled and hardened is held in contact with the tip 20A of the worm gear 20 to support the thrust load of the worm gear 20.
[0027]
The heat-resistant resin 34 is in a plastically deformable state (clay-like) in a cooled state, and is a room-temperature curable resin that cures when left at room temperature, or is in a state that can be plastically deformed at room temperature. A thermosetting resin that cures when heat is applied can be used.
[0028]
Next, the operation of the present embodiment will be described with reference to FIGS.
[0029]
In the geared motor 10 having the above configuration, when the thrust adjustment of the worm gear 20 (assembly of the geared motor 10) is performed, the armature 14 integrated with the armature shaft 16 to which the worm gear 20 is connected is disposed in the yoke 12 as shown in FIG. Assemble to. On the other hand, a radial bearing 30 or the like is assembled to the motor housing 18.
[0030]
Next, as shown in FIGS. 4A and 4B, an appropriate amount (clay-like) heat-resistant resin 34 in a plastically deformable state is formed into a cylindrical shape that can be inserted into the shaft hole 28. The cylindrical heat-resistant resin 34 is placed in the concave portion of the metal plate 32, and the metal plate 32 with the heat-resistant resin 34 placed thereon is placed on the tip 20 </ b> A of the worm gear 20. In this state, the worm gear 20 is inserted into the motor housing 18 until the end surface 12A of the yoke 12 and the end surface 18A of the motor housing 18 come into contact with each other. As a result, the heat resistant resin 34 is inserted into the shaft hole 28 prior to the distal end portion 20 </ b> A of the worm gear 20.
[0031]
When the worm gear 20 is inserted into the motor housing 18, the heat-resistant resin 34 passes through the radial bearing 30 provided in the large-diameter portion 28A of the shaft hole 28 (the state shown in FIGS. 4C and 4D). Then, it comes into contact with the end of the hexagonal cross section 28B of the shaft hole 28 (state of FIGS. 4E and 4F). When the worm gear 20 is further inserted into the motor housing 18 from this state, the heat-resistant resin 34 is pressed by the tip portion 20A (metal plate 32) of the worm gear 20 and within the hexagonal section 28B of the shaft hole 28. Deformation begins to fill.
[0032]
When the end surface 12A of the yoke 12 and the end surface 18A of the motor housing 18 come into contact with each other, the insertion of the worm gear 20 into the motor housing 18 (the pressing of the heat resistant resin 34 by the tip portion 20A of the worm gear 20) is finished. At this time, the metal plate 32 is inserted into the hexagonal cross section 28 </ b> B and the tip 20 </ b> A of the worm gear 20 is inserted into the radial bearing 30. On the other hand, the heat-resistant resin 34 is filled in the hexagonal cross section 28B, and a part thereof protrudes from the opening of the communication hole 28C (states of FIGS. 4G and 4H).
[0033]
The heat resistant resin 34 protruding from the communication hole 28 </ b> C is cut, and the yoke 12 and the motor housing 18 are fixed with the fixing screw 27.
[0034]
Here, when a room temperature curable resin that cures at room temperature is used as the heat resistant resin 34, the heat resistant resin 34 is heated at a temperature lower than room temperature so that the heat resistant resin 34 can be plastically deformed during assembly. A forming operation into a cylindrical shape, an inserting operation of the worm gear 20 into the motor housing 18 and the like are performed, and then left at room temperature to cure the heat resistant resin 34. On the other hand, when a thermosetting resin is used as the heat resistant resin 34, the heat resistant resin 34 is formed into a cylindrical shape at room temperature (room temperature), the worm gear 20 is inserted into the motor housing 18, and the like. Then, the vicinity of the bearing portion 22 filled with the heat resistant resin 34 is heated from the outside of the motor housing 18 to cure the heat resistant resin 34.
[0035]
Further, after the heat resistant resin 34 is cured, the wheel gear 24 is assembled in the motor housing 18, and the opening of the motor housing 18 is closed by the cover 26.
[0036]
Thus, the geared motor 10 is assembled to press the heat-resistant resin 34 placed on the worm gear 20 while the worm gear 20 is inserted into the shaft hole 28 to fill the hexagonal section 28B of the shaft hole 28. At this time, the thrust adjustment is easily performed and the work after the assembly becomes unnecessary. Further, an injection molding machine for filling the heat-resistant resin 34 into the hexagonal cross section 28B becomes unnecessary.
[0037]
Furthermore, since the worm gear 20 is supported using the heat-resistant resin 34, there is no fear that the resin will melt with the heat generation of the support portion, and the state in which the thrust is adjusted is maintained. As a result, a heat insulating plate between the tip 20A (metal plate 32) of the worm gear 20 and the heat-resistant resin 34 becomes unnecessary, the number of parts is reduced, and the number of assembling steps is further reduced.
[0038]
Furthermore, since the heat resistant resin 34 indirectly contacts the rotating shaft via the metal plate 32, wear of the heat resistant resin 34 due to rotation on the rotating shaft is prevented. Further, since the metal plate 32 has a substantially hexagonal cross section and is inserted into the hexagonal cross section 28B, the metal plate 32 is also prevented from being rotated along with the rotation of the worm gear 20. Further, the metal plate 32 prevents the heat resistant resin 34 from leaking into the gap between the tip 20A of the worm gear 20 and the shaft hole 28, and requires careful work so that the heat resistant resin 34 does not leak. The thrust adjustment (assembly of the geared motor 10) is further facilitated.
[0039]
In addition, the shape of the heat resistant resin before being pressed and filled is not limited to a cylindrical shape, and may be an arbitrary shape such as a rectangular parallelepiped, a triangular pyramid, or an indefinite shape. Furthermore, in this Embodiment, it applied using the heat resistant resin 34, However, This invention is not limited to this, For example, it can replace with a heat resistant resin and can also apply using a thermoplastic resin etc. In this case, it is desirable to provide a heat insulating plate between the tip portion 20A of the worm gear 20 and the thermoplastic resin or the like.
[0040]
In the present embodiment, the heat-resistant resin 34 is placed on the tip 20A of the worm gear 20 via the metal plate 32. However, the present invention is not limited to this, and the metal plate 32 is not used. The heat resistant resin 34 may be directly placed on the tip 20A of the worm gear 20, or the heat resistant resin 34 may be placed on the tip 20A of the worm gear 20 via another member.
[0041]
Further, the metal plate 32 has a hexagonal cross section, and this is inserted into the hexagonal cross section 28B of the shaft hole 28 to prevent the accompanying rotation. However, the present invention is not limited to this, for example, the metal plate A recess may be formed at a position eccentric from the center, and the resin inserted into the recess may be cured to prevent follow-up.
[0042]
Furthermore, in the present embodiment, a communication hole 28C is provided in a direction perpendicular to the shaft hole 28, and excess heat-resistant resin 34 is discharged from the communication hole 28C. However, the present invention is not limited to this. For example, the communication hole may be provided in the axial direction of the shaft hole, or the heat-resistant resin may not be discharged without providing the communication hole by controlling the amount of heat-resistant resin used.
[0043]
As described above, in the method of assembling the rotating shaft applied to the geared motor 10 according to the present embodiment, the thrust adjustment is easily performed when the geared motor 10 is assembled, and the work after the assembly is unnecessary. There are few man-hours, no injection molding machine is required, the equipment cost is low, and there is no thrust play due to resin melting.
[Brief description of the drawings]
FIG. 1 is a partially broken front view of a geared motor to which a motor rotating shaft assembling method according to an embodiment of the present invention is applied.
FIG. 2A is a front sectional view showing a configuration of a bearing portion of a geared motor to which a motor rotating shaft assembling method according to an embodiment of the present invention is applied, and FIG. 2B is a side sectional view. is there.
FIG. 3 is a partially broken front view showing a state before the assembly of the geared motor to which the motor rotating shaft assembling method according to the embodiment of the present invention is applied.
FIG. 4 is a diagram showing an assembly process of a geared motor to which a motor rotating shaft assembling method according to an embodiment of the present invention is applied, and FIG. 4 (A) shows a state where a resin is placed in a worm gear shape. (B) is a plan view, (C) is a front view when the worm gear is inserted into the shaft hole, (D) is the plan view, and (E) is a resin abutting against the wall surface of the shaft hole. The front view which shows a state, (F) is the same top view, (G) is the front view which shows the state with which resin was filled in the axial hole, (H) is the same top view.
[Explanation of symbols]
10 geared motor 18 motor housing 20 worm gear (motor rotating shaft)
22 Bearing part 28 Shaft hole 32 Metal plate (intermediate member)
34 Heat-resistant resin (resin)

Claims (2)

回転子に連結されると共に回転伝達部が設けられたモータ回転軸の一端部が、モータハウジングに設けられた軸孔内に位置し、前記軸孔内に充填固化された樹脂によって前記モータ回転軸のスラスト荷重が支持されるモータ回転軸の組付方法において、
前記樹脂材を耐熱性樹脂とし、
前記耐熱性樹脂を塑性変形可能な状態とすると共に前記耐熱性樹脂を前記モータ回転軸の先端に載置した状態で前記モータ回転軸を前記軸孔へ挿入しながらこのモータ回転軸によって前記耐熱性樹脂を押圧して前記軸孔内に充填する、
ことを特徴とするモータ回転軸の組付方法。
One end portion of a motor rotating shaft connected to the rotor and provided with a rotation transmitting portion is located in a shaft hole provided in the motor housing, and the motor rotating shaft is filled with resin solidified in the shaft hole. In the method of assembling the motor rotating shaft that supports the thrust load of
The resin material is a heat resistant resin,
While the heat resistant resin is in a plastically deformable state and the heat resistant resin is placed on the tip of the motor rotating shaft, the motor rotating shaft is inserted into the shaft hole and the heat resistant resin is inserted into the shaft rotating hole. Press the resin to fill the shaft hole,
A method for assembling a motor rotating shaft.
前記モータ回転軸の先端に中間部材を介して前記耐熱性樹脂を載置した状態で前記モータ回転軸を前記軸孔へ挿入する、ことを特徴とする請求項1記載のモータ回転軸の組付方法。The motor rotating shaft assembly according to claim 1 , wherein the motor rotating shaft is inserted into the shaft hole in a state where the heat resistant resin is placed on an end of the motor rotating shaft via an intermediate member . Method.
JP2000160390A 2000-05-30 2000-05-30 Assembly method of motor rotating shaft Expired - Lifetime JP4335413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000160390A JP4335413B2 (en) 2000-05-30 2000-05-30 Assembly method of motor rotating shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000160390A JP4335413B2 (en) 2000-05-30 2000-05-30 Assembly method of motor rotating shaft

Publications (2)

Publication Number Publication Date
JP2001339903A JP2001339903A (en) 2001-12-07
JP4335413B2 true JP4335413B2 (en) 2009-09-30

Family

ID=18664586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000160390A Expired - Lifetime JP4335413B2 (en) 2000-05-30 2000-05-30 Assembly method of motor rotating shaft

Country Status (1)

Country Link
JP (1) JP4335413B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5049940B2 (en) * 2008-10-14 2012-10-17 株式会社ミツバ Motor with reduction mechanism

Also Published As

Publication number Publication date
JP2001339903A (en) 2001-12-07

Similar Documents

Publication Publication Date Title
US6215209B1 (en) Small-sized motor equipped with worm gear reducer and method of manufacturing the same
US6843148B2 (en) Geared motor unit for driving vehicle equipment, eliminating any axial play in its driveline
KR100769840B1 (en) Electric drive unit
JP4545428B2 (en) Electric motor
US5485044A (en) Motor with end play insert
GB2250797A (en) A motor output shaft positioning device
US4321748A (en) Small dynamoelectric machine and method for making same
KR101060142B1 (en) Gear / Drive Unit
US20190291604A1 (en) Spindle drive, method for producing a spindle drive, and comfort drive
JP4490891B2 (en) Manufacturing method of electric motor
JP4335413B2 (en) Assembly method of motor rotating shaft
KR100634033B1 (en) Electric motor fan wheel combination and method for the production thereof
CN113454368A (en) Adjusting drive for a steering column, drive unit for an adjusting drive, motor-adjustable steering column for a motor vehicle, and method for producing an adjusting drive for a steering column
KR100996587B1 (en) Drive unit for actuators in a motor vehicle
JP3907954B2 (en) Ball screw and electric power steering apparatus including the same
JP3686304B2 (en) Motor rotating shaft support structure
US20210066994A1 (en) Motor device
JP2952430B2 (en) How to fix the stator core of the motor
JP3469335B2 (en) Motor rotor thrust adjustment method and motor rotor thrust adjustment structure
US20200220418A1 (en) Motor device and method for producing same
CN106469955A (en) Drive mechanism driving means and the method for manufacturing drive mechanism driving means
US11489400B2 (en) Method for producing motor device
JP3530055B2 (en) motor
JP2574914Y2 (en) Motor actuator
JP2001069714A (en) Motor and adjusting method for thrust of shaft in motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4335413

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140703

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term