JP4335072B2 - 磁気共鳴イメージング装置 - Google Patents

磁気共鳴イメージング装置 Download PDF

Info

Publication number
JP4335072B2
JP4335072B2 JP2004154148A JP2004154148A JP4335072B2 JP 4335072 B2 JP4335072 B2 JP 4335072B2 JP 2004154148 A JP2004154148 A JP 2004154148A JP 2004154148 A JP2004154148 A JP 2004154148A JP 4335072 B2 JP4335072 B2 JP 4335072B2
Authority
JP
Japan
Prior art keywords
magnetic field
image
static magnetic
magnetic resonance
resonance imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004154148A
Other languages
English (en)
Other versions
JP2005334101A5 (ja
JP2005334101A (ja
Inventor
嘉之 宮元
輝昭 板橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2004154148A priority Critical patent/JP4335072B2/ja
Publication of JP2005334101A publication Critical patent/JP2005334101A/ja
Publication of JP2005334101A5 publication Critical patent/JP2005334101A5/ja
Application granted granted Critical
Publication of JP4335072B2 publication Critical patent/JP4335072B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Description

本発明は、核磁気共鳴現象を利用して被検体の所望部位の断層画像を撮影する磁気共鳴イメージング(以下、「MRI」と略記する)装置に関し、特にクライオクーラが原因で発生する静磁場変動によるEPIダイナミック撮影時の画質劣化を補正する技術に関する。
超電導MRI装置は、静磁場発生源として超電導磁石を備える。この超電導磁石は、極低温に冷却された超電導コイルを内部に持つ電磁石であり、超電導コイルは、液体ヘリウムが充填されたヘリウム容器内に配置され、極低温状態に保持される。そして、蒸発したヘリウムガスを冷却して再度液体ヘリウムに戻すためにクライオクーラがヘリウム容器に直結して配置される。
クライオクーラは通常1〜1.5秒周期でピストン運動する部品を有しており、その機械振動が超電導磁石に伝わり、その超電導磁石の振動が静磁場を変動させる。水平磁場(つまり円筒型)MRI装置では撮影空間内どの場所も同程度の変動量となるが、垂直磁場方式の開放型MRI装置では撮影空間内の場所により静磁場変動の大きさが異なる場合がある。
また、高性能のクライオクーラはピストン運動する部品に磁性体を使用しており、この磁性体のピストン運動自体が静磁場変動の原因となる可能性がある。この場合にも、クライオクーラに近い場所の磁場は大きく変動し、クライオクーラから遠い場所の磁場は小さな変動となり、撮影空間内の場所による変動量の違いを生じる可能性がある。
上記の様な静磁場変動のあるMRI装置でEPI(Echo Planer Imaging)法を用いたダイナミック撮影を行うと、ワンショットEPIとマルチショット(分割型)EPIではEPI画像間で画像位置ずれ、つまり画像歪みが生じる。特に、マルチショットEPIでは画像位置ずれに加えて画像ボケも発生する。これは、分割された各ショットがそれぞれ異なる静磁場変動を受けた場合、分割された数の画像がそれぞれ位相エンコード方向の異なる位置に結像し、それらが合成されたような画像、つまり、ぼけたような画像が生成される。しかも、それぞれの像内にも場所毎の位置ずれが発生する。
さらに撮影空間内で静磁場変動量が異なるとEPI画像間で画像の歪み方が異なるという現象が発生する。
特にEPI法によるダイナミック撮影は、脳の局所活性度をわずかな信号変化から抽出するFunctional MRI(以下、「fMRI」と略記する)に利用されるが、このfMRIは局所の信号強度のわずかな違いを検出するため、画像に位置ずれや歪みが発生すると不正確な計測結果となってしまう。
上記静磁場変動による位置ずれを補正する技術として、例えば[特許文献1]に記載された技術がある。これは、EPI撮影によって取得された計測データのうち、位相エンコード量がゼロである信号データを使用して、静磁場変動による位置ずれを補正する。ただし、この技術は静磁場変動に限定したものではなく、MRI装置の稼働時間の経過とともに生ずるMRI装置の特性変動などに起因する画像の位置ずれを補正可能である。
また、上記静磁場変動による位置ずれを補正する他の技術として、撮影中に振動発生源であるクライオクーラを停止させる方法がある。
特開平9-289980号公報
[特許文献1]に記載の技術では、EPI法によって取得された計測データのうち、位相エンコード量ゼロの信号の位相値を使用して位置ずれ補正をしていることから、撮影空間内で一定の静磁場変動による位置ずれ補正が目的であって、撮影空間内で場所的に変動量の異なる静磁場変動に起因する位置ずれ補正に対しては考慮されていない。
さらに、[特許文献1]に記載の技術はワンショトEPIに適用される技術であり、マルチショットへの適用に関しては詳細に検討されていない。
また、前述のとおり、クライオクーラは超電導磁石の内部にある超電導コイルを冷却する冷媒(液体ヘリウム)の蒸発量を抑制するためにMRI装置の使用、不使用に関わらず通常24時間連続運転されるべきものである。従って、撮影中にクライオクーラを停止させることは、その間、高価な冷媒の蒸発量が増加してしまい経済的に好ましくない。
さらに、クライオクーラが原因で発生する静磁場変動は、撮影空間内の位置により変動量が異なる可能性がある。[特許文献1]に記載の技術は、前述のようにEPI法によって取得された計測データのうち、位相エンコード量ゼロの信号の位相値を使用していることから、撮影空間内で一定の静磁場変動による位置ずれ補正は可能であるが、撮影空間内で場所的に変動量の異なる静磁場変動に対しては考慮されていない。
そこで、本発明は上記課題を解決するためになされたものであり、本発明の目的は、クライオクーラが原因で発生する撮影空間内で場所的に異なる静磁場変動に対応して位置ずれ補正を行うことである。
上記目的を達成するために本発明のMRI装置は以下の様に構成される。即ち、撮影空間に静磁場を発生する静磁場発生手段と、EPIシーケンスに基づいて前記撮影空間に配置された被検体からk空間に対応するエコー信号を計測する計測制御手段と、前記エコー信号から被検体画像を再構成する信号処理手段と、を備え、前記信号処理手段は、前記静磁場の変動に基づいて発生する前記被検体画像の位置ずれを補正するMRI装置において、前記静磁場発生手段は、前記静磁場の変動をもたらす周期的振動発生部を備え、前記周期的振動発生部の振動位相を検出する手段と、前記周期的振動発生部の振動に基づく前記静磁場の3次元変動量を補正する3次元補正データを前記振動位相に対応付けて記憶する記憶手段と、を有し、前記信号処理手段は、前記3次元補正データの内から、前記周期的振動発生部の振動位相と前記被検体画像の撮影位置とに対応する正データを選択して前記被検体画像の位置ずれ補正を行う
これにより、周期的振動発生部が原因となって発生する画像上の位置ずれを、周期的振動発生部の振動位相と撮影平面の位置とに対応して画像の位置ずれを補正することができ、画質を向上させることができる。特に、ダイナミックEPI撮影においては、周期的振動発生部の振動の影響を受けやすいので、周期的振動発生部を常時運転させながら、その振動に依らずに高画質の画像を得ることが出来る
また、本発明のMRI装置の好ましい実施態様は、前記EPIシーケンスは、前記k空間を複数の領域に分割して、分割領域毎に該分割領域に対応するエコー信号を取得するマルチショット型であり、前記信号処理手段は、前記各ショットにおいて取得されエコー信号から再構成される画像毎に前記位置ずれ補正を行い、各位置ずれ補正済み画像に基づいて前記被検体画像を取得する。
これにより、特にマルチショットEPIシーケンスにおいても、上記効果と同様に、周期的振動発生部が原因となって発生する画像上の位置ずれを、周期的振動発生部の振動位相と撮影平面の位置とに対応して画像の位置ずれを補正することができ、画質を向上させることができる。
本発明によれば、超電導MRI装置において、クライオクーラが原因となって発生する静磁場変動による画像上の位置ずれ、画像歪、及び画像ボケを補正して良好な画質のダイナミック撮影EPI画像が得られるようになる。
以下、本発明の実施形態を添付図面に基づいて説明する。なお、発明の実施形態を説明するための全図において、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。
最初に、本発明が適用されるMRI装置の全体概要を図1に基づいて説明する。なお、図1に示す様に垂直磁場方式の超電導磁石を使用したMRI装置を例にして本発明を説明するが、本発明は水平磁場方式の超電導磁石を使用したMRI装置にも適用可能である。垂直磁場方式の超電導磁石は水平磁場方式超電導磁石と比較して、クライオクーラが原因となる静磁場変動の振動量や位置による振動量の変化が大きくなる可能性が高いので、本発明は垂直磁場方式の超電導磁石を使用したMRI装置に対してより好適である。
均一な静磁場を発生する磁石101中に、被検体102を置き、被検体102中の水素原子核(プロトン)に対して、核磁気共鳴を生じさせるために必要な高周波磁場を送受信システム106において発生させ、該高周波磁場を上側送信コイル103、下側送信コイル104より、天板117に載置された被検体102に対して照射する。一定時間照射後、被検体102中の水素原子核が発生する核磁気共鳴信号を受信コイル105によって検出し、検出された核磁気共鳴信号は、送受信システム106によって可聴周波数に変換され、さらにA/D変換器107によってディジタル信号となる。該デジタル信号は動作制御部109によって必要な処理をなされて画像に再構成される。また、撮影に必要な位置情報を付加するための傾斜磁場は、あらかじめ決められた必要な条件を満足するように動作制御部109によって制御された傾斜磁場電源108と該電源に接続された上側傾斜磁場コイル114、下側傾斜磁場コイル115によって発生される。また、前記送受信システム106も同様に計算機によって制御される。この計算機には、ハードディスクや光磁気ディスク等の記憶手段を備えており、後述する補正データを記憶しておく。
磁石101はその内部にヘリウム容器110と熱遮蔽板111が配置され、ヘリウム容器110の中には超電導コイル112が配置される。ヘリウム容器110内は超電導コイルを冷却するための冷媒である液体ヘリウムが充填され、超電導コイル112を極低温状態に保持する。超電導コイル112は極低温状態で抵抗がほぼゼロになり、一度電流を流すと、その電流を長期間持続することができる。熱遮蔽板111は外部から放射熱をヘリウム容器110に伝熱するのを防ぐために配置される。クライオクーラ113は熱遮蔽板111を冷却すると共に蒸発したヘリウムガスを冷却し、再度液体ヘリウムに液化するために、ヘリウム容器110に直結して設置される。
クライオクーラは通常1〜1.5秒周期でピストン運動する部品を有しており、その機械振動が磁石に伝わり、この磁石の振動が静磁場変動をもたらす。また高性能のクライオクーラはピストン運動する部品に磁性体を使用しており、この磁性体のピストン運動自体が静磁場変動の原因となる。
特に、垂直磁場方式のMRI装置において上下一対のヘリウム容器は相互に連結されるため、クライオクーラ113は上側ヘリウム容器110に設置される。そのため、クライオクーラ113の振動は上側ヘリウム容器110に直接伝達されてヘリウム容器の振動をもたらす。このヘリウム容器110の振動が撮影空間において静磁場を変動させる。しかも、クライオクーラ113に近い側の静磁場変動量がより大きく、クライオクーラ113から離れるに従って徐々に静磁場変動量が小さくなる。これは、下側ヘリウム容器が床面に固定されているので、上側ヘリウム容器と比較して振動が少ないことによる。
図2に静磁場変動の具体例を示す。撮影空間内の位置201〜203における静磁場変動量をそれぞれ211〜213のグラフに示す。クライオクーラに近い位置201では静磁場変動が大きく、例えば211に示すように40nT(ナノテスラ)の振幅で周期的に変動する。撮影空間のほぼ中心202では静磁場変動量が減少して、例えば212に示すように15nTの振幅で周期的に変動する。また、撮影空間のクライオクーラから遠いほぼ下側位置203では静磁場変動量が小さく、例えば213に示す様に1.5nTの振幅で周期的に変動する。振動源が共通であるために、静磁場変動の周期と位相は撮影空間のいずれの場所においても一致する。
このような静磁場変動のあるMRI装置でワンショットEPI撮影を行うと、静磁場変動量に応じて位相エンコード方向に画像の位置ずれが発生する。したがって、このような状況下でのワンショットEPIによるダイナミック撮影では、EPI画像間で位置ずれが発生する。特にfMRIでは、局所の信号強度のわずかな違いを検出するために、このような位置ずれの有る画像はfMRIには不適当になってしまう。
さらに、撮影空間内で静磁場変動量が場所毎に異なると問題が複雑になる。場所によって位相エンコード方向の位置ずれ量が異なるので、結果として場所毎に形状の歪み方が異なる画像が発生することになる。EPIで撮影された画像には、もともとある静磁場の不均一で画像歪が発生するが、さらに、静磁場変動がある中でEPIによるダイナミック撮影を行うと、画像歪も変動することになり、fMRI等には尚更不適当な画像となってしまう。
マルチショットEPI撮影の場合は問題がさらに複雑になる。分割された各ショットがそれぞれ異なる静磁場変動を受けた場合、分割された数の画像がそれぞれ位相エンコード方向の異なる位置に結像し、それらが合成されたような画像、つまりはぼけたような画像が生成される。しかも、それぞれの像内にも場所毎の位置ずれ、つまり画像歪が発生する。
次に、本発明を説明する。本発明は、クライオクーラの振動が原因となって発生する静磁場変動の周期と、振動量の位置依存性、つまり撮影空間内の場所毎の静磁場変動量を3次元変動データとして予め計測して、例えば計算機内の記憶手段(例えばハードディスクや光ディスク)に記憶しておき、この3次元変動データに基づいて画像の位置ずれ補正を行う。
(第1の実施形態)
最初に本発明の第1の実施形態を説明する。本実施形態は、ワンショットEPI撮影で得られる画像に対して本発明の位置ずれ補正を適用する形態である。本実施形態の一実施例を図3に示す処理フローに基づいて以下に詳細に説明する。
ワンショットEPI撮影を行う前に、予めクライオクーラの振動が原因となって発生する静磁場変動の周期、変動量、変動量の位置依存性の補正データを予め計測して、計算機内の記憶手段にその情報を記憶しておく。
静磁場変動量の位置依存性等の補正データは、例えば、小さなファントムを用いて50mm程度の間隔で、クライオクーラの振動位相と対応付けて、クライオクーラの振動位相毎に撮影空間内の場所毎の静磁場変動量を測定することによって取得する。前述のようにクライオクーラは1〜1.5秒の周期で機械振動をするので静磁場も1〜1.5秒の周期で変動する。そこで、例えば一周期を10分割して0.1〜0.15秒間隔で撮影空間の場所毎に静磁場変動量(つまり、3次元静磁場変動量)をその時点でのクライオクーラの振動位相と対応付けて測定し、3次元変動データとする。なお、測定位相以外の位相時の3次元変動データは、実際に計測せずに測定位相のデータから補間によって求めることもできる。
ここで、クライオクーラ113の振動位相の検出は、例えばクライオクーラ113に加速度センサーを取付けて、振動を検出することによって行うことができる。クライオクーラ113の振動は一定なので、撮影中ずっと振動を検出する必要はなく、撮影前にある時刻の振動位相を検出して、以降の撮影においてはその時刻を基準に行えば、撮影中の任意の時刻におけるクライオクーラ113の振動位相は計算可能となる。
また、静磁場変動の符号付相対値を3次元変動データとして計算機内記憶手段に保有しておく。
ステップ301で、クライオクーラ113の振動位相を取得する。これは、実際に計測するか、又は上記の様にして実測値から計算して求める。
ステップ302で、ワンショットEPIでダイナミック撮影を行い、指定された撮影平面のエコー信号を取得する。なお、上記のように撮影前のクライオクーラ113の振動検出で、撮影中のクライオクーラ113の振動位相を計算可能である。
ステップ303で、[特許文献1]に記載の位置補正技術を適用して、位置ずれ補正を行う。この文献に記載の補正方法は、位相エンコード量がゼロのエコー信号におけるエコー中心の位相値、および、高周波磁場の印加時刻と前記位相エンコード量がゼロのエコー信号におけるエコー中心の時間差(TE)から、エコー信号における単位時間あたりの位相回転量を推定し、この単位時間あたりの位相回転量から位相エンコード量が非ゼロの各エコー信号の位相補正量を決定し、各エコー信号の位相補正を行うものである。この位相補正により、画像全体の位置ずれ補正が可能となる。
この処理をより具体的に説明する。位相エンコード量がゼロのエコー信号からそのエコー中心の位相Phs0を求め、これから画像全体の位置ずれ補正量を求める。つまり、画像全体の位置ずれ補正量Lは
ω≡Phs0/TE (1)
Δθ≡ (ω×Δt) (2)
L≡(FOV/M)× (ω×Δt) /2π (3)
として求められる。ここで、ωはステップ302のワンショットEPIにおいて、エコー信号が受ける位相の時間変化率(いわゆる角速度)を表し、それは位相エンコード量がゼロのエコー信号のエコー中心の位相Phs0を、高周波磁場の印加時刻からそれまでの時間間隔TE(つまりエコー時間)で割った値になる。また、FOVは撮影視野(Field Of View)である。そして、ΔtはワンショットEPIにおいて隣り合うエコー信号間の時間間隔で、Δθはその時間間隔内での位相の回転量、つまり、位相エンコード毎のエコー信号における位相の変化量を表す。Mは画像の位相エンコード方向のマトリックス数である。
一般に、k空間における位相エンコード方向の位相変化の1次項(つまり、位相エンコード毎のエコー信号における位相の変化量)が画像空間における画像の位相エンコード方向の位置ずれに対応することが知られている。そこで、画像全体の位置ずれ補正は、各エコー信号に対してその位相エンコード量に対応する位相回転を与えることによって行われる。つまり、位相エンコード量j(例えば−128〜127の整数値)のエコー信号に対しては、
θ(j)≡−( Phs0+Δθ×j ) (4)
の位相回転を与える。このエコー信号毎の位相回転により、画像全体を位相エンコード方向に−Lだけシフトさせて全体の位置ずれ補正を行うことができる。
ステップ304で、ステップ301で取得したクライオクーラの振動位相と、ステップ302の撮影時に設定された撮影平面の位置に対応する変動データを、その3次元変動データが記憶されたデータベース310から取得する。
ステップ305で、ステップ304で取得した撮影平面における予め測定された変動データを、その平面内で正規化して変動相対値データを求め、これから画像のピクセル毎の位置ずれ補正値を求める。
撮影平面の変動相対値データを求めるためには、この平面内で撮影対象が存在するピクセル毎の変動データの総和を求め、それらのピクセル毎の変動データをこの総和で割った値をそのピクセルの正規化補正値とする。具体的には、ピクセル毎の変動データをVij(i,jはピクセル座標)とすると、以下の(5)式のようにピクセル毎の正規化補正値を
Vij/(ΣVij/N) (5)
とすることができる。ここでNは演算対象ピクセルの総数である。従って、ピクセル毎の実際の位置ずれ補正量Pijは、(3)式の画像全体の位置ずれ補正量Lを用いて
Pij≡L×{Vij/(ΣVij/N) } (6)
と表すことができる。
図4を用いて正規化処理を具体的に説明する。図4において、図4(a)に示した様に予め測定されて記憶された3次元変動データ401から、図4(b)に示した様な撮影平面の変動データ402が抽出される。撮影平面の変動データ402は、ピクセル毎の変動データが2次元配列となったものである。この各数値はピクセル毎の位相エンコード方向の位置ずれ量を表す。そこで、太枠の四角 403で囲まれた4つのピクセル領域に被検体の撮影対象が存在するとすれば、その領域の総和は44になるので、平均は11となる。そこで、各ピクセル値をこの平均値11で割った値がピクセル毎の正規化補正値となる。その様子が図4(c)に示されている。
ステップ306で、ステップ303で求めた画像全体の位置ずれ補正量Lと、ステップ305で求めたピクセル毎の位置ずれ補正値Pijから、画像全体の位置ずれ補正に加えて更に必要な位相エンコード方向の位置ずれ補正値Cijをピクセル毎に求める。この値は、(3),(6)式から、
Cij≡L−Pij (7)
となる。
(7)式は、ステップ303で既に画像の全体位置ずれ補正が行われているので、ステップ305で求めたピクセル毎の位置ずれ補正を行うために、更にどれくらいピクセル毎に位置ずれ補正を行うべきかを表している。ここで、Cijが正の値であれば正の位相エンコード方向にそのピクセルをシフトさせる。逆にCijが負の場合は、そのピクセルを負の位相エンコード方向にシフトさせる。
ステップ307で、ステップ306で求めた撮影平面内のピクセル毎の補正値Cijに基づいて、撮影平面画像に対してピクセル毎の位置ずれ補正を行う。
図5に示す例を用いて上記ステップ306,307におけるピクセル毎の位置ずれ補正を具体的に説明する。図5は図4に示した撮影平面の内、撮影対象が存在する4つのピクセル領域403の位置ずれとそのピクセル毎の補正を具体的に示している。
クライオクーラの振動の様子が501として、その極大値の際のエコー信号502を検出して、そのエコー信号に基づいて撮影平面の画像を得た場合を505に、振動が極小値の際のエコー信号503を検出して、そのエコー信号に基づいて撮影平面の画像を得た場合を504に示す。
504-1,505-1は、共にクライオクーラの振動が発生しない場合に得られるはずの位置ずれ無しのピクセル領域403である。
504-2,505-2は、クライオクーラの振動によりピクセル領域403にピクセル毎の位置ずれによる画像歪みが発生した場合である。504-2では4つのピクセルがそれぞれ(+L)×30/11,(+L)×10/11,(+L)×1/11,(+L)×3/11だけ位相エンコード方向に位置ずれが生じた場合を示しており、505-2では4つのピクセルがそれぞれ(−L)×30/11,(−L)×10/11, (−L)×1/11, (−L)×3/11だけ位相エンコード方向に位置ずれが生じた場合を示している。
504-3,505-3は、ステップ303で行われる画像全体の位置補正を行った場合であって、504-3は位置ずれが全体として正の位相エンコード方向に+Lだけシフトしているので、それを全体として補正するために負の位相エンコード方向に−Lだけ位置ずれ補正をおこなっており、505-3は位置ずれが全体として負の位相エンコード方向に−Lだけシフトしているので、それを全体として補正するために正の位相エンコード方向に+Lだけ位置ずれ補正を行った場合である。つまり、504-3では4つのピクセルをそれぞれ負の位相エンコード方向に−Lだけシフトし、505-3では4つのピクセルをそれぞれ正の位相エンコード方向に+Lだけシフトして、それぞれ全体の位置ずれ補正を行った場合である。
504-4,505-4は、さらにピクセル毎に位置ずれ補正を行った場合である。504-4では、504-2で示したピクセル毎の位置ずれを補正するために、504-3で行った画像全体の位置ずれ補正で補正しきれなかった分のみの補正が行われる。即ち、(7)式に基づいて4つのピクセルをそれぞれ(−L)×19/11,(+L)×1/11,(+L)×10/11,(+L)×8/11だけ位相エンコード方向にシフトして位置ずれ補正を行った場合である。同様に505-4では、505-2で示したピクセル毎の位置ずれを補正するために、505-3で行った画像全体の位置ずれ補正で補正しきれなかった分のみの補正が行われる。即ち、4つのピクセルをそれぞれ(+L)×19/11,(−L)×1/11,(−L)×10/11, (−L)×8/11だけシフトして位相エンコード方向に位置ずれ補正を行った場合である。
上記ピクセルのシフト処理を図6を用いて具体的に説明する。位置ずれが発生した状態で求められた画像の位相エンコード方向の格子点601〜605の値は、位置ずれがそれぞれ発生しているために、本来は格子点でない611〜615の位置の値となるべきものである。そこで、求められた格子点601〜605の値をそれぞれステップ303と307で求められたシフト量だけシフトさせて611〜615の点の値として、これらのシフトされた点611〜615を通る補間曲線を求める。これには例えば公知のスプライン補間法等を利用することができる。そして、この求められた補間曲線から格子点601〜605の値を求める。このようにして位置ずれ補正された格子点上の値が求められて、撮影平面画像の位相エンコード方向の位置ずれ補正をピクセル毎に行うことができる。
(第2の実施形態)
次に本発明の第2の実施形態を説明する。本実施形態は、マルチショットEPI撮影で得られる画像に対して本発明の位置ずれ補正を適用する形態である。本実施形態の一実施例を図7に示す処理フローで詳細に説明する。
第1の実施形態と同様にマルチショットEPI撮影を行う前に、予めクライオクーラの振動が原因となって発生する静磁場変動の周期、変動量、変動量の位置依存性の補正データを予め計測して計算機内の記憶手段にその情報を記憶しておく。ただし、クライオクーラの振動データはシングルショット時のデータと同じものが使用できるので、既に取得して有る場合は、再度取得する必要はない。
マルチショットEPI撮影の場合、ショット毎にクライオクーラの振動位相が異なるので、ショット毎に静磁場変動量が異なり、結果とし位相エンコード方向の位置ずれ量も異なる。そこで、本発明の位置ずれ補正法をマルチショットEPI撮影に適用する場合には、ショット毎にクライオクーラの振動位相を求めて、その振動位相に対応する位置ずれ補正を行う必要がある。ただし、シングルショット時と同様、クライオクーラの振動は一定なので、撮影中ずっと振動を検出するという必要はなく、撮影前にある時刻の振動位相を検出して、以降の撮影においてその時刻を基準に行えば、撮影中の任意の時刻におけるクライオクーラの位相を計算によって求めることが可能である。
そのために、ショット毎のエコー信号のみから画像を再構成して、その画像において第1の実施形態と同様の画像の位置ずれ補正を行い、位置ずれ補正済みの全ショットのデータをk空間上で合成した後に、最終的な画像を得る。
このマルチショットEPI撮影における位置ずれ補正の各処理ステップを図7に基づいて詳細に説明する。
ステップ701で、マルチショットEPIでダイナミック撮影を行うためのループカウンタnに初期値1をセットする。
ステップ702で、ステップ301と同様にクライオクーラの振動位相を取得する。または計算によって求める。
ステップ703で、n番目のショットにおけるエコー信号を計測する。
ステップ704で、ステップ702で取得したクライオクーラの振動位相と、ステップ703で計測したnショット番目のエコー信号を対応付けて計算機内記憶手段に一時記憶しておく。
ステップ705で、nがショット数の最大値に達したか否かを判断し、達してない場合はステップ706に進み、達した場合はステップ707に進む。
ステップ706で、ループカウンタをインクリメントし、ステップ702に進む。
ステップ707で、画像再構成に必要なk空間の全データが揃ったので、ステップ303と同様の画像全体の位置ずれ補正を行う。ただし、(4)式のPhs0とΔθは位相エンコード量ゼロを含むショットで取得された値を他のショットでも用いる。
ステップ708で、ショット毎に画像のピクセル毎の位置ずれ補正をおこなうためのループカウンタを初期値1にセットする。
ステップ709で、n番目のショットに対応するエコー信号のみから画像を再構成する。
ステップ710で、ステップ709でn番目のショットに対応するエコー信号のみから再構成された画像に対して、ステップ307と同様のピクセル毎の位置ずれ補正を行う。そのためには、以下の各処理を行う。即ち、
ステップ304と同様に、ステップ702で取得したこのショットでのエコー信号計測時のクライオクーラの振動位相と、この撮影平面の位置に対応する変動データを、その3次元変動データが記憶されたデータベース310から取得し、
ステップ305と同様に、変動データをその撮影平面内で正規化して変動相対値データを求め、これから画像のピクセル毎の位置ずれ補正値を求め、
ステップ306と同様に、画像全体の位置ずれ補正量に加えて更に必要な位相エンコード方向の位置ずれ補正値をピクセル毎に求め、計算機内記憶手段に一時記憶する。
ステップ307と同様に、ピクセル毎に位相エンコード方向の位置ずれ補正を行う。ただし、n=2回目以降の処理では、n=1の時に求めたピクセル毎の位置ずれ補正値を流用する。
ステップ711で、ステップ710でピクセル毎に位置ずれ補正された画像を逆フーリエ変換してk空間データとし、計算機内記憶手段に一時記憶する。
ステップ712で、nがショット数の最大値に達したか否かを判断し、達してない場合はステップ713に進み、達した場合はステップ714に進む。
ステップ713で、ループカウンタをインクリメントし、ステップ709に進む。
ステップ714で、一時記憶したk空間データを合成(例えば、k空間上で加算する)し、フーリエ変換して画像再構成する。
本発明では静磁場変動量の3次元変動データが予め計測され、計算機内記憶手段に記憶されているため、位相エンコードがゼロのエコー信号のエコー中心の位相と、それまでの高周波磁場からの時間間隔(TE)とから位相エンコードが非ゼロのエコー信号取得時の静磁場変動量も予測することができる。
つまり、位相エンコードがゼロのエコー信号が存在するショットで静磁場変動量が求められれば、位相エンコードがゼロのエコー信号が存在しないショットでの静磁場変動量も推定可能である。上述の処理フローでは、上記処理ステップ702でショット毎にクライオクーラの振動位相を取得しているが、これを位相エンコードがゼロのエコー信号の計測を含むショットのみで行い、ステップ710では、このショットと他のショット間の時間間隔からクライオクーラの振動位相を推定して、この推定位相を用いてもよい。
本発明のMR装置の概略を示す図。 撮影空間における静磁場変動の様子を示す図。 本発明のシングルショットEPIでの処理フローを示す図。 (a)は3次元変動データを示す図であり、(b)は撮影平面内での変動データの正規化の具体例を示す図。 ピクセル毎の位置ずれ補正の概略を示す図。 ピクセル毎の位置ずれ補正を行う際の、ピクセルデータを位相エンコード方向にシフトする処理の概略を示す図。 本発明のマルチショットEPIでの処理を示す。
符号の説明
101…磁石、102…被検体、103…上側送信コイル、104…下側送信コイル、105…受信コイル、106…送受信システム、107…A/D変換器、108…傾斜磁場電源、109…計算機、110…ヘリウム容器、111…熱遮蔽板、112…超電導コイル、113…クライオクーラ、114…傾斜磁場コイル、 115…下側傾斜磁場コイル、116…被検体空間、117…天板

Claims (5)

  1. 撮影空間に静磁場を発生する静磁場発生手段と、EPIシーケンスに基づいて前記撮影空間に配置された被検体からk空間に対応するエコー信号を計測する計測制御手段と、前記エコー信号から被検体画像を再構成する信号処理手段と、を備え、
    前記信号処理手段は、前記静磁場の変動に基づいて発生する前記被検体画像の位置ずれを補正する磁気共鳴イメージング装置において、
    前記静磁場発生手段は、前記静磁場の変動をもたらす周期的振動発生部を備え、
    前記周期的振動発生部の振動位相を検出する手段と、
    前記周期的振動発生部の振動に基づく前記静磁場の3次元変動量を補正する3次元補正データを前記振動位相に対応付けて記憶する記憶手段と、を有し、
    前記信号処理手段は、前記記憶手段に記憶された3次元補正データの内から、前記周期的振動発生部の振動位相と前記被検体画像の撮影位置とに対応する補正データを選択して前記被検体画像の位置ずれ補正を行うことを特徴とする磁気共鳴イメージング装置。
  2. 請求項1に記載の磁気共鳴イメージング装置において、
    前記EPIシーケンスは、前記k空間を複数の領域に分割して、分割領域毎に該分割領域に対応するエコー信号を取得するマルチショット型であり、
    前記信号処理手段は、前記各ショットにおいて取得されたエコー信号から再構成される画像毎に前記位置ずれ補正を行い、各位置ずれ補正済み画像に基づいて前記被検体画像を取得することを特徴とする磁気共鳴イメージング装置。
  3. 請求項1又は2に記載の磁気共鳴イメージング装置において、
    前記静磁場発生手段は、内部に超電導コイルと該超電導コイルを極低温に維持する液体ヘリウムが充填されたヘリウム容器を有し、
    前記周期的振動発生部は、液体ヘリウムが気化したヘリウムガスを凝縮して再度液体ヘリウムに戻すクライオクーラであることを特徴とする磁気共鳴イメージング装置。
  4. 請求項3に記載の磁気共鳴イメージング装置において、
    前記ヘリウム容器は、2つのヘリウム容器が接続されて一対となって、前記撮影空間を間に挟んで対向配置されて構成され、
    前記クライオクーラは、何れか一方のヘリウム容器に接続されていることを特徴とする磁気共鳴イメージング装置。
  5. 請求項1乃至4のいずれか一項に記載の磁気共鳴イメージング装置において、
    前記信号処理手段は、前記被検体画像のピクセル毎に、該ピクセルの位置を位相エンコード方向に移動させて、前記位置ずれ補正を行うことを特徴とする磁気共鳴イメージング装置。
JP2004154148A 2004-05-25 2004-05-25 磁気共鳴イメージング装置 Expired - Fee Related JP4335072B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004154148A JP4335072B2 (ja) 2004-05-25 2004-05-25 磁気共鳴イメージング装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004154148A JP4335072B2 (ja) 2004-05-25 2004-05-25 磁気共鳴イメージング装置

Publications (3)

Publication Number Publication Date
JP2005334101A JP2005334101A (ja) 2005-12-08
JP2005334101A5 JP2005334101A5 (ja) 2007-06-28
JP4335072B2 true JP4335072B2 (ja) 2009-09-30

Family

ID=35488312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004154148A Expired - Fee Related JP4335072B2 (ja) 2004-05-25 2004-05-25 磁気共鳴イメージング装置

Country Status (1)

Country Link
JP (1) JP4335072B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6571434B2 (ja) * 2015-07-27 2019-09-04 キヤノンメディカルシステムズ株式会社 磁気共鳴イメージング装置及び磁気共鳴イメージング装置のアーティファクト抑制方法
CN110178042A (zh) * 2017-01-12 2019-08-27 皇家飞利浦有限公司 冷头周期运动的补偿
EP3699603A1 (de) * 2019-02-21 2020-08-26 Siemens Aktiengesellschaft Verfahren zum überwachen einer stromleitung

Also Published As

Publication number Publication date
JP2005334101A (ja) 2005-12-08

Similar Documents

Publication Publication Date Title
US10634753B2 (en) MR imaging with motion detection
JP4657405B2 (ja) 磁気共鳴イメージング装置及び磁気共鳴イメージングシステム
US7656156B2 (en) MRI apparatus and method for processing MR imaging data
US6661227B2 (en) MR method and MR device with means for making corrections for changes of the position and/or orientation of coils
US10261148B2 (en) Magnetic resonance imaging apparatus and manufacturing method thereof
JP3728167B2 (ja) 磁気共鳴イメージング装置
WO2010035569A1 (ja) 磁気共鳴イメージング装置
JPH11113878A (ja) 磁気共鳴イメージング方法
US10048343B2 (en) Magnetic resonance imaging apparatus and magnetic resonance imaging method
US7292034B2 (en) Method for dynamic detection and change in the magnetic field distribution in magnetic resonance (NMR) measurements
JP2016168265A (ja) 磁気共鳴イメージング装置、および、その運転方法
EP3673281A1 (en) Dixon-type water/fat separation mr imaging
JP7245076B2 (ja) 磁気共鳴イメージング装置及び磁気共鳴イメージング方法
US20070170917A1 (en) Magnetic resonance imaging with real-time magnetic filed mapping
JP4335072B2 (ja) 磁気共鳴イメージング装置
Lin et al. Motion correction using an enhanced floating navigator and GRAPPA operations
US20180210059A1 (en) Magnetic resonance imaging apparatus and method of controlling the same
JPH03224538A (ja) 一次の静磁場不均一を補正して計測する過程を備えたmri装置
JPWO2016093085A1 (ja) 磁気共鳴イメージング装置及び冷凍機の運転制御方法
US7812603B2 (en) Method for determining local deviations of a main magnetic field of a magnetic resonance device
JP3346903B2 (ja) 磁気共鳴イメージング装置
EP3480617A1 (en) Diffusion weighted turbo spin echo mr imaging with motion compensation
JP6699977B2 (ja) 磁気共鳴システムにおける機械式クライオクーラの発振によって引き起こされる磁場の不安定性の低減
Lin et al. Correcting bulk in-plane motion artifacts in MRI using the point spread function
Peshkovsky et al. Motion correction in MRI using an apparatus for dynamic angular position tracking (ADAPT)

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070515

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090624

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees