JP4334402B2 - Assembly simulation device for linear flexible objects - Google Patents

Assembly simulation device for linear flexible objects Download PDF

Info

Publication number
JP4334402B2
JP4334402B2 JP2004125248A JP2004125248A JP4334402B2 JP 4334402 B2 JP4334402 B2 JP 4334402B2 JP 2004125248 A JP2004125248 A JP 2004125248A JP 2004125248 A JP2004125248 A JP 2004125248A JP 4334402 B2 JP4334402 B2 JP 4334402B2
Authority
JP
Japan
Prior art keywords
force
restraint
dimensional
constrained
linear flexible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004125248A
Other languages
Japanese (ja)
Other versions
JP2005306187A (en
Inventor
五月 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor East Japan Inc
Original Assignee
Kanto Auto Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Auto Works Ltd filed Critical Kanto Auto Works Ltd
Priority to JP2004125248A priority Critical patent/JP4334402B2/en
Publication of JP2005306187A publication Critical patent/JP2005306187A/en
Application granted granted Critical
Publication of JP4334402B2 publication Critical patent/JP4334402B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Automatic Assembly (AREA)

Description

本発明は、互いに間隔を置いた複数個所の被拘束部位を配索部の拘束部位に順に拘束具で拘束させて組付けた状態に配索される線状柔軟物が、画像表示装置の画面に表示された三次元仮想空間に表示されると共に、組付け作業のシミュレーションのために、組付け済みの前記被拘束部位に続き、かつ三次元仮想空間上で位置を指示された次の被拘束部位が、所属の拘束部位へ移動させられる際に、組付けに要する操作力に対応する力覚が付与されるようになった線状柔軟物の組付けシミュレーション装置に関するものである。   The present invention relates to a screen of an image display device in which a linear flexible object that is arranged in a state in which a plurality of constrained parts spaced apart from each other are assembled in a constrained manner by constraining a constrained part of a wiring part to a constraining part of a wiring part. The next constrained displayed in the three-dimensional virtual space displayed on the 3D virtual space, followed by the constrained part that has been assembled and whose position is indicated in the three-dimensional virtual space, for the simulation of the assembly work. The present invention relates to a linear flexible object assembly simulation apparatus in which a force sense corresponding to an operation force required for assembly is given when a region is moved to an associated restraint region.

工業製品の設計に際して、有限要素法による剛性解析は従来から広く行われており、例えば特許文献1によれば、自動車のタイヤの製造の試作の回数を減らすために、要素数及び節点数を減少させて能率よく変形解析等の実装状態での総合的なタイヤ性能をシュミレーションするタイヤ解析モデルの作成方法が開示されている。   In the design of industrial products, rigidity analysis by the finite element method has been widely performed. For example, according to Patent Document 1, the number of elements and the number of nodes are reduced in order to reduce the number of trial production of automobile tires. A method for creating a tire analysis model that simulates the overall tire performance in a mounted state such as deformation analysis is efficiently disclosed.

一方、線状柔軟物については、敢えて有限要素法に依らずに、変形解析の演算負荷を軽減して変形解析の評価を画面上で行うために、特許文献2によれば、三次元的に車両に配索されるワイヤハーネスの三次元設計データのデータ入力工程と、基準配線データの画像を三次元仮想空間に背景画像として表示する画像表示工程と、三次元設計データを背景画像に重ねて表示する三次元設計データ表示工程と、データ入力手段での入力に応じて三次元設計データとしてのワイヤハーネスの形状を変更して表示する三次元データ変形工程とを備え、例えばマウスにより三次元仮想空間で三次元設計データを移動させてポリゴン処理・表示により基準配線データ画像に対応させるワイヤハーネスの三次元仮想組立方法が開示されている。これにより、ワイヤハーネスの試作品が車両に配索される際の寸法不足、無理な取付け角度等の発生を回避して、試作を繰返さないで配線状態を設定しようとしている。   On the other hand, according to Patent Document 2, in order to reduce the calculation load of deformation analysis and evaluate the deformation analysis on the screen, the linear flexible object is not dependent on the finite element method. Data input process for 3D design data of the wire harness routed in the vehicle, image display process for displaying the image of the reference wiring data as a background image in the 3D virtual space, and overlaying the 3D design data on the background image A three-dimensional design data display step for displaying, and a three-dimensional data transformation step for changing and displaying the shape of the wire harness as the three-dimensional design data in accordance with the input by the data input means. A three-dimensional virtual assembly method for a wire harness is disclosed in which three-dimensional design data is moved in space and associated with a reference wiring data image by polygon processing / display. As a result, it is attempted to set the wiring state without repeating the prototype, avoiding the occurrence of insufficient dimensions, unreasonable mounting angles, etc. when the prototype of the wire harness is routed to the vehicle.

さらに、画面の三次元仮想空間において実際の操作を模した操作を行う等のバーチャルリアリティの分野においては、特許文献3により、操作者に対して画面の表示内容に応じて操作反力を与えて操作感覚を与えるように、回転可能な球状タイヤに接して連動するローラの回転に応動するロータリーエンコーダの出力信号から手動操作により位置決めを行うポインティング装置において、ローラにフィードバック用のモータを付属させることが提案されている。或は特許文献4により、表示装置とコンピュータとによるカテーテルを用いる手術用訓練シュミレータ等に対して、三次元の仮想現実空間において仮想物体に触れて、その形状や硬さ等の幾何学的物理的情報入力を体験するためのフォースフィードバックによる力覚インタフェース装置が提案されている。さらに、このような力覚呈示装置として、文献5により力覚センサを指先に装着して呈示しようとする力覚と力覚センサの出力値との差に基づいて能動関節のアクチュエータを駆動したり、文献6により仮想空間の物体に接触したときの力の強さの力覚を指に呈示するもの等種々提案されている。
特開2002−82998号公報 特開2002−373533号公報 特開平7−13693号公報 特開2000−181618号公報 特開2002−182817号公報 特開2003−337653号公報
Further, in the field of virtual reality, such as performing an operation simulating an actual operation in the three-dimensional virtual space of the screen, according to Patent Document 3, an operation reaction force is given to the operator according to the display content of the screen. In order to give a feeling of operation, in a pointing device that performs positioning by manual operation from the output signal of the rotary encoder that responds to the rotation of the roller that contacts and rotates with the rotatable spherical tire, a feedback motor may be attached to the roller. Proposed. Or, according to Patent Document 4, for a surgical training simulator or the like using a catheter of a display device and a computer, a virtual object is touched in a three-dimensional virtual reality space, and its geometrical physical properties such as shape and hardness are touched. A force feedback interface device using force feedback for experiencing information input has been proposed. Furthermore, as such a force sensation presentation device, the actuator of the active joint is driven based on the difference between the force sensation to be presented with the force sensation attached to the fingertip and the output value of the force sensation according to Document 5. Various proposals have been made by the literature 6 such as presenting a force sense of the strength of a force when touching an object in a virtual space.
JP 2002-82998 A JP 2002-373533 A Japanese Patent Laid-Open No. 7-13893 JP 2000-181618 A JP 2002-182817 A JP 2003-337653 A

前述の解析方法を含めて、解析有限要素法に依るか否かに拘らず、剛性解析は特定の入力条件に対して特定の解析結果を求めるのが一般的であり、ワイヤハーネス、パイプ等のような線状柔軟物の変形解析についても入力条件に対応する変形形状を一義的に確認している。換言すれば、例えばワイヤハーネスについて、その特定部位の移動に対して、線状柔軟物の変形を視覚的に確認するような解析装置は存在していない。   Regardless of whether or not it depends on the analysis finite element method including the analysis method described above, the rigidity analysis generally obtains a specific analysis result for a specific input condition. In the deformation analysis of such a linear flexible object, the deformation shape corresponding to the input condition is uniquely confirmed. In other words, for example, for a wire harness, there is no analysis device that visually confirms the deformation of the linear flexible object with respect to the movement of the specific part.

そこで、本出願人は特願2003−189201により、画面上の三次元仮想空間に柔軟物の三次元形状を模したグラフィック表示を行う画像表示手段と、所定部位で拘束されている柔軟物の特定部位が画面上で指示されて移動させられた移動位置を三次元仮想空間の三次元座標値として認識する座標値認識手段と、柔軟物の物性データ、形状データ及び拘束条件を入力条件として、認識された移動位置の三次元座標値データに応答して、有限要素法により特定部位の移動に伴って初期状態の柔軟物の解析モデルが変形するのを解析して変形解析モデルを逐次作成する変形解析手段とを備え、画像表示手段が、解析された変形解析モデルに応答して、変形した柔軟物の三次元形状を模したグラフィック表示を逐次行う柔軟物の変形解析装置を提案した。   Therefore, according to Japanese Patent Application No. 2003-189201, the present applicant specifies an image display unit that performs graphic display imitating the three-dimensional shape of a flexible object in a three-dimensional virtual space on the screen, and specifies a flexible object constrained at a predetermined part. Coordinate value recognition means for recognizing the movement position where the part is instructed and moved on the screen as the three-dimensional coordinate value of the three-dimensional virtual space, and the physical property data, shape data, and constraint conditions of the flexible object as input conditions Deformation analysis model is sequentially created by analyzing the deformation model of the initial state of flexible object with the movement of the specific part by the finite element method in response to the three-dimensional coordinate value data of the moved position An apparatus for analyzing deformation of a flexible object, wherein the image display means sequentially performs graphic display imitating the three-dimensional shape of the deformed flexible object in response to the analyzed deformation analysis model. The proposal.

これにより、ワイヤハーネス等の線状柔軟物のクランプ具或はコネクタ等の拘束具を取付けた被拘束部を組付け時に移動させた場合のワイヤハーネス形状の変形過程が、有限要素法で精度良く逐次解析されると共に、その三次元形状を模して表示され、したがって柔軟物製の部品を実装する際の周辺部品との干渉、或は実装状態での変動に伴う周辺部品との干渉等の変形に伴う問題点が、画面上で高精度に評価可能となる。しかしながら、この解析は三次元仮想空間上でマウス等の操作により行われるもので、ワイヤハーネス自体の反力に対応する操作力或は拘束具により係合させるための組付け作業に必要な操作力を体感させることまでは考慮されていない。したがって、実際の組立作業に際してのスムーズなワイヤハーネス操作経路或は操作力等の作業感覚を事前に把握することができず、また作業負荷の事前評価を正確に行うことはできない。   As a result, the deformation process of the wire harness shape when the constrained part attached with the clamp device of the linear flexible object such as the wire harness or the restraint device such as the connector is moved during the assembly can be accurately performed by the finite element method. In addition to being analyzed sequentially, it is displayed imitating its three-dimensional shape, so interference with peripheral parts when mounting a flexible part, or interference with peripheral parts due to variations in the mounting state, etc. Problems associated with deformation can be evaluated on the screen with high accuracy. However, this analysis is performed by operating a mouse or the like in the three-dimensional virtual space, and the operation force corresponding to the reaction force of the wire harness itself or the operation force necessary for the assembly work to be engaged by the restraint tool. It is not taken into consideration until you feel it. Therefore, it is not possible to grasp in advance the work sensation such as a smooth wire harness operation path or operation force in actual assembly work, and it is not possible to accurately evaluate the work load in advance.

本発明は、このような点に鑑みて、線状柔軟物の組付作業に際して線状柔軟物の被拘束部位を拘束部位へ移動させる過程での変形形状を有限要素法により解析して画面上で確認可能にすると共に、非拘束位置から拘束部位で拘束具により拘束操作される過程での組付けに必要な操作力に相当する力覚を付与し得る線状柔軟物の組付けシミュレーション装置を提供することを目的とする。   In view of these points, the present invention analyzes the deformation shape in the process of moving the constrained part of the linear flexible object to the constrained part during the assembly work of the linear flexible object, and displays it on the screen. And a linear flexible object assembly simulation apparatus capable of giving a force sense corresponding to an operation force required for assembly in the process of being restrained by a restraint tool at a restraint site from a non-restraint position. The purpose is to provide.

本発明は、この目的を達成するために、請求項1により、互いに間隔を置いた複数個所の被拘束部位を配索部の拘束部位に順に拘束具で拘束させて組付けた状態に配索される線状柔軟物が、画像表示装置の画面に表示された三次元仮想空間に表示されると共に、組付け作業のシミュレーションのために、組付け済みの被拘束部位に続いて次に組付けされるべき、三次元仮想空間上で指示された次の被拘束部位が、所属の拘束部位へ移動させられる際に、組付けに要する操作力に対応する力覚が付与されるようになった線状柔軟物の組付けシミュレーション装置であって、三次元位置に可動で、かつ変位センサ(S1〜S3)及びアクチュエータ(M1〜M3)が付属している可動部材12,14,16)の先端に、被拘束部位(P4,P5)の三次元位置を手動操作により指示し、かつ力覚が付与されるように、手で握るボール状のポインタ(11)を備えた力覚呈示器(10)と、変位センサ(S1〜S3)による可動部材(12,14,16)の変位位置の検知信号に応答して、ポインタ(11)により指示された次の被拘束部位(P4,P5)の三次元位置を規定する三次元座標値データを手動操作に従い出力する座標データ出力手段(25)と、三次元位置に可動で、かつ変位センサ(S1〜S3)及びアクチュエータ(M1〜M3)が付属している可動部材(12,14,16)の先端に、被拘束部位(P4,P5)の三次元位置を手動操作により指示すると共に力覚が付与されるように、手で握るボール状のポインタ(11)を備えた力覚呈示器(10)と、線状柔軟物(5)の物性データ及び形状データ並びに拘束部位(P1〜P3)及び被拘束部位(P4,P5)の三次元位置を含む拘束条件を入力条件として、ポインタ(11)により次の被拘束部位(P4,P5)を所属の拘束部位(P1〜P3)へ向けて移動させる移動過程における線状柔軟物(5)の変形形状及び移動過程において次の被拘束部位(P4,P5)に生じる反力を有限要素法により解析する解析手段(21)と、被拘束部位(P4,P5)を拘束具(6;7,7a)により所属の拘束部位(P1〜P3)に拘束させる際に要する拘束操作ストローク間の荷重データを格納する荷重データ格納手段(22)と、被拘束部位(P4,P5)が拘束部位(P2,P3)で拘束操作されるまでの移動過程では反力を操作力とし、拘束操作ストローク間の移動過程では反力に荷重データを加算して操作力とする操作力データを出力する操作力データ出力手段(23)と、操作力の大きさ及び方向に対応してアクチュエータ(M1〜M3)の駆動入力信号となる力覚信号を発生する力覚信号発生手段(24)と、解析された変形形状に応答して線状柔軟物(5)の三次元形状を模し、かつ組付け済み及び次の被拘束部位(P4,P5)を含めたグラフィック表示を三次元仮想空間に行わせる画像表示手段(20)とを備え、アクチュエータ(M1〜M3)に対する力覚信号が、三次元仮想空間で次の被拘束部位(P4,P5)を所属の拘束部位(P2,P3)へ移動させるように手動操作されるポインタ(11)に対して操作力に対応する力覚を与えるように設定されていることを特徴とする。 In order to achieve this object, according to the present invention, according to claim 1, a plurality of constrained parts spaced apart from each other are arranged in a state of being constrained to a constraining part of the cabling part by a restraining tool in order. The linear flexible object to be displayed is displayed in the three-dimensional virtual space displayed on the screen of the image display device, and the assembly is performed next to the constrained part already assembled for the simulation of the assembly operation. When the next constrained part designated in the three-dimensional virtual space is moved to the belonging constrained part, a force sense corresponding to the operation force required for the assembly is given. An assembly simulation apparatus for linear flexible objects, which is movable at a three-dimensional position, and has distal ends of movable members 12, 14, 16) to which displacement sensors (S1 to S3) and actuators (M1 to M3) are attached. In addition, restrained part (P4, P5) The three-dimensional position indicated by a manual operation, and as the force is applied, force sense presenting equipped with a ball-shaped pointer grips with hand (11) and (10), by displacement sensors (S1 to S3) Three-dimensional coordinate value data that defines the three-dimensional position of the next constrained part (P4, P5) indicated by the pointer (11) in response to the displacement position detection signal of the movable member (12, 14, 16). The coordinate data output means (25) for outputting in accordance with a manual operation , and movable members (12, 14, 16) which are movable to a three-dimensional position and which are attached with displacement sensors (S1 to S3) and actuators (M1 to M3). ), A force sense presenter provided with a ball-shaped pointer (11) to be grasped with a hand so that the three-dimensional position of the restrained part (P4, P5) is manually indicated and a force sense is given . (10) and linear flexibility Using the physical property data and shape data of (5) and the constraint conditions including the three-dimensional positions of the constraint sites (P1 to P3) and the constraint sites (P4, P5) as input conditions, the next constraint site ( Deformation shape of the linear flexible object (5) in the moving process for moving P4, P5) toward the associated restrained part (P1 to P3) and the reaction force generated in the next constrained part (P4, P5) in the moving process The analysis means (21) for analyzing the finite element method and the restraint operation required to restrain the restrained part (P4, P5) to the belonging restraint part (P1 to P3) by the restraint tool (6; 7, 7a) The load data storage means (22) for storing the load data between strokes , and the reaction force in the moving process until the restrained part (P4, P5) is restrained by the restraint part (P2, P3) Restraint operation strike In the process of movement between the rooks, the operating force data output means (23) for outputting the operating force data to add the load data to the reaction force to obtain the operating force, and the actuators (M1 to M1) corresponding to the magnitude and direction of the operating force. A force signal generating means (24) for generating a force signal as a drive input signal of M3) and a three-dimensional shape of the linear flexible object (5) in response to the analyzed deformed shape; Image display means (20) for performing graphic display including the attached and the next constrained part (P4, P5) in the three-dimensional virtual space, and the force signal for the actuators (M1 to M3) is three-dimensional. A force sense corresponding to the operating force is given to the pointer (11) which is manually operated so as to move the next constrained part (P4, P5) to the belonging constrained part (P2, P3) in the virtual space. Characteristic that is set To.

拘束済みの被拘束部位及び次に拘束されるように三次元位置がポインタで指示された被拘束部間の線状柔軟物の変形形状が、有限要素法により解析されて画面上の三次元仮想空間に表示される。ポインタを握った手には、解析された変形形状等に応じて変化する反力及び拘束具による拘束操作に要する荷重に対応する力覚信号に応答して駆動されるアクチュエータの駆動力により、非拘束の次の被拘束部位を所属の拘束部位に向けて移動もしくは拘束させる際の組付けに要する操作力に相当する力覚が与えられる。   The deformed shape of the linear flexible object between the constrained constrained part and the constrained part where the three-dimensional position is pointed to by the pointer so as to be constrained next is analyzed by the finite element method, and the three-dimensional virtual on the screen Displayed in space. The hand holding the pointer is not subjected to non-reaction by the driving force of the actuator driven in response to the reaction force that changes according to the analyzed deformed shape and the force signal corresponding to the load required for the restraining operation by the restraining tool. A force sense corresponding to an operation force required for assembly when moving or restraining the restrained part next to the restraint toward the restraining part to which it belongs is given.

被拘束部位を所属の拘束部位へ非拘束位置から連続移動させる際の組付け作業をシミュレートするには、請求項2により、解析手段が、ポインタの連続的な手動操作により三次元仮想空間において被拘束部位が所属の拘束部位へ移動する移動過程の変形形状及び反力を所定間隔ごとに解析する。   In order to simulate the assembling work when continuously moving the constrained part from the non-restraint position to the belonging constrained part, according to claim 2, the analysis means can perform the manual operation of the pointer in the three-dimensional virtual space. The deformation shape and reaction force of the movement process in which the constrained part moves to the belonging constraining part are analyzed at predetermined intervals.

自動車ボデーに配索されるワイヤハーネス先端にコネクタを取付けて、ワイヤハーネス先端をコネクタ座に向けて配索部に沿った配索方向から拘束部位に向けて曲げる組付け作業をシミュレートするには、請求項3により、線状柔軟物が、自動車のインストルメントパネルもしくはその周辺のボデーである配索部に配索され、かつ先端の被拘束部位に拘束具としてコネクタが取付けられたワイヤハーネスであり、解析手段が、コネクタを所属の拘束部位のコネクタ座に対面させるように、ワイヤハーネス先端を配索部に沿った配索方向から拘束部位に向けて曲げる配索方向を拘束条件として変形形状及び反力を解析する。   To simulate the assembly work of attaching a connector to the tip of the wire harness routed in the automobile body and bending the wire harness tip toward the connector seat from the routing direction along the routing section toward the restraint site According to claim 3, a wire harness in which a linear flexible object is routed to a routing portion which is an instrument panel of an automobile or its surrounding body, and a connector is attached as a restraining tool to a restrained portion at the tip. Yes, the analysis means is deformed with the wiring direction as a constraint condition to bend the wire harness tip from the routing direction along the routing part toward the restraint site so that the connector faces the connector seat of the restraint site to which it belongs And analyze the reaction force.

請求項1の発明によれば、線状柔軟物の被拘束部位を所属の拘束部位に移動させて組付ける際の変形形状が、その三次元形状を模して表示されると共に、組付けに至る過程の必要な操作力が体感され、したがって視覚及び力覚によりワーヤハーネス等の線状柔軟物の組付け作業がシミュレート可能になる。したがって、設計した配索状態での実際の組付け作業の負荷を事前に評価でき、また作業者が画面を見ながら力覚呈示器を手動操作することにより、慣れない初期段階での作業ミスを抑制でき、しかも初期段階から能率良く作業することができるようになる。請求項2の発明によれば、画面上で被拘束部位を所属の拘束部位へ非拘束位置から連続的に移動させることにより、実際の組付け作業のシミュレーションが容易に可能になる。請求項3の発明によれば、自動車ボデーに配索され、かつコネクタが取付けられてワイヤハーネス先端を拘束時に大きく曲げる必要のある組付け作業がシミュレート可能になり、その際の大きく曲がった状態の三次元形状及びコネクタ座に装着する際の操作力が体感可能になる。   According to the invention of claim 1, the deformed shape when assembling by moving the constrained part of the linear flexible object to the belonging constrained part is displayed imitating the three-dimensional shape, and for assembling Necessary operating force in the entire process is experienced, and therefore, assembly work of linear flexible objects such as wire harnesses can be simulated by vision and force sense. Therefore, it is possible to evaluate in advance the load of the actual assembly work in the designed routing state, and the operator can manually operate the force sense display device while looking at the screen, so that work mistakes at the initial stage that are not used to the operator can be avoided. It is possible to suppress this, and to work efficiently from the initial stage. According to the second aspect of the present invention, the actual assembly work can be easily simulated by continuously moving the constrained part to the belonging constraining part from the unconstrained position on the screen. According to the invention of claim 3, it is possible to simulate an assembling operation that is routed to an automobile body and needs to bend a wire harness tip greatly during restraint by being attached to a connector, and the bent state at that time is greatly bent The three-dimensional shape and the operation force when mounted on the connector seat can be experienced.

図1乃至図5を基に本発明の実施の形態のワイヤハーネスの組付けシミュレーション装置を説明する。ワイヤハーネスは可撓性、曲げ弾性等を有する電線束である線状柔軟物であり、自動車のインストルメントパネルもしくはその周辺のボデーである配索部に間欠的に拘束されて配索される。シミュレーション装置は、画面1aに表示を行う画像表示装置1と、手動操作により三次元空間に位置設定されるボール状のポインタ11を最先端に備えて被拘束部位の三次元位置を指示させると共に力覚を付与するようになった力覚呈示器10と、キーボード2、マウス3及び記憶媒体の読取り器4を有する入力部1b等が付属し、データ処理装置としてCPU、メモリ等を内蔵してプログラムにより作動することにより後述する各部を構成するコンピュータとを備えている。   A wire harness assembly simulation apparatus according to an embodiment of the present invention will be described with reference to FIGS. The wire harness is a linear flexible object that is a bundle of electric wires having flexibility, bending elasticity, and the like, and is wired while being intermittently restrained by a wiring portion that is an instrument panel of an automobile or its surrounding body. The simulation apparatus is equipped with an image display apparatus 1 that displays on the screen 1a and a ball-shaped pointer 11 that is set in a three-dimensional space by manual operation to indicate the three-dimensional position of the constrained part and force. A force sensation display device 10 that gives a sense of sensation, an input unit 1b having a keyboard 2, a mouse 3, and a storage medium reader 4 are attached, and a program including a CPU, a memory, etc. as a data processing device The computer which comprises each part mentioned later by act | operating by is provided.

力覚呈示器10は、基部19に垂直回転軸を中心に回転可能に支持された可動部材としての垂直ポール16に、互いに可動のさらに2個の可動部材としてのアーム12,14を二次元垂直面で回動可能に関節部13,15を介して順に連結して構成されている。アーム12の先端にはボール状のポインタ11が取付けられ、関節部13,15にはアーム12,14に取付けられた駆動ピン12a,14aをそれぞれ回転駆動するアクチュエータとしてのモータM1,M2及びこれらのモータの回転位置をそれぞれ検知する変位センサS1,S2が設けられ、基部19には垂直ポール16を回転駆動するモータM3及びその回転位置を検知する変位センサS3が設けられている。   The force sense presenter 10 has a two-dimensional vertical arm 12 and 14 as two movable members movable relative to each other on a vertical pole 16 as a movable member that is supported by a base 19 so as to be rotatable around a vertical rotation axis. It is configured to be sequentially connected through joint portions 13 and 15 so as to be rotatable on the surface. A ball-shaped pointer 11 is attached to the tip of the arm 12, and motors M1 and M2 as actuators for rotationally driving drive pins 12a and 14a attached to the arms 12 and 14 and joints 13 and 15 respectively. Displacement sensors S1 and S2 for detecting the rotational position of the motor are provided, respectively, and the base 19 is provided with a motor M3 for rotationally driving the vertical pole 16 and a displacement sensor S3 for detecting the rotational position.

前述のコンピュータは、有限要素法による解析用のCADの三次元座標系に対応する画面1aの三次元仮想空間に、ワイヤハーネス及びそのクランプ具、コネクタ等の拘束具をその三次元形状を模してグラフィック表示する画像表示手段20と、変位センサS1〜S3の検知信号に応答して、手動操作されるポインタ11で指示された被拘束部位の三次元位置を前述の解析用三次元座標系の三次元座標データとして出力する座標データ出力手段25と、ワイヤハーネスの物性データ及び形状データ並びに拘束部位及びポインタ11で指示された被拘束部位の三次元位置の三次元座標値を含む拘束条件を入力条件として、直前の被拘束部位が所属の拘束部位で拘束されているワイヤハーネスのポインタで指示された三次元位置に在る次の被拘束部を非拘束位置から所属の拘束部位へ向けて移動させ、さらに拘束部位で拘束具により拘束される位置まで移動させる移動過程におけるワイヤハーネスの変形形状を有限要素法により解析して解析モデルを作成する変形解析部21a及び前述の入力条件を基に変形形状、非拘束の被拘束部位に加わる重量等に応じて移動過程において拘束部位に向けて被拘束部位に生じる反力を有限要素法により解析する反力解析部21bを有する解析手段21と、被拘束部を拘束具により所属の拘束部位に拘束させる際に要する拘束具に固有の荷重データを格納する荷重データ格納部22と、被拘束部位が所属の拘束部位に向けて移動する移動過程では反力解析部21bの解析結果の反力をワイヤハーネスの組み付けに要する操作力とし、拘束具による拘束過程の所定の拘束操作ストロークの間は前述の反力にさらに荷重データを加算して操作力とする操作力データを出力する操作力データ出力手段23と、手で把持したポインタ11に対して各モータM1〜M3のそれぞれの駆動力の合成により、操作力、即ち反力に相当する力覚を与えるように、操作力データを基に各モータM1〜M3に配分した信号レベルの駆動入力信号を力覚信号として発生する力覚信号発生手段24とを備えるように構成されている。   The aforementioned computer imitates a three-dimensional shape of a wire harness and its restraining tools such as a clamp tool and a connector in a three-dimensional virtual space of a screen 1a corresponding to a CAD three-dimensional coordinate system for analysis by the finite element method. In response to the detection signals from the image display means 20 and the displacement sensors S1 to S3, the three-dimensional position of the constrained part indicated by the manually operated pointer 11 is represented in the above-described three-dimensional coordinate system for analysis. Coordinate data output means 25 for outputting as three-dimensional coordinate data, and the constraint condition including the physical property data and shape data of the wire harness, and the three-dimensional coordinate value of the three-dimensional position of the constrained part indicated by the constrained part and the pointer 11 As a condition, the next restraint in the three-dimensional position indicated by the pointer of the wire harness in which the immediately restrained part is restrained by the belonging restraining part. Move the wire from the non-restraining position to the associated restraint site, and then move to the position restrained by the restraint at the restraint site and analyze the deformed shape of the wire harness using the finite element method to create an analysis model Based on the deformation analysis unit 21a and the above-described input conditions, the reaction force generated in the constrained part is analyzed by the finite element method toward the constrained part in the moving process according to the deformed shape, the weight applied to the unconstrained constrained part, and the like. Analyzing means 21 having a reaction force analysis unit 21b, a load data storage unit 22 for storing load data specific to a restraining tool required for restraining the restrained part to a restraining part to which the restraint part belongs, and a restrained part In the movement process that moves toward the restrained part to which it belongs, the reaction force of the analysis result of the reaction force analysis unit 21b is used as the operation force required for assembling the wire harness, and restraint by the restraint tool During a predetermined restraining operation stroke, each of the operation force data output means 23 for outputting operation force data that adds the load data to the aforementioned reaction force to obtain an operation force, and the pointer 11 held by the hand. By combining the driving forces of the motors M1 to M3, driving input signals having signal levels distributed to the motors M1 to M3 based on the operating force data so as to give a sense of force corresponding to the operating force, that is, the reaction force. Force sensor generating means 24 that generates a force sensor is provided.

座標データ出力手段25は、ワイヤハーネス5の終端領域に対する画面1a上の表示状態を示す図5について説明すると、マウス3で指示された拘束部位P1〜P3を原点にして、所属の被拘束部位P4、P5の三次元位置を規定するために、ポインタ11の移動操作による操作位置に応じて変化する変位センサS1〜S3の検知信号を前述の解析用三次元座標系の三次元座標値データに変換して出力する。画像表示手段20は、変形するワイヤハーネス5の解析モデルに応答して、予め格納されている三次元形状データを基にグラフィック処理を行って画面1a上で実際の三次元形状を模したグラフィック表示を行わせ、ワイヤハーネス5の被拘束部位P3,P4に取付けられたクランプ具6、コネクタ7、取付け穴6a、コネクタ座7aの三次元形状も表示させる。 The coordinate data output means 25 will be described with reference to FIG. 5 showing the display state on the screen 1a with respect to the terminal area of the wire harness 5. The restrained parts P1 to P3 designated by the mouse 3 are used as the origin, and the restrained part P4 to which they belong. In order to define the three-dimensional position of P5, the detection signals of the displacement sensors S1 to S3 that change according to the operation position by the movement operation of the pointer 11 are converted into the three-dimensional coordinate value data of the above-described three-dimensional coordinate system for analysis. And output. In response to the analysis model of the wire harness 5 to be deformed, the image display means 20 performs graphic processing based on the prestored three-dimensional shape data and displays a graphic display imitating the actual three-dimensional shape on the screen 1a. The three-dimensional shape of the clamp tool 6, the connector 7, the mounting hole 6a, and the connector seat 7a attached to the restrained portions P3 and P4 of the wire harness 5 is also displayed.

図2はワイヤハーネス5の途中の被拘束部位に予め取付けられるクランプ具6を示すもので、ワイヤハーネス5を抱持して基部65に挿通されて係止されるバンド61を備え、基部65には押圧により撓んで配索部の取付け穴6aに嵌入して、その周辺部に係合溝63を係合させる一対の爪部62が形成されている。したがって、荷重データ格納手段22には、爪部62を嵌入させて拘束させるための例えば10mmの拘束操作ストロークについて変化する荷重データ(図3参照)が格納され、同様にワイヤハーネス5の先端の被拘束部位に取付けられたコネクタ7をコネクタ座7aに差し込む際の所定の拘束操作ストロークに対する荷重データも格納されている。   FIG. 2 shows a clamp tool 6 that is attached in advance to a constrained part in the middle of the wire harness 5, and includes a band 61 that holds the wire harness 5, is inserted into the base portion 65, and is locked. Is formed by a pair of claw portions 62 which are bent by pressing and are fitted into the mounting holes 6a of the routing portion and engage with the engaging grooves 63 on the periphery thereof. Therefore, the load data storage means 22 stores load data (see FIG. 3) that changes with respect to, for example, a 10 mm restraining operation stroke for inserting and restraining the claw portion 62, and similarly, the load data storage means 22 covers the tip of the wire harness 5. Load data for a predetermined restraining operation stroke when the connector 7 attached to the restraining part is inserted into the connector seat 7a is also stored.

図5において、配索部上の例えば20〜30cmの間隔を置く拘束部位P1〜P3の位置及び対応するワイヤハーネス5上の被拘束部位P3,P4の位置は、解析用のCADの三次元座標系上で予め設定されている。解析手段21は、例えば同図Aに示すように、直前の組付け済みの例えば拘束部位P1及び画面1a上でマウス3により指示された拘束部位P2を原点として力覚呈示器10で指示された所属の被拘束部位P4の三次元座標値を拘束点とし、さらにワイヤハーネス5の単位電線及びその被覆のヤング率、ポアソン比、密度等の物性及び断面形状、本数、全体の断面・長さ等の形状データの変形解析に必要な解析条件を入力条件として、被拘束部位P4及び拘束部位P1間のワイヤハーネス5の変形形状の中心ラインの解析モデルを作成する。その際、被拘束部位P4が、画面1a上でのマウス3の指示により所属の拘束部位P2に向けて連続的に移動する過程では、最終的に拘束される位置まで解析モデルを自動的に所定の距離間隔で逐次作成すると共に、その都度ワイヤハーネス5の変形に応じて被拘束部位P4に発生する反力を、その先方の未だ組付けられていないワイヤハーネス領域の重量を想定し、また拘束具の重量も入力条件に加えて解析する。尚、ワイヤハーネス5の先端のコネクタ7で拘束される被拘束部位P5を所属の拘束部位P3に向けて移動させる際には、その所定の接近距離では、同図Bに示すように、ワイヤハーネス5の先端を配索部に沿った配索方向から拘束部位P3に対面する方向へ向けて曲げる配索方向も拘束条件として変形形状或は反力を解析させる。また、解析モデルは、所定の距離間隔に代えて、場合により例えば演算処理時間に対応した所定の時間間隔で逐次作成することもできる。   In FIG. 5, the positions of the restraining sites P1 to P3 that are spaced by, for example, 20 to 30 cm on the routing portion and the positions of the restrained sites P3 and P4 on the corresponding wire harness 5 are the three-dimensional coordinates of the CAD for analysis. It is preset on the system. For example, as shown in FIG. 5A, the analysis means 21 is instructed by the force sense presenter 10 with the assembling point P1 instructed by the mouse 3 on the screen 1a and the restricting part P1 that has been assembled immediately before being the origin. The restraint point is the three-dimensional coordinate value of the associated restrained part P4, and further, physical properties such as the Young's modulus, Poisson's ratio, and density of the unit wire of the wire harness 5 and its covering, the number of cross sections, the number, the overall cross section and length, etc. An analysis model of the center line of the deformed shape of the wire harness 5 between the constrained part P4 and the constrained part P1 is created using the analysis conditions necessary for the deformation analysis of the shape data of the wire harness 5 as input conditions. At that time, in the process in which the constrained part P4 continuously moves toward the constraining constrained part P2 according to the instruction of the mouse 3 on the screen 1a, the analysis model is automatically determined to the finally constrained position. And the reaction force generated in the constrained part P4 in response to the deformation of the wire harness 5 each time, assuming the weight of the unattached wire harness region and restraining it. The tool weight is also analyzed in addition to the input conditions. When the restrained part P5 restrained by the connector 7 at the tip of the wire harness 5 is moved toward the restraining part P3 to which the wire harness 5 belongs, as shown in FIG. The deformed shape or reaction force is analyzed under the constraint of the routing direction in which the tip of 5 is bent from the routing direction along the routing portion toward the direction facing the restraint site P3. In addition, instead of the predetermined distance interval, the analysis model may be sequentially created at a predetermined time interval corresponding to, for example, the calculation processing time.

力覚信号発生手段24は、操作力の方向に応じた各モータM1〜M3の駆動力の所定の配分比を基に操作力の大きさに応じて決定した信号レベルの駆動入力信号を、図4に示すように、各モータM1〜M3の駆動回路31〜33に力覚信号として供給し、所属の駆動ピン12a,14a及び垂直ポール16を回転駆動させる。これにより、手で握ったポインタ11を停止させた状態で操作方向と逆方向への駆動力により相応の力覚が与えられ、三次元仮想空間でポインタ11により拘束部位P2、P3に向けて所属の被拘束部位P4,P5を移動させると、相応の変化する力覚が与えられる。尚、垂直ポール16及び関節部13,15には、把持している手を離してもポインタ11が移動しないようにブレーキを付設して、把持した際にのみ力覚が与えられる構成することもできる。   The haptic signal generating means 24 displays a driving input signal having a signal level determined according to the magnitude of the operating force based on a predetermined distribution ratio of the driving forces of the motors M1 to M3 corresponding to the direction of the operating force. As shown in FIG. 4, it is supplied as a force signal to the drive circuits 31 to 33 of the motors M1 to M3, and the associated drive pins 12a and 14a and the vertical pole 16 are rotationally driven. Accordingly, a corresponding force sense is given by the driving force in the direction opposite to the operation direction in a state where the pointer 11 held by the hand is stopped, and the pointer 11 belongs to the restrained parts P2 and P3 by the pointer 11 in the three-dimensional virtual space. When the restrained parts P4 and P5 are moved, a corresponding changing force sense is given. The vertical pole 16 and the joints 13 and 15 may be configured such that a force is given only when the vertical pole 16 and the joints 13 and 15 are gripped so that the pointer 11 does not move even when the gripped hand is released. it can.

このように構成されたワイヤハーネスの組付けシミュレーション装置の動作を図5を参照して説明する。画面1aの三次元仮想空間には例えばキーボード2の選択指令により配索部の終端領域が表示され、図5Aに示すように、ワイヤハーネス5はクランプ具6より既に拘束部位P1に拘束されている。マウス3で取付け穴6aの次の拘束部位P2が指示されると、この拘束部位を原点にしてポインタ11で指示された位置に在る次の被拘束部位P4のクランプ具6が表示されると共に、この被拘束部位P4及び拘束部位P1間が変形解析されて表示される。また、被拘束部位P4近辺より先方のワイヤハーネス5の表示は行われず、最後の拘束部位P3にはコネクタ座7aが表示されている。同時にその先方領域の重量も加味して、拘束部位P2及び被拘束部位P4間の変形形状に対応して被拘束部位P4に拘束部位P2に向けて生じる反力も解析され、ポインタ11を握っている手には、拘束部位P2に向かう方向と逆方向へモータM1〜M3による駆動力が生じ、クランプ具6を取付け穴6aに向けて移動させる際の操作力が体感される。   The operation of the wire harness assembly simulation apparatus configured as described above will be described with reference to FIG. In the three-dimensional virtual space of the screen 1a, for example, the termination region of the routing portion is displayed by a selection command of the keyboard 2, and the wire harness 5 is already restrained by the restraint part P1 by the clamp tool 6 as shown in FIG. . When the next restraint site P2 of the mounting hole 6a is designated by the mouse 3, the clamp tool 6 of the next restraint site P4 located at the position designated by the pointer 11 is displayed with this restraint site as the origin. The region between the constrained part P4 and the constrained part P1 is subjected to deformation analysis and displayed. In addition, the display of the wire harness 5 ahead of the vicinity of the constrained part P4 is not performed, and the connector seat 7a is displayed in the last constrained part P3. At the same time, taking into account the weight of the front region, the reaction force generated toward the restraint site P2 in the restraint site P4 corresponding to the deformed shape between the restraint site P2 and the restraint site P4 is analyzed, and the pointer 11 is held. In the hand, a driving force is generated by the motors M1 to M3 in the direction opposite to the direction toward the restraint site P2, and the operating force when moving the clamp tool 6 toward the mounting hole 6a is experienced.

画面1a上で被拘束部位P4が拘束部位P2に向かうように、ポインタ11を連続的に移動させると、ワイヤハーネス5の変形形状が逐次表示されると共に、力覚も逐次更新される。図5Aでは、簡単のために、途中の1個所のみの変形形状を二点鎖線で示す。クランプ具6が取付け穴6aに移動して、クランプ装着方向、即ち拘束操作方向に略一致して所定の拘束操作ストロークだけ移動させる過程では、クランプ具6の装着に必要な荷重データが力覚信号に加算され、したがって爪部62を取付け穴6aに嵌入させ、その周辺部に係合溝63を係合させるための実際の拘束操作に対応する相対的に大きな操作力が体感される。   When the pointer 11 is continuously moved so that the constrained part P4 moves toward the constrained part P2 on the screen 1a, the deformed shape of the wire harness 5 is sequentially displayed and the force sense is also sequentially updated. In FIG. 5A, for the sake of simplicity, a deformed shape at only one place in the middle is indicated by a two-dot chain line. In the process in which the clamp tool 6 is moved to the mounting hole 6a and moved by a predetermined restraining operation stroke substantially coincident with the clamp mounting direction, that is, the restraining operation direction, load data necessary for mounting the clamp tool 6 is a force signal. Therefore, a relatively large operating force corresponding to an actual restraining operation for fitting the claw portion 62 into the mounting hole 6a and engaging the engaging groove 63 with the peripheral portion is experienced.

これにより、画面1a上には、拘束部位P2まで組付け済みの状態が、同図Bで実線で示すように表示される。マウス3により拘束部位P3に在るコネクタ座7aを次の拘束部位として指示すると、力覚呈示器10で検知されて拘束部位P3に原点を切換えた位置信号が三次元座標値データに変換され、ポインタ11の操作位置に対応した位置に在るコネクタ7が次の被拘束部位として表示される。ポインタ11の手動操作により、画面1a上でコネクタ7をコネクタ座7aへ向けて移動させると、ワイヤハーネス5の変形形状が逐次表示され、コネクタ座7aに対する所定の接近位置では、二点鎖線で示すように、ワイヤハーネス5の先端を配索部に沿った配索方向に対して90°程度曲げてコネクタ7がコネクタ座7aに対面した状態の変形形状が解析・表示されると共に、対応した操作力の力覚がポインタ11に付与され、最終的にコネクタ座7aでのピン係合に伴う操作力が所定の拘束操作ストロークの間体感される。同図Cは最終的な配索状態を示す。 Thereby, on the screen 1a, the assembled state up to the restraint site P2 is displayed as indicated by the solid line in FIG. When the mouse 3 indicates the connector seat 7a located at the restraint site P3 as the next restraint site, the position signal detected by the force sense presenter 10 and switching the origin to the restraint site P3 is converted into three-dimensional coordinate value data. The connector 7 at a position corresponding to the operation position of the pointer 11 is displayed as the next constrained part . When the connector 7 is moved toward the connector seat 7a on the screen 1a by manual operation of the pointer 11, the deformed shape of the wire harness 5 is sequentially displayed, and is indicated by a two-dot chain line at a predetermined approach position with respect to the connector seat 7a. In this way, the deformed shape of the state in which the tip of the wire harness 5 is bent by about 90 ° with respect to the routing direction along the routing portion and the connector 7 faces the connector seat 7a is analyzed and displayed, and the corresponding operation is performed. A force sensation of force is applied to the pointer 11, and finally, an operation force accompanying pin engagement at the connector seat 7a is experienced during a predetermined restraint operation stroke. FIG. C shows the final routing state.

これにより、逐次搬送されてくる車両に対してワイヤハーネス5の配索作業を行う際に、初めての作業者が予め画面上でワイヤハーネス5の変形状態を確認しつつ操作力を実感し得ることにより、視覚と力覚によりワイヤハーネス5の組付け作業をシミュレートすることができる。表示画面を切換えて、ワイヤハーネス5のさらに基端側領域の組付け作業もシミュレートできる。したがって、作業者が画面を確認しつつポインタ11を操作して組付け作業を訓練することにより、初期段階から作業ミスを無くし、しかも能率良く作業することができる。また、配索部位に対するワイヤハーネス5の拘束部位の位置設定等の配索設計を作業負荷の観点から評価することもできる。   Thereby, when performing the wiring work of the wire harness 5 to the vehicle that is sequentially conveyed, the first operator can feel the operating force while checking the deformation state of the wire harness 5 on the screen in advance. Thus, the assembly work of the wire harness 5 can be simulated by vision and force sense. By switching the display screen, it is possible to simulate the assembling work of the further proximal end region of the wire harness 5. Therefore, when the operator confirms the screen and operates the pointer 11 to train the assembly work, it is possible to eliminate work mistakes from the initial stage and to work efficiently. In addition, the routing design such as the position setting of the restraint portion of the wire harness 5 with respect to the routing portion can be evaluated from the viewpoint of the work load.

別の実施の形態として、本発明は、線状柔軟物として曲げ弾性を呈するパイプ等を間欠的にクランプ具で組付ける場合にも適用できる。力覚呈示器の基本構成としては種々の方式が周知であり、モータに限らず、油圧、電磁力等をアクチュエータとして構成することも可能である。   As another embodiment, the present invention can be applied to a case where a pipe or the like exhibiting bending elasticity as a linear flexible object is intermittently assembled with a clamp. Various methods are well known as the basic configuration of the force sense presenter, and not only the motor but also hydraulic pressure, electromagnetic force, or the like can be configured as an actuator.

本発明の実施の形態によるワイヤハーネスの組付けシミュレーション装置の構成を示す図である。It is a figure which shows the structure of the assembly | attachment simulation apparatus of the wire harness by embodiment of this invention. 同ワイヤハーネスに予め取付けられるクランプ具の斜視図である。It is a perspective view of the clamp tool attached to the wire harness beforehand. 同クランプ具を取付け穴に装着させる際に要する荷重データを説明する図である。It is a figure explaining the load data required when attaching the clamp tool to a mounting hole. 同装置の力覚呈示器に付属のアクチュエータとしてのモータの駆動方法を説明する図である。It is a figure explaining the drive method of the motor as an actuator attached to the force sense presenter of the apparatus. 同装置によるシミュレーション過程を説明する表示画面を示す図である。It is a figure which shows the display screen explaining the simulation process by the apparatus.

符号の説明Explanation of symbols

1a 画面
3 マウス
5 ワイヤハーネス
6 クランプ具
6a 取付け穴
7 コネクタ
7a コネクタ座
10 力覚呈示器
11 ポインタ
M1〜M3 モータ
S1〜S3 変位センサ
DESCRIPTION OF SYMBOLS 1a Screen 3 Mouse 5 Wire harness 6 Clamping tool 6a Mounting hole 7 Connector 7a Connector seat 10 Force display 11 Pointer M1-M3 Motor S1-S3 Displacement sensor

Claims (3)

互いに間隔を置いた複数個所の被拘束部位を配索部の拘束部位に順に拘束具で拘束させて組付けた状態に配索される線状柔軟物が、画像表示装置の画面に表示された三次元仮想空間に表示されると共に、組付け作業のシミュレーションのために、組付け済みの前記被拘束部位に続いて次に組付けされるべき、前記三次元仮想空間上で指示された次の前記被拘束部位が、所属の前記拘束部位へ移動させられる際に、組付けに要する操作力に対応する力覚が付与されるようになった線状柔軟物の組付けシミュレーション装置であって、
三次元位置に可動で、かつ変位センサ及びアクチュエータが付属している可動部材の先端に、前記被拘束部位の三次元位置を手動操作により指示し、かつ力覚が付与されるように、手で握るボール状のポインタを備えた力覚呈示器と、前記変位センサによる前記可動部材の変位位置の検知信号に応答して、前記ポインタにより指示された次の前記被拘束部位の三次元位置を規定する三次元座標値データを前記手動操作に従い出力する座標データ出力手段と、前記線状柔軟物の物性データ及び形状データ並びに前記拘束部位及び前記被拘束部位の三次元位置を含む拘束条件を入力条件として、前記ポインタにより次の前記被拘束部位を所属の前記拘束部位へ向けて移動させる前記移動過程における線状柔軟物の変形形状及び前記移動過程において次の前記被拘束部位に生じる反力を有限要素法により解析する解析手段と、前記被拘束部位を前記拘束具により所属の前記拘束部位に拘束させる際に要する拘束操作ストローク間の荷重データを格納する荷重データ格納手段と、前記被拘束部位が前記拘束部位で拘束操作されるまでの前記移動過程では前記反力を前記操作力とし、前記拘束操作ストローク間の前記移動過程では前記反力に前記荷重データを加算して前記操作力とする操作力データを出力する操作力データ出力手段と、前記操作力の大きさ及び方向に対応して前記アクチュエータの駆動入力信号となる力覚信号を発生する力覚信号発生手段と、解析された前記変形形状に応答して前記線状柔軟物の三次元形状を模し、かつ組付け済み及び次の前記被拘束部位を含めたグラフィック表示を前記三次元仮想空間に行わせる画像表示手段とを備え、
前記アクチュエータに対する前記力覚信号が、前記三次元仮想空間で次の前記被拘束部位を所属の前記拘束部位へ移動させるように手動操作される前記ポインタに対して前記操作力に対応する力覚を与えるように設定されていることを特徴とする線状柔軟物の組付けシミュレーション装置。
A linear flexible object that is arranged in a state in which a plurality of constrained parts spaced apart from each other are attached to a constraining part of the cabling unit in order by restraining them with a restraining tool is displayed on the screen of the image display device. The next indicated in the three-dimensional virtual space, which is displayed in the three-dimensional virtual space and is to be assembled next to the constrained part that has been assembled for simulation of the assembly work. When the constrained part is moved to the constraining part to which it belongs, an assembly simulation device for a linear flexible object in which a force sense corresponding to an operation force required for assembly is given,
The tip of a movable member that is movable to a three-dimensional position and that includes a displacement sensor and an actuator is manually pointed to the three-dimensional position of the constrained part and a force sense is given by hand. In response to a detection signal of the displacement position of the movable member by the displacement sensor and a force sense presenter having a ball-shaped pointer for gripping, a three-dimensional position of the next constrained part indicated by the pointer is defined Coordinate data output means for outputting three-dimensional coordinate value data to be performed according to the manual operation , physical property data and shape data of the linear flexible object, and constraint conditions including the three-dimensional positions of the restraint site and the restraint site as input conditions As described above, the deformed shape of the linear flexible object in the moving process and the moving process in which the pointer moves the next constrained part toward the constraining part to which it belongs. Analysis means for the reaction force generated following the in the restraint portion is analyzed by the finite element method, stores load data between constraining operation stroke requiring the restrained portion when to be bound by the restraint portion belongs by the restraint wherein the reaction force and the load data storage means, said in the moving process until the restraint portion is restrained operated by the restraint portion to the reaction force and the operating force in the moving process between the restraining operation stroke of Operation force data output means for outputting operation force data as the operation force by adding load data, and a force signal serving as a drive input signal for the actuator corresponding to the magnitude and direction of the operation force are generated. A force signal generating means, a graphic imitating the three-dimensional shape of the linear flexible object in response to the analyzed deformed shape, and including the assembled and the next constrained site And an image display means to perform a click displayed on the three-dimensional virtual space,
The force sense signal to the actuator, a force corresponding to the operating force following the restrained portion in the three-dimensional virtual space with respect to the said pointer to be manually operated to move the restraint portion belongs An assembly simulation apparatus for linear flexible objects, characterized by being set to give.
解析手段が、ポインタの連続的な手動操作により三次元仮想空間において被拘束部位が所属の拘束部位へ移動する移動過程の変形形状及び反力を所定間隔ごとに解析することを特徴とする請求項1記載の線状柔軟物の組付け負荷解析装置。   The analyzing means analyzes a deformed shape and a reaction force of a moving process in which a constrained part moves to a belonging constrained part in a three-dimensional virtual space by continuous manual operation of a pointer at predetermined intervals. The assembly load analysis apparatus for linear flexible objects according to 1. 線状柔軟物が、自動車のインストルメントパネルもしくはその周辺のボデーである配索部に配索され、かつ先端の被拘束部位に拘束具としてコネクタが取付けられたワイヤハーネスであり、
解析手段が、前記コネクタを所属の拘束部位のコネクタ座に対面させるように、前記ワイヤハーネス先端を前記配索部に沿った配索方向から前記拘束部位に向けて曲げる配索方向を拘束条件として変形形状及び反力を解析することを特徴とする請求項1又は請求項2記載の線状柔軟物の組付けシミュレーション装置。
A linear flexible object is a wire harness that is routed to a routing portion that is an instrument panel of an automobile or its surrounding body, and a connector is attached as a restraint to the restrained portion at the tip,
As a constraint condition, the analysis means bends the tip of the wire harness from the routing direction along the routing portion toward the constraint site so that the connector faces the connector seat of the associated constraint site. The assembly simulation apparatus for linear flexible objects according to claim 1 or 2, wherein the deformation shape and the reaction force are analyzed.
JP2004125248A 2004-04-21 2004-04-21 Assembly simulation device for linear flexible objects Expired - Fee Related JP4334402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004125248A JP4334402B2 (en) 2004-04-21 2004-04-21 Assembly simulation device for linear flexible objects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004125248A JP4334402B2 (en) 2004-04-21 2004-04-21 Assembly simulation device for linear flexible objects

Publications (2)

Publication Number Publication Date
JP2005306187A JP2005306187A (en) 2005-11-04
JP4334402B2 true JP4334402B2 (en) 2009-09-30

Family

ID=35435428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004125248A Expired - Fee Related JP4334402B2 (en) 2004-04-21 2004-04-21 Assembly simulation device for linear flexible objects

Country Status (1)

Country Link
JP (1) JP4334402B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4964082B2 (en) * 2007-10-04 2012-06-27 中央発條株式会社 Apparatus and method for analyzing routing route of control cable
JP4815456B2 (en) * 2008-01-22 2011-11-16 関東自動車工業株式会社 Wire harness length evaluation system
JP4815457B2 (en) * 2008-01-22 2011-11-16 関東自動車工業株式会社 Automatic examination system for wire harness connection work
JP4746058B2 (en) * 2008-01-22 2011-08-10 関東自動車工業株式会社 Wire harness movable path display system
JP2010117886A (en) * 2008-11-13 2010-05-27 Kanto Auto Works Ltd Virtual prototyping system, method of processing operation information in virtual prototyping, and recording medium with the processing method recorded
JP7180274B2 (en) * 2018-10-22 2022-11-30 富士通株式会社 Information processing device, display program and display method

Also Published As

Publication number Publication date
JP2005306187A (en) 2005-11-04

Similar Documents

Publication Publication Date Title
EP2099588B1 (en) Method and apparatus for haptic control
KR101671569B1 (en) Robot simulator, robot teaching apparatus and robot teaching method
WO2017018113A1 (en) Object handling simulation device, object handling simulation system, method for simulating object handling, manufacturing method for object, and object handling simulation program
US9881520B2 (en) Virtual tool manipulation system
US20150151431A1 (en) Robot simulator, robot teaching device, and robot teaching method
US8350843B2 (en) Virtual hand: a new 3-D haptic interface and system for virtual environments
EP1674345B1 (en) Estimating method and apparatus of wire harness and program and recording medium thereof
JP2012011498A (en) System and method for operating robot arm
JP2008100315A (en) Control simulation system
JP4334402B2 (en) Assembly simulation device for linear flexible objects
JP4997419B2 (en) Robot motion conversion system
Kuchenbecker et al. Haptic display of contact location
JP2007011460A (en) Method for simulating displacement of object, device for simulating displacement of object, and inner force sense presentation device
JP4266783B2 (en) Deformation analysis device for flexible objects
JP4407906B2 (en) Path tolerance evaluation device for linear flexible objects
JP3534147B2 (en) Manipulator for 3D input
Kawasaki et al. Teaching for multi-fingered robots based on motion intention in virtual reality
JP2005038398A (en) Deformation analysis device for soft object
Kuo et al. Development of tendon based dexterous robot hand
JP4606285B2 (en) Wire harness wiring shape display device
JP4922276B2 (en) Flexible object shape analysis system using FEM analysis
JP5239746B2 (en) Model bending operation input device and model bending method
JP4941450B2 (en) Input device and input method
JPH0752367B2 (en) Robot teaching device
Ellis High-Fidelity Virtual Environments

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090623

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140703

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees