JP4333202B2 - Ice making equipment - Google Patents

Ice making equipment Download PDF

Info

Publication number
JP4333202B2
JP4333202B2 JP2003115579A JP2003115579A JP4333202B2 JP 4333202 B2 JP4333202 B2 JP 4333202B2 JP 2003115579 A JP2003115579 A JP 2003115579A JP 2003115579 A JP2003115579 A JP 2003115579A JP 4333202 B2 JP4333202 B2 JP 4333202B2
Authority
JP
Japan
Prior art keywords
ice making
ice
water
water supply
making container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003115579A
Other languages
Japanese (ja)
Other versions
JP2004324903A (en
Inventor
信雄 下村
洋 龍井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003115579A priority Critical patent/JP4333202B2/en
Publication of JP2004324903A publication Critical patent/JP2004324903A/en
Application granted granted Critical
Publication of JP4333202B2 publication Critical patent/JP4333202B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明が属する技術分野】
本発明は、家庭用冷蔵庫おいて比較的透明な氷をつくる製氷装置に関するものである。
【0002】
【従来の技術】
近年、家庭用冷蔵庫において、見た目が良く高品位な透明氷を作る製氷装置が望まれており、製氷容器に水を給水して製氷を行う際、製氷容器を振動させたり製氷容器上面側の開口部から水面に向けて温風を吹き付けたりすることにより、水の凍結に伴い氷から吐き出されて発生した気泡が氷の中に混入することを防ぐ製氷装置が考案されている(例えば、特許文献1参照)。
【0003】
以下、図面を参照しながら上記従来の製氷装置を説明する。
【0004】
図8は従来の冷蔵庫の断面図であり、図9は製氷装置の概略図である。
【0005】
図8および図9において、冷蔵庫14は、外箱15と内箱16とを有し、この間に断熱材が充填されてなる断熱構造体で、内箱16には複数の断熱中仕切板17が設けられて冷蔵室18、冷凍室19、野菜室20等が形成されている。
【0006】
冷蔵室18には、氷を作るための水が貯留される給水タンク21が設置されており、冷凍室19には製氷装置22および貯氷箱23が設けられている。なお、貯氷箱23は製氷装置22の下方に配置され、製氷装置22で作った氷を受けて蓄えるようになっている。
【0007】
また、冷蔵庫14には冷凍装置が収納されており、冷却器24を通って庫内空気をファン25により強制循環させながら庫内を冷却している。
【0008】
一方、製氷装置22は、給水タンク21からの水を貯留する製氷容器26、当該製氷容器26に貯留された水に空気を吹き付けるブロー機構27、製氷容器26を反転させて当該製氷容器26の氷を貯氷箱23に移す脱氷機構28等を有している。
【0009】
製氷容器26は、上面が開口して形成された合成樹脂製で、製氷容器26の裏側に冷却器24からファン25により冷凍室19に送られてきた冷気が送風されて、製氷容器26を底部側から冷却して製氷が行われる。
【0010】
ブロー機構27は、空気を送風するポンプ29、当該ポンプ29により送風される空気を製氷容器26の上方まで導く送風ダクト30、送風ダクト30により導かれた空気を加熱する空気加熱ヒータ31、空気加熱ヒータ31により加熱されて温風となった空気を製氷容器26に貯留された水に吹き当てるノズル32等から構成される。
【0011】
以上のように構成された従来の製氷装置について、その動作を説明する。
【0012】
給水タンク21から製氷容器26に供給され貯留された水は、冷却器24により冷却された冷気が、ファン25により製氷容器26の裏側に送風されることにより凍結していくが、その際、ブロー機構27から空気加熱ヒータ31により加熱された温風が、製氷容器26の上面に吹き付けられる。
【0013】
このため、氷は製氷容器26の底面側から成長していき、製氷容器26の上面側の温風が吹き付けられる上面側が最後に凍結するため、水が凍結して氷になる際に未凍結の水に吐き出された空気が逃げるための逃げ口が製氷完了まで確保される。
【0014】
更に、温風により製氷容器26に貯留された水が攪拌され、氷と水との界面上で水が移動するため、氷と水の界面にある気泡が氷から離脱して浮上し、未凍結の水面から冷凍室19中に脱気される。
【0015】
このために、製氷される氷に含まれる気泡の量が少ない、高品位な透明氷を得ることが出来る。
【0016】
従来の製氷装置では、図10に示すように、氷は製氷容器の底面側からとともに側面側からも成長するため、氷は凹状の成長となり、凹状の氷の内側に残った未凍結の水中のミネラル分や空気の濃度が徐々に高くなっていく。
【0017】
そのため、最後のほうに凍る氷の略中央部分から上側部分にかけて、ミネラル分やミネラル分を核とした気泡が可視できる大きさまで集まることにより白濁が集中してしまい、氷の透明度が劣化してしまう。
【0018】
【特許文献1】
特開2001−355946号公報
【0019】
【発明が解決しようとする課題】
しかしながら、上記従来の構成では、製氷容器の裏側に冷気が送風されて冷却を行うことにより、製氷容器底面からの凍結と同時に製氷容器側面からの凍結が生じてしまい、更に、水面の中央部近傍に温風を吹き付けているために、氷は製氷容器を垂直断面で見ると、中心部近傍での氷の高さが製氷容器側面近傍での氷の高さに比べ低い凹状に氷が成長していく。
【0020】
ここで、水にもともと溶け込んでいたカルシウムやマグネシウムといったミネラル分や空気は、水が凍結する際に氷から未凍結の水中に追い出されるため、凹状に成長した氷の中にある未凍結の水の中の空気やミネラル分の濃度は徐々に高くなっていく。
【0021】
空気は未凍結の水面から周辺の空間に、ある程度拡散されるが、ミネラル分は製氷容器外部へ逃げることが出来ないため、最後のほうに凍る氷の略中央部分から上側部分にかけて、ミネラル分やミネラル分を核とした気泡が可視できる大きさまで集まることにより白濁が集中してしまい、氷の透明度が劣化してしまう。
【0022】
更に、集中したミネラル分は、氷を水等の飲料液に入れたときに氷から排出され、すぐに溶けることなく飲用液中を浮遊するが、製氷過程で容易に可視できる大きさにまで集まってしまうこともあるため、飲料液中で浮遊するのが観察され官能的に好ましい氷とならないことがある。
【0023】
本発明は、上記従来の課題を解決するもので、氷の白濁が固まって目立つことがない透明度の高い氷で、飲料液に氷を入れてもミネラル分が浮遊するのが目立つことのない見た目に好ましい高品位な氷を提供すること目的としている。
【0024】
【課題を解決するための手段】
本発明の請求項1に記載の製氷装置の発明は、冷却板の上部に製氷容器を備え、下面からの凍結進行に対応して前記製氷容器に製氷用の水を所定間隔で間欠給水する製氷装置において、前記間欠給水した際の未凍結の水が毎回略一定の厚さとなるように給水するものであり、前記製氷容器中の未凍結水の厚みが略一定の薄さとなることで氷の白濁要因である空気を拡散させ、ミネラル分を製氷容器側面に拡散させながら凍結が進行して透明度の高い氷を得ることができる、という作用を有する。
【0025】
また、本発明は、給水の前記所定間隔が、給水開始付近では短く、給水終了付近では長くすることを特徴とするもので、前記製氷容器中の未凍結の水の厚みが略一定の薄さとなるように給水することができるという作用を有する。
【0026】
さらに、製氷容器内に給水されておらず製氷容器が過冷状態の製氷初期は連続的な給水を行うことにより急速な結氷を抑制することができ、さらに初期給水時の表面張力による水膜の偏り(水滴)を回避し均一な水膜にするという作用を有する。
【0027】
本発明の請求項に記載の製氷装置の発明は、請求項1に記載の製氷装置の発明において、給水の前記所定量が、給水開始付近では多く、給水終了付近では少なくするもので、前記製氷容器中の未凍結の水の厚みが略一定の薄さとなるように給水することができるという作用を有する。
【0028】
さらに、製氷容器内に給水されておらず製氷容器が過冷状態の製氷初期は多量の給水を行うことにより急速な結氷を抑制することができ、さらに初期給水時の表面張力による水膜の偏り(水滴)を回避し均一な水膜にするという作用を有する。
【0029】
本発明の請求項に記載の発明は、請求項1または2に記載の製氷装置の発明において、前記冷却板の温度を制御する冷却板温度制御手段を備え、製氷初期は前記冷却板の温度が高く、製氷後期は低くなるように制御するもので、前記製氷容器中の未凍結の水の厚みが略一定の薄さとなるという作用を有する。
【0030】
さらに、氷が薄く氷の熱抵抗が小さい場合は凍結速度を上昇させて製氷時間が短縮するという作用を有する。
【0031】
本発明の請求項に記載の発明は、請求項1からのいずれか一項に記載の製氷装置の発明において、冷却板と製氷容器と給水装置が、零度以上の空間に保持されるもので、製氷容器側面や上部より凍結せず有向温度差を氷の成長方向に必然的にとれるという作用を有する。
【0032】
【発明の実施の形態】
以下、本発明による冷蔵庫の実施の形態について、図面を参照しながら説明する。なお、同一構成の部分については重複を避けるため同一符号をつけて説明を省略する。
【0033】
(実施の形態1)
図1は本発明による実施の形態1における製氷装置の側断面図であり、図2は同実施の形態の製氷装置の要部上面図、図3は同実施の形態の製氷装置の要部側断面図である。
【0034】
図1から図3において、製氷装置1は、給水装置2と、冷却板3と、冷却板3上に設置されポリプロピレンで成形された製氷容器4により構成されており、給水装置2が配置された空間と、冷却板3と製氷容器4が配置された空間とは、区画壁5で区画され、それぞれの空間は約3度に保持されている。
【0035】
給水装置2は、氷を作るための水を一時的に貯めておく給水タンク6と、給水タンク6内の水を所定量送り出すための給水ポンプ7と、給水ポンプ7から送り出された水を所定位置に導くための給水経路8から構成される。
【0036】
冷却板3はアルミニウムで形成され、冷却板3の製氷容器4と接する面の反対面には、ペルチェ9の一方の面が密接するように固定されており、ペルチェ9の他方の面には、ヒートシンク10が密接するように固定され、ファン11から送風された風がヒートシンク10に吹き付けられるようになっている。また、冷却板3の温度は、ペルチェ9への通電を制御することにより所定の温度に制御出来るようになっている。
【0037】
また冷却板3上に固定された製氷容器4は、給水経路8の下方に位置するように配置されており、製氷容器4の底面略中央部には、冷却板3と密接している。
【0038】
また、製氷容器4,冷却板3,ペルチェ9,ヒートシンク10は、駆動軸12により離氷メカ13と結合され、離氷メカ13により駆動軸12を回転駆動させることにより反転される。
【0039】
以上のように構成された製氷装置について、次にその動作を説明する。
【0040】
冷却板3は、ペルチェ9に冷却板3と接する面が冷却される所定の方向に直流電流を通電し、さらにペルチェ9への通電を制御することにより、零度以下の所定の温度に保持される。その際、ペルチェ9のヒートシンク10側の面は、ヒートシンク10にファン11からの風を吹き付けることにより放熱されている。
【0041】
このとき、給水ポンプ7を所定時間駆動することにより、給水タンク6内の水が所定量だけ給水経路8から製氷容器4内に給水され、冷却板3からの冷却により製氷される。
【0042】
製氷容器4の外面に設置された温度センサー(図示せず)が給水後一定時間経過した後、所定の温度以下に下がったのを検知すると製氷が完了したと判断し、離氷メカ13により駆動軸12を回転させて、冷却板3,ペルチェ9,ヒートシンク10とともに製氷容器4を反転させ、同時にペルチェ9に製氷中と逆方向に通電することにより冷却板3を過熱して、製氷容器4内の氷と製氷容器4との接触面の氷を融かし、氷を自重により落下させることにより、製氷装置1の下方に設置された貯氷箱(図示せず)に貯氷する。
【0043】
以下に、本実施例における製氷時の氷の成長の仕方について、図4を用いて説明する。
【0044】
図4は、給水から所定時間経過後の、垂直断面で見た製氷容器4内の様子を示し、図5は、図4から所定時間経過した後の製氷容器4内の様子を示す。
【0045】
一方、本実施の形態の製氷装置では、図4、図5に示すように、製氷容器4内に貯留された水4aは、製氷容器4底面が冷却板3により冷却され、かつ上面が零度以上の空気と接しているために、下から上に向かって氷4bの成長が進む。
【0046】
水が凍結する際、もともと水に溶け込んでいた空気や、カルシウムやマグネシウムなどのミネラル分は、凍結速度が十分ゆっくりであれば氷から未凍結の水の中に追い出され、水中の溶存空気は水の厚みが薄いため製氷容器4上側の開口部から周辺の空間に容易に拡散され、ミネラル分は図5に示す様に製氷容器4の側面温度が、底面温度より高いと、ミネラル分は製氷容器4の側面方向に広く拡散するので、ミネラル分が含まれていても可視できない大きさに拡散された状態で氷の中に閉じ込められるため、見た目上、透明な氷ができる。
【0047】
一方、氷が成長していくにつれて、冷却板3と氷と水の界面との距離が離れていくために、凍結に対する冷却板3の影響は徐々に小さくなり、氷の成長速度は遅くなり、水・氷界面位置はノイマン解により時間の平方根に比例するようになる。
【0048】
そこで、氷上の水膜厚さを略一定に保つためには、図6に示す様に水・空気界面位置4cと氷・水界面位置4dを時間により制御する。
【0049】
給水開始付近すなわち製氷初期の氷の成長速度が速い時は給水時間間隔を短くし、時間当たりの給水量を多くし、給水終了付近すなわち製氷後期の氷の成長速度が遅い時は給水時間間隔を長くし、時間当たりの給水量を少なくすることによって、氷上の水膜厚さを略一定に保つことができる。
【0050】
以上のように、本実施の形態の製氷装置は、製氷容器に貯留された水を下から上に成長させ、氷上の水膜厚さを略一定に保つように給水させることにより、氷の白濁の要因である空気を拡散させ、さらには、ミネラル分を製氷容器側面に拡散させながら凍結させることにより、見た目に高品位な透明度の高い氷で、飲用液体に溶かしても、ミネラル分が浮遊する所が目に付くことのない官能的に適した氷を提供することが出来る。
【0051】
なお、本実施の形態においては、氷の成長速度が速い時は給水時間間隔を短くし時間当たりの給水量を多くしたが、直接給水量を増加させ、氷の成長速度が遅い時は時間当たりの給水量を少なくしたが、直接給水量を少なくすることによって、氷上の水膜厚さを略一定に保つことができる。
【0052】
また、製氷初期では冷却板の温度を高くして氷の成長速度を遅くし、製氷後期では冷却板の温度を低くして氷の成長速度を早くなるように冷却板の温度を制御することによって、図7に示す様に氷の成長速度を略一定にし、給水量・給水間隔が一定であっても、氷上の水膜厚さを略一定に保つことができる。
【0053】
また、なお、本実施の形態においては、冷却板の温度を制御するのにペルチェを用い、製氷容器内の氷を離氷するためにペルチェに冷却時と逆方向の電流を負荷することにより、氷と製氷容器内面の接触面の氷を溶かして離氷を行ったが、冷却板の温度制御はペルチェに限定されるものではなく、また、離氷の方法も、ペルチェを利用した融解に限定されるものではない。
【0054】
例えば、冷却板にヒータを貼り付けておき、凍結完了後、ヒータに通電して離氷を行ってもよく、また、製氷容器を反転させる際に変形させることにより離氷を行っても良い。
【0055】
【発明の効果】
以上説明したように請求項1に記載の発明は、冷却板の上部に製氷容器を備え、下面からの凍結進行に対応して前記製氷容器に製氷用の水を所定間隔で間欠給水する製氷装置において、前記間欠給水した際の未凍結の水が毎回略一定の厚さとなるように給水することにより、水中の溶存空気は製氷容器上側の開口部から周辺の空間に容易に拡散させ、また製氷容器側面側にミネラル分を分散させ、比較的透明度が高く、水に溶かしてもミネラル分が浮遊することの無い官能的に好ましい氷を提供することができる。
【0056】
また、発明は、給水の所定間隔が、給水開始付近では短く、給水終了付近では長くすることを特徴とするもので、前記製氷容器中の未凍結の水の厚みが略一定の薄さとなるように給水することができ、さらに、製氷容器内に給水されておらず製氷容器が過冷状態の製氷初期は連続的な給水を行うことにより急速な結氷を抑制することができる。
【0057】
さらに初期給水時の表面張力による水膜の偏り(水滴)を回避し均一な水膜にすることにより水中の溶存空気は製氷容器上側の開口部から周辺の空間に容易に拡散させ、また製氷容器側面側にミネラル分を分散させ、比較的透明度が高く、水に溶かしてもミネラル分が浮遊することの無い官能的に好ましい氷を提供することができる。
【0058】
また、請求項に記載の発明は、請求項1の発明において、給水の前記所定量が、給水開始付近では多く、給水終了付近では少なくするもので、製氷容器中の未凍結の水の厚みが略一定の薄さとなるように給水することができ、さらに、製氷容器内に給水されておらず製氷容器が過冷状態の製氷初期は多量の給水を行うことにより急速な結氷を抑制することができ、さらに初期給水時の表面張力による水膜の偏り(水滴)を回避し均一な水膜にすることにより、水中の溶存空気は製氷容器上側の開口部から周辺の空間に容易に拡散させ、また製氷容器側面側にミネラル分を分散させ、比較的透明度が高く、水に溶かしてもミネラル分が浮遊することの無い官能的に好ましい氷を提供することができる。
【0059】
また、請求項記載の発明は、請求項1または2の発明において、製氷初期は前記冷却板の温度が高く、製氷後期は低くなるように制御するもので、前記製氷容器中の未凍結の水の厚みが略一定の薄さとなり、氷が薄く氷の熱抵抗が小さい場合は凍結速度を上昇させて製氷時間が短縮することができることにより、水中の溶存空気は製氷容器上側の開口部から周辺の空間に容易に拡散できる。
【0060】
また製氷容器側面側にミネラル分を分散させ、比較的透明度が高く、水に溶かしてもミネラル分が浮遊することの無い官能的に好ましい氷を提供することができる。
【0061】
また、請求項に記載の発明は、請求項1からのいずれかの発明において、冷却板と製氷容器と給水装置が、零度以上の空間に保持されるもので、製氷容器側面や上部より凍結せず有向温度差を氷の成長方向に必然的にとることができることにより、水中の溶存空気は製氷容器上側の開口部から周辺の空間に容易に拡散させ、また製氷容器側面側にミネラル分を分散させ、比較的透明度が高く、水に溶かしてもミネラル分が浮遊することの無い官能的に好ましい氷を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1の製氷装置の側断面図
【図2】同実施の形態の製氷装置の要部上面図
【図3】図2におけるA−A断面図
【図4】本発明の実施の形態1における所定時間経過後の製氷容器の断面図
【図5】同実施の形態における所定時間経過後の製氷容器の断面図
【図6】本発明の実施の形態1の水・氷界面位置の時間変化図
【図7】本発明の実施の形態1の冷却板温度変化時の水・氷界面位置の時間変化図
【図8】従来の製氷装置を搭載した冷蔵庫の側断面図
【図9】従来の製氷装置の側断面図
【図10】従来の製氷装置の製氷容器内での製氷の様子を示す断面図
【符号の説明】
1 製氷装置
2 給水装置
3 冷却板
4 製氷容器
4a 水
4b 氷
4c 水・空気界面
4d 氷・水界面
5 区画壁
6 給水タンク
7 給水ポンプ
8 給水経路
9 ペルチェ
10 ヒートシンク
11 ファン
12 駆動軸
13 離氷メカ
[0001]
[Technical field to which the invention belongs]
The present invention relates to an ice making device that produces relatively transparent ice in a household refrigerator.
[0002]
[Prior art]
In recent years, there has been a demand for an ice making device that produces high-quality transparent ice in home refrigerators, and when ice making is performed by supplying water to the ice making container, the ice making container is vibrated or an opening on the upper side of the ice making container An ice making device has been devised that prevents air bubbles that are spouted from the ice accompanying freezing of the water from being mixed into the ice by blowing warm air from the section toward the water surface (for example, patent document) 1).
[0003]
The conventional ice making device will be described below with reference to the drawings.
[0004]
FIG. 8 is a sectional view of a conventional refrigerator, and FIG. 9 is a schematic view of an ice making device.
[0005]
8 and 9, the refrigerator 14 has an outer box 15 and an inner box 16, and is a heat insulating structure in which a heat insulating material is filled therebetween. The inner box 16 has a plurality of heat insulating partition plates 17. A refrigerator compartment 18, a freezer compartment 19, a vegetable compartment 20 and the like are provided.
[0006]
The refrigerator compartment 18 is provided with a water supply tank 21 for storing water for making ice, and the freezer compartment 19 is provided with an ice making device 22 and an ice storage box 23. The ice storage box 23 is arranged below the ice making device 22 so as to receive and store ice produced by the ice making device 22.
[0007]
A refrigerator 14 is housed in the refrigerator 14, and the inside of the refrigerator is cooled while being forcedly circulated by the fan 25 through the cooler 24.
[0008]
On the other hand, the ice making device 22 inverts the ice making container 26 for storing the water from the water supply tank 21, the blow mechanism 27 for blowing air to the water stored in the ice making container 26, and the ice making container 26 to invert the ice in the ice making container 26. For example, a deicing mechanism 28 for transferring the ice to the ice storage box 23.
[0009]
The ice making container 26 is made of a synthetic resin having an open top surface, and cool air sent from the cooler 24 to the freezing chamber 19 by the fan 25 is blown to the back side of the ice making container 26 so that the ice making container 26 is placed at the bottom. Ice is made by cooling from the side.
[0010]
The blow mechanism 27 includes a pump 29 that blows air, a blower duct 30 that leads the air blown by the pump 29 to the upper side of the ice making container 26, an air heater 31 that heats the air guided by the blower duct 30, and air heating The nozzle 32 is configured to blow air that has been heated by the heater 31 into hot air against water stored in the ice making container 26.
[0011]
The operation of the conventional ice making device configured as described above will be described.
[0012]
The water supplied and stored from the water supply tank 21 to the ice making container 26 is frozen by the cool air cooled by the cooler 24 being blown by the fan 25 to the back side of the ice making container 26. Hot air heated by the air heater 31 from the mechanism 27 is blown onto the upper surface of the ice making container 26.
[0013]
For this reason, the ice grows from the bottom surface side of the ice making container 26, and the upper surface side to which the hot air on the upper surface side of the ice making container 26 is blown finally freezes. Therefore, when the water freezes and becomes ice, it is unfrozen. An escape port for the air exhaled into the water to escape is secured until the ice making is completed.
[0014]
Further, the water stored in the ice making container 26 is agitated by the hot air, and the water moves on the interface between the ice and the water. From the water surface into the freezer compartment 19.
[0015]
For this reason, high-quality transparent ice with a small amount of bubbles contained in the ice to be made can be obtained.
[0016]
In the conventional ice making apparatus, as shown in FIG. 10, since the ice grows from the side surface side as well as from the bottom surface side, the ice grows in a concave shape, and the ice in the unfrozen water remaining inside the concave ice shape. The concentration of minerals and air gradually increases.
[0017]
Therefore, white turbidity concentrates from the approximate center part to the upper part of the ice that freezes at the end, gathering up to a size that can see minerals and bubbles with minerals as the core, and the transparency of ice deteriorates .
[0018]
[Patent Document 1]
JP 2001-355946 A
[Problems to be solved by the invention]
However, in the above-described conventional configuration, cooling is performed by blowing cool air to the back side of the ice making container, so that freezing from the side of the ice making container occurs at the same time as freezing from the bottom of the ice making container, and further, near the center of the water surface When the ice making container is viewed in a vertical section, the ice grows in a concave shape where the ice height near the center is lower than the ice height near the side of the ice making container. To go.
[0020]
Here, minerals and air such as calcium and magnesium that were originally dissolved in the water are expelled from the ice into the unfrozen water when the water freezes, so the unfrozen water in the ice that has grown in a concave shape The concentration of air and minerals inside gradually increases.
[0021]
Air is diffused to some extent from the unfrozen water surface to the surrounding space, but minerals cannot escape to the outside of the ice making container. The cloudiness concentrates when bubbles that have minerals as the core are visible, and the transparency of the ice deteriorates.
[0022]
In addition, concentrated minerals are discharged from the ice when it is placed in a beverage such as water and float in the drinking liquid without melting immediately, but are concentrated to a size that can be easily seen in the ice making process. In some cases, it is observed that it floats in the beverage and does not become a sensory preferred ice.
[0023]
The present invention solves the above-mentioned conventional problems, and it is a highly transparent ice that does not stand out due to solidification of ice, and it does not stand out that minerals float even if ice is added to the beverage. It is an object of the present invention to provide high-quality ice that is preferable to the above.
[0024]
[Means for Solving the Problems]
The ice making device according to claim 1 of the present invention is provided with an ice making container at the upper part of the cooling plate, and ice making water is intermittently supplied to the ice making container at a predetermined interval corresponding to the progress of freezing from the lower surface. In the apparatus, water is supplied so that the unfrozen water at the time of intermittent water supply has a substantially constant thickness each time, and the thickness of the unfrozen water in the ice making container is reduced to a substantially constant thickness. Freezing progresses while diffusing air, which is a white turbidity factor, and diffusing minerals on the side of the ice making container, so that ice having high transparency can be obtained.
[0025]
Further, the present invention is characterized in that the predetermined interval of water supply is short near the start of water supply and long near the end of water supply, and the thickness of unfrozen water in the ice making container is substantially constant thin. It has the effect | action that it can supply water so that it may become.
[0026]
In addition, rapid ice formation can be suppressed by supplying water continuously in the initial stage of ice making when the ice making container is not cooled in the ice making container and the ice making container is in an overcooled state. It has the effect of avoiding bias (water droplets) and forming a uniform water film.
[0027]
The invention of the ice making device according to claim 2 of the present invention is the invention of the ice making device according to claim 1, wherein the predetermined amount of water supply is large near the start of water supply and decreases near the end of water supply, It has the effect | action that water can be supplied so that the thickness of the unfrozen water in an ice-making container may become substantially constant thinness.
[0028]
In addition, rapid ice formation can be suppressed by supplying a large amount of water at the initial stage of ice making when the ice making container is not cooled in the ice making container and the ice making container is in an overcooled state. It has the effect of avoiding (water droplets) and forming a uniform water film.
[0029]
The invention according to claim 3 of the present invention is the ice making device invention according to claim 1 or 2 , further comprising cooling plate temperature control means for controlling the temperature of the cooling plate, wherein the temperature of the cooling plate is initially set during ice making. Is controlled so as to be low in the late stage of ice making, and has the effect that the thickness of unfrozen water in the ice making container becomes substantially constant.
[0030]
Further, when the ice is thin and the heat resistance of the ice is small, the ice making time is shortened by increasing the freezing speed.
[0031]
The invention according to claim 4 of the present invention is the ice making device invention according to any one of claims 1 to 3 , wherein the cooling plate, the ice making container and the water supply device are held in a space of zero degrees or more. Thus, the directional temperature difference is inevitably taken in the direction of ice growth without freezing from the side or upper part of the ice making container.
[0032]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of a refrigerator according to the present invention will be described with reference to the drawings. In addition, about the part of the same structure, in order to avoid duplication, the same code | symbol is attached | subjected and description is abbreviate | omitted.
[0033]
(Embodiment 1)
FIG. 1 is a side sectional view of an ice making device according to Embodiment 1 of the present invention, FIG. 2 is a top view of the main part of the ice making device of the same embodiment, and FIG. 3 is the main portion side of the ice making device of the same embodiment. It is sectional drawing.
[0034]
In FIG. 1 to FIG. 3, the ice making device 1 includes a water supply device 2, a cooling plate 3, and an ice making container 4 installed on the cooling plate 3 and formed of polypropylene, and the water supply device 2 is disposed. The space and the space in which the cooling plate 3 and the ice making container 4 are arranged are partitioned by a partition wall 5, and each space is held at about 3 degrees.
[0035]
The water supply device 2 has a water supply tank 6 for temporarily storing water for making ice, a water supply pump 7 for sending out a predetermined amount of water in the water supply tank 6, and water supplied from the water supply pump 7 in a predetermined manner. It is comprised from the water supply path | route 8 for guide | inducing to a position.
[0036]
The cooling plate 3 is formed of aluminum, and one surface of the Peltier 9 is fixed so as to be in close contact with the surface of the cooling plate 3 that is in contact with the ice making container 4, and the other surface of the Peltier 9 is The heat sink 10 is fixed so as to be in close contact, and the air blown from the fan 11 is blown onto the heat sink 10. Further, the temperature of the cooling plate 3 can be controlled to a predetermined temperature by controlling the energization to the Peltier 9.
[0037]
Further, the ice making container 4 fixed on the cooling plate 3 is disposed so as to be positioned below the water supply path 8, and the ice making container 4 is in close contact with the cooling plate 3 at a substantially central portion of the bottom surface.
[0038]
Further, the ice making container 4, the cooling plate 3, the Peltier 9, and the heat sink 10 are coupled to the ice removing mechanism 13 by the drive shaft 12, and are inverted by rotating the drive shaft 12 by the ice removing mechanism 13.
[0039]
Next, the operation of the ice making device configured as described above will be described.
[0040]
The cooling plate 3 is maintained at a predetermined temperature of zero degrees or less by supplying a direct current in a predetermined direction in which the surface in contact with the cooling plate 3 is cooled to the Peltier 9 and further controlling the supply to the Peltier 9. . At that time, the surface of the Peltier 9 on the heat sink 10 side is dissipated by blowing air from the fan 11 onto the heat sink 10.
[0041]
At this time, by driving the water supply pump 7 for a predetermined time, a predetermined amount of water in the water supply tank 6 is supplied into the ice making container 4 from the water supply path 8 and is made by cooling from the cooling plate 3.
[0042]
When a temperature sensor (not shown) installed on the outer surface of the ice making container 4 detects that the temperature has dropped below a predetermined temperature after a certain period of time has passed since the water supply, it is determined that ice making has been completed and is driven by the ice removing mechanism 13. By rotating the shaft 12, the ice making container 4 is reversed together with the cooling plate 3, the Peltier 9 and the heat sink 10, and at the same time, the cooling plate 3 is superheated by energizing the Peltier 9 in the opposite direction to that during ice making. The ice on the contact surface between the ice and the ice making container 4 is melted, and the ice is dropped by its own weight, thereby storing the ice in an ice storage box (not shown) installed below the ice making device 1.
[0043]
Hereinafter, a method of growing ice during ice making in the present embodiment will be described with reference to FIG.
[0044]
FIG. 4 shows a state in the ice making container 4 as viewed in a vertical section after a predetermined time has elapsed from the water supply, and FIG. 5 shows a state in the ice making container 4 after a predetermined time has elapsed from FIG.
[0045]
On the other hand, in the ice making device of the present embodiment, as shown in FIGS. 4 and 5, the water 4 a stored in the ice making container 4 is cooled by the cooling plate 3 at the bottom surface of the ice making container 4 and the upper surface is at least zero degrees. The ice 4b grows from the bottom to the top.
[0046]
When water freezes, the air that was originally dissolved in the water and minerals such as calcium and magnesium are expelled from the ice into the unfrozen water if the freezing rate is slow enough, and the dissolved air in the water is water. Since the thickness of the ice making container 4 is thin, it is easily diffused from the opening on the upper side of the ice making container 4 to the surrounding space. As shown in FIG. 5, when the side surface temperature of the ice making container 4 is higher than the bottom surface temperature, the mineral content is Since it diffuses widely in the direction of the side surface 4, it is confined in the ice in a state of being diffused in a size that cannot be seen even if it contains minerals, so that apparently transparent ice can be formed.
[0047]
On the other hand, as the ice grows, the distance between the cooling plate 3 and the interface between ice and water increases, so the influence of the cooling plate 3 on freezing gradually decreases, and the growth rate of ice becomes slower. The water / ice interface position becomes proportional to the square root of time by the Neumann solution.
[0048]
Therefore, in order to keep the water film thickness on ice substantially constant, the water / air interface position 4c and the ice / water interface position 4d are controlled by time as shown in FIG.
[0049]
When the ice growth rate is high near the start of water supply, that is, at the beginning of ice making, the water supply time interval is shortened, and the amount of water supplied per hour is increased.When the ice growth rate is low near the end of water supply, that is, at the late ice making stage, the water supply time interval is increased. By increasing the length and reducing the amount of water supply per hour, the water film thickness on ice can be kept substantially constant.
[0050]
As described above, the ice making device of the present embodiment grows the water stored in the ice making container from the bottom to the top and supplies water so that the water film thickness on the ice is kept substantially constant. By diffusing air, which is the cause of the above, and further freezing while diffusing the mineral content on the side of the ice making container, the mineral content floats even when melted in drinking liquid with high-quality transparent ice that looks visually It is possible to provide sensually suitable ice that is not noticeable.
[0051]
In this embodiment, when the ice growth rate is high, the water supply time interval is shortened and the water supply amount per hour is increased, but when the ice growth rate is slow, the water supply amount per hour is increased. However, by directly reducing the water supply amount, the water film thickness on ice can be kept substantially constant.
[0052]
Also, by controlling the temperature of the cooling plate to increase the temperature of the cooling plate at the initial stage of ice making to slow the ice growth rate, and to lower the temperature of the cooling plate at the late stage of ice making to increase the growth rate of ice. As shown in FIG. 7, even when the ice growth rate is made substantially constant and the water supply amount and the water supply interval are constant, the water film thickness on ice can be kept substantially constant.
[0053]
Further, in the present embodiment, by using a Peltier to control the temperature of the cooling plate, by applying a current in the opposite direction to the cooling to the Peltier in order to deice the ice in the ice making container, Ice was melted by melting the ice on the contact surface between the ice and the ice making container, but the temperature control of the cooling plate is not limited to Peltier, and the method of deicing is limited to melting using Peltier. Is not to be done.
[0054]
For example, the heater may be attached to the cooling plate, and after the completion of freezing, the heater may be energized to perform ice removal. Alternatively, the ice making container may be deformed when it is inverted to perform ice removal.
[0055]
【The invention's effect】
As described above, the invention according to claim 1 is provided with an ice making container in the upper part of the cooling plate, and ice making water is intermittently supplied to the ice making container at predetermined intervals in accordance with the freezing progress from the lower surface. In this case, by supplying water so that the unfrozen water at the time of intermittent water supply has a substantially constant thickness, the dissolved air in the water can be easily diffused from the opening on the upper side of the ice making container to the surrounding space, and The mineral content can be dispersed on the side surface of the container, and it is possible to provide functionally preferable ice that has a relatively high transparency and does not float even when dissolved in water.
[0056]
Further, the present invention is characterized in that the predetermined interval of water supply is short near the start of water supply and long near the end of water supply, and the thickness of the unfrozen water in the ice making container is substantially constant. In addition, rapid ice formation can be suppressed by supplying water continuously in the initial stage of ice making when the ice making container is not cooled in the ice making container and is in an overcooled state.
[0057]
Furthermore, by avoiding unevenness of water film (water droplets) due to surface tension during initial water supply and making it a uniform water film, dissolved air in water can be easily diffused from the opening on the top of the ice making container to the surrounding space. It is possible to provide functionally preferable ice having a mineral content dispersed on the side surface and having relatively high transparency and no mineral content floating even when dissolved in water.
[0058]
The invention according to claim 2 is the invention according to claim 1, wherein the predetermined amount of water supply is large near the start of water supply and small near the end of water supply, and the thickness of unfrozen water in the ice making container Water can be supplied so that the thickness of the ice is almost constant, and rapid ice formation is suppressed by supplying a large amount of water at the beginning of ice making when the ice making container is not cooled in the ice making container and the ice making container is in an overcooled state. In addition, by avoiding unevenness of the water film (water droplets) due to surface tension during initial water supply and making it a uniform water film, the dissolved air in the water can be easily diffused from the opening above the ice making container to the surrounding space. Also, it is possible to provide functionally preferable ice having a mineral content dispersed on the side surface of the ice making container and having a relatively high transparency, and the mineral content does not float even when dissolved in water.
[0059]
The invention according to claim 3 is the invention according to claim 1 or 2 , wherein the temperature of the cooling plate is controlled to be high in the initial stage of ice making and low in the late stage of ice making. When the water thickness is almost constant and the ice is thin and the heat resistance of the ice is low, the ice-making time can be shortened by increasing the freezing speed, so that the dissolved air in the water can be discharged from the opening on the upper side of the ice-making vessel. It can be easily diffused into the surrounding space.
[0060]
In addition, minerals can be dispersed on the side of the ice making container, and it is possible to provide functionally preferable ice that has a relatively high transparency and does not float even when dissolved in water.
[0061]
The invention according to claim 4 is the invention according to any one of claims 1 to 3 , wherein the cooling plate, the ice making container, and the water supply device are held in a space of zero degrees or more. By being able to inevitably take a directed temperature difference in the direction of ice growth without freezing, dissolved air in the water can be easily diffused from the opening on the top of the ice making container to the surrounding space, and minerals can be found on the side of the ice making container. It is possible to provide functionally preferable ice that disperses the component, has a relatively high transparency, and does not float the mineral component even when dissolved in water.
[Brief description of the drawings]
FIG. 1 is a side sectional view of an ice making device according to a first embodiment of the present invention. FIG. 2 is a top view of essential parts of the ice making device according to the first embodiment. FIG. 5 is a cross-sectional view of the ice making container after a predetermined time has elapsed in Embodiment 1 of the present invention. FIG. 5 is a cross-sectional view of the ice making container after the predetermined time has elapsed in the same embodiment. -Time variation diagram of the ice interface position [Fig. 7] Fig. 8 is a time variation diagram of the water-ice interface position when the cooling plate temperature of the first embodiment of the present invention changes. [Fig. FIG. 9 is a sectional side view of a conventional ice making apparatus. FIG. 10 is a cross-sectional view showing the state of ice making in an ice making container of a conventional ice making apparatus.
DESCRIPTION OF SYMBOLS 1 Ice making apparatus 2 Water supply apparatus 3 Cooling plate 4 Ice making container 4a Water 4b Ice 4c Water / air interface 4d Ice / water interface 5 Partition wall 6 Water supply tank 7 Water supply pump 8 Water supply path 9 Peltier 10 Heat sink 11 Fan 12 Drive shaft 13 Ice removal Mecha

Claims (4)

冷却板の上部に製氷容器を備え、下面からの凍結進行に対応して前記製氷容器に製氷用の水を所定間隔で間欠給水する製氷装置において、前記間欠給水した際の未凍結の水が毎回略一定の厚さとなるように給水し、間欠給水はその給水間隔が、給水開始時では短く、給水終了時では長くすることを特徴とする製氷装置。In an ice making apparatus that includes an ice making container at the top of the cooling plate and intermittently supplies ice making water to the ice making container at predetermined intervals in response to the progress of freezing from the lower surface, unfrozen water at the time of intermittent water supply is An ice making device characterized in that water is supplied so as to have a substantially constant thickness, and intermittent water supply has a water supply interval that is short at the start of water supply and long at the end of water supply . 給水量は、給水開始時では多く、給水終了時では少なくすることを特徴とする請求項1に記載の製氷装置。The ice making device according to claim 1, wherein the amount of water supply is large at the start of water supply and small at the end of water supply. 冷却板の温度を制御する冷却板温度制御手段を備え、製氷初期では前記冷却板の温度が高く、製氷後期では低くなるように制御することを特徴とする請求項1または2に記載の製氷装置。The ice making device according to claim 1 or 2 , further comprising a cooling plate temperature control means for controlling a temperature of the cooling plate, wherein the temperature is controlled so that the temperature of the cooling plate is high in the early stage of ice making and low in the late stage of ice making. . 冷却板と製氷容器と給水装置が、0度以上の空間に保持されることを特徴とする請求項1からのいずれか一項に記載の製氷装置。The ice making device according to any one of claims 1 to 3 , wherein the cooling plate, the ice making container, and the water supply device are held in a space of 0 degrees or more.
JP2003115579A 2003-04-21 2003-04-21 Ice making equipment Expired - Fee Related JP4333202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003115579A JP4333202B2 (en) 2003-04-21 2003-04-21 Ice making equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003115579A JP4333202B2 (en) 2003-04-21 2003-04-21 Ice making equipment

Publications (2)

Publication Number Publication Date
JP2004324903A JP2004324903A (en) 2004-11-18
JP4333202B2 true JP4333202B2 (en) 2009-09-16

Family

ID=33496090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003115579A Expired - Fee Related JP4333202B2 (en) 2003-04-21 2003-04-21 Ice making equipment

Country Status (1)

Country Link
JP (1) JP4333202B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2743611A3 (en) * 2012-12-13 2017-03-01 Whirlpool Corporation Clear ice maker with warm air flow
US9816744B2 (en) 2012-12-13 2017-11-14 Whirlpool Corporation Twist harvest ice geometry
US10030902B2 (en) 2012-05-03 2018-07-24 Whirlpool Corporation Twistable tray for heater-less ice maker
US10047996B2 (en) 2012-12-13 2018-08-14 Whirlpool Corporation Multi-sheet spherical ice making
US10066861B2 (en) 2012-11-16 2018-09-04 Whirlpool Corporation Ice cube release and rapid freeze using fluid exchange apparatus
US10161663B2 (en) 2012-12-13 2018-12-25 Whirlpool Corporation Ice maker with rocking cold plate
US10174982B2 (en) 2012-12-13 2019-01-08 Whirlpool Corporation Clear ice maker
US10690388B2 (en) 2014-10-23 2020-06-23 Whirlpool Corporation Method and apparatus for increasing rate of ice production in an automatic ice maker
US10739053B2 (en) 2017-11-13 2020-08-11 Whirlpool Corporation Ice-making appliance
US10845111B2 (en) 2012-12-13 2020-11-24 Whirlpool Corporation Layering of low thermal conductive material on metal tray
US10907874B2 (en) 2018-10-22 2021-02-02 Whirlpool Corporation Ice maker downspout

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101868427B1 (en) * 2016-12-13 2018-06-18 최현선 Apparatus for Manufacturing Ice Syrup
US20210356189A1 (en) * 2018-10-02 2021-11-18 Lg Electronics Inc. Refrigerator and method for controlling same
EP3862702B1 (en) * 2018-10-02 2023-09-20 LG Electronics Inc. Refrigerator
JP7458054B2 (en) * 2019-12-09 2024-03-29 アクア株式会社 Ice maker and refrigerator with ice maker
CN115468365A (en) * 2021-05-25 2022-12-13 海信容声(广东)冰箱有限公司 Refrigerator control method and refrigerator

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10030902B2 (en) 2012-05-03 2018-07-24 Whirlpool Corporation Twistable tray for heater-less ice maker
US10030901B2 (en) 2012-05-03 2018-07-24 Whirlpool Corporation Heater-less ice maker assembly with a twistable tray
US10066861B2 (en) 2012-11-16 2018-09-04 Whirlpool Corporation Ice cube release and rapid freeze using fluid exchange apparatus
US11131493B2 (en) 2012-12-13 2021-09-28 Whirlpool Corporation Clear ice maker with warm air flow
US10816253B2 (en) 2012-12-13 2020-10-27 Whirlpool Corporation Clear ice maker with warm air flow
US10047996B2 (en) 2012-12-13 2018-08-14 Whirlpool Corporation Multi-sheet spherical ice making
US9759472B2 (en) 2012-12-13 2017-09-12 Whirlpool Corporation Clear ice maker with warm air flow
US10161663B2 (en) 2012-12-13 2018-12-25 Whirlpool Corporation Ice maker with rocking cold plate
US10174982B2 (en) 2012-12-13 2019-01-08 Whirlpool Corporation Clear ice maker
US11725862B2 (en) 2012-12-13 2023-08-15 Whirlpool Corporation Clear ice maker with warm air flow
US11598567B2 (en) 2012-12-13 2023-03-07 Whirlpool Corporation Twist harvest ice geometry
US10788251B2 (en) 2012-12-13 2020-09-29 Whirlpool Corporation Twist harvest ice geometry
US9816744B2 (en) 2012-12-13 2017-11-14 Whirlpool Corporation Twist harvest ice geometry
US10845111B2 (en) 2012-12-13 2020-11-24 Whirlpool Corporation Layering of low thermal conductive material on metal tray
US11486622B2 (en) 2012-12-13 2022-11-01 Whirlpool Corporation Layering of low thermal conductive material on metal tray
EP2743611A3 (en) * 2012-12-13 2017-03-01 Whirlpool Corporation Clear ice maker with warm air flow
US11441829B2 (en) 2014-10-23 2022-09-13 Whirlpool Corporation Method and apparatus for increasing rate of ice production in an automatic ice maker
US10690388B2 (en) 2014-10-23 2020-06-23 Whirlpool Corporation Method and apparatus for increasing rate of ice production in an automatic ice maker
US11808507B2 (en) 2014-10-23 2023-11-07 Whirlpool Corporation Method and apparatus for increasing rate of ice production in an automatic ice maker
US10739053B2 (en) 2017-11-13 2020-08-11 Whirlpool Corporation Ice-making appliance
US10907874B2 (en) 2018-10-22 2021-02-02 Whirlpool Corporation Ice maker downspout

Also Published As

Publication number Publication date
JP2004324903A (en) 2004-11-18

Similar Documents

Publication Publication Date Title
JP4333202B2 (en) Ice making equipment
JP2004278894A (en) Ice plant
US7318323B2 (en) Ice-making device
US6935124B2 (en) Clear ice making apparatus, clear ice making method and refrigerator
JP3852607B2 (en) Ice making device, freezer refrigerator, ice making method
JP2004053036A (en) Ice maker of transparent ice, and ice making method of transparent ice
US2569113A (en) Automatic ice cube producing and storing apparatus
JP2003114072A (en) Ice plant and freezing refrigerator equipped with this plant
JP2003172564A (en) Ice-making device, and refrigerator-freezer having the device
JP2006022980A (en) Ice making apparatus
JP4140641B2 (en) Ice making equipment, refrigerator-freezer
JP2003042612A (en) Ice making device and refrigerator-freezer equipped therewith
JP2006275510A5 (en)
JP2001355946A (en) Ice plant and freezing refrigerator equipped with it
JP2008157619A (en) Ice making device and refrigerator-freezer
JP4211025B2 (en) Ice making apparatus, refrigerator, and ice making method for refrigerator
JP2001041623A (en) Ice maker and deep freezer refrigerator having the same
JP2001355945A (en) Ice plant and freezing refrigerator equipped with this plant
JP4479485B2 (en) Ice making equipment
JP2003139447A (en) Icemaker and refrigerator with the device
JP4147026B2 (en) Cold beverage supply device
JP2003042615A (en) Ice making device and refrigerator-freezer equipped therewith
JPH053867U (en) Refrigerator ice making equipment
JP2003130510A (en) Ice making device and freezer refrigerator having the device
JP2001355947A (en) Ice plant and freezing refrigerator equipped with this plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060418

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4333202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees