JP4333094B2 - Concentrated crude soybean oligosaccharide liquid and process for producing the same - Google Patents

Concentrated crude soybean oligosaccharide liquid and process for producing the same Download PDF

Info

Publication number
JP4333094B2
JP4333094B2 JP2002207615A JP2002207615A JP4333094B2 JP 4333094 B2 JP4333094 B2 JP 4333094B2 JP 2002207615 A JP2002207615 A JP 2002207615A JP 2002207615 A JP2002207615 A JP 2002207615A JP 4333094 B2 JP4333094 B2 JP 4333094B2
Authority
JP
Japan
Prior art keywords
soybean
oligosaccharide
concentrated
solution
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002207615A
Other languages
Japanese (ja)
Other versions
JP2004051493A (en
Inventor
洋一 福田
恭江 長尾
新一 今井
隆司 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Oil Co Ltd
Original Assignee
Fuji Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Oil Co Ltd filed Critical Fuji Oil Co Ltd
Priority to JP2002207615A priority Critical patent/JP4333094B2/en
Publication of JP2004051493A publication Critical patent/JP2004051493A/en
Application granted granted Critical
Publication of JP4333094B2 publication Critical patent/JP4333094B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Jellies, Jams, And Syrups (AREA)
  • Saccharide Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は濃縮粗大豆オリゴ糖液及びその製造法に関する。
【0002】
【従来の技術】
精製されたオリゴ糖液の規格は乾燥固形分当たり蛋白質含量が1重量%以下、脂質が0重量%、糖質が99重量%以上であり、シロップとして固形分は77±1重量%である。
このオリゴ糖液を精製する原料としての粗オリゴ糖液として大豆から得られるホエーを濃縮したものが検討されてきた。
例えば、大豆から大豆オリゴ糖を水性媒体あるいはアルコールなど有機溶媒で抽出し濃縮する方法が試みられてきた。
大豆を水性媒体で抽出する方法として、Nippon Shokuhin Kogyo Gakkaishi Vol.36.,No.8,636〜642及びVol.38.,No.9,770〜775に記載の発明が知られている。しかし、濃縮されたものではなく、乾燥品では潮解性があるので取り扱いに問題がある。
その他、市販豆腐の製造工程においては大豆を水浸漬して膨潤させた後大豆を水切りした後の水に多少大豆オリゴ糖が溶出するが、その量は少なくオリゴ糖原料としては適していない。
また、大豆をブランチングして大豆オリゴ糖の溶出したホエーも知られているが、本発明のように特定の高濃度に濃縮してビフィズス因子に用いることは知られていない。
また、大豆から温水抽出したホエーを入浴剤(特開平7−304655号公報)に使用することも知られているが、本発明のようにビフィズス因子用に特定の濃度に濃縮することは知られていない。
【0003】
一方、工業的に分離大豆蛋白を製造する工程において、脱脂大豆より水抽出してオカラを除去した豆乳から更に大豆蛋白を分離すると大豆ホエーが得られるが、脱脂大豆から水抽出して得られるホエーには、大豆オリゴ糖だけでなく大豆アルブミン等の蛋白質も壊れた細胞から溶出する。
そこで溶出した大豆蛋白を除去してこの大豆ホエーから大豆オリゴ糖を製造する方法として、特開昭60−66978号公報には、大豆ホエーを塩化カルシウム存在下に水酸化カルシウムで中和するとともに加熱し、生じた沈殿物を除去し膜処理する方法が開示されている。
また、本出願人は特許第2635210号に、大豆ホエーを加熱処理した後リン酸にてpH3.0以下に調製し生じた沈殿を除去し膜処理する方法を開示している。
以上のように分離大豆蛋白を製造する工程で得られるホエーは蛋白質(主に大豆アルブミン)を多く含み、そのまま濃縮すると蛋白質濃度が高くなって粘度が上昇し、約35重量%固形分以上の高濃度に濃縮することは困難である。
【0004】
また、アルコールを用いて抽出する方法として、例えば特開昭62−155082号公報には、脱脂大豆をアルコール溶液で抽出して大豆オリゴ糖を含む物質を得る方法が開示されているが、脂質を含むのでビフィズス菌因子として用いる場合脂質を除去しなければならない。
本出願人は、大豆オリゴ糖の製造法(特開平4−187695号公報)など、大豆ホエーからオリゴ糖を製造する研究を行って来た。
大豆オリゴ糖は主にビフィズス因子など(特開平3−22971号公報、特開昭60−066978号公報等)として利用されたり、低甘味糖など利用されている。
【0005】
【発明が解決しようとする課題】
脱脂大豆から分離大豆蛋白を製造する工程で得られる大豆ホエーは蛋白質含量が高く高濃度に濃縮すると粘度が上昇しせいぜい35%程度の濃縮しか出来ない。一方、大豆よりアルコール抽出して得られる濃縮ホエーは脂質を含みそのままではビフィズス菌用などの利用には不適である。
本発明はオリゴ糖の濃度が高くかつ蛋白質含量および脂質含量が少なく、固形分を腐敗の懸念のない約55%程度に濃縮しても流動性を有する液体の濃縮オリゴ糖液を目的とした。
又、本発明は蛋白質や脂質が少なく、濃縮に際しては着色が少なく、オリゴ糖分解が極めて少ない濃縮方法を目的とした。
【0006】
【課題を解決するための手段】
本発明者らは、大豆抽出溶液調製において温度と加水倍率に留意し、濃縮においては温度とpHに留意することで上記課題を解決できることを見出し、本発明を完成するに到った。
即ち、本発明は、濃縮粗大豆オリゴ糖液の固形分が45〜75重量%で、乾燥固形分当たり糖質含量が60重量%〜80重量%、粗蛋白質含量が15重量%〜3重量%、脂質含量が1重量%〜0.001重量%である濃縮粗大豆オリゴ糖液である。
また、濃縮粗大豆オリゴ糖液の固形分は53〜75重量%が好ましい。
また、濃縮粗大豆オリゴ糖液はビフィズス因子が好ましい。
また、本発明は、大豆を脱皮し75℃以上の温水系下に大豆オリゴ糖を抽出し濃縮することを特徴とする濃縮粗大豆オリゴ糖液の製造法である。
大豆に対する温水の量は2.5〜6倍量が好ましい。
抽出オリゴ糖液をpH4.0からpH6.0の範囲で濃縮することが好ましい。
抽出オリゴ糖液を濃縮する温度は80℃以下が好ましい。
抽出オリゴ糖液を濃縮する態様は減圧濃縮が好ましい。
濃縮粗大豆オリゴ糖液の製造工程のいずれかで精製(除蛋白、脱塩及び/又は脱色)することが好ましい。
【0007】
【発明の実施の形態】
まず、本発明の濃縮粗大豆オリゴ糖液について説明する。
本発明の濃縮粗大豆オリゴ糖液は精製されたオリゴ糖液に至ってない粗(クルード)な濃縮粗大豆オリゴ糖液であり、特に精製オリゴ糖の製造のための原料として極めて適したものである。
【0008】
本発明の濃縮粗大豆オリゴ糖液は、乾燥固形分当たり粗蛋白質含量が15重量%〜3重量%、好ましくは12重量%〜7重量%が適当である。
脱脂大豆から分離大豆蛋白を製造する工程で得られるホエー中の粗蛋白質の含有量は乾燥固形分中通常18重量%以上である。
本発明の濃縮粗大豆オリゴ糖液の乾燥固形分当たりの粗蛋白質含量が低いほど目的のオリゴ糖の含有量を高くできるだけでなく、濃縮粗大豆オリゴ糖液の粘度の上昇を防ぐことができるので高濃度に濃縮することが可能である。例えば、分離大豆蛋白ホエーは乾燥固形分が50%付近における粘度が7000mPas超、アルコール抽出液では粘度が2000mPas超となるのに対し、本発明の濃縮粗大豆オリゴ糖液は乾燥固形分が50%付近でも粘度が300mPas以下の低粘度であり、大豆オリゴ糖の精製原料として優れている。
本発明の製造過程において、除蛋白処理をすれば、粗蛋白質含量をさらに乾燥固形分当たり3重量%未満にまで低下させることが可能である。
【0009】
本発明の濃縮粗大豆オリゴ糖液は、乾燥固形分当たりの脂質含量が1重量%〜0.001重量%、好ましくは0.05重量%〜0.001重量%が適当である。
本発明の製造法の特徴は脂質を極めて低くすることができることにある。また、脱脂処理をすれば微量ではあるが0.001重量%未満にすることが可能である。
オリゴ糖液の用途にもよるが、例えばビフィズス因子として利用する場合、脂質が多いとビフィズス菌の増殖だけでなくビフィズス菌を用いた飲料素材として不適になる場合があり好ましくない。
【0010】
本発明の濃縮粗大豆オリゴ糖液は、乾燥固形分当たり糖質含量が60重量%〜80重量%、好ましくは65重量%〜80重量%、より好ましくは70重量%〜80重量%が適当である。
本発明の製造工程において、除蛋白や脱塩処理をすれば糖質含量をこれ以上に上げることが可能である。
糖質含量が高いほどオリゴ糖原料として適当であるだけでなく、水分活性(AW)を高く保つことができるので原料の保存中、運搬中の菌による腐敗を防止することができる。
尚、糖質としてはシュークロースがもっとも割合が多いが3糖以上のオリゴ糖としてスタキオース、ラフィノース、ベルバスコースなどを含むものである。これらの糖類がビフィズス因子として重要な役割を果たすものである。
【0011】
本発明の濃縮粗大豆オリゴ糖液の固形分は45〜75重量%、好ましくは53重量%〜75重量%が適当である。
本発明の濃縮粗大豆オリゴ糖液は粗オリゴ糖である。糖質だけでなく蛋白質、微量の脂質及び塩類その他微量成分を含むからである。
固形分濃度が低いと水分活性(Aw)が小さくなり、殺菌処理して無菌的に保存しないと菌の増殖が可能になり大豆オリゴ糖液の保存や運搬中に腐敗する恐れがあり好ましくない。ちなみに、固形分45重量%未満では細菌の繁殖が見られ好ましくない。
また、固形分が53重量%以上では細菌及び酵母の生育が認められない。
濃縮粗大豆オリゴ糖液の固形分は高いほど輸送コストが安くなるだけでなく菌による腐敗を防止できるので好ましいが、固形分が高くなりすぎると流動性が失われ溶液として扱うことが困難になるので工業的に濃縮したり、容器(タンク、パックなど)に充填したりタンク輸送などには不適となるので好ましくない。もっとも、流動性が失われるまで濃縮してペーストとしたり可塑性素材、或いは噴霧乾燥して粉体とすることもできるが大豆オリゴ糖は潮解性があるので取り扱いが不便である。
ちなみに、本発明の濃縮粗大豆オリゴ糖液の固形分が55重量%のときのAwは0.86となり、本発明の濃縮オリゴ糖液の固形分が50重量%ではAwは0.89となる。通常、Aw0.94以下で細菌増殖を抑制することができ、AW0.88以下で酵母増殖を抑制することができ、AW0.80以下でカビの増殖を抑制することができる。
【0012】
本発明の濃縮粗大豆オリゴ糖液はそのままオリゴ糖の原料として利用できる。主にビフィズス因子として好適である。
本発明の濃縮粗大豆オリゴ糖液は必要により、更に除蛋白、脂質除去、脱塩、脱色などの処理を行ってオリゴ糖の純度を上げることができる。尚、除蛋白、脂質の除去、脱塩、脱色などの処理は公知の手段を利用することができる。
例えば、アルカリ金属塩やアルカリ土類金属、リン酸を添加し加熱して蛋白質を沈殿除去したり、膜処理により除蛋白や脱塩をしたり、樹脂処理により脱色や脱塩などをすることができる。
本発明の濃縮粗大豆オリゴ糖液は濃縮したままでもビフィズス因子として利用することができるが、オリゴ糖の含有量を上げるため前記のように除蛋白、脱塩、あるいは脂質の除去をすることができる。
例えば、除蛋白、脱塩処理すると、実施例に示すように水分35%、粗蛋白質0.01%、灰分0.03%、糖質65%程度までオリゴ糖の純度を上げることができる。
【0013】
次に、本発明の濃縮粗大豆オリゴ糖液の製造法について説明する。
本発明は大豆を脱皮し80℃以上の水系下に大豆オリゴ糖を抽出し濃縮することを特徴とする濃縮粗大豆オリゴ糖液の製造法である。
【0014】
本発明に用いる大豆は脱皮大豆、好ましくは脱胚軸した大豆が適当である。通常、大豆を半割れし風選などして皮を除くことができる。重要なことは大豆を粉砕しないことである。せいぜい半割れ〜4つ割れ程度が好適である。
大豆を粉砕して細かくすると、大豆の細胞が壊れプロテインボディーやリピッドボディーが破壊されて温水で抽出する場合に大豆の細胞から蛋白質や脂質が溶出するので好ましくない。
大豆を脱皮することにより温水中に糖類が溶出しやすくなる。このとき大豆は半割れ〜4つ割れ程度であるので蛋白質や脂質の溶出が極めて少ないものである。
脱胚軸は必ずしも必要ではないが、オリゴ糖液の風味を良くしたり、美肌効果を有するイソフラボンなどの摂取を目的としないのであれば脱胚軸することもできる。
【0015】
本発明において大豆から温水でオリゴ糖を抽出する温度は、70℃以上、好ましくは75℃〜100℃の温水系下に大豆オリゴ糖を抽出することが適当である。常圧下では100℃以下が通常であるが、加圧下においては圧力に応じた沸点以下の温度で抽出することができる。例えばゲージ圧1kg/cm2では120℃とすることができる。
オリゴ糖の分解を抑えかつ大豆からの溶出を促進し、蛋白質などの溶出を防ぐには高圧下より常圧が好ましく、75〜100℃、好ましくは80℃〜100℃が適当である。
【0016】
また、抽出時間は抽出温度が高いほど短時間でよい。例えば80℃では1〜3時間が好適である。
【0017】
また、本発明においては、大豆に対して温水の加水倍率は2.5〜6倍、好ましくは3〜5倍)が適当である。通常、2倍程度の温水が豆に吸収されるため加水量が大豆の2.5倍未満は不適である。
又、大豆に対する温水の加水倍率が高いと、大豆から蛋白質が溶出しやすくなりだけでなく、オリゴ糖の濃度も相対的に低くなり、後の濃縮工程にコストがかかる。
また、大豆から温水で大豆オリゴ糖を抽出する態様は前記加水倍率や抽出時間に相当する連続抽出も可能である。例えば、連続抽出管の一方から温水を流し他方から大豆を入れるいわゆる向流抽出法などを利用することができる。
【0018】
また、本発明においては抽出オリゴ糖液を酸性領域、好ましくはpH4.0〜6.0の範囲で濃縮することが好ましい。
濃縮温度にもよるが、pHが4.0未満の強酸性域ではオリゴ糖が分解される恐れがある。また、pHが高くてもオリゴ糖が分解されたり、アミノ酸との反応によるアミノカルボニル反応が起きやすくなりオリゴ糖液が着色する恐れがある。
【0019】
本発明において濃縮は低温弱酸性領域で行うことで、アミノカルボニル反応が最も反応速度が遅くなり好ましい。
本発明において、抽出オリゴ糖液を濃縮する温度は80℃以下が好ましい。工業的な濃縮機の能力と効率の観点より温度は30℃以上が実用的である。
濃縮温度が高いとpHにもよるがオリゴ糖の分解やアミノカルボニル反応が促進され着色されるなどするので好ましくない。濃縮温度が低いと濃縮効率が低下して実用的でない。
【0020】
抽出オリゴ糖液を濃縮する態様は、前記条件を満たす実用的な方法として蒸発温度で制御できる減圧濃縮が好ましい。
同様に凍結溶解による濃縮方法も利用できる。この場合は温度の制限は懸念する必要はないがpHは前記同様4.0〜6.0の弱酸性領域が好ましい。
以上の条件により粗蛋白質の溶出が少なく脂質を殆ど含まない大豆オリゴ糖液を比較的高濃度で得ることができる。
【0021】
以上の工程で得られる濃縮粗大豆オリゴ糖液は着色も少なくそのままビフィズス因子として利用することもできるが、オリゴ糖の純度をあげるためには除蛋白、脱塩処理を行うことが好ましい。
即ち、本発明の方法では、脂質は比較的少ないので必ずしも除く必要はないが、大豆オリゴ糖液の製造工程のいずれかで精製(除蛋白、脂質除去及び/又は脱塩)することが好ましい。
除蛋白は前述のようにアルカリ金属塩、アルカリ土類金属塩、あるいはリン酸などを利用することができる。その他膜処理などによる除蛋白や膜処理や樹脂処理などによる脱塩は公知の手段を利用することができる。
【0022】
以上の方法により得られる濃縮粗大豆オリゴ糖液は蛋白質及び脂質の含量が低いので、粘度を大豆ホエーや脂質を含むアルコール抽出液の濃縮溶液より著しく低くすることができる。これにより、取り扱い易く、またオリゴ糖精製に際しては低粘度であるため高濃度で製造ラインに供することができる。
【0023】
【実施例】
以下に実施例を示し本発明の実施態様を説明する。なお、実施例以降の「%」は「重量%」を示す。
【0024】
実験例1(浸漬温度による大豆からの浸漬液中の糖含有量の変化)
脱皮脱胚軸した大豆1000g(固形分90%)に5倍量の水5000gを加え、pHを7.5になるように水酸化ナトリウムで調整しながら、プロペラで大豆がわずかに浮き上がる程度の攪拌を加えながら浸漬温度20℃、60℃、80℃、90℃、98℃で大豆の固形分が45%になるまで浸漬して、浸漬液を回収した。得られた浸漬液中に浸出された糖質量及び粗蛋白質量を測定した。糖質の定量はフェノール硫酸法でシュークロース量として求めた。
【0025】
【表1】
────────────────────────────────
浸漬温度 20℃ 60℃ 80℃ 90℃ 98℃
浸漬時間 6時間 3時間 1時間 1時間 1時間
────────────────────────────────
糖質量 54g 67g 78g 82g 82g
粗蛋白質量 27g 23g 18g 18g 18g
────────────────────────────────
【0026】
浸漬温度が高いほど短時間で浸漬液中に浸出する糖質量が増え、90℃で最も高くなった。対して粗蛋白質量は浸漬温度が高いほど低くなった。この結果から、オリゴ糖原料用に効率的に糖成分を抽出するためには60℃以上、好ましくは80℃以上の高温での浸漬が必要であると示唆された。
【0027】
実施例1
脱皮大豆に4倍量の90℃の熱水を加え温度を80℃以上に保ちつつ15分に一回程度弱い攪拌を加え2時間浸漬して大豆浸漬液(サンプル1)を得た。
【0028】
比較例1
脱脂大豆に10倍量の水を加水し、NaOHにてpHを7.5に調整して室温(20℃)にて1時間プロペラ攪拌抽出の後、遠心分離により固液分離して脱脂豆乳を調製した。脱脂豆乳をHClによりpH4.5に調整して沈殿物を除去して大豆ホエー(サンプル2)を得た。
【0029】
比較例2
脱脂大豆へ55%の含水エタノールを6倍量加え室温(20℃)にて1時間プロペラ攪拌により抽出後減圧濾過により固液を分離しアルコール抽出液(サンプル3)を得た。
【0030】
実施例1、比較例1、2で得られた各サンプルの乾燥固形分(重量%)および乾燥固形分を100%とした場合の成分組成(%)を表2に示す。
【0031】

Figure 0004333094
【0032】
表2において、実施例1のサンプル1は乾物固形分が高く溶媒を使用していないにも関わらず粗蛋白質の溶出を抑え糖質も比較的高い。比較例1のサンプル2は粗蛋白質含有量が極めて高く糖質は最も少ない。比較例2のサンプル3は糖質が最も高いが脂質も高く含有する。従って、糖質を比較的高く含有し脂質を殆ど含まないことより、サンプル1に優位性がある。
【0033】
実施例2
実施例1と同様にして得たサンプル1を減圧濃縮機「エバポール」(大川原製作所製(CEP−L型))にて蒸発温度75℃、加熱温度95℃の減圧濃縮により乾燥乾物固形分として50%付近まで濃縮を行い濃縮大豆浸漬液(サンプル4)を得た。
【0034】
比較例3
比較例1と同様にして得たサンプル2を実施例2と同様の条件と方法で濃縮し濃縮大豆ホエー(サンプル5)を得た。
【0035】
比較例4
比較例2と同様にして得たサンプル3を先ずロータリーエバポレーターにて蒸留しエタノール濃度を5%以下とした後、実施例2と同様の条件と方法で濃縮し濃縮アルコール抽出液(サンプル6)を得た。
【0036】
実施例2と比較例3、4の溶液粘度の比較を行った。前記サンプル4〜6の濃縮溶液を溶液温度25℃に調整して B型粘度計を用いて溶液粘度を測定した。結果を次の表に示す。
【0037】
Figure 0004333094
【0038】
表3より、比較例のサンプル5及び6の溶液粘度は実施例2のサンプル4に比べ著しく高粘度である。原料の取り扱いは溶液粘度の低い方が扱い易く、オリゴ糖精製に際しても脱塩や脱色を行う工程の溶液粘度が低い方が高濃度で処理できるため有利である。
【0039】
応用例1
実施例2と同様にして得られた濃縮大豆浸漬液を乾物固形分45%以下に加水するが、不溶物が発生しているため遠心分離(3000rpm×10分)により清澄液を得る。不溶物の除去に際しては必要に応じ水酸化カルシウムを添加して加熱処理により除去し易くしても良い。
この清澄液を粒状活性炭カラムに通液処理し、次いで多孔性有機合成吸着剤(ダイアイオンHP−20、三菱化成(株)製)に通液、更にイオン交換樹脂(レバチット、Bayer社製)に通液した後、溶液温度60℃未満で減圧濃縮しオリゴ糖濃縮物を得た。
得られたオリゴ糖濃縮物の成分分析値は、水分35%、粗蛋白質0.01%、灰分0.03%、糖質65%であった。また糖質には3糖以上のオリゴ糖が37.6%、ショ糖が56.7%含まれた。
【0040】
【発明の効果】
本発明により、保存や運搬中に腐敗の極めて少ない高濃度オリゴ糖液(濃縮粗大豆オリゴ糖液)を提供することが可能になったものである。そして、この濃縮粗大豆オリゴ糖液は蛋白質含量も脂質含量も少なく高濃度の固形分を含みながらも流動性を有する液体であり、このままでもビフィズス因子として利用できるものである。
また、本発明の濃縮粗大豆オリゴ糖液はオリゴ糖の純度をあげたオリゴ糖の原料として供給することができる。供給の際に高濃度に濃縮されているので運搬中や保存中に腐敗する心配がない。
また、本発明の製造法を利用することにより着色が少なく、粗蛋白質含量が少なく、脂質がほとんどない濃縮粗大豆オリゴ糖液を得ることができるようになったものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a concentrated crude soybean oligosaccharide solution and a method for producing the same.
[0002]
[Prior art]
The specification of the purified oligosaccharide liquid is that the protein content per dry solid content is 1% by weight or less, the lipid is 0% by weight, the sugar is 99% by weight or more, and the solid content is 77 ± 1% by weight as a syrup.
Concentrated whey obtained from soybean has been studied as a crude oligosaccharide solution as a raw material for purifying this oligosaccharide solution.
For example, a method has been attempted in which soybean oligosaccharide is extracted from soybean with an aqueous medium or an organic solvent such as alcohol and concentrated.
As a method for extracting soybean with an aqueous medium, the inventions described in Nippon Shokuhin Kogyo Gakkaishi Vol.36., No.8, 636-642 and Vol.38., No.9, 770-775 are known. However, there is a problem in handling because the dried product is not concentrated and has deliquescent properties.
In addition, in the manufacturing process of commercially available tofu, soybean oligosaccharide is eluted in water after the soybean is soaked in water and swollen, and then the soybean is drained, but the amount thereof is small and is not suitable as an oligosaccharide raw material.
Further, whey from which soybean is blanched and soy oligosaccharide is eluted is also known, but it is not known that it is concentrated to a specific high concentration and used as a bifido factor as in the present invention.
It is also known to use whey extracted from soybeans with hot water as a bath agent (Japanese Patent Laid-Open No. 7-304655), but it is known to concentrate to a specific concentration for bifido factor as in the present invention. Not.
[0003]
On the other hand, in the process of producing isolated soybean protein industrially, if soy protein is further separated from soy milk that has been extracted from defatted soybean with water to remove okara, soy whey is obtained, but whey obtained by extraction from defatted soybean with water. In addition, not only soybean oligosaccharides but also proteins such as soybean albumin are eluted from broken cells.
As a method for removing soy protein eluted and producing soybean oligosaccharide from this soybean whey, Japanese Patent Application Laid-Open No. 60-66978 discloses that soybean whey is neutralized with calcium hydroxide in the presence of calcium chloride and heated. However, a method of removing the generated precipitate and performing membrane treatment is disclosed.
In addition, the present applicant discloses in Japanese Patent No. 2635210 a method in which soybean whey is heat-treated and then adjusted to pH 3.0 or less with phosphoric acid to remove the generated precipitate and membrane-treat.
As described above, whey obtained in the process of producing separated soy protein contains a large amount of protein (mainly soy albumin), and when concentrated as it is, the protein concentration increases and the viscosity increases, and the high content of about 35% by weight or more solids. It is difficult to concentrate to a concentration.
[0004]
In addition, as a method for extraction using alcohol, for example, JP-A-62-155082 discloses a method for obtaining a substance containing soybean oligosaccharide by extracting defatted soybean with an alcohol solution. Since it is contained, lipids must be removed when used as bifidobacterial factors.
The present applicant has conducted research on producing oligosaccharides from soybean whey, such as a method for producing soybean oligosaccharides (JP-A-4-187695).
Soybean oligosaccharide is mainly used as a bifido factor or the like (Japanese Patent Laid-Open No. 3-22971, Japanese Patent Laid-Open No. 60-066978) or a low sweet sugar.
[0005]
[Problems to be solved by the invention]
Soy whey obtained in the process of producing separated soybean protein from defatted soybean has a high protein content, and when concentrated to a high concentration, its viscosity increases and can only be concentrated at about 35%. On the other hand, concentrated whey obtained by alcohol extraction from soybean contains lipids and is unsuitable for use as it is for bifidobacteria.
An object of the present invention is to provide a concentrated oligosaccharide solution having a high oligosaccharide concentration, a low protein content and a low lipid content, and having fluidity even when the solid content is concentrated to about 55% without fear of spoilage.
Another object of the present invention is to provide a concentration method that has less protein and lipid, less coloring during concentration, and extremely low oligosaccharide degradation.
[0006]
[Means for Solving the Problems]
The present inventors have found that the above-mentioned problems can be solved by paying attention to the temperature and hydrolysis ratio in preparing the soybean extract solution, and paying attention to the temperature and pH in the concentration, and have completed the present invention.
That is, according to the present invention, the concentrated crude soybean oligosaccharide liquid has a solid content of 45 to 75% by weight, a carbohydrate content of 60% to 80% by weight and a crude protein content of 15% to 3% by weight based on the dry solid content. A concentrated crude soybean oligosaccharide solution having a lipid content of 1 wt% to 0.001 wt%.
The solid content of the concentrated crude soybean oligosaccharide solution is preferably 53 to 75% by weight.
The concentrated crude soybean oligosaccharide solution is preferably a bifido factor.
The present invention also provides a method for producing a concentrated crude soybean oligosaccharide solution, which comprises peeling soybeans and extracting and condensing soybean oligosaccharides in a warm water system at 75 ° C. or higher.
The amount of warm water relative to soybean is preferably 2.5 to 6 times.
The extracted oligosaccharide solution is preferably concentrated in the range of pH 4.0 to pH 6.0.
The temperature for concentrating the extracted oligosaccharide solution is preferably 80 ° C. or lower.
The mode of concentrating the extracted oligosaccharide solution is preferably vacuum concentration.
It is preferable to purify (deproteinization, desalting and / or decoloring) in any of the steps for producing the concentrated crude soybean oligosaccharide solution.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
First, the concentrated crude soybean oligosaccharide solution of the present invention will be described.
The concentrated crude soybean oligosaccharide liquid of the present invention is a crude crude crude soybean oligosaccharide liquid that has not reached a purified oligosaccharide liquid, and is particularly suitable as a raw material for producing a purified oligosaccharide. .
[0008]
The concentrated crude soybean oligosaccharide solution of the present invention has a crude protein content of 15 wt% to 3 wt%, preferably 12 wt% to 7 wt% per dry solid content.
The content of crude protein in whey obtained in the process of producing separated soybean protein from defatted soybean is usually 18% by weight or more in the dry solid content.
The lower the crude protein content per dry solid content of the concentrated crude soybean oligosaccharide liquid of the present invention, the higher the content of the target oligosaccharide, and the higher the viscosity of the concentrated crude soybean oligosaccharide liquid can be prevented. It is possible to concentrate to a high concentration. For example, the isolated soybean protein whey has a viscosity of more than 7000 mPas at a dry solid content of around 50%, and the alcohol extract has a viscosity of more than 2000 mPas, whereas the concentrated crude soybean oligosaccharide solution of the present invention has a dry solid content of 50%. Even in the vicinity, the viscosity is as low as 300 mPas or less, and it is excellent as a refined raw material for soybean oligosaccharides.
In the production process of the present invention, if protein removal treatment is performed, it is possible to further reduce the crude protein content to less than 3% by weight per dry solid content.
[0009]
The concentrated crude soybean oligosaccharide solution of the present invention has a lipid content per dry solid content of 1 wt% to 0.001 wt%, preferably 0.05 wt% to 0.001 wt%.
The feature of the production method of the present invention is that the lipid can be made extremely low. Moreover, if it is degreased, it is possible to make it less than 0.001% by weight although it is a very small amount.
Depending on the use of the oligosaccharide solution, for example, when it is used as a bifido factor, a large amount of lipid is not preferable because it may be unsuitable not only for the growth of bifidobacteria but also as a beverage material using bifidobacteria.
[0010]
In the concentrated crude soybean oligosaccharide liquid of the present invention, the sugar content per dry solid content is 60 wt% to 80 wt%, preferably 65 wt% to 80 wt%, more preferably 70 wt% to 80 wt%. is there.
In the production process of the present invention, the saccharide content can be increased further by deproteinization or desalting treatment.
A higher sugar content is not only suitable as an oligosaccharide raw material, but also can maintain a high water activity (AW), so that it is possible to prevent spoilage caused by bacteria during transportation during storage of the raw material.
As a carbohydrate, sucrose has the highest ratio, but saccharides such as stachyose, raffinose, and Verbasse are included as oligosaccharides having 3 or more sugars. These sugars play an important role as bifido factors.
[0011]
The solid content of the concentrated crude soybean oligosaccharide solution of the present invention is 45 to 75% by weight, preferably 53 to 75% by weight.
The concentrated crude soybean oligosaccharide solution of the present invention is a crude oligosaccharide. This is because it contains not only carbohydrates but also proteins, trace amounts of lipids, salts and other trace components.
If the solid content concentration is low, the water activity (Aw) becomes small, and if it is not sterilized and preserved aseptically, bacteria can grow and it may be spoiled during storage and transportation of the soybean oligosaccharide solution. Incidentally, if the solid content is less than 45% by weight, bacterial growth is observed, which is not preferable.
In addition, when the solid content is 53% by weight or more, growth of bacteria and yeast is not observed.
The higher the solid content of the concentrated crude soybean oligosaccharide solution, the more preferable it is because it not only reduces the transportation cost but also prevents spoilage by bacteria, but if the solid content becomes too high, the fluidity is lost and it becomes difficult to handle as a solution. Therefore, it is not preferable because it is not suitable for industrial concentration, filling in containers (tanks, packs, etc.) or tank transportation. However, it can be concentrated to a paste until it loses fluidity, or it can be made into a plastic material, or spray-dried into a powder. However, soybean oligosaccharide is deliquescent and is inconvenient to handle.
Incidentally, when the solid content of the concentrated crude soybean oligosaccharide liquid of the present invention is 55% by weight, Aw becomes 0.86, and when the solid content of the concentrated oligosaccharide liquid of the present invention is 50% by weight, Aw becomes 0.89. . Usually, bacterial growth can be suppressed at Aw 0.94 or less, yeast growth can be suppressed at AW 0.88 or less, and mold growth can be suppressed at AW 0.80 or less.
[0012]
The concentrated crude soybean oligosaccharide solution of the present invention can be used as it is as a raw material for oligosaccharides. It is mainly suitable as a bifido factor.
If necessary, the concentrated crude soybean oligosaccharide solution of the present invention can be further subjected to treatments such as deproteinization, lipid removal, desalting, and decolorization to increase the purity of the oligosaccharide. It should be noted that known methods can be used for treatments such as deproteinization, lipid removal, desalting, and decolorization.
For example, alkali metal salts, alkaline earth metals, and phosphoric acid can be added and heated to precipitate and remove proteins, deproteinize and desalinate by membrane treatment, and decolorize and desalt by resin treatment. it can.
The concentrated crude soybean oligosaccharide solution of the present invention can be used as a bifido factor even when it is concentrated, but deproteinization, desalting, or lipid removal may be performed as described above in order to increase the oligosaccharide content. it can.
For example, deproteinization and desalting can increase the purity of oligosaccharides up to 35% moisture, 0.01% crude protein, 0.03% ash, and 65% saccharide as shown in the Examples.
[0013]
Next, the manufacturing method of the concentrated crude soybean oligosaccharide liquid of this invention is demonstrated.
The present invention relates to a method for producing a concentrated crude soybean oligosaccharide solution, which comprises peeling soybeans and extracting and condensing soybean oligosaccharides in an aqueous system at 80 ° C. or higher.
[0014]
The soybean used in the present invention is a moulted soybean, preferably a soaked soybean. Usually, soybeans can be half-cracked to remove the skin by wind selection. The important thing is not to grind the soybeans. A half crack to about four cracks is suitable at most.
If the soybean is pulverized into fine particles, the soybean cells are broken, the protein body or the lipid body is destroyed, and protein and lipid are eluted from the soybean cells when extracted with warm water.
By peeling off soybeans, sugars are easily eluted in warm water. At this time, since soybean is about half to four cracks, the elution of proteins and lipids is extremely small.
The embryonic axis is not always necessary, but it can be removed if the oligosaccharide solution is not flavored or if it is not intended to ingest isoflavone or the like having a beautifying skin effect.
[0015]
In the present invention, it is appropriate that the oligosaccharide is extracted from soybeans with warm water at a temperature of 70 ° C. or higher, preferably 75 ° C. to 100 ° C. in a warm water system. Under normal pressure, the temperature is usually 100 ° C. or lower, but under pressure, extraction can be performed at a temperature below the boiling point corresponding to the pressure. For example, at a gauge pressure of 1 kg / cm 2 , the temperature can be 120 ° C.
In order to suppress the decomposition of the oligosaccharide, promote the elution from soybean, and prevent the elution of proteins and the like, normal pressure is preferable under high pressure, and 75 to 100 ° C, preferably 80 to 100 ° C is appropriate.
[0016]
Further, the extraction time may be shorter as the extraction temperature is higher. For example, at 80 ° C., 1 to 3 hours are preferable.
[0017]
In addition, in the present invention, it is appropriate that the ratio of hot water to soybean is 2.5 to 6 times, preferably 3 to 5 times. Usually, about twice as much hot water is absorbed by beans, so that the amount of water added is less than 2.5 times that of soybeans.
In addition, when the addition ratio of hot water to soybean is high, not only protein is easily eluted from soybean, but also the concentration of oligosaccharide becomes relatively low, and the subsequent concentration step is costly.
Moreover, the aspect which extracts a soybean oligosaccharide from soybean with warm water can also perform the continuous extraction equivalent to the said hydrolysis rate and extraction time. For example, a so-called countercurrent extraction method in which warm water is allowed to flow from one of the continuous extraction tubes and soybeans are charged from the other can be used.
[0018]
In the present invention, the extracted oligosaccharide solution is preferably concentrated in the acidic region, preferably in the range of pH 4.0 to 6.0.
Depending on the concentration temperature, the oligosaccharide may be decomposed in a strongly acidic region having a pH of less than 4.0. In addition, even if the pH is high, the oligosaccharide may be decomposed or an aminocarbonyl reaction may easily occur due to a reaction with an amino acid, and the oligosaccharide liquid may be colored.
[0019]
In the present invention, the concentration is carried out in a low-temperature weakly acidic region, and the aminocarbonyl reaction is preferable because the reaction rate is the slowest.
In the present invention, the temperature for concentrating the extracted oligosaccharide solution is preferably 80 ° C. or lower. A temperature of 30 ° C. or more is practical from the viewpoint of the ability and efficiency of an industrial concentrator.
If the concentration temperature is high, although it depends on the pH, decomposition of the oligosaccharide or aminocarbonyl reaction is promoted and coloring is not preferable. If the concentration temperature is low, the concentration efficiency is lowered, which is not practical.
[0020]
The mode of concentrating the extracted oligosaccharide solution is preferably vacuum concentration that can be controlled by the evaporation temperature as a practical method that satisfies the above conditions.
Similarly, a concentration method by freezing and thawing can also be used. In this case, it is not necessary to worry about the temperature limitation, but the pH is preferably in the weakly acidic region of 4.0 to 6.0 as described above.
Under the above conditions, a soybean oligosaccharide solution with little crude protein elution and almost no lipid can be obtained at a relatively high concentration.
[0021]
The concentrated crude soybean oligosaccharide solution obtained in the above steps is less colored and can be used as it is as a bifido factor. However, in order to increase the purity of the oligosaccharide, it is preferable to perform deproteinization and desalting treatment.
That is, in the method of the present invention, since lipid is relatively small, it is not always necessary to remove it, but it is preferable to purify (deproteinization, lipid removal and / or desalting) in any of the production steps of soybean oligosaccharide liquid.
Deproteinization can utilize an alkali metal salt, an alkaline earth metal salt, or phosphoric acid as described above. In addition, a known means can be used for deproteinization by membrane treatment or the like and for desalting by membrane treatment or resin treatment.
[0022]
Since the concentrated crude soybean oligosaccharide solution obtained by the above method has a low protein and lipid content, the viscosity can be made significantly lower than that of a concentrated solution of an alcohol extract containing soybean whey or lipid. As a result, it is easy to handle and can be used in a production line at a high concentration because of its low viscosity during oligosaccharide purification.
[0023]
【Example】
The following examples illustrate embodiments of the present invention. In the examples, “%” indicates “% by weight”.
[0024]
Experimental Example 1 (Change in sugar content in soaking solution from soybean depending on soaking temperature)
Thousands of soybeans that have been moulted and shed are added to 1000 g of soybeans (solid content 90%), and 5000 g of 5 times the amount of water is added. The soaking solution was collected by soaking at a soaking temperature of 20 ° C., 60 ° C., 80 ° C., 90 ° C., and 98 ° C. until the solid content of soybean reached 45%. The amount of sugar and the amount of crude protein leached into the obtained immersion liquid were measured. The amount of saccharide was determined as the amount of sucrose by the phenol-sulfuric acid method.
[0025]
[Table 1]
────────────────────────────────
Immersion temperature 20 ° C 60 ° C 80 ° C 90 ° C 98 ° C
Immersion time 6 hours 3 hours 1 hour 1 hour 1 hour ────────────────────────────────
Sugar mass 54g 67g 78g 82g 82g
Crude protein mass 27g 23g 18g 18g 18g
────────────────────────────────
[0026]
The higher the immersion temperature, the more sugar was leached into the immersion liquid in a shorter time, and the highest was 90 ° C. On the other hand, the amount of crude protein decreased as the immersion temperature increased. From this result, it was suggested that immersion at a high temperature of 60 ° C. or higher, preferably 80 ° C. or higher is necessary to efficiently extract sugar components for oligosaccharide raw materials.
[0027]
Example 1
Four times the amount of hot water at 90 ° C. was added to the peeled soybean, and the mixture was immersed for about 2 hours with weak stirring once every 15 minutes while maintaining the temperature at 80 ° C. or higher to obtain a soybean soaking solution (Sample 1).
[0028]
Comparative Example 1
Add 10 times the amount of water to defatted soybeans, adjust the pH to 7.5 with NaOH, extract with propeller stirring at room temperature (20 ° C) for 1 hour, and then separate the solid and liquid by centrifugation to obtain defatted soymilk. Prepared. The defatted soymilk was adjusted to pH 4.5 with HCl to remove the precipitate to obtain soybean whey (Sample 2).
[0029]
Comparative Example 2
A 6-fold amount of 55% aqueous ethanol was added to the defatted soybean, followed by extraction with propeller stirring at room temperature (20 ° C.) for 1 hour, and then the solid liquid was separated by filtration under reduced pressure to obtain an alcohol extract (sample 3).
[0030]
Table 2 shows the dry solid content (% by weight) and the component composition (%) when the dry solid content of each sample obtained in Example 1 and Comparative Examples 1 and 2 is 100%.
[0031]
Figure 0004333094
[0032]
In Table 2, Sample 1 of Example 1 has a high dry matter solid content and suppresses the elution of the crude protein even though no solvent is used, and has a relatively high sugar content. Sample 2 of Comparative Example 1 has a very high crude protein content and the least amount of carbohydrates. Sample 3 of Comparative Example 2 has the highest carbohydrate but also contains a high lipid. Therefore, the sample 1 has an advantage from containing a relatively high amount of carbohydrate and almost no lipid.
[0033]
Example 2
Sample 1 obtained in the same manner as in Example 1 was reduced to a dry dry solid content of 50 by evaporation under reduced pressure at an evaporation temperature of 75 ° C. and a heating temperature of 95 ° C. using a vacuum evaporator “Evapol” (CEP-L type). Concentrated to near% to obtain a concentrated soybean soaking solution (sample 4).
[0034]
Comparative Example 3
Sample 2 obtained in the same manner as in Comparative Example 1 was concentrated under the same conditions and method as in Example 2 to obtain concentrated soybean whey (Sample 5).
[0035]
Comparative Example 4
Sample 3 obtained in the same manner as in Comparative Example 2 was first distilled on a rotary evaporator to reduce the ethanol concentration to 5% or less, and then concentrated under the same conditions and method as in Example 2 to obtain a concentrated alcohol extract (Sample 6). Obtained.
[0036]
The solution viscosities of Example 2 and Comparative Examples 3 and 4 were compared. The concentrated solutions of Samples 4 to 6 were adjusted to a solution temperature of 25 ° C., and the solution viscosity was measured using a B-type viscometer. The results are shown in the following table.
[0037]
Figure 0004333094
[0038]
From Table 3, the solution viscosity of the samples 5 and 6 of the comparative example is remarkably higher than that of the sample 4 of the example 2. The handling of the raw material is easier when the solution viscosity is lower, and the lower the solution viscosity in the step of desalting or decoloring when purifying oligosaccharide is advantageous because it can be processed at a higher concentration.
[0039]
Application example 1
The concentrated soybean soaking solution obtained in the same manner as in Example 2 is hydrated to a dry matter solid content of 45% or less. However, since insoluble matter is generated, a clear solution is obtained by centrifugation (3000 rpm × 10 minutes). When removing insoluble matter, calcium hydroxide may be added as necessary to facilitate removal by heat treatment.
This clarified liquid is passed through a granular activated carbon column, then passed through a porous organic synthetic adsorbent (Diaion HP-20, manufactured by Mitsubishi Kasei Co., Ltd.), and further into an ion exchange resin (Lebatit, manufactured by Bayer). After passing, the solution was concentrated under reduced pressure at a solution temperature of less than 60 ° C. to obtain an oligosaccharide concentrate.
The component analysis values of the obtained oligosaccharide concentrate were 35% moisture, 0.01% crude protein, 0.03% ash, and 65% saccharide. The carbohydrates contained 37.6% oligosaccharides with 3 or more sugars and 56.7% sucrose.
[0040]
【The invention's effect】
According to the present invention, it is possible to provide a high-concentration oligosaccharide liquid (concentrated crude soybean oligosaccharide liquid) that has very little spoilage during storage and transportation. The concentrated crude soybean oligosaccharide liquid is a liquid having a low protein content and a low lipid content and having a high concentration of solids and having fluidity, and can be used as a bifido factor as it is.
Moreover, the concentrated crude soybean oligosaccharide solution of the present invention can be supplied as a raw material for oligosaccharides with increased oligosaccharide purity. Since it is concentrated to a high concentration at the time of supply, there is no risk of decay during transportation or storage.
In addition, by using the production method of the present invention, a concentrated crude soybean oligosaccharide solution with little coloration, low crude protein content and almost no lipid can be obtained.

Claims (6)

大豆を脱皮し75℃〜120℃の水系下に大豆オリゴ糖を抽出し、濃縮することを特徴とする濃縮粗大豆オリゴ糖液の製造法。A method for producing a concentrated crude soybean oligosaccharide liquid, which comprises peeling soybeans, extracting soybean oligosaccharides in an aqueous system at 75 ° C to 120 ° C, and concentrating the soybeans. 大豆に対するの量が2.5〜6倍量である請求項の製造法。Method according to claim 1 amount of water is 2.5-6 times with respect to soybean. 抽出オリゴ糖液をpH4.0からpH6.0の範囲で濃縮する請求項1または2の製造法。The process according to claim 1 or 2 , wherein the extracted oligosaccharide solution is concentrated in the range of pH 4.0 to pH 6.0. 抽出オリゴ糖液を濃縮する温度が30℃〜80℃である請求項1〜3のいずれかの製造法。The method according to any one of claims 1 to 3 , wherein the temperature for concentrating the extracted oligosaccharide liquid is 30 ° C to 80 ° C. 抽出オリゴ糖液を濃縮する態様が減圧濃縮である請求項1〜4のいずれかの製造法。The production method according to any one of claims 1 to 4 , wherein the extraction oligosaccharide solution is concentrated under reduced pressure. 濃縮粗大豆オリゴ糖液の製造工程のいずれかで精製(除蛋白、脱塩及び/又は脱色)する請求項1〜5のいずれかの製造法。Any production method of claims 1 to 5 purification (deproteinization, desalination and / or bleaching) by any of the processes for preparation of the concentrated crude soybean oligosaccharides solution.
JP2002207615A 2002-07-16 2002-07-16 Concentrated crude soybean oligosaccharide liquid and process for producing the same Expired - Fee Related JP4333094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002207615A JP4333094B2 (en) 2002-07-16 2002-07-16 Concentrated crude soybean oligosaccharide liquid and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002207615A JP4333094B2 (en) 2002-07-16 2002-07-16 Concentrated crude soybean oligosaccharide liquid and process for producing the same

Publications (2)

Publication Number Publication Date
JP2004051493A JP2004051493A (en) 2004-02-19
JP4333094B2 true JP4333094B2 (en) 2009-09-16

Family

ID=31931983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002207615A Expired - Fee Related JP4333094B2 (en) 2002-07-16 2002-07-16 Concentrated crude soybean oligosaccharide liquid and process for producing the same

Country Status (1)

Country Link
JP (1) JP4333094B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5038687B2 (en) * 2006-11-17 2012-10-03 ジュゲン株式会社 Method for producing soybean oligosaccharide liquid
KR20210096688A (en) 2015-02-24 2021-08-05 테이트 앤드 라일 인그리디언츠 어메리카즈 엘엘씨 Allulose syrups
CN110590902A (en) * 2019-08-26 2019-12-20 内蒙古科然生物高新技术有限责任公司 Method for producing soybean glycopeptide by using soybean molasses and soybean protein isolate powder

Also Published As

Publication number Publication date
JP2004051493A (en) 2004-02-19

Similar Documents

Publication Publication Date Title
CN1871945B (en) Method for distilling freeze-dried instant powder from active substance of sea cucumber
KR100781447B1 (en) Method of Filtration of a Dairy Stream
JPS62166861A (en) Extraction and purification of sweetener component from dry leaf of stevia
CN102488074B (en) Method for extracting oyster peptide
CN107325205B (en) A kind of inulin and oligofructose syrup co-production
CN104292367A (en) Refining method of inulin
CN103636914A (en) Oyster peptide extraction method
US2566477A (en) Process for the treatment of lacteal sera
CN109897878A (en) A kind of oyster peptide and its production method and application
JP4333094B2 (en) Concentrated crude soybean oligosaccharide liquid and process for producing the same
CN109797184A (en) A kind of crocodile peptide and its production method
CN104372057A (en) Extracting method of placenta
JP4768142B2 (en) Simple manufacturing method of fucoidan
CN115581266B (en) Clean production method of momordica grosvenori dry powder and momordica grosvenori concentrated juice
CN111165750A (en) Method for preparing sea cucumber pollen by fermentation technology
JP2001057851A (en) Stabilized silk fibroin and food and drink containing the same
CN109369775A (en) Low purine marine fishes oligopeptide and preparation method thereof
JP3506593B2 (en) Seasoning production method
CN113925117A (en) Preparation method of high-clarity golden pomelo juice
CN113292613A (en) Preparation method of D-glucosamine sulfate
CN103734829B (en) Persimmon life water and production method thereof
CN111139278A (en) Method for extracting small molecule peptide from sea cucumber and application thereof
CN114081170A (en) Cubilose extract with high sialic acid content and extraction method thereof, cubilose enzymolysis freeze-dried powder, cubilose freeze-dried buccal tablets and preparation method thereof
JP2635210B2 (en) Manufacturing method of soybean oligosaccharide
CA2753098C (en) A method of biotechnological production of bovine hemoderivative

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees