JP4332646B2 - Antifreeze protein derived from fish - Google Patents

Antifreeze protein derived from fish Download PDF

Info

Publication number
JP4332646B2
JP4332646B2 JP2007005316A JP2007005316A JP4332646B2 JP 4332646 B2 JP4332646 B2 JP 4332646B2 JP 2007005316 A JP2007005316 A JP 2007005316A JP 2007005316 A JP2007005316 A JP 2007005316A JP 4332646 B2 JP4332646 B2 JP 4332646B2
Authority
JP
Japan
Prior art keywords
genus
fish
flounder
protein
deer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2007005316A
Other languages
Japanese (ja)
Other versions
JP2007112813A (en
Inventor
栄 津田
愛 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007005316A priority Critical patent/JP4332646B2/en
Publication of JP2007112813A publication Critical patent/JP2007112813A/en
Application granted granted Critical
Publication of JP4332646B2 publication Critical patent/JP4332646B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Peptides Or Proteins (AREA)

Description

本発明は、日本国内またはその周辺の水域に生息する魚類であって、ギスカジカ属(Myoxocephalus)、ツマグロカジカ属(Gymnocanthus)、ヨコスジカジカ属(Hemilepidotus)、サラサカジカ属(Furcina)、ワカサギ属(Hypomesus)、シシャモ属(Spirinchus)、カラフトシシャモ属(Mallotus)、ホッケ属(Pleurogrammus)、メバル属(Sebastes)、ニシン属(Clupea)、マコガレイ属(Limanda)、クロガレイ属(Liopsetta)、サメガレイ属(Clidoderma)、ソウハチ属(Cleisthenes)、ババガレイ属(Microstomus)、シュムシュガレイ属(Lepidopsetta)、ヌマガレイ属(Platichthys)、イシガレイ属(Kareius)、ムシガレイ属(Eopsetta)、マダラ属(Gadus)、スケトウダラ属(Theragra)、イカナゴ属(Ammodytes)、シワイカナゴ属(Hypoptychus)、マアジ属(Trachurus)、シチロウウオ属(Brachyopsis)、ニシキギンポ属(Pholis)、オキカズナギ属(Opisthocentrus)、ナガガジ属(Zoarces)、ドロギンポ属(Ascoldia)、またはムロランギンポ属(Pholidapus)に属する魚種、さらに具体的には、ギスカジカ(Myoxocephalus stelleri Tilesius)、ツマグロカジカ(Gymnocanthus herzensteini Jordan et Starks)、トゲカジカ(Myoxocephalus polyacanthocephalus (Pallas))、ナメヨコスジカジカ(Hemilepidotus jordani Bean)、キヌカジカ(Furcina osimae Jordan et Starks)、チカ(Hypomesus pretiosus japonicus (Brevoort))、イシカリワカサギ(Hypomesus olidus (Dallas))、シシャモ(Spirinchus lanceolatus (Hikita))、カラフトシシャモ(Mallotus villosus (Muller))、キタノホッケ(Pleurogrammus monopterygius (Pallas))、ヤナギノマイ(Sebastes steindachneri Hilgendorf)、ニシン(Clupea pallasii Valenciennes)、マガレイ(Limanda herzensteini Jordan et Snyder)、スナガレイ(Limanda punctatissima (Steindachner))、クロガシラガレイ(Limanda schrenki Schmidt)、コガネガレイ(Limanda aspera (Pallas))、クロガレイ(Liopsetta obscura (Herzenstein))、サメガレイ(Clidoderma asperrimum (Temminck et Schlegel))、ソウハチ(Cleisthenes pinetorum herzensteini (Schmidt))、ババガレイ(Microctomus achne (Jordan et Starks))、アサバガレイ(Lepidopsetta mochigarei Snyder)、ヌマガレイ(Platichthys stellatus (Pallas))、イシガレイ(Kareius bicoloratus (Basilewsky))、ムシガレイ(Eopsetta grigorjewi (Herzenstein))、マダラ(Gadus macrocephalus Tilesius)、スケトウダラ(Theragra chalcogramma (Pallas))、イカナゴ(Ammodytes personatus Girard)、シワイカナゴ(Hypoptychus dybowskii Steindachner)、マアジ(Trachurus japonicus (Temminck et Schlegel))、シチロウウオ(Brachyopsis rostratus (Tilesius))、ニシキギンポ(Pholis picta (Kner))、ガジ(Opisthocentrus ocellatus (Tilesius))、ナガガジ(Zoarces elongatus Kner)、ドロギンポ(Ascoldia variegata knipowitschi Soldatov)、またはムロランギンポ(Pholidapous dybowskii (Steindachner))に属する魚種から不凍タンパク質を製造する方法に関する。   The present invention is a fish that inhabits waters in or around Japan. Spirinchus, Mallotus, Pleurogrammus, Sebastes, Clupea, Limanda, Liopsetta, Clidoderma Genus (Cleisthenes), Microstomus, Lepidopsetta, Platichthys, Kareius, Eupsetta, Gadus, Theragra, Theragra Amphites ces), Ascoldia, or Mholanginpo (Pholidapus), and more specifically, myxocephalus stelleri Tilesius, blue deer (Gymnocanthus herzensteini Jordan et Starks), myxocephalus polyacantallas (Myoxocephalus polyacanthoceus) ), Slugs deer (Hemilepidotus jordani Bean), deer (Furcina osimae Jordan et Starks), deer (Hypomesus pretiosus japonicus (Brevoort)), swordfish (Hypomesus olidus (Dallas)), shishamo (tus) Caraft shishamo (Mallotus villosus (Muller)), Kitano Hocke (Pleurogrammus monopterygius (Pallas)), Willow (Sebastes steindachneri Hilgendorf), Herring (Clupea pallasii Valenciennes), Magdalene (Limanda herzensteini Jordan et Sny) , Black flounder (Limanda schrenki Schmidt), black flounder (Limanda aspera (Pallas)), Roga Rei (Liopsetta obscura (Herzenstein)), Sega Rei (Clidoderma asperrimum (Temminck et Schlegel)), Sow Bee (Cleisthenes pinetorum herzensteini (Schmidt)), Baba Rae (Microctomus achne (Jordan et Starks)), Asa Reef Platichthys stellatus (Pallas)), sea bream (Kareius bicoloratus (Basilewsky)), sand flounder (Eopsetta grigorjewi (Herzenstein)), red sea bream (Gadus macrocephalus Tilesius), walleye (Theragra chalcogramma (Pallas)), tes Hypoptychus dybowskii Steindachner), horse mackerel (Trachurus japonicus (Temminck et Schlegel)), barnyard salmon (Brachyopsis rostratus (Tilesius)), horseshoe (Pholis picta (Kner)), gazi (Opisthocentrus ocellatus (Tilesius), Dragoinpo (Ascoldia variegata knipowitschi Soldatov) or Muroranginpo (Pholidapous dybowskii (Steindachner) ) To produce antifreeze protein from the fish species belonging to.

これまで北極海や南極海、北米沖などで漁獲される魚類の組織液(血液)から、凍結寸前状態において組織液中に生成する無数の小さい氷結晶の表面に特異的に結合しダイヤモンド型に変形することで凍結を阻害し、その結果としてこのタンパク質を含む水溶液の見かけの凝固点を降下させる働きをもつ不凍タンパク質(Anti freeze Protein、略称AFP)とよばれるタンパク質がみつかっている。その魚類とは、タラ(タイセイヨウダラ、英名:Atlantic cod (Gadus morhua Linneaeus))、カレイ(プセウドプレウロネクテス アメリカヌス、英名:Winter flounder (Pseudopleuronectes americanus (Walbaum)))、ニシン(タイセイヨウニシン、英名:Atlantic herring (Clupea harengus Linnaeus))、キュウリウオ(キュウリウオ、英名:Rainbow smelt (Osmerus mordax dentex Steindachner))、カジカ(ミオクソケファルススコルピウス、英名:Shorthorn Sculpin (Myoxocephalus scorpius (Linnaeus)、マクロゾアルケルスアメリカヌス(Macrozoarces americanus (Block et Schneider))、ミオクソケファルスオクトデケンスピノスス、英名:Longhorn Sculpin (Myoxocephalus octodecemspinosus (Mitchill))、ヘミトリプテルス アメリカヌス、英名:Athlantic sea raven (Hemitripterus americanus (Gmelin)))などである(Fletcher, G.L., Hew, C.L., and Davies, P.L. Annu. Rev. Physiol. (2001) 63, 359-390.)。このように、不凍タンパク質は限られた魚種について見いだされているにすぎず、また上記の魚種の殆どは日本では得られない種類であり、地球上に存在する2万種類以上もの膨大な魚種について不凍タンパク質の存在が十分に探索されているとはいい難い。   From the tissue fluid (blood) of fish that have been caught in the Arctic, Antarctic, and North America offshore to date, it binds specifically to the surface of countless small ice crystals formed in the tissue fluid in the pre-freezing state and deforms into a diamond shape. As a result, a protein called an antifreeze protein (abbreviated as AFP) has been found, which has the function of inhibiting freezing and consequently lowering the apparent freezing point of an aqueous solution containing this protein. These fish include cod (Atlantic cod (Gadus morhua Linneaeus)), flounder (Pseudopleuronexus americanus, English: Winter flounder (Pseudopleuronectes americanus (Walbaum))), herring (English name: Atlantic herring (Clupea harengus Linnaeus)), Cucumber smelt (Osmerus mordax dentex Steindachner), Kajika (Myoxocephalus scorpius, English name: Shorthorn Sculpin (Myoxocephalus scorpius) (Macrozoarces americanus (Block et Schneider)), Myokokephalus octodecenspinos, English name: Longhorn Sculpin (Myoxocephalus octodecemspinosus (Mitchill)), Hemitripterus americanus, English name: Athlantic sea raven (Hemitripterus americanus (Gmelin)) (Fletcher, GL, Hew, CL, and Davies, PL Annu. Rev. Physiol. (2001) 63, 359-390.). As mentioned above, antifreeze proteins are only found in a limited number of fish species, and most of the above fish species are not available in Japan. It is hard to say that the existence of antifreeze proteins has been fully explored for various fish species.

一方、不凍タンパク質は魚類以外にもニンジンやダイコン、キャベツなどの冬野菜および甲虫や蛾の幼虫の体液にも存在することが知られている。植物から抽出される不凍タンパク質は魚類由来のものにくらべて氷結晶結合能力が著しく弱い。不凍タンパク質は氷の再結晶化を妨げるはたらきがあるため例えばアイスクリームなどに混入することによりその品質を持続させると考えられる。より効率的に再結晶化を妨げるためにはより強力な氷結晶結合能を有する不凍タンパク質を混入する必要があるが、能力の弱い植物由来のものでは効果が期待できない。これに対して、魚類由来の不凍タンパク質には充分な効果が期待できる。しかし、現在まで不凍タンパク質が見いだされている魚種は、極緯度地方あるいは寒帯域に生息する魚種がほとんどであり、温帯域である日本近海で大量に漁獲され、あるいは食品スーパーなどで大量に販売・廃棄される魚種から不凍タンパク質を分離、精製し、この不凍タンパク質を利用することが望まれていた。
また、魚類由来の不凍タンパク質の精製物を冷凍食品などに用いる場合には、精製物に魚特有の臭いが付着することを防止する必要があるが、このための魚体の保管方法や精製法についての研究はほとんど進んでいない。
On the other hand, it is known that antifreeze protein is present in body fluids of winter vegetables such as carrots, radish and cabbage, and beetle and moth larvae in addition to fish. Antifreeze proteins extracted from plants have a significantly weaker ability to bind ice crystals than fish-derived proteins. Since antifreeze protein has a function to prevent recrystallization of ice, it is considered that the quality is maintained by mixing it in ice cream, for example. In order to prevent recrystallization more efficiently, it is necessary to mix an antifreeze protein having a stronger ice crystal binding ability, but an effect cannot be expected from a plant having a weak ability. On the other hand, a sufficient effect can be expected for antifreeze proteins derived from fish. However, most of the fish species in which antifreeze proteins have been found so far live in the polar latitudes or in the cold zone, and are caught in large quantities in the temperate zone near Japan, or in large quantities at food supermarkets. It has been desired to separate and purify antifreeze proteins from fish species sold and disposed of and use these antifreeze proteins.
In addition, when using a purified product of fish-derived antifreeze protein in frozen foods, it is necessary to prevent fish-specific odors from adhering to the purified product. Little research has been done on.

したがって、本発明の課題は、日本近海等で大量に漁獲され、あるいは食品スーパーなどで大量に販売・廃棄される魚種から新たな不凍タンパク質を見いだすことであり、また、これらから不凍タンパク質を大量に生産するとともに、魚臭の付着を防止して、その利用の促進を図ることである。    Therefore, an object of the present invention is to find new antifreeze proteins from fish species that are caught in large quantities in the sea near Japan, etc., or sold and discarded in large quantities at food supermarkets. Is to produce a large amount of fish and to prevent the attachment of fishy odor to promote its use.

かかる状況において、本発明者は、日本、あるいは日本周辺で漁獲される魚種の体液成分について鋭意研究を行っていたところ、意外にも温帯域である日本あるいは日本周辺で漁獲される魚種であっても、特に冬季に漁獲されるものの中には、不凍タンパク質を有するものがあることを初めて見いだした。本発明者はこれまでに不凍タンパク質の存在が報告された例の無い魚種であるギスカジカ、ツマグロカジカ、トゲカジカ、ナメヨコスジカジカ、キヌカジカ、チカ、イシカリワカサギ、シシャモ、キタノホッケ、ヤナギノマイ、ニシン、マガレイ、スナガレイ、クロガシラガレイ、コガネガレイ、クロガレイ、サメガレイ、ソウハチ、ババガレイ、アサバガレイ、ヌマガレイ、イシガレイ、ムシガレイ、マダラ、スケトウダラ、イカナゴ、シワイカナゴ、マアジ、シチロウウオ、ニシキギンポ、ガジ、ナガガジ、ドロギンポ、ムロランギンポ等の様々な魚種の組織液および筋肉をすりつぶした液、および食品スーパーなどで乾製品として売られているスケトウダラ、コマイ、シシャモ、カラフトシシャモ、ニシン、イカナゴ、コガネガレイ、ウルメイワシなどの魚肉乾製品を粉砕して水を加えた液のなかに、ダイヤモンド型の氷結晶を生成する成分があることを確認して、本発明を完成させるに至ったものである。なかでもワカサギは淡水魚であり、ダイヤモンド型氷結晶を生成する不凍タンパク質が淡水魚に見出された例はこれまでに報告が無いものである。また、さらに、魚類由来の不凍タンパク質の問題点である魚臭の付着についても、新しい精製法を確立して、該問題点を解消したものである。   In such a situation, the present inventor has conducted intensive research on the body fluid components of fish species caught in or around Japan. Even so, we found for the first time that some of the fish caught especially in winter have antifreeze protein. The present inventor is a fish species that has not been reported to have antifreeze protein so far, Giska deer, Tsukaka deer, Togeka deer, Nameokasika deer, Kinuka deer, Chica, Ishikari Wakasagi, Shishamo, Kitano Hokke, Yanaginomai, Herring, Magdalene, Sunagare, Black-faced Flathead, Scarlet, Black-headed Leopard, Saweye, Bumblebee, Ashbass, Gray Spider, Rockeye, Mussille, Madara, Walleye, Squirrel, Squirrel, Spotted Flyfish, Giganpa Seed tissue fluids and muscle ground fluids, and walleye pollock, komai, shishamo, kalaft shishamo, herring, eelfish, flounder, sold as dry products at food supermarkets, etc. By grinding fish meat dry products such Rumeiwashi Some of the liquid the addition of water, make sure you have components for generating ice crystals of diamond, which has led to the completion of the present invention. Among them, the smelt is a freshwater fish, and there have been no reports of an antifreeze protein that produces diamond-type ice crystals found in freshwater fish. Furthermore, with regard to the attachment of fish odor, which is a problem of antifreeze proteins derived from fish, a new purification method has been established to solve the problem.

すなわち、本発明は以下のとおりである。
(1) ツマグロカジカ属(Gymnocanthus)、ヨコスジカジカ属(Hemilepidotus)、サラサカジカ属(Furcina)、ワカサギ属(Hypomesus)、シシャモ属(Spirinchus)、カラフトシシャモ属(Mallotus)、ホッケ属(Pleurogrammus)、メバル属(Sebastes)、ニシン属(Clupea)、マコガレイ属(Limanda)、クロガレイ属(Liopsetta)、サメガレイ属(Clidoderma)、ソウハチ属(Cleisthenes)、ババガレイ属(Microstomus)、シュムシュガレイ属(Lepidopsetta)、ヌマガレイ属(Platichthys)、イシガレイ属(Kareius)、ムシガレイ属(Eopsetta)、スケトウダラ属(Theragra)、イカナゴ属(Ammodytes)、シワイカナゴ属(Hypoptychus)、マアジ属(Trachurus)、シチロウウオ属(Brachyopsis)、ニシキギンポ属(Pholis)、オキカズナギ属(Opisthocentrus)、ナガガジ属(Zoarces)、ドロギンポ属(Ascoldia)、またはムロランギンポ属(Pholidapus)に属する魚種の魚肉あるいは魚体乾物から、凍結を阻害する機能を有するタンパク質を回収することを特徴とする、凍結を阻害する機能を有するタンパク質の製造方法。
(2) タンパク質の採取源が、ギスカジカ(Myoxocephalus stelleri Tilesius),ツマグロカジカ(Gymnocanthus herzensteini Jordan et Starks)、トゲカジカ(Myoxocephalus polyacanthocephalus (Pallas))、ナメヨコスジカジカ(Hemilepidotus jordani Bean)、キヌカジカ(Furcina osimae Jordan et Starks)、チカ(Hypomesus pretiosus japonicus (Brevoort))、イシカリワカサギ(Hypomesus olidus (Dallas))、シシャモ(Spirinchus lanceolatus (Hikita))、カラフトシシャモ(Mallotus villosus (Muller))、キタノホッケ(Pleurogrammus monopterygius (Pallas))、ヤナギノマイ(Sebastes steindachneri Hilgendorf)、ニシン(Clupea pallasii Valenciennes)、マガレイ(Limanda herzensteini Jordan et Snyder)、スナガレイ(Limanda punctatissima (Steindachner))、クロガシラガレイ(Limanda schrenki Schmidt)、コガネガレイ(Limanda aspera (Pallas))、クロガレイ(Liopsetta obscura (Herzenstein))、サメガレイ(Clidoderma asperrimum (Temminck et Schlegel))、ソウハチ(Cleisthenes pinetorum herzensteini (Schmidt))、ババガレイ(Microctomus achne (Jordan et Starks))、アサバガレイ(Lepidopsetta mochigarei Snyder)、ヌマガレイ(Platichthys stellatus (Pallas))、イシガレイ(Kareius bicoloratus (Basilewsky))、ムシガレイ(Eopsetta grigorjewi (Herzenstein))、マダラ(Gadus macrocephalus Tilesius)、スケトウダラ(Theragra chalcogramma (Pallas))、イカナゴ(Ammodytespersonatus Girard)、シワイカナゴ(Hypoptychus dybowskii Steindachner)、マアジ(Trachurus japonicus (Temminck et Schlegel))、シチロウウオ(Brachyopsis rostratus (Tilesius))、ニシキギンポ(Pholis picta (Kner))、ガジ(Opisthocentrus ocellatus (Tilesius))、ナガガジ(Zoarces elongatus Kner)、ドロギンポ(Ascoldia variegata knipowitschi Soldatov)、またはムロランギンポ(Pholidapous dybowskii (Steindachner))に属する魚種の魚肉あるいは魚体乾物から、凍結を阻害する機能を有するタンパク質を回収することを特徴とする、凍結を阻害する機能を有するタンパク質の製造方法。
That is, the present invention is as follows.
(1) Bluefin deer genus (Gymnocanthus), Yokosuji deer genus (Hemilepidotus), Sarasaka deer genus (Furcina), Smelt genus (Hypomesus), Shiramo genus (Spirinchus), Karafushisukamo (Mallotus), Hokeke genus (Pleurogrammus), Pleurogrammus Sebastes), Herring genus (Clupea), Papilio genus (Limanda), Black flounder genus (Liopsetta), Samegalei genus (Clidoderma), Scorpion genus (Cleisthenes), Buffalo genus (Microstomus), Lepidopsetta genus (Platichthys) ), Kareius, Eopsetta, Theragra, Ammodytes, Hypoptychus, Trachurus, Brachyopsis, Holisis, Pis From fish meat or dry fish of fish species belonging to the genus Opisthocentrus, Zoarces, Ascoldia, or Pholidapus, A method for producing a protein having a function of inhibiting freezing, comprising collecting a protein having a function of inhibiting freezing.
(2) The source of protein is Myss deer (Myoxocephalus stelleri Tilesius), Tsukasaka deer (Gymnocanthus herzensteini Jordan et Starks), Scarlet deer (Myoxocephalus polyacanthocephalus (Pallas)), Namemyo deer (Hemilepidotus jordanios) et Starks), Chica (Hypomesus pretiosus japonicus (Brevoort)), Ishikari Smelt (Hypomesus olidus (Dallas)), Shishamo (Spirinchus lanceolatus (Hikita)), Karafushishamo (Mallotus villosus (Muller)), Kitanourmus pt ), Willow (Sebastes steindachneri Hilgendorf), herring (Clupea pallasii Valenciennes), flounder (Limanda herzensteini Jordan et Snyder), black flounder (Limanda punctatissima (Steindachner)), black flounder (Limanda schrenki ass), Black flounder (Liopsetta obscura (Herzenstein)), Sega rey (Clidoderma asperrimum (Temmi nck et Schlegel)), Sowbee (Cleisthenes pinetorum herzensteini (Schmidt)), Bumblebee (Microctomus achne (Jordan et Starks)), Asahi flounder (Lepidopsetta mochigarei Snyder), Numa flounder (Platichthys stellatus (Pallassky) ), Mussel flounder (Eopsetta grigorjewi (Herzenstein)), Spotted moth (Gadus macrocephalus Tilesius), Walleye (Theragra chalcogramma (Pallas)), Squid (Ammodytespersonatus Girard), Hypoptychus dybowskii Steindus (Tyck) , Whitefish (Brachyopsis rostratus (Tilesius)), western ginkgo (Pholis picta (Kner)), gazi (Opisthocentrus ocellatus (Tilesius)), nagaji (Zoarces elongatus Kindowi) from fish species of fish meat or fish dry matter belonging to a)), it has the ability to inhibit the frozen Characterized in that the collecting protein that, process for producing a protein having the function of inhibiting the freezing.

不凍タンパク質は、上記したとおり、例えばアイスクリーム、冷凍食品等における氷晶の成長による食味劣化、組織破壊を防止し、また、氷スラリーを使用する冷熱供給システムあるいは冷熱蓄熱等において、氷の再結晶による配管系の閉塞を解消し得る有効な添加剤として期待されているものである。さらに卵子や精子、移植臓器等の低温長期保存冷凍保存においても有望な物質である。
しかし、現状では、効力の大きい不凍タンパク質は、極地方に生息する特定の魚種にしか見いだされていないため、大量には生産し得ずその有効利用が妨げられていた。これに対して、本発明の新たな不凍タンパク質は、日本国内、日本近海水域、該水域と同等気候の水域に生息する魚種から生産できるので、容易に得られるものであり、不凍タンパク質についての利用促進あるいは不凍タンパク質の応用研究の発展に大いに寄与するものである。
As described above, antifreeze protein prevents taste deterioration and tissue destruction due to ice crystal growth in, for example, ice cream and frozen foods. In addition, ice freezing protein is used in a cold heat supply system or cold heat storage using ice slurry. It is expected as an effective additive that can eliminate the blockage of the piping system due to crystals. Furthermore, it is a promising substance for cryopreservation and cryopreservation of eggs, sperm and transplanted organs.
However, at present, antifreeze proteins with high potency are found only in specific fish species inhabiting polar regions, so they cannot be produced in large quantities and their effective use has been hindered. On the other hand, the new antifreeze protein of the present invention can be produced from fish species inhabiting Japan, seawater near Japan, and waters of the same climate as the water, and thus can be easily obtained. It greatly contributes to the promotion of the use and development of applied research on antifreeze proteins.

以下、本発明をさらに詳細に説明する。
北極、南極あるいはその近海などの局地や深海に生息する魚類の体液は、温度がマイナス2℃程度まで下がっても凍結しない。これに対して普通の魚の体液はマイナス0.8℃で凍結する。なお、海水はマイナス1.9℃で凍結する。
北極、南極等に生息する魚類の体液の不凍性は、これら魚類が自ら生産する不凍タンパク質あるいは不凍糖蛋白質(AFGP)に起因するものであることが明らかになっている。このうち不凍タンパク質には、4つのタイプのタンパク質があり、それぞれ分子量約3,000−4,500のAFPI、分子量約20,000のAFPII、分子量約7,000のAFPIII、および分子量約11,000のAFPIVに分類されている。AFGPの分子量は2,200から33,000の間である。精製されたタンパク質がAFGPであるか否かはシッフ試薬などを用いることで容易に確認することが出来る。不凍タンパク質は各々、タンパク質のアミノ酸組成およびその高次構造において差異があり、また、同一タイプに分類されているものであっても、魚種によりタンパク質のアミノ酸配列および高次構造はそれぞれ相違する。
一方、不凍タンパク質の機能について述べると、通常の場合、氷晶は、水溶液中において氷核が表れると、まず扁平な六角の板状に成長する。板状平面に対し垂直方向への成長は、板状平面方向に対する成長に比べ100倍程度遅い。これに対して、水溶液中に不凍タンパク質が存在すると円盤平面方向への氷晶の成長は阻止され、最初に形成された板状体を基底面として、この基底面に対して垂直方向に、順次、より小さい板状体が積み重ねられていき、最終的にはピラミッドを二つ重ねたバイピラミッド型の氷晶にゆっくりと成長していく。
Hereinafter, the present invention will be described in more detail.
The body fluids of fish inhabiting local and deep seas such as the North Pole, South Pole, and their nearby waters do not freeze even when the temperature drops to about minus 2 ° C. In contrast, normal fish body fluids freeze at minus 0.8 ° C. Seawater freezes at minus 1.9 ° C.
It has been clarified that the antifreeze of the body fluids of fishes living in the Arctic, Antarctic, etc. is due to the antifreeze protein or antifreeze glycoprotein (AFGP) produced by these fish themselves. There are four types of antifreeze proteins: AFPI with a molecular weight of about 3,000-4,500, AFPII with a molecular weight of about 20,000, AFPIII with a molecular weight of about 7,000, and a molecular weight of about 11, It is classified into 000 AFPIV. The molecular weight of AFGP is between 2,200 and 33,000. Whether or not the purified protein is AFGP can be easily confirmed by using a Schiff reagent or the like. Each antifreeze protein has a difference in the amino acid composition of the protein and its higher-order structure, and even if it is classified into the same type, the amino acid sequence and higher-order structure of the protein differ depending on the fish species. .
On the other hand, regarding the function of antifreeze protein, normally, when ice nuclei appear in an aqueous solution, ice crystals first grow into a flat hexagonal plate shape. The growth in the direction perpendicular to the plate-like plane is about 100 times slower than the growth in the plate-like plane direction. On the other hand, if antifreeze protein is present in the aqueous solution, the growth of ice crystals in the plane direction of the disk is prevented, and the plate-like body that is formed first is used as the basal plane, perpendicular to the basal plane, Sequentially, smaller plates are stacked and eventually grow slowly into bipyramidal ice crystals with two pyramids.

したがって、注目する魚種検体から採取した水溶液中に不凍タンパク質が存在している場合に限り、検体液を零度C以下にした場合、その検体液中には図1A,Bに示すようなバイピラミダル氷結晶、結晶学的には六方両錐体(図1A)や偏四角面体(図1B)と呼ばれる氷結晶が顕微鏡下に観測される。不凍タンパク質が有する氷結晶上の12枚の氷層平面に特異的に結合する能力の結果として、このようなバイピラミダル型氷結晶が生成する。零度C以下の凍結温度域において、微視的には、検体液中の不凍タンパク質が互いに結びつかない無数のバイピラミダル氷結晶を生成している。このことが、巨視的には、検体の非凍結現象(不凍活性)として観測される。この現象は、浸透圧計(オスモメーター)を用いることにより検体液の凝固点降下あるいは温度ヒステリシスとして定量化することもできる。凝固点降下の測定法を用いて不凍タンパク質の存在を見出しその活性を評価する為には、高純度の精製不凍タンパク質水溶液を得る必要がある。これに対してバイピラミダル氷結晶観測による不凍活性評価法は、不凍タンパク質さえ存在していれば、たとえ検体液に多量の不純物、共雑タンパク質、イオンなどが混在していても観測される。また、不凍タンパク質の濃度が0.1mM以上であれば濃度によらずバイピラミダル氷結晶が観測される。したがって、検体すなわち注目する魚種が不凍タンパク質を有するかいなかを評価する為のもっとも簡便で迅速な手法は、検体液のバイピラミダル氷結晶を観測することということができる。   Therefore, only when antifreeze protein is present in an aqueous solution collected from a fish species specimen of interest, when the specimen liquid is set to 0 ° C. or lower, the specimen liquid contains a bio-type as shown in FIGS. 1A and 1B. Pyramidal ice crystals, crystallographically, ice crystals called hexagonal bipyramids (FIG. 1A) and polarized tetrahedrons (FIG. 1B) are observed under a microscope. Such bipyramidal ice crystals are formed as a result of the ability of antifreeze proteins to specifically bind to the 12 ice layer planes on the ice crystals. Microscopically, innumerable bipyramidal ice crystals in which the antifreeze proteins in the sample liquid are not connected to each other are generated in a freezing temperature range of 0 ° C. or lower. Macroscopically, this is observed as a non-freezing phenomenon (antifreezing activity) of the specimen. This phenomenon can also be quantified as a freezing point depression or temperature hysteresis of the specimen liquid by using an osmometer (osmometer). In order to find out the presence of antifreeze protein using the freezing point depression measurement method and evaluate its activity, it is necessary to obtain a purified antifreeze protein aqueous solution with high purity. On the other hand, the antifreeze activity evaluation method by observation of bipyramidal ice crystals is observed even if antifreeze proteins exist, even if a large amount of impurities, contaminating proteins, ions, etc. are mixed in the sample liquid. . In addition, if the concentration of antifreeze protein is 0.1 mM or more, bipyramidal ice crystals are observed regardless of the concentration. Therefore, the simplest and quickest method for evaluating whether the specimen, that is, the fish species of interest has antifreeze protein, is to observe bipyramidal ice crystals in the specimen liquid.

本発明の不凍タンパク質の採取源とした魚種においては、凍結温度においていずれも、その血液、すり身、あるいは乾物の検体液中にバイピラミダル氷結晶の存在が確認されている。
本発明において、日本国内またはその周辺の水域に生息する多様な魚種から不凍タンパク質を見いだしたことは画期的なものであって、この結果からみて、北半球、南半球を問わず、少なくとも上記水域と同等な気候を有する水域において生息するものにおいては不凍タンパク質を生体内で合成する能力を有する魚種があるという蓋然性は極めて高い。本発明の魚種の漁獲時期は10月下旬から5月上旬が望ましく、冬季12月から4月上旬が特に好ましい。これらの魚種から不凍タンパク質を得るには、例えば、本発明の魚種の血液、魚肉のすり身および乾製品の水性抽出液から、イオン交換クロマトグラフィー、ゲル濾過クロマトグラフィー、逆相クロマトグラフィー等の通常のタンパク質の分離精製手段を適宜組み合わせて行うことができる。
In the fish species used as the source for collecting the antifreeze protein of the present invention, the presence of bipyramidal ice crystals in the blood, surimi, or dry sample liquid has been confirmed at all freezing temperatures.
In the present invention, the discovery of antifreeze protein from various fish species inhabiting waters in and around Japan is an epoch-making thing. In view of this result, at least the above, regardless of whether in the northern hemisphere or the southern hemisphere There is a very high probability that there is a fish species that has the ability to synthesize antifreeze proteins in the living body in the water area having a climate equivalent to the water area. The fishing season of the fish species of the present invention is preferably from the end of October to the beginning of May, and particularly preferably from the winter to the beginning of April. In order to obtain antifreeze proteins from these fish species, for example, ion exchange chromatography, gel filtration chromatography, reverse phase chromatography, etc., from the blood of the fish species of the present invention, fish surimi and aqueous extracts of dried products These normal protein separation and purification means can be combined appropriately.

一般的には、魚体中のタンパク質は魚体の死後直ちに酵素等によって分解され、能力を失ってしまう場合が多いと考えられるため、不凍タンパク質が、食品スーパー等で売られているような死後長時間を経過した魚体からでも精製できることは驚くべきことである。本発明において、食品スーパー等で売られている魚体からでも充分に不凍タンパク質が精製できるという事実を見出し、さらに、加熱、洗浄、乾燥などの処理を経た魚体乾物の製品からでさえも、不凍タンパク質を精製できることを見出したことも、また非常に画期的と言える。これらの事実は、魚類由来の不凍タンパク質が非常に高い安定性を有することに基づいており、このまれな性質のために、不凍タンパク質を魚体すり身あるいは魚体乾物粉砕物の懸濁液から精製する工程において、高温の加熱処理を適用することができる。
魚の放つ不快な臭いは、頭部と腹部にある臓器およびそれらの内容物の時間経過に伴う腐敗と、魚肉それ自体が固有に有する臭いに起因している。したがって、不凍タンパク質精製の原材料となる魚体においては、基本的には、これの頭部と腹部を早期に取り除いておくことが望ましい。この腹部と頭部を除去後の魚体は、これを冷蔵して保管する以外にも、乾燥させて保管することが可能である。この乾燥には、不凍タンパク質を濃縮する効果や、細菌の繁殖を抑制する効果があり、また、保管する際の魚体重量を軽減するなどの点で有益である。また、乾燥は、室温における保管を可能にするため、貯蔵、輸送、海外への輸出などの点で有益である。
In general, it is considered that proteins in fish bodies are degraded by enzymes and the like immediately after the death of the fish bodies and lose their ability in many cases. Therefore, antifreeze proteins are sold at food supermarkets. It is surprising that it can be purified from fish over time. In the present invention, the fact that antifreeze proteins can be sufficiently purified from fish sold at food supermarkets, etc., and further, even from products of dried fish that have undergone treatment such as heating, washing, drying, etc. Finding that frozen protein can be purified is also very innovative. These facts are based on the very high stability of fish-derived antifreeze proteins, and because of this rare nature, antifreeze proteins are purified from suspensions of fish surimi or fish grounds. In this step, high-temperature heat treatment can be applied.
The unpleasant odor of fish is caused by the decay of the organs and their contents in the head and abdomen over time and the smell inherent in the fish meat itself. Therefore, it is basically desirable to remove the head and abdomen at an early stage in a fish body that is a raw material for antifreeze protein purification. The fish body from which the abdomen and head are removed can be dried and stored in addition to refrigerated storage. This drying has the effect of concentrating the antifreeze protein and the effect of suppressing the growth of bacteria, and is beneficial in terms of reducing the weight of the fish during storage. Moreover, since drying enables storage at room temperature, it is advantageous in terms of storage, transportation, export to overseas, and the like.

本発明においては、上記通常用いられているタンパク質の分離精製法を適用して不凍タンパク質を得てもよいが、魚臭がなく食品添加物として好適な不凍タンパク質を得るためには、1)魚体すり身あるいは魚体乾物の懸濁液を調製する工程、2)魚体すり身あるいは魚体乾物の懸濁液を遠心分離し、上澄液を得る工程、3)上澄液を熱処理する工程、4)3)により生じた沈殿物を遠心分離により除去して不凍タンパク質を含有する上澄液を得る工程、5)及び4で得られた上澄液から不凍タンパク質を回収する工程を順次含む、不凍タンパク質の精製法を用いるのが有効である。
すなわち、1)の工程においては魚肉をすり身にし、あるいは魚体乾物をハサミなどで細かく切断した後にミキサーなどにより粉砕し、これに対して水、あるいは重炭酸アンモニウムあるいはリン酸水素ナトリウム等の水溶液を加え魚肉の懸濁液とする。これにより、不凍タンパク質は、水性液中に溶出される。魚肉すり身は、魚肉を細切りにした後ミキサーにかけて得てもよいが、常法によりすり身製造機により擂潰して得てもよい。2)の工程においては、上記すり身懸濁液あるいは魚体乾物粉砕物の懸濁液を遠心分離し、不凍タンパク質を含有する上澄液を得る。遠心分離の条件は、3,000から12,000回転/分で、5分間から60分間である。
In the present invention, the antifreeze protein may be obtained by applying the above-described commonly used protein separation and purification method. However, in order to obtain a suitable antifreeze protein as a food additive without fishy odor, 1 2) A step of preparing a fish paste or a dried fish suspension 2) A step of centrifuging a fish paste or a dried fish suspension to obtain a supernatant 3) A step of heat-treating the supernatant 4) A step of removing the precipitate produced by 3) by centrifugation to obtain a supernatant containing antifreeze protein, 5) and a step of recovering antifreeze protein from the supernatant obtained in 4 in order, It is effective to use an antifreeze protein purification method.
That is, in the process of 1), the fish meat is ground, or the dried fish is finely cut with scissors and then pulverized with a mixer, and water or an aqueous solution of ammonium bicarbonate or sodium hydrogen phosphate is added thereto. A fish suspension is used. Thereby, antifreeze protein is eluted in an aqueous liquid. The fish meat surimi may be obtained by chopping the fish meat and using a mixer, but may be obtained by crushing with a surimi production machine by a conventional method. In the step 2), the surimi suspension or the suspension of the dried fish pulverized product is centrifuged to obtain a supernatant containing antifreeze protein. Centrifugation conditions are 3,000 to 12,000 revolutions / minute and 5 to 60 minutes.

この後、3)の工程として、上記工程で得られた上澄液を加熱処理するが、加熱処理は、魚体およびすり身特有の臭いに対して、これを効果的に除去あるいは減少させるとともに、不凍タンパク質以外の共雑タンパク質を熱変性させ沈殿させるものである。このため加熱処理で設定する温度は、目的精製物である不凍タンパク質を変性・沈殿させないのであれば、100度C以下の温度域で高ければ高いほど良いと言える。ギスカジカ、トゲカジカ、ツマグロカジカ、ナメヨコスジカジカ、キヌカジカの不凍タンパク質は特に熱に強いため、これらのすり身懸濁液に対しては、90度Cの加熱処理を10分間行うことでニオイのない不凍タンパク質成分を得ることができた。これらの魚種を用いる場合には70度Cから98度Cの温度範囲で10分間から30分間の加熱処理が好ましい。   Thereafter, as the step 3), the supernatant obtained in the above step is subjected to heat treatment. This heat treatment effectively removes or reduces the odor peculiar to fish and surimi and It is a protein that denatures and precipitates coexisting proteins other than frozen proteins. For this reason, it can be said that the higher the temperature set in the heat treatment, the higher the temperature in the temperature range of 100 ° C. or lower, as long as the target antifreeze protein is not denatured and precipitated. Anti-freeze proteins of Gizika deer, Spruce deer, Bluefin deer, Name yokos deer deer, Kinuka deer are particularly resistant to heat, so that these surimi suspensions are free from odor by heating at 90 ° C for 10 minutes. An antifreeze protein component could be obtained. When using these fish species, heat treatment for 10 minutes to 30 minutes in a temperature range of 70 ° C. to 98 ° C. is preferable.

一方、チカ、イシカリワカサギ、シシャモ、キタノホッケ、ヤナギノマイ、ニシン、マガレイ、スナガレイ、クロガシラガレイ、コガネガレイ、クロガレイ、サメガレイ、ソウハチ、ババガレイ、アサバガレイ、ヌマガレイ、イシガレイ、マダラ、スケトウダラ、イカナゴ、シワイカナゴ、マアジ、シチロウウオ、ニシキギンポ、ガジ、ナガガジ、ドロギンポ、ムランギンポについては、50度Cから70度Cの範囲で、10分間から30分間の熱処理工程を行ったが、この温度でも魚の臭いが除去された60%以上もの純度の不凍タンパク質精製標品を得ることができた。この純度の不凍タンパク質精製標品は用途によっては充分な品質といえる。
4)の工程においては、上記加熱処理した上澄液を遠心し、沈殿した共雑タンパク質を除去する。得られた不凍タンパク質を高濃度で含有する上澄み液は、そのままの形態で後記する用途に用いてもよいが、好ましくは、凍結乾燥により乾燥粉末とする。
On the other hand, Chika, Ishikari Wakasagi, Shishamo, Kitano Hokke, Willow, Myring, Magdalene, Sungarle, Black-faced Flathead, Scarlet, Black-headed Gray, Samegalei, Sowbee, Babaray, Asagarei, Numagarei, Ishigora, Sandaikoi , Gazi, Nagagaji, Droginpo, and Muranginpo were subjected to a heat treatment process in the range of 50 to 70 degrees C for 10 to 30 minutes. Even at this temperature, the fish odor was removed and the purity was over 60%. An antifreeze protein preparation was obtained. The purified antifreeze protein preparation can be said to have sufficient quality depending on the application.
In the step 4), the heat-treated supernatant is centrifuged to remove precipitated contaminating proteins. The obtained supernatant containing the antifreeze protein at a high concentration may be used in the form as it is, but is preferably used as a dry powder by freeze-drying.

本発明の不凍タンパク質は、前述したように、不凍タンパク質には氷の再結晶化を妨げるはたらきがあるため、上記各魚種から得られた不凍タンパク質がAFPI〜IVのどのタイプの不凍タンパク質に分類されるか否かに関わらず、氷の再結晶化防止剤ないしは凍結阻害剤として使用でき、例えばアイスクリームあるいは冷凍食品などに混入することによりその品質を持続させるために使用できる。また、この品質維持効果は、食肉、野菜、細胞(卵子や精子)、組織、臓器などを長期凍結保存する際にも同様に期待できる。さらに、近年、エネルギー密度が大きい氷スラリーを熱媒体として使用する冷熱供給システムあるいは冷熱蓄熱等が提案されているが、これらにおいては、氷の再結晶による配管系の閉塞の問題があり、本発明の不凍タンパク質は氷の再結晶化を有効に防ぐものであるから、この問題を解決するために有望な手段となりうる。このほか不凍蛋白質をコードする遺伝子を植物体に組み込むことにより、その植物に耐寒性を持たせることも応用技術として期待できる。

以下、本発明の実施例を示すが、本発明は特にこれにより限定されるものではない。
As described above, the antifreeze protein of the present invention has a function of preventing recrystallization of ice, so that the antifreeze protein obtained from each of the above fish species can be any type of AFPI to IV. Regardless of whether it is classified as frozen protein or not, it can be used as an anti-recrystallization inhibitor or freezing inhibitor of ice, and can be used to maintain its quality by mixing into ice cream or frozen food, for example. This quality maintenance effect can also be expected when meat, vegetables, cells (egg or sperm), tissues, organs, etc. are cryopreserved for a long time. Furthermore, in recent years, a cold energy supply system or a cold energy storage system using ice slurry having a large energy density as a heat medium has been proposed. However, in these, there is a problem of blockage of the piping system due to ice recrystallization, and the present invention. This antifreeze protein effectively prevents recrystallization of ice and can be a promising means to solve this problem. In addition, by incorporating a gene encoding an antifreeze protein into a plant body, it can be expected as an applied technology that the plant has cold resistance.

Examples of the present invention will be described below, but the present invention is not particularly limited thereby.

実施例1
〈不凍タンパク質存在の確認〉
(1)検体試料
不凍タンパク質の採取源として使用した魚種は以下のとおりである。

ギスカジカ(Myoxocephalus stelleri Tilesius、英名Frog Sculpin):
利尻島沿岸で漁獲。
ツマグロカジカ(Gymnocanthus herzensteini Jordan et Starks、英名Black edged sculpin): 利尻島沿岸で漁獲。
トゲカジカ(Myoxocephalus polyacanthocephalus (Pallas)、英名Great Sculpin):北海道 札幌市厚別区厚別西4条2丁目752番地318カウボーイ(CowBoy)厚別I藤富水産、及び北海道野付漁業協同組合より購入。
チカ(Hypomesus pretiosus japonicus (Brevoort)):
北海道札幌市厚別区厚別西4条2丁目752番地318カウボーイ(CowBoy)厚別I藤富水産、及び北海道野付漁業協同組合より購入。
ナガガジ(Zoarces elongatus Kner、英名Notched-fin eelpout):
北海道野付漁業協同組合より購入。
イシカリワカサギ(Hypomesus olidus (Dallas)、英名Freshwater smelt):
札幌市北区茨戸公園茨戸川ワカサギ釣り場より購入。
Example 1
<Confirmation of antifreeze protein>
(1) Specimen sample The fish species used as the source of antifreeze protein are as follows.

Gisukajika (Myoxocephalus stelleri Tilesius, English name Frog Sculpin):
Catch on the coast of Rishiri Island.
Black deer (Gymnocanthus herzensteini Jordan et Starks, English name Black edged sculpin): caught on the coast of Rishiri Island.
Togekajika (Myoxocephalus polyacanthocephalus (Pallas), English name Great Sculpin): Sapporo, Hokkaido Atsubetsu District Atsubetsunishi Article 4 2-chome 752 address 318 Cowboy (CowBoy) Atsubetsu I FujiTomi fisheries, and purchased from Hokkaido Notsuke Fisheries Cooperative Association.
Chica (Hypomesus pretiosus japonicus (Brevoort)):
Purchased from Akibetsu I Fujitomi Fisheries Co., Ltd., Hokkaido Boys and Fisheries Cooperatives, 318 Cowboy (CowBoy) 752-52 Atsubetsu Nishi, Atsubetsu-ku, Sapporo, Hokkaido.
Nagagaji (Zoarces elongatus Kner, fame Notched-fin eelpout):
Purchased from Hokkaido Notsuke Fishery Cooperative.
Pond smelt (Hypomesus olidus (Dallas), English name Freshwater smelt):
Purchased from Ibaradogawa Smelt Fishing Spot in Kita-ku, Sapporo.

マガレイ(Limanda herzensteini Jordan et Snyder、英名Brown Sole):
北海道札幌市厚別区厚別西4条2丁目752番地318カウボーイ(CowBoy)厚別1藤富水産より購入。
スナガレイ(Limanda punctatissima (Steindachner)、英名Longsnout flounder):
北海道札幌市厚別区厚別西4条2丁目752番地318カウボーイ(CowBoy)厚別1藤富水産より購入。
クロガレイ(Liopsetta obscura (Herzenstein)、英名Black plaice):
北海道札幌市厚別区厚別西4条2丁目752番地318カウボーイ(CowBoy)厚別1藤富水産より購入。
サメガレイ(Clidodema asperrimum (Temminck et Schlegel)、英名Roughscale sole):
北海道札幌市厚別区厚別西4条2丁目752番地318カウボーイ(CowBoy)厚別1藤富水産より購入。
ソウハチ(Cleisthenes pinetorum herzensteini (Schmidt)、英名Pointhead flounder):
北海道札幌市厚別区厚別西4条2丁目752番地318カウボーイ(CowBoy)厚別1藤富水産より購入。
Yellow striped flounder (Limanda herzensteini Jordan et Snyder, English name Brown Sole):
Purchased from Cowboy (CowBoy) Atsubetsu 1 Fujitomi Suisan, Awabetsu West 4-2-75-2, Atsubetsu-ku, Sapporo, Hokkaido.
Sunagarei (Limanda punctatissima (Steindachner), English name Longsnout flounder):
Purchased from Cowboy (CowBoy) Atsubetsu 1 Fujitomi Suisan, Awabetsu West 4-2-75-2, Atsubetsu-ku, Sapporo, Hokkaido.
Kurogarei (Liopsetta obscura (Herzenstein), English name Black plaice):
Purchased from Cowboy (CowBoy) Atsubetsu 1 Fujitomi Suisan, Awabetsu West 4-2-75-2, Atsubetsu-ku, Sapporo, Hokkaido.
Samegarei (Clidodema asperrimum (Temminck et Schlegel) , English name Roughscale sole):
Purchased from Cowboy (CowBoy) Atsubetsu 1 Fujitomi Suisan, Awabetsu West 4-2-75-2, Atsubetsu-ku, Sapporo, Hokkaido.
Sawbee (Cleisthenes pinetorum herzensteini (Schmidt), English name Pointhead flounder):
Purchased from Cowboy (CowBoy) Atsubetsu 1 Fujitomi Suisan, Awabetsu West 4-2-75-2, Atsubetsu-ku, Sapporo, Hokkaido.

ババガレイ(Microstomus achne (Jordan et Starks)、英名Slime flounder):
北海道札幌市厚別区厚別西4条2丁目752番地318カウボーイ(CowBoy)厚別1藤富水産より購入。
アサバカレイ(Lepidopsetta mochigarei Snyder、英名Dusky Sole):
北海道札幌市厚別区厚別西4条2丁目752番地318カウボーイ(CowBoy)厚別1藤富水産より購入。
ムシガレイ(Eopsetta grigorjewi (Herzenstein)、英名Shothole halibut):
北海道石狩湾の沿岸で漁獲。
マダラ(Gadus macrocephalus Tilesius、英名Pacific cod):
北海道札幌市厚別区厚別西4条2丁目752番地318カウボーイ(CowBoy)厚別1藤富水産より購入。
ナメヨコスジカジカ(Hemilepidotus jordani Bean、英名Yellow Sculpin):
北海道様似町の沿岸で漁獲。
シワイカナゴ(Hypoptychus dybowskii Steindachner、英名Naked sand lance):
北海道利尻島沿岸で漁獲。
ドロギンポ(Ascoldia variegata knipowitschi Soldatov):
北海道様似町の沿岸で漁獲
Babagarei (Microstomus achne (Jordan et Starks), English name Slime flounder):
Purchased from Cowboy (CowBoy) Atsubetsu 1 Fujitomi Suisan, Awabetsu West 4-2-75-2, Atsubetsu-ku, Sapporo, Hokkaido.
Aspidfish ( Lepidopsetta mochigarei Snyder)
Purchased from Cowboy (CowBoy) Atsubetsu 1 Fujitomi Suisan, Awabetsu West 4-2-75-2, Atsubetsu-ku, Sapporo, Hokkaido.
Mushigarei (Eopsetta grigorjewi (Herzenstein), English name Shothole halibut):
Catch on the coast of Ishikari Bay, Hokkaido.
Madara (Gadus macrocephalus Tilesius, English name Pacific cod):
Purchased from Cowboy (CowBoy) Atsubetsu 1 Fujitomi Suisan, Awabetsu West 4-2-75-2, Atsubetsu-ku, Sapporo, Hokkaido.
Name sword pin (Hemilepidotus jordani Bean, English name Yellow Sculpin):
Catch on the coast of Samani-cho, Hokkaido.
Shiwaikanago (Hypoptychus dybowskii Steindachner, English name Naked sand lance):
Catch on the coast of Rishiri Island, Hokkaido.
Dragoinpo (Ascoldia variegata knipowitschi Soldatov):
Catch at the coast of Samani-cho, Hokkaido

スケトウダラ(Theragra chalcogramma (Pallas)、英名Walleye Pollock):
北海道札幌市厚別区厚別西4条2丁目752番地318カウボーイ(CowBoy)厚別1藤富水産より購入。
キタノホッケ(Pleurogrammus monopterygius (Pallas)、英名Atka mackerel):
北海道石狩湾の沿岸で漁獲。
ヤナギノマイ(Sebastes steindachneri Hilgendorf):
北海道石狩湾の沿岸で漁獲。
ニシン(Clupea pallasii Valenciennes、英名California herring):
北海道札幌市厚別区厚別西4条2丁目752番地318カウボーイ(CowBoy)厚別1藤富水産より購入。
シシャモ(Spirinchus lanceolatus (Hikita)、英名Sishamo Smelt):
北海道札幌市厚別区厚別西4条2丁目752番地318カウボーイ(CowBoy)厚別1藤富水産より購入、及び北海道鵡川町の沿岸で漁獲。
クロガシラガレイ(Limanda schrenki Schmidt、英名Cresthead flounder):
北海道石狩湾の沿岸で漁獲。
ヌマガレイ(Platichthys stellatus (Pallas)、英名Starry flounder):
北海道石狩湾の沿岸で漁獲。
Alaska pollack (Theragra chalcogramma (Pallas), English name Walleye Pollock):
Purchased from Cowboy (CowBoy) Atsubetsu 1 Fujitomi Suisan, Awabetsu West 4-2-75-2, Atsubetsu-ku, Sapporo, Hokkaido.
Kitano Hocke (Pleurogrammus monopterygius (Pallas), English name Atka mackerel):
Catch on the coast of Ishikari Bay, Hokkaido.
Willow (Sebastes steindachneri Hilgendorf):
Catch on the coast of Ishikari Bay, Hokkaido.
Herring (Clupea pallasii Valenciennes, California herring):
Purchased from Cowboy (CowBoy) Atsubetsu 1 Fujitomi Suisan, Awabetsu West 4-2-75-2, Atsubetsu-ku, Sapporo, Hokkaido.
Shishamo (Spirinchus lanceolatus (Hikita), English name Sishamo Smelt):
Purchased from Akibetsu 1 Fujitomi Suisan, 318 Cowboy (CowBoy), Atsubetsu West 4-2-75-2, Atsube-ku, Sapporo, Hokkaido, and caught on the coast of Yodogawa Town, Hokkaido.
Limanda schrenki Schmidt (English name: Cresthead flounder):
Catch on the coast of Ishikari Bay, Hokkaido.
Flounder (Platichthys stellatus (Pallas), English name Starry flounder):
Catch on the coast of Ishikari Bay, Hokkaido.

コガネガレイ(Limanda aspera (Pallas)、英名Yellow fin sole):
北海道石狩湾の沿岸で漁獲。
イシガレイ(Kareius bicoloratus (Basilewsky)、英名Stone flounder):
北海道札幌市厚別区厚別西4条2丁目752番地318カウボーイ(CowBoy)厚別1藤富水産より購入、及び北海道石狩湾の沿岸で漁獲。
キヌカジカ(Furcina osimae Jordan et Starks、英名Silk Sculpin):
北海道苫小牧の沿岸で漁獲。
イカナゴ(Ammodytes personatus Girard、英名Japanese sand lance):
北海道石狩湾の沿岸で漁獲。
ムロランギンポ(Pholidapous dybowskii (Steindachner)、英名Dybowsky’s gunnel):北海道石狩湾の沿岸で漁獲。
シチロウウオ(Brachyopsis rostratus (Tilesius)、英名Longsnout poacher):北海道野付湾で漁獲。
ニシキギンポ(Pholis picta (Kner)、英名Painted gunnel):北海道野付湾で漁獲。
ガジ(Opisthocentrus ocellatus (Tilesius)、英名Redspotted gunnel):北海道野付湾で漁獲。
カラフトシシャモ(Mallotus villosus (Muller)、英名Atlantic capelin): 北海道札幌市厚別区厚別西4条2丁目752番地318カウボーイ(CowBoy)厚別1藤富水産より購入。
マアジ(Trachurus japonicus (Temminck et Schlegel、英名Yellowfin horse mackerel)):北海道札幌市厚別区厚別西4条2丁目752番地318カウボーイ(CowBoy)厚別1藤富水産より購入。
Lily aspera (Pallas), English fin sole):
Catch on the coast of Ishikari Bay, Hokkaido.
Ishigarei (Kareius bicoloratus (Basilewsky), English name Stone flounder):
Purchased from 148 Cowboy (CowBoy) Atsubetsu 1 Fujitomi Suisan, Atsube-ku, Atsubetsu-ku, Sapporo, Hokkaido, and caught on the coast of Ishikari Bay, Hokkaido.
Kinka deer (Furcina osimae Jordan et Starks, English name Silk Sculpin):
Catch on the coast of Tomakomai, Hokkaido.
Sand lance (Ammodytes personatus Girard, English name Japanese sand lance):
Catch on the coast of Ishikari Bay, Hokkaido.
Muroranginpo (Pholidapous dybowskii (Steindachner), English name Dybowsky's gunnel): caught on the coast of Ishikari Bay, Hokkaido.
Whitefish (Brachyopsis rostratus (Tilesius), English Longsnout poacher): caught in Notsuke Bay, Hokkaido.
Nishiki Gimpo (Pholis picta (Kner), English Painted gunnel): caught in Notsuke Bay, Hokkaido.
Gazi (Opisthocentrus ocellatus (Tilesius), English name Redspotted gunnel): caught in Notsuke Bay, Hokkaido.
Caraft Shishamo (Mallotus villosus (Muller), English name Atlantic capelin): Purchased from Cowboy (CowBoy) Atsubetsu 1 Fujitomi Suisan, 3F 752, Atsubetsu Nishi, Atsubetsu-ku, Sapporo, Hokkaido.
Jack mackerel (Trachurus japonicus (Temminck et Schlegel, English name Yellowfin horse mackerel)): Sapporo, Hokkaido Atsubetsu District Atsubetsunishi Article 4 2-chome 752 address 318 Cowboy (CowBoy) Atsubetsu 1 FujiTomi purchased from fisheries.

不凍タンパク質の採取源として使用した魚体乾物の製品は以下のとおりである。
スケトウダラ(商品名:むしりたら、製造元:大東食品)北海道札幌市厚別区厚別西4条2丁目752番地318カウボーイ(CowBoy)厚別1より購入。
シシャモ(商品名:国内産姫シシャモ、製造元:大丸水産)北海道札幌市厚別区厚別西4条2丁目752番地318カウボーイ(CowBoy)厚別1より購入。
イカナゴ(商品名:おおなご薫製、製造元:藤水)北海道札幌市厚別区厚別西4条2丁目752番地318カウボーイ(CowBoy)厚別1より購入。
コガネガレイ(商品名:ロール黄金かれい、製造元:大東食品)北海道札幌市厚別区厚別西4条2丁目752番地318カウボーイ(CowBoy)厚別1より購入。
ウルメイワシ(商品名:うるめ煮干、製造元:かね七)北海道札幌市厚別区厚別西4条2丁目752番地318カウボーイ(CowBoy)厚別1より購入。
The dried fish products used as the source of antifreeze protein are as follows.
Walleye (brand name: Musiritara, manufacturer: Daito Foods) Purchased from Cowboy Atsubetsu 1 at 352, 2-75-2 Atsubetsu Nishi, Atsubetsu-ku, Sapporo, Hokkaido.
Shishamo (Brand name: Domestic Hime Shishamo, Manufacturer: Daimaru Suisan) Purchased from Cowboy Atsubetsu 1 at 352-2 Amebetsu Nishi, Article 2, 2-chome, Atsubetsu-ku, Sapporo, Hokkaido.
Ikanago (Brand name: Onago smoked, manufacturer: Fujimizu) Purchased from Cowboy Atsubetsu 1 at 352, 2-75-2 Atsubetsu Nishi, Atsubetsu-ku, Sapporo, Hokkaido.
Koganegaray (trade name: Roll Kogane Kai, manufacturer: Daito Foods) Purchased from Cowboy Atsubetsu 1 at 352, 2-75-2 Atsubetsu Nishi, Atsubetsu-ku, Sapporo, Hokkaido.
Urumei eagle (trade name: Urume Niboshi, manufacturer: Kane Nana) Purchased from Cowboy Atsubetsu 1 at 352, 2-75-2 Atsubetsu Nishi, Atsubetsu-ku, Sapporo, Hokkaido.

(2)バイピラミダル氷結晶の観察
a)上記各魚種のうちの鮮魚について、鰓(エラ)部をこじ開けて肝臓、小腸などの器官を傷つけないよう薬匙(さじ)等で抑えながら、頭部側に見える三角形様の赤黒い心臓部に注意深く容量5mlの注射器につけた注射針をさし込み血液を採取した。血液の採取量の合計はギスカジカ、ツマグロカジカ及びチカの各魚種において、各々150mlであり、また、トゲカジカにおいて420ml、キタノホッケ、ニシンにおいて30mlであった。また、マガレイ、スナガレイ、クロガレイ、サメガレイ、ババガレイ、アサバガレイ、クロガシラガレイ、ヌマガレイ、コガネガレイ、イシガレイ、ムシガレイにおいて各々20ml、マダラ、スケトウダラにおいて35ml、ナメヨコスジカジカ、キヌカジカ、ナガガジ、ドロギンポ、ムロランギンポにおいては25mlであった。これらを以下(b)及び実施例2の試験に用いた。また、上記以外の鮮魚のイシカリワカサギ、ヤナギノマイ、ソウハチ、シシャモ、カラフトシシャモ、シワイカナゴ、イカナゴ、シチロウウオ、ニシキギンポ、ガジについて、皮、骨、内臓を除いた魚肉部分を包丁により切り出し細かく切り刻んだ後ミキサーにかけて粉砕したものをすり身とした。すり身20mlに対して0.1M硫酸アンモニウム水溶液(ph7.9)を等量(20ml)加えて懸濁した。さらに、スケトウダラ、シシャモ、イカナゴ、コガネガレイ、ウルメイワシ、マアジの魚体乾製品について、ハサミを用いて1cm程度に切り刻んだ後、ミキサーにかけて粉砕し、粉砕物重量20gに対して20mlの0.1M硫酸アンモニウム水溶液(pH7.9)を加えて良く混合し、これを4度C下で一晩静置したものを乾物の懸濁液とした。こうして得られた血液、すり身懸濁液、および乾物懸濁液を以下(b)及び実施例2の試験に用いた。
(2) Observation of bipyramidal ice crystals a) For fresh fish of the above-mentioned fish species, while keeping the gills open, the head and head are held down to prevent damage to the liver, small intestine and other organs. Blood was collected by carefully inserting a syringe needle attached to a 5 ml syringe into the triangular red-and-black heart part visible on the side. The total amount of blood collected was 150 ml for each species of Giska deer, Tsukadeka deer and Chica, 420 ml for Stagka deer, and 30 ml for Kitano Hokke and Herring. Also, 20ml each for flounder, sunbed bream, black flounder, stag beetle, bubbock bream, black flounder, black flounder, blackhead bream, flounder, prickly flounder, 35ml for madara and walleye, 25ml for sludge, stag beetle, red flounder, flounder It was. These were used in the following tests (b) and Example 2. For fresh fish other than the above, Ishikari Wakasagi, Yanaginomai, Sawachi, Shishamo, Caraft Shishamo, Shiwai Kanago, Ikanago, Shichirouuo, Nishiki Gimpo, Gazi The crushed material was used as a surimi. An equal amount (20 ml) of 0.1 M ammonium sulfate aqueous solution (ph7.9) was added to 20 ml of surimi and suspended. Further, dry fish products of walleye pollock, shishamo, squid, flounder, urchin eagle, and horse mackerel are chopped to about 1 cm with scissors, pulverized with a mixer, 20 ml of 0.1 M ammonium sulfate aqueous solution (pH 7 .9) was added and mixed well, and the mixture was allowed to stand at 4 ° C. overnight to obtain a dry matter suspension. The blood, surimi suspension, and dry matter suspension thus obtained were used in the following tests (b) and Example 2.

なお、注目する検体液が不凍タンパク質を含むか否かの評価は、わずか1ulの液に対しても低温顕微鏡下でのバイピラミダル氷結晶観察実験をすることで行い得る。
b)上記のように採取した各魚種の血液それぞれ1ulをライカ社製DMLB100型顕微鏡(Leica DMLB 100 photomicroscope)の直径16mmのカバーガラス上に滴下した。これをそのままもう1枚の直径12.5mmのカバーガラスによりはさみ、これをDMLB100型顕微鏡のステージ部に設置した冷却箱内にセットした。冷却箱の上下には直径1mmの光取り入れ穴をあけ、顕微鏡光源からの光は下側の穴から箱内を通り上側の穴を抜けてレンズに入光させるようにした。この上下の穴により規程される光軸上に検体液をセットすることで、光軸上にある検体液中の物質を顕微鏡観察することができる。検体液がセットされた冷却箱の中の温度は、リンカム社製LK600温度制御装置(LK600 温度コントローラー)により+/-0.1度Cの誤差で制御される。室温下で検体液をセットした後、温度制御装置により冷却箱内の温度を毎秒0.2度Cでマイナス22度Cまで下降させた。およそマイナス1.4度Cからマイナス2.2度Cの間の温度のどこかで検体液の全体が凍結する。凍結の後に毎秒0.1度Cで冷却箱内温度を上昇させ零度Cで上昇を停止し、そのまま1秒−10秒程度の間、零度Cを維持していると凍結が溶け、無数のきれつの入った氷結晶状態を経たのちに、数えられる程度の氷結晶つぶが水中に浮かんだものが観測された。その瞬間に、冷却箱内の温度をマイナス0.1度C−マイナス1.0度C程度に下降させて止め、氷結晶の形状を観察した。観察結果を図2−図8に示す。試験に使用した魚種のいずれにおいてもバイピラミダル型の氷晶が観察され、これら魚種は、いずれも不凍タンパク質を有することを確認した。また、魚肉すり身懸濁液1μl、および乾物懸濁液1μlを用いて同様の試験を行ったが、これらの試験においても、すべての魚種について、バイピラミダル型の氷晶が観察された。
It should be noted that the evaluation of whether or not the sample liquid of interest contains antifreeze protein can be performed by conducting bipyramidal ice crystal observation experiments under a low-temperature microscope even with only 1 ul of liquid.
b) 1 ul of each blood sample collected as described above was dropped onto a cover glass having a diameter of 16 mm of a Leica DMLB100 microscope (Leica DMLB 100 photomicroscope). This was directly sandwiched by another cover glass having a diameter of 12.5 mm and set in a cooling box installed on the stage of a DMLB100 microscope. A light intake hole with a diameter of 1 mm was formed on the top and bottom of the cooling box, and light from the microscope light source passed through the box from the lower hole and entered the lens through the upper hole. By setting the sample liquid on the optical axis defined by the upper and lower holes, the substance in the sample liquid on the optical axis can be observed with a microscope. The temperature in the cooling box in which the sample liquid is set is controlled with an error of +/− 0.1 ° C. by an LK600 temperature controller (LK600 temperature controller) manufactured by Linkham. After the sample liquid was set at room temperature, the temperature in the cooling box was lowered to 0.2 degrees C per second to minus 22 degrees C by the temperature controller. The entire specimen liquid freezes at some temperature between about minus 1.4 degrees C and minus 2.2 degrees C. After freezing, the temperature in the cooling box is raised at 0.1 ° C. per second, and the rise is stopped at 0 ° C. If the temperature is kept at 0 ° C. for about 1 to 10 seconds, the freezing melts and countless cracks After passing through two ice crystal states, it was observed that a certain amount of ice crystal crush floated in the water. At that moment, the temperature in the cooling box was lowered to about minus 0.1 degree C minus minus 1.0 degree C and stopped, and the shape of ice crystals was observed. The observation results are shown in FIGS. Bipyramidal ice crystals were observed in all of the fish species used in the test, and it was confirmed that all of these fish species had antifreeze proteins. In addition, similar tests were performed using 1 μl of fish meat surimi suspension and 1 μl of dry matter suspension. In these tests, bipyramidal ice crystals were observed for all fish species.

実施例2
〈不凍タンパク質の分離精製1〉
a)不凍タンパク質の精製
実施例1の(2)a)と同様にしてギスカジカから血液30mlをプラスチック試験管に採取した。プラスチック試験管内に採取したギスカジカ血液30mlを4度Cの冷蔵チャンバー内に一晩放置し血球成分だけを凝血・沈殿(一般にクロッテイング(clotting)操作と呼ぶ)させた。血液30ml中およそ半分(15ml)が血球として沈殿し、上澄みの血清15mlだけを分取した。このとき濃縮遠心機を用いて3000回転、15分間の遠心操作を行い血球と血清の分離能を向上した。このとき、分取した15mlの血清にバイピラミダル氷結晶を観測し不凍タンパク質の存在を確認した。この15mlの血清を内径2.5cm高さ96cm(容量475ml)のSephadexG-50ゲルカラムクロマトグラフィーによりゲル濾過した。溶出液として0.1Mの硫酸アンモニウム水溶液(pH=7.9)を用いた。図9に、血清のゲル濾過分画に対する280nm紫外吸収パターンを示す。試験管1本あたりに10mlずつのゲル濾過分画を得た。つぎにそれらを凍結乾燥した。
Example 2
<Separation and purification of antifreeze protein 1>
a) Purification of antifreeze protein In the same manner as in Example 1 (2) a), 30 ml of blood was collected from Gizika deer into a plastic test tube. 30 ml of Gizzard deer blood collected in a plastic test tube was left in a refrigerated chamber at 4 degrees C overnight to clot and precipitate only blood cell components (generally referred to as clotting operation). Approximately 30 ml of blood (15 ml) was precipitated as blood cells, and only 15 ml of supernatant serum was collected. At this time, centrifugation was performed at 3000 rpm for 15 minutes using a concentrating centrifuge to improve the separation ability of blood cells and serum. At this time, bipyramidal ice crystals were observed in 15 ml of the collected serum to confirm the presence of antifreeze protein. The 15 ml of serum was subjected to gel filtration by Sephadex G-50 gel column chromatography with an inner diameter of 2.5 cm and a height of 96 cm (volume: 475 ml). A 0.1 M aqueous ammonium sulfate solution (pH = 7.9) was used as an eluent. FIG. 9 shows a 280 nm ultraviolet absorption pattern for the serum gel filtration fraction. 10 ml of gel filtration fraction was obtained per test tube. They were then lyophilized.

各分画の凍結乾燥物に対して0.5から2mlの0.1Mの硫酸アンモニウム水溶液(pH=7.9)を加えた後、各々に対してバイピラミダル氷結晶の観測をおこない、不凍タンパク質が含まれている10番から24番までの分画(図9の影をつけた部分:Antifreeze Active Fractions)を次の精製ステップに用いた。10番から24番までの分画を約45mlの硫酸アンモニウム水溶液(pH=7.9)に溶解したものに対して、ミリポア社のAmiconセントリプレップを用いて不凍タンパク質を含む分子量3万以下のタンパク質水溶液約40mlを得た。これに対して0.1M硫酸アンモニウム水溶液(pH=7.9)で平衡化したファルマシア社製DEAEセファロースCL-6B陰イオン交換樹脂5mlを加え、濃縮遠心機により3000回転で1分間遠心して、この陰イオン樹脂に対して非結合性をもつ不凍タンパク質水溶液約40mlを得た。この水溶液に対して0.1M硫酸アンモニウム水溶液(pH=7.9)で平衡化したファルマシア社製CMセファロースCL-6B陽イオン交換樹脂5mlを加え、濃縮遠心機により3000回転で1分間遠心して、この陽イオン交換樹脂に対しても非結合性をもつ不凍タンパク質水溶液を得た。   After adding 0.5 to 2 ml of 0.1M ammonium sulfate aqueous solution (pH = 7.9) to the freeze-dried product of each fraction, bipyramidal ice crystals are observed for each, and antifreeze protein is contained. The fractions from No. 10 to No. 24 (shaded part of FIG. 9: Antifreeze Active Fractions) were used for the next purification step. A solution of fractions from No. 10 to No. 24 dissolved in about 45 ml of ammonium sulfate aqueous solution (pH = 7.9) is used for an aqueous solution of protein having a molecular weight of 30,000 or less containing antifreeze protein by using Millipore Amicon Centriprep. 40 ml was obtained. Add 5 ml of Pharmacia DEAE Sepharose CL-6B anion exchange resin equilibrated with 0.1 M ammonium sulfate aqueous solution (pH = 7.9), and centrifuge for 1 minute at 3000 rpm in a concentrating centrifuge. About 40 ml of an antifreeze protein aqueous solution having non-binding properties was obtained. To this aqueous solution, 5 ml of Pharmacia CM Sepharose CL-6B cation exchange resin equilibrated with 0.1 M ammonium sulfate aqueous solution (pH = 7.9) was added, and this cation exchange was performed by centrifuging at 3000 rpm for 1 minute. An antifreeze protein aqueous solution having non-binding property to the resin was also obtained.

この試料を凍結乾燥した後に少量の0.1M硫酸アンモニウム水溶液(pH=7.9)で溶解し、ODS(C8)カラムを用いた逆相HPLCクロマトグラフィーで分画した。HPLC経路内とカラムの平衡化は0.1%のトリフルオロ酢酸水溶液(A液)を用いて行い、溶出は0.1%のトリフルオロ酢酸を含むアセトニトリル(B液)を用いた。B液の濃度勾配を毎分1%の直線的上昇に設定し1ml/minの送液速度に設定した。図10にこの逆相HPLCのパターンを示す。図10に観測された各ピークを集め凍結乾燥した後に、各々を少量の0.1M硫酸アンモニウム水溶液(pH=7.9)で溶解しバイピラミダル氷結晶生成の有無を検査した。その結果、AFP1は、図1Bで示される偏四角面体の氷結晶を生成し、一方AFP2は図1Aで示される六方両錐体の氷結晶を生成することが判明した。こうして、AFP1とAFP2の記号を付した2つのピーク分画の凍結乾燥物を精製不凍タンパク質粉末として取得した。
これら2つが異なる不凍タンパク質であることは、以下に示す電気泳動によっても確かめられた。
This sample was lyophilized, dissolved in a small amount of 0.1 M aqueous ammonium sulfate (pH = 7.9), and fractionated by reverse phase HPLC chromatography using an ODS (C8) column. Equilibration between the HPLC route and the column was performed using a 0.1% aqueous trifluoroacetic acid solution (liquid A), and elution was performed using acetonitrile (liquid B) containing 0.1% trifluoroacetic acid. The concentration gradient of solution B was set to a linear increase of 1% per minute, and the solution feeding speed was set to 1 ml / min. FIG. 10 shows this reverse phase HPLC pattern. Each peak observed in FIG. 10 was collected and freeze-dried, and then each was dissolved in a small amount of 0.1M ammonium sulfate aqueous solution (pH = 7.9) to examine whether bipyramidal ice crystals were formed. As a result, it has been found that AFP1 produces a dihedral tetrahedral ice crystal shown in FIG. 1B, while AFP2 produces a hexagonal bipyramidal ice crystal shown in FIG. 1A. Thus, lyophilized products of two peak fractions marked with AFP1 and AFP2 were obtained as purified antifreeze protein powder.
It was confirmed by electrophoresis shown below that these two are different antifreeze proteins.

b)ゲル電気泳動
ギスカジカ由来AFP1とAFP2についてのSDSゲル電気泳動を行った。AFP1及びAFPの分子量は数千−5万程度と予想されるため、タンパク質を分離良く泳動するために、ゲル中のSDS濃度として16%を選んだ。電気泳動に用いた試薬の組成は下記のとおりである。
分離ゲル (10 ml)
2.0 ml 水
5.4 ml 30%ポリアクリルアミド + 0.8%ビスアクリルアミド
2.5 ml 1.5M トリス塩酸 (pH=8.8)
120 μl 10%ドデシル硫酸ナトリウム溶液
70 μl 10%過硫酸アンモニウム溶液
15.0 μl N, N,N',N'-テトラメチレンジアミン溶液
濃縮ゲル (5 ml)
3.17 ml 水
500 μl 30%ポリアクリルアミド + 0.8%ビスアクリルアミド30%
1.25 ml 0.5M トリス塩酸 (pH=6.8)
50 μl 10% ドデシル硫酸ナトリウム溶液
30 μl 10%過硫酸アンモニウム溶液
7.5 μl N, N,N',N'-テトラメチレンジアミン溶液
b) Gel electrophoresis SDS gel electrophoresis was performed on AFP1 and AFP2 derived from Giska deer. Since the molecular weights of AFP1 and AFP are expected to be about several thousand to 50,000, 16% was selected as the SDS concentration in the gel in order to migrate proteins with good separation. The composition of the reagent used for electrophoresis is as follows.
Separation gel (10 ml)
2.0 ml water
5.4 ml 30% polyacrylamide + 0.8% bisacrylamide
2.5 ml 1.5M Tris-HCl (pH = 8.8)
120 μl 10% sodium dodecyl sulfate solution
70 μl 10% ammonium persulfate solution
15.0 μl N, N, N ', N'-tetramethylenediamine solution
Concentrated gel (5 ml)
3.17 ml water
500 μl 30% polyacrylamide + 0.8% bisacrylamide 30%
1.25 ml 0.5M Tris-HCl (pH = 6.8)
50 μl 10% sodium dodecyl sulfate solution
30 μl 10% ammonium persulfate solution
7.5 μl N, N, N ', N'-tetramethylenediamine solution

分子量マーカー(図11、Marker1)としてはGIBCO社製たんぱく質分子量スタンダード低分子量用を用いたほか、同類たんぱく質とのサイズ比較のために2量体型不凍タンパク質RD3(分子量14kDa、Marker2)、1量体型不凍タンパク質RD3Nl(6.5kDa、 Marker3)、ニワトリ卵白リゾチーム(分子量14.3kDa、Marker4)、不凍糖たんぱく質(3kDa、Marker4)を用いた。マーカー以外のたんぱく質は全て7ulの0.1M硫酸アンモニウム水溶液(pH=7.9)で溶解し、これに7ulのbuffer液(0.065M Tris-HCl (pH=6.8), 2% SDS, 10% Sucrose, 5% β-mercapthoethanol, 0.001% BPB染色試薬)を加えた後に95度Cで5分間煮沸して、電気泳動試料とした。これを日本エイドー社製ミニスラブゲル電気泳動装置を用いて100Vの定電圧下にて2時間の電気泳動を行った。その結果を図11に示す。図に示されるように、AFP1は分子量約11kDa、AFP2は分子量3−6kDaの不凍タンパク質であった。これらの分子量からみると、AFP1は上記のタイプIV(AFPIV)、AFP2は、タイプI(AFPI)に属するものと推定される。   As molecular weight marker (Fig. 11, Marker1), GIBCO protein molecular weight standard for low molecular weight was used, and dimeric antifreeze protein RD3 (molecular weight 14kDa, Marker2), monomeric for comparison with similar proteins Antifreeze protein RD3Nl (6.5 kDa, Marker3), chicken egg white lysozyme (molecular weight 14.3 kDa, Marker4), and antifreeze glycoprotein (3 kDa, Marker4) were used. All proteins other than the marker are dissolved in 7ul of 0.1M ammonium sulfate aqueous solution (pH = 7.9), and 7ul of buffer solution (0.065M Tris-HCl (pH = 6.8), 2% SDS, 10% Sucrose, 5% β -mercapthoethanol, 0.001% BPB staining reagent) and then boiled at 95 ° C for 5 minutes to obtain an electrophoresis sample. This was subjected to electrophoresis for 2 hours under a constant voltage of 100 V using a mini slab gel electrophoresis apparatus manufactured by Nippon Aido. The result is shown in FIG. As shown in the figure, AFP1 was an antifreeze protein having a molecular weight of about 11 kDa and AFP2 having a molecular weight of 3-6 kDa. From the viewpoint of these molecular weights, it is estimated that AFP1 belongs to the above-mentioned type IV (AFPIV) and AFP2 belongs to type I (AFPI).

実施例3
〈不凍タンパク質の分離精製2〉
実施例1の(2)に記述した手順に従って、チカのすり身の懸濁液40mlを調製した。これをプラスチック試験管に入れ、10,000回転で15分間遠心して、約20mlの上澄み液を得た。この上澄み液のタンパク質濃度は約25mg/mlであった。この上澄み液の入っているプラスチック試験管を70度Cの温浴に10分間浸すことで加熱処理をおこなった。温浴からプラスチック試験管を取り出した後、直ちに砕いた氷に突き入れて急冷した。その後に、この試料を18,000回転で30分間遠心して、約15mlの上澄み液を得た。この上澄み液のタンパク質濃度は約6.6mg/mlであった。図12に、この上澄み液に対するSDSゲル電気泳動の結果(図12A)とグルカラムクロマトグラフィーの紫外吸収パターン(図12B)を示す。SDSゲル電気泳動は図9と同一条件で行い、グルカラムクロマトグラフィーは200μlの試料溶液をAmersham Pharmacia Biotech Sepharose 6 HR10/30カラムにより0.2ml/分で溶出することで行った。図12Aの電気泳動図の最右レーンに示されるAFP3(分子量約17kDa)、AFP4、AFP5(分子量約14kDa)はいずれも図1Aの形状のバイピラミダル氷結晶を生成するチカ由来の不凍タンパク質であった。これらの分子量から見ると、チカ由来不凍タンパク質はいずれもタイプII型に属するものと推定される。これらAFP3、AFP4、AFP5に相当するゲルクロマトグラフィーの分画が図12Bの矢印の範囲で示した部分である。この部分の吸収ピーク強度をのこりの部分と比較することから、70度Cで10分間の加熱処理後の遠心上清を得ることで、約62%の精製度でチカ由来不凍タンパク質が精製できることが示された。
Example 3
<Separation and purification of antifreeze protein 2>
According to the procedure described in Example 1 (2), 40 ml of Chica Surimi suspension was prepared. This was put into a plastic test tube and centrifuged at 10,000 rpm for 15 minutes to obtain about 20 ml of supernatant. The protein concentration of this supernatant was about 25 mg / ml. The plastic test tube containing the supernatant was immersed in a 70 ° C. bath for 10 minutes for heat treatment. After removing the plastic test tube from the warm bath, it was immediately put into crushed ice and quenched. Thereafter, the sample was centrifuged at 18,000 rpm for 30 minutes to obtain about 15 ml of supernatant. The protein concentration of this supernatant was about 6.6 mg / ml. FIG. 12 shows the result of SDS gel electrophoresis (FIG. 12A) for this supernatant and the ultraviolet absorption pattern (FIG. 12B) of Glu column chromatography. SDS gel electrophoresis was performed under the same conditions as in FIG. 9, and glu column chromatography was performed by eluting 200 μl of the sample solution at 0.2 ml / min with an Amersham Pharmacia Biotech Sepharose 6 HR10 / 30 column. AFP3 (molecular weight of about 17 kDa), AFP4, and AFP5 (molecular weight of about 14 kDa) shown in the rightmost lane of the electrophoretic diagram of FIG. 12A are all antifreeze proteins derived from Chica that generate bipyramidal ice crystals having the shape of FIG. 1A. there were. Judging from these molecular weights, it is estimated that all Chica-derived antifreeze proteins belong to type II. The fractions of gel chromatography corresponding to these AFP3, AFP4, and AFP5 are the portions indicated by the range of arrows in FIG. 12B. By comparing the absorption peak intensity of this part with that of the rest, it is possible to purify the chica-derived antifreeze protein with a degree of purification of about 62% by obtaining a centrifugal supernatant after heat treatment at 70 ° C. for 10 minutes. It has been shown.

ギスカジカから得た魚肉すり身懸濁液についても上記と同様に加熱処理工程を含む不凍タンパク質の分離精製及びゲル電気泳動を行ったが、この場合においては主としてタイプIと思われる不凍タンパク質が得られた。この不凍タンパク質は、90度Cの加熱によっても得られることができた。   As for the fish surimi suspension obtained from Gizika deer, the antifreeze protein was separated and purified including gelation and gel electrophoresis in the same manner as described above. In this case, however, the antifreeze protein that seems to be mainly type I was obtained. It was. This antifreeze protein could be obtained by heating at 90 ° C.

実施例4
{不凍タンパク質の分離精製3}
実施例1の(2)に記述した手順に従って、シシャモ乾物の懸濁液40mlをプラスチック試験管に採取した。これに0.4mlの99.5%酢酸を加えて良く混合し、4度Cで1時間放置して。この操作により生成した酸性沈殿物を、18,000回転で30分間遠心することにより除去し、約35mlの上澄み液を得た。これに対して0.5mlの1M水酸化ナトリウム水溶液を加えて良く混合し、4度Cで1時間放置した。この操作により生成した塩基性沈殿物を18,000回転で30分間遠心することにより除去し、約32mlの上澄み液を得た。この液に対して上記と同様に加熱処理工程を含む不凍タンパク質の分離精製を行いタイプIIと思われる不凍タンパク質が得られた。
Example 4
{Separation and purification of antifreeze protein 3}
According to the procedure described in Example 1, (2), 40 ml of a dried shishamo suspension was taken into a plastic test tube. Add 0.4 ml of 99.5% acetic acid to this, mix well, and leave at 4 ° C for 1 hour. The acidic precipitate produced by this operation was removed by centrifuging at 18,000 rpm for 30 minutes to obtain about 35 ml of supernatant. To this, 0.5 ml of 1M sodium hydroxide aqueous solution was added and mixed well, and the mixture was left at 4 ° C. for 1 hour. The basic precipitate produced by this operation was removed by centrifuging at 18,000 rpm for 30 minutes to obtain about 32 ml of supernatant. This solution was subjected to separation and purification of antifreeze protein including a heat treatment step in the same manner as described above to obtain antifreeze protein considered to be type II.

実施例5
{不凍タンパク質の分離精製4}
実施例1の(2)に記述した手順に従って、ナガガジのすり身の懸濁液40mlを調製した。これをプラスチック試験管に入れ、6,000回転で30分間遠心して、約20mlの上澄み液を得た。この上澄み液を、50mM酢酸ナトリウム緩衝液(pH=3.7)に対して透析し、共雑タンパク質を凝集させた。これを12,000回転で30分間遠心して取り除き、上澄み液を得た。この上澄み液に対して陽イオン交換クロマトグラフィーを行い、1mlずつの溶出液を280nmの吸収を検出しながらフラクションコレクターにより回収した。陽イオン交換クロマトグラフィーにはAmersham Pharmacia BiotechのFPLCシステムとBIO-RADのHigh-Sカラムを用いた。50mMの酢酸ナトリウム緩衝液(pH=3.7)を用いてカラムの平衡化と上澄み液の取り込みをおこない溶出は流速1ml/分で0〜0.5Mの塩化ナトリウムの直線勾配をかけることで行った。ここまでの操作は全て4度Cで行った。次に、280nmの吸収の観測された試料液をTOSOのHPLCシステムとODSカラムを用いた逆相クロマトグラフィーにより精製した。0.1%のトリフルオロ酢酸を用いてカラムの平衡化と試料液の取り込みを行い、溶出にはアセトニトリルの直線勾配を用いた。溶出試料の吸光度は214nmと280nmで検出し、単一のタンパク質を含む溶出液フラクションを得た後にこれを凍結乾燥した。この凍結乾燥粉末を0.1Mの重炭酸アンモニウム水溶液に溶解し、そのバイピラミダル氷結晶の観測をおこなうことで不凍タンパク質であることを確認した。この不凍タンパク質の試料をAspaginylendopeptidaseおよびTrypsinで消化し、それぞれについて得られたペプチド断片を再び逆相クロマトグラフィーで回収した。これらのペプチド断片について、Applied Biosystems社製の491Protein Sequencerと785A Programmable Absorbace Detector、及び140C Microgradient Systemから構成されるアミノ酸配列解析装置を用いることにより、アミノ酸配列を決定した。その結果、ナガガジは、互いによく似た配列をもち、65,66および67残基からなる3種のタンパク質を発現する。
これら3種の各不凍タンパク質のアミノ酸配列およびその遺伝子のCDS領域の塩基配列を配列表の配列番号1〜6に示す。これらの塩基配列は、既に塩基配列が明らかにされているマクロゾアルケルスアメリカヌス由来のタイプIII型不凍タンパク質と約75〜90%の相同性を示した。このようにして、タイプIII型の不凍タンパク質がナガガジのすり身から精製されることが示された。
Example 5
{Separation and purification of antifreeze protein 4}
According to the procedure described in Example 1 (2), 40 ml of Nagagaji Surimi suspension was prepared. This was put into a plastic test tube and centrifuged at 6,000 rpm for 30 minutes to obtain about 20 ml of supernatant. This supernatant was dialyzed against 50 mM sodium acetate buffer (pH = 3.7) to aggregate the contaminating proteins. This was removed by centrifugation at 12,000 rpm for 30 minutes to obtain a supernatant. The supernatant was subjected to cation exchange chromatography, and 1 ml of eluate was collected by a fraction collector while detecting absorption at 280 nm. Amersham Pharmacia Biotech FPLC system and BIO-RAD High-S column were used for cation exchange chromatography. The column was equilibrated and the supernatant was taken up using 50 mM sodium acetate buffer (pH = 3.7), and elution was performed by applying a linear gradient of 0 to 0.5 M sodium chloride at a flow rate of 1 ml / min. All operations up to this point were performed at 4 degrees C. Next, the sample solution in which absorption at 280 nm was observed was purified by reverse phase chromatography using a TOSO HPLC system and an ODS column. The column was equilibrated and sample solution was taken up using 0.1% trifluoroacetic acid, and a linear gradient of acetonitrile was used for elution. The absorbance of the eluted sample was detected at 214 nm and 280 nm, and after obtaining an eluate fraction containing a single protein, this was lyophilized. This lyophilized powder was dissolved in 0.1M ammonium bicarbonate aqueous solution, and the bipyramidal ice crystals were observed to confirm that it was an antifreeze protein. This antifreeze protein sample was digested with Aspaginylendopeptidase and Trypsin, and the peptide fragments obtained for each were again collected by reverse phase chromatography. About these peptide fragments, the amino acid sequence was determined by using the amino acid sequence analyzer comprised from Applied Biosystems 491 Protein Sequencer, 785A Programmable Absorbace Detector, and 140C Microgradient System. As a result, Nagagaji expresses three proteins with similar sequences and consisting of 65, 66 and 67 residues.
The amino acid sequences of these three types of antifreeze proteins and the base sequence of the CDS region of the gene are shown in SEQ ID NOs: 1 to 6, respectively. These base sequences showed a homology of about 75 to 90% with a type III antifreeze protein derived from Macrozoalkers americanus whose base sequence has already been clarified. In this way, it was shown that type III antifreeze protein was purified from Nagareji surimi.

本発明において使用する魚種の血液、すり身、あるいは乾物懸濁液に対して、実施例1の方法で示した精製法を適用して、SDS電気泳動上で単一バンドになるまでの精製を行い、下記魚種についてタイプI〜IVまでの不凍タンパク質種類の同定をおこなった結果を以下に示す。
a)タイプI型
ギスカジカ、ツマグロカジカ、トゲカジカ、ナメヨコスジカジカ、
キヌカジカ、マガレイ、スナガレイ、クロガシラガレイ、コガネガレイ、
クロガレイ、サメガレイ、ソウハチ、ババガレイ、
アサバガレイ、ヌマガレイ、イシガレイ、ムシガレイ
b)タイプII型
チカ、イシカリワカサギ、シシャモ、カラフトシシャモ、ニシン、
マアジ、シチロウウオ
c)タイプIII型
ナガガジ、ドロギンポ、ムロランギンポ、ニシキギンポ、ガジ
d)タイプIV型
ギスカジカ、ツマグロカジカ、トゲカジカ、ナメヨコスジカジカ、
キヌカジカ
(注.これらはタイプI型とIV型を両方発現している)
e)AFGP
マダラ、スケトウダラ
The purification method shown in Example 1 is applied to the blood, surimi, or dry matter suspension of the fish species used in the present invention to purify to a single band on SDS electrophoresis. The results of the identification of antifreeze protein types from type I to IV for the following fish species are shown below.
a) Type I Giska deer, Shark deer, Thorn deer, Name yoko deer,
Kinka deer, flounder, sun flounder, black flounder, flounder,
Blackhead flounder, sage lei, saw bee, bubba flounder,
Asaba flounder, flounder, flounder, flounder b) Type II Chica, Ishikari Smelt, Shishamo, Karafushishimo, Herring,
Japanese horse mackerel, white-tailed fish c) Type III type Nagagaji, Doroginpo, Muroranginpo, Nishikiginpo, Gazi d) Type IV type Giska deer, Tsukajika deer, Stagka deer, Nameyo Kosika deer,
Kinuka deer (Note. These express both type I and type IV)
e) AFGP
Madara, walleye

バイピラミッド型氷結晶の形状を示す模式図である。It is a schematic diagram which shows the shape of a bipyramid type ice crystal. ギスカジカ、トゲカジカ、ツマグロカジカ、チカ、イシカリワカサギ、及びナガガジの血液において観察されたバイピラミッド型氷結晶の顕微鏡写真である。It is the microscope picture of the bipyramid type | mold ice crystal observed in the blood of Giska deer, Swordfish, Tsukaka deer, Chica, Ishikari Smelt and Nagagaji. マガレイ、クロガレイ、スナガレイ、アサバガレイ、サメガレイ、及びソウハチの血液において観察されたバイピラミッド型氷結晶の顕微鏡写真である。It is the microscope picture of the bipyramid type | mold ice crystal observed in the blood of a flounder, a blackhead flounder, a sun flounder, a red flounder, a shark, and a bee. スケトウダラ、キタノホッケ、ヤナギノマイ、ニシン、シシャモ、及びクロガシラガレイの血液、あるいはすり身懸濁液において観察されたバイピラミッド型氷結晶の顕微鏡写真である。It is the microscope picture of the bipyramid type | mold ice crystal observed in the blood or surimi suspension of walleye pollack, Kitano Hocke, willow tree, herring, shishamo, and black flounder. ヌマガレイ、コガネガレイ、イシガレイ、キヌカジカ、イカナゴ、及びムロランギンポの血液、あるいはすり身懸濁液において観察されたバイピラミッド型氷結晶の顕微鏡写真である。It is the microscope picture of the bipyramid type | mold ice crystal observed in the blood or surimi suspension of a marsh flounder, a flounder, Ishigarei, Kinuka deer, Ikanago, and Muroranginpo. マダラ、ババガレイ、ナメヨコスジカジカ、ドロギンポ、シワイカナゴ、及びムシガレイの血液、あるいはすり身懸濁液において観察されたバイピラミッド型氷結晶の顕微鏡写真である。It is the microscope picture of the bipyramid type | mold ice crystal observed in the blood or surimi suspension of a codfish, Babagarei, Namekojika deer, Doroginpo, Shiwaikanago, and Musugarei. ニシキギンポ、ガジ、シチロウウオ、カラフトシシャモのすり身懸濁液において観察されたバイピラミッド型氷結晶の顕微鏡写真である。It is the microscope picture of the bipyramid type | mold ice crystal observed in the surimi suspension of Nishikigimpo, Gazi, Shiro-Uo, and Karafushishishamo. ウルメイワシ、アジ、スケトウダラ、シシャモ、コガネガレイの乾製品破砕物の懸濁液において観察されたバイピラミッド型氷結晶の顕微鏡写真である。It is the microscope picture of the bipyramid type | mold ice crystal observed in the suspension of the dry product crushed product of Urumei eagle, horse mackerel, walleye pollock, shishamo, and flounder. ギスカジカ血清のゲル濾過分画に対し280nm紫外線を照射した場合の吸収パターンを示す図である。It is a figure which shows the absorption pattern at the time of irradiating a 280-nm ultraviolet-ray with respect to the gel filtration fraction of Gizika deer serum. 上記ゲル濾過分画の10番から20番についての、逆相HPLCクロマトグラフィーの溶出パターンを示す図である。It is a figure which shows the elution pattern of the reverse phase HPLC chromatography about the 10th-20th of the said gel filtration fraction. この逆相HPLCクロマトグラフィーにより得られた分画AFP1とAFP2についてのSDSゲル電気泳動の結果を示す図である。It is a figure which shows the result of the SDS gel electrophoresis about the fraction AFP1 and AFP2 obtained by this reverse phase HPLC chromatography. A.チカのすり身懸濁液に対して70度Cで10分間の加熱処理前と処理後の遠心上澄についてのSDSゲル電気泳動の結果を示す図である。B.70度Cで10分間の加熱処理後の試料溶液に対するゲルクロマトグラフィーの溶出パターンを示す図である。A. It is a figure which shows the result of the SDS gel electrophoresis about the centrifugation supernatant before and after the heat processing for 10 minutes at 70 degreeC with respect to the surimi suspension of Chica. B. It is a figure which shows the elution pattern of the gel chromatography with respect to the sample solution after heat processing for 10 minutes at 70 degreeC.

Claims (2)

ツマグロカジカ属(Gymnocanthus)、ヨコスジカジカ属(Hemilepidotus)、サラサカジカ属(Furcina)、ワカサギ属(Hypomesus)、シシャモ属(Spirinchus)、カラフトシシャモ属(Mallotus)、ホッケ属(Pleurogrammus)、メバル属(Sebastes)、ニシン属(Clupea)、マコガレイ属(Limanda)、クロガレイ属(Liopsetta)、サメガレイ属(Clidoderma)、ソウハチ属(Cleisthenes)、ババガレイ属(Microstomus)、シュムシュガレイ属(Lepidopsetta)、ヌマガレイ属(Platichthys)、イシガレイ属(Kareius)、ムシガレイ属(Eopsetta)、スケトウダラ属(Theragra)、イカナゴ属(Ammodytes)、シワイカナゴ属(Hypoptychus)、マアジ属(Trachurus)、シチロウウオ属(Brachyopsis)、ニシキギンポ属(Pholis)、オキカズナギ属(Opisthocentrus)、ナガガジ属(Zoarces)、ドロギンポ属(Ascoldia)、またはムロランギンポ属(Pholidapus)に属する魚種の魚肉あるいは魚体乾物から、凍結を阻害する機能を有するタンパク質を回収することを特徴とする、凍結を阻害する機能を有するタンパク質の製造方法。 Species (Gymnocanthus), Yokosuji deer (Hemilepidotus), Sarasaka deer (Furcina), Smelt (Hypomesus), Shiramo (Spirinchus), Karafushishamo (Mallotus), Hokke (Pleurogrammus), Sebar, Sebar Herring genus (Clupea), Papilio genus (Limanda), Black flounder genus (Liopsetta), Sega genus genus (Clidoderma), Scorpion genus (Cleisthenes), Buffalo genus (Microstomus), Lepidopsetta, Platichthys, Ishiga rei The genus (Kareius), the genus Euopetta, the theragra, the Ammodytes, the Hypoptychus, the Trachurus, the Brachyopsis, the Phoris, Opisthocentrus), Nagagaji genus (Zoarces), from Doroginpo genus (Ascoldia), or Muroranginpo genus (Pholidapus) belonging to fish species of the fish meat or fish dry matter, the frozen And recovering a protein having the function to harm, process for producing a protein having the function of inhibiting the freezing. タンパク質の採取源が、ギスカジカ(Myoxocephalus stelleri Tilesius),ツマグロカジカ(Gymnocanthus herzensteini Jordan et Starks)、トゲカジカ(Myoxocephalus polyacanthocephalus (Pallas))、ナメヨコスジカジカ(Hemilepidotus jordani Bean)、キヌカジカ(Furcina osimae Jordan et Starks)、チカ(Hypomesus pretiosus japonicus (Brevoort))、イシカリワカサギ(Hypomesus olidus (Dallas))、シシャモ(Spirinchus lanceolatus (Hikita))、カラフトシシャモ(Mallotus villosus (Muller))、キタノホッケ(Pleurogrammus monopterygius (Pallas))、ヤナギノマイ(Sebastes steindachneri Hilgendorf)、ニシン(Clupea pallasii Valenciennes)、マガレイ(Limanda herzensteini Jordan et Snyder)、スナガレイ(Limanda punctatissima (Steindachner))、クロガシラガレイ(Limanda schrenki Schmidt)、コガネガレイ(Limanda aspera (Pallas))、クロガレイ(Liopsetta obscura (Herzenstein))、サメガレイ(Clidoderma asperrimum (Temminck et Schlegel))、ソウハチ(Cleisthenes pinetorum herzensteini (Schmidt))、ババガレイ(Microctomus achne (Jordan et Starks))、アサバガレイ(Lepidopsetta mochigarei Snyder)、ヌマガレイ(Platichthys stellatus (Pallas))、イシガレイ(Kareius bicoloratus (Basilewsky))、ムシガレイ(Eopsetta grigorjewi (Herzenstein))、マダラ(Gadus macrocephalus Tilesius)、スケトウダラ(Theragra chalcogramma (Pallas))、イカナゴ(Ammodytespersonatus Girard)、シワイカナゴ(Hypoptychus dybowskii Steindachner)、マアジ(Trachurus japonicus (Temminck et Schlegel))、シチロウウオ(Brachyopsis rostratus (Tilesius))、ニシキギンポ(Pholis picta (Kner))、ガジ(Opisthocentrus ocellatus (Tilesius))、ナガガジ(Zoarces elongatus Kner)、ドロギンポ(Ascoldia variegata knipowitschi Soldatov)、またはムロランギンポ(Pholidapous dybowskii (Steindachner))に属する魚種の魚肉あるいは魚体乾物から、凍結を阻害する機能を有するタンパク質を回収することを特徴とする、凍結を阻害する機能を有するタンパク質の製造方法。
The source of the protein is geese deer (Myoxocephalus stelleri Tilesius), stag beetle (Gymnocanthus herzensteini Jordan et Starks), stag (Deer) , Chica (Hypomesus pretiosus japonicus (Brevoort)), Ishikari Smelt (Hypomesus olidus (Dallas)), Shishamo (Spirinchus lanceolatus (Hikita)), Karafushishamo (Mallotus villosus (Muller)), Kitanohokke (Pleurmus mussel) (Sebastes steindachneri Hilgendorf), herring (Clupea pallasii Valenciennes), flounder (Limanda herzensteini Jordan et Snyder), flounder (Limanda punctatissima (Steindachner)), black flounder (Limanda schrenki Schmidt), black flounder (Polia) obscura (Herzenstein)), Samerei (Clidoderma asperrimum (Temminck et Sch legel)), Sowbee (Cleisthenes pinetorum herzensteini (Schmidt)), Babagarai (Microctomus achne (Jordan et Starks)), Asahagaray (Lepidopsetta mochigarei Snyder), Numagarai (Platichthys stellatus (Pallas)), Ishilewi Mussel flounder (Eopsetta grigorjewi (Herzenstein)), spotted moth (Gadus macrocephalus Tilesius), walleye pollock (Theragra chalcogramma (Pallas)), sand eel (Ammodytespersonatus Girach) (Hypoptychus dybowskii Steindachus) (Brachyopsis rostratus) from fish species of fish meat or fish dry matter belonging to, data having a function of inhibiting the frozen And recovering the Park protein, method for producing a protein having the function of inhibiting the freezing.
JP2007005316A 2001-11-21 2007-01-15 Antifreeze protein derived from fish Expired - Lifetime JP4332646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007005316A JP4332646B2 (en) 2001-11-21 2007-01-15 Antifreeze protein derived from fish

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001356709 2001-11-21
JP2002104477 2002-04-05
JP2002192339 2002-07-01
JP2007005316A JP4332646B2 (en) 2001-11-21 2007-01-15 Antifreeze protein derived from fish

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002320425A Division JP4228068B2 (en) 2001-11-21 2002-11-01 Antifreeze protein derived from fish

Publications (2)

Publication Number Publication Date
JP2007112813A JP2007112813A (en) 2007-05-10
JP4332646B2 true JP4332646B2 (en) 2009-09-16

Family

ID=38095306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007005316A Expired - Lifetime JP4332646B2 (en) 2001-11-21 2007-01-15 Antifreeze protein derived from fish

Country Status (1)

Country Link
JP (1) JP4332646B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011115145A1 (en) 2010-03-16 2011-09-22 独立行政法人産業技術総合研究所 Method for manufacturing porous material using antifreeze protein

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105831389A (en) * 2016-02-15 2016-08-10 林淑录 Abalone protein product and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011115145A1 (en) 2010-03-16 2011-09-22 独立行政法人産業技術総合研究所 Method for manufacturing porous material using antifreeze protein

Also Published As

Publication number Publication date
JP2007112813A (en) 2007-05-10

Similar Documents

Publication Publication Date Title
Shenouda Theories of protein denaturation during frozen storage of fish flesh
US20090136649A1 (en) Protein having ice nucleation activity
JP4228068B2 (en) Antifreeze protein derived from fish
Xiong Protein denaturation and functionality losses
PAN et al. Biochemical and morphological changes in grass shrimp (Penaeus monodon) muscle following freezing by air blast and liquid nitrogen methods
Tokiwa et al. Fragmentation of fish myofibril. Effect of storage condition and muscle cathepsin
Sharma et al. Effects of partial and complete replacement of synthetic cryoprotectant with carrot (Daucus carota) concentrated protein on stability of frozen surimi
CN109601600A (en) A kind of freezing method of chub mackerel Scad fillet
Michalczyk et al. Changes in protein fractions of rainbow trout (Oncorhynchus mykiss) gravads during production and storage
STOKNES et al. Proteolytic activity in muscle from Atlantic salmon (Salmo salar)
JP4332646B2 (en) Antifreeze protein derived from fish
Cao et al. Cryoprotective effect of collagen hydrolysates from squid skin on frozen shrimp and characterizations of its antifreeze peptides
Feng et al. Improving the freeze-thaw stability of fish myofibrils and myofibrillar protein gels: Current methods and future perspectives
CN104255900A (en) Method for preventing shell crack during freezing process of portunid
ANDO et al. Effect of super-chilling storage on maintenance of quality and freshness of swordtip squid Loligo edulis
Liu et al. Quality changes of prepared weever (Micropterus salmoides) by base trehalose solution during repeated freeze‐thaw cycles
Parthiban et al. Changes in soluble protein and actomysin during chilled and frozen storage of Tilapia (Orechromis mosambicus)
JP2017043551A (en) Peptide for biomaterial protection
JP2004284983A (en) Method for preventing freezing concentration of substance in water-containing material, method for preventing deactivation of physiological substance, and method for producing frozen product or freeze-dried product in which ingredient is homogeneously diffused
JP4446058B2 (en) Antifreeze protein mixture
PAN et al. Effect of endogenous proteinases on histamine and honeycomb formation in mackerel
JP2004344033A (en) Anti-freezing protein contained in fishes
JPS6349991B2 (en)
JPS58158165A (en) Food refrigeration
JP3140714B2 (en) Composite food comprising herring eggs

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4332646

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term