JP4332607B2 - High strength solid electrolyte membrane - Google Patents

High strength solid electrolyte membrane Download PDF

Info

Publication number
JP4332607B2
JP4332607B2 JP09884499A JP9884499A JP4332607B2 JP 4332607 B2 JP4332607 B2 JP 4332607B2 JP 09884499 A JP09884499 A JP 09884499A JP 9884499 A JP9884499 A JP 9884499A JP 4332607 B2 JP4332607 B2 JP 4332607B2
Authority
JP
Japan
Prior art keywords
fluoropolymer
electrolyte membrane
temperature
acid group
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09884499A
Other languages
Japanese (ja)
Other versions
JP2000294034A (en
Inventor
和雄 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei E Materials Corp filed Critical Asahi Kasei E Materials Corp
Priority to JP09884499A priority Critical patent/JP4332607B2/en
Publication of JP2000294034A publication Critical patent/JP2000294034A/en
Application granted granted Critical
Publication of JP4332607B2 publication Critical patent/JP4332607B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は機械強度、特に引っ張り強度の大きな固体高分子電解質膜であって、固体高分子型燃料電池、水電気分解、食塩電気分解、各種センサー等の用途に有用な固体電解質膜に関する。
【0002】
【従来の技術】
電解質膜には水素が解離して生じたプロトンを酸素側に移動させる伝導体としての機能があり、一般に膜の交換容量が大きいほどプロトン伝導度が大きくなり、そして膜厚が薄いほど膜による抵抗が小さくなるので好ましい。従来、固体高分子型燃料電池用電解質膜としてペルフルオロカーボンスルホン酸膜が使用され比較的良好な性能を発揮している。実際に交換容量が1.25ミリ当量/g程度の膜や、膜厚50μm程度のペルフルオロカーボン系電解質膜が作られ市販されており、その代表的な例としてNafion<登録商標>(米国DuPont社製、以下、単にNafion)、Aciplex<登録商標>(旭化成工業製、以下、単にAciplex)、Flemion<登録商標>(旭硝子製、以下、単にFlemion)等が有る。
【0003】
しかし、従来の電解質膜に於いては、ガス成分の透過量が増えるに伴って、ケミカルショートによるセル電圧の低下、機械強度が低下するという欠点があり、これら欠点を克服することが従来より試みられてきた。
例えば、機械強度の低下を抑制するために、ポリテトラフルオロエチレン(PTFE)などの含フッ素重合体からなる織布などの多孔性基材を膜中に挿入したり(特開昭53ー56192、特開昭58ー37186、特開昭58ー37187など)、多孔フィルムに官能基を有する含フッ素重合体の溶液を含浸させた後、乾燥・熱処理したり(特開平6−342666)、PTFEのフィブリル化繊維をスルホン酸基またはカルボン酸基を有する含フッ素陽イオン交換樹脂に混合する手段(特開昭53ー14988、特開昭54ー1283、特開昭54ー107479、特開昭54ー157777)等が試みられている。また、スルホン酸基またはその前駆体とカルボン酸基またはその前駆体を有するフッ素重合体を機械的に混合する(特公昭62−7217、特公昭60−17034、特開昭62−53341、特公昭59−15934)試みがなされている。
【0004】
しかし、上記の例はいずれも膜機械強度の向上に伴い電気抵抗が増大するという難点があり、強度向上と併せて電気抵抗の保持あるいは低減を達成する手段が渇望されている。
【0005】
【発明が解決しようとする課題】
本発明は低い電気抵抗を保持した機械強度に優れる固体電解質膜、及びその製造方法を提供することを課題とする。
【0006】
【課題を解決するための手段】
本発明者は上記の問題点を解決するために鋭意研究を重ねた結果、酸性官能基または該前駆体を有する2種以上の含フッ素重合体が、相溶状態を形成すること、並びに、その後温度を下げることで相溶状態から相分離状態に移行することを発見し、又、系の温度を操作することで相分離構造を制御できること、さらには、その相分離構造を最終的な交換膜ミクロ構造に反映させることにより、膜の機械強度を向上させることができることを見出し、本発明をなすに至った。
【0007】
以下、本発明につき詳述する。
本願に係る含フッ素重合体が有する酸性官能基とは、スルホン酸基、カルボン酸基、ホスホン酸基、ヒドロキノン基、チオール基等であり、該前駆体とは加水分解や置換反応等の化学反応により酸性官能基に変換できるものである。代表的な例として、下記式(1)で表される重合性単量体の一種以上と、これに後述の重合性単量体群から選ばれた一種類または二種類以上の重合性単量体とからなる共重合体が挙げられる。
Y-(CF2 )a-(CFRt)b-(CFRt')c-O-(C(CF2 X)F-CF2 -O)n-CF=CF2 [式1]
(式中、−Yは、−SO3H,−SO2F、−SO3Na、−SO3K、−SO2NH2 、−SO2NH4 、−COOH、−CN、−COF、−COOR(Rは炭素数1〜10のアルキル基)、−PO32 または−PO3Hである。aは0〜6の整数、bは0〜6の整数、cは0または1であり、且つa+b+c≠0であり、nは0〜6の整数である。Xは、n≧1のときCl、BrまたはFのいずれか一種、または複数種の組合せである。Rt およびRt ′は、F、Cl、1〜10個の炭素原子を有するパーフルオロアルキル基および1〜10個の炭素原子を有するフルオロクロロアルキル基のなかから選択されるものである。)
これらに共重合させる重合性単量体群としては、テトラフルオロエチレン、トリフルオロモノクロロエチレン、トリフルオロエチレン、フッ化ビニリデン、1,1−ジフルオロ−2,2−ジクロロエチレン、1,1−ジフルオロ−2−クロロエチレン、ヘキサフルオロプロピレン、1,1,1,3,3−ペンタフルオロプロピレン、オクタフルオロイソブチレン、エチレン、塩化ビニルおよびアルキルビニルエステル等が挙げられる。
【0008】
本願発明における、2種以上の含フッ素重合体は、上記に例示された重合体の中から、均一な混合溶融物が形成できるほどの充分な相溶性があり、且つ、該溶融物の融点以下の温度条件で、相分離を生じさせるものの組み合わせとして選択される。例えば、平均分子量の異なる2種以上の含フッ素重合体の組み合わせ、異なる官能基を有する2種以上の含フッ素重合体の組み合わせ等が挙げられるが、混合相溶物の相分離の達成しやすさから、異なる官能基を有する重合体の組み合わせが好ましく、中でも、最終的に得られる交換膜の力学物性と電気抵抗のバランスから、スルホン酸系官能基を有する重合体と、カルボン酸系官能基を有する重合体の組み合わせが特に好ましい。
【0009】
なお、該酸性基の前駆体を用いた場合は、後述の方法で製膜後に酸性基、例えばスルホン酸基前駆体をスルホン酸基に変換する。
本発明のスルホン酸基あるいはその前駆体を有する含フッ素重合体の交換容量は0.8〜1.5ミリ当量/g、好ましくは0.9〜1.3ミリ当量/gであり、カルボン酸あるいはその前駆体を有する場合は、交換容量が0.6〜1.2ミリ当量/g、好ましくは0.7〜1.1ミリ当量/gであることが、膜のイオン導電性の観点から特に好ましい。スルホン酸基を有する含フッ素重合体がカルボン酸基を有する含フッ素重合体に比べて同じ交換容量ではその電気抵抗が小さいこと、また機械強度はカルボン酸基を有する含フッ素重合体が大きいことは当該分野の研究者にとっては公知である。従って、電気抵抗の小さいスルホン酸基を有する含フッ素重合体を基にカルボン酸基を有する含フッ素重合体の強度を付与することが、目的の固体電解質を得る上で有利である。従って、本発明のスポンジ状ミクロ構造の固体電解質膜では、カルボン酸基あるいはその前駆体を有する含フッ素重合体が5〜40重量%であることが好ましい。
【0010】
本発明の固体高分子膜のミクロ構造はスポンジ状である。該ミクロ構造は、位相差顕微鏡を用いて、異なる屈折率を有する複数の相から形成された構造として観察することができる。写真1に実施例1で得られた電解質膜のスポンジ状ミクロ構造を示した。写真で明らかなように、相対的に屈折率の小さい、白色網状構造と、屈折率のより大きい、黒色球状構造の2相からなっている。この網状構造、球状構造は、いずれも三次元的に連続しており、各々、系内に均一に分布した一つの連続相を形成している。もし、系がスポンジ状ミクロ構造を形成しない場合、上記構造のうち、少なくとも一の構造が不連続となり、一方の構造が他の構造により分断、包囲された微少な滴状の構造として系内に分布する、いわゆる海島構造を形成する。
【0011】
本発明のミクロ構造が、上記スポンジ状である固体高分子膜は、2種以上の含フッ素重合体の相分離により形成される。実際の交換膜製造工程で、この相分離を生じさせるには、第一段階として製膜工程、第二段階として相溶工程、第三段階として分相工程が必要となる。
第一段階製膜工程では、後述するように、適当な組み合わせの2種以上の含フッ素重合体からなる系から、公知の方法により膜状物を成型する事により行う。例えば、ホイール形、プレート形またはロール形などの汎用の混練機を用いて混合することにより行える。混合時間は2種以上の含フッ素重合体が各一次粒子の状態で混合するまでを目安にするが好ましくは10分〜2時間である。混合温度には、特に制限はないが2種以上の重合体が混合を達成するのに充分な流動性を示す程度に温度になっていれば良い。更に、後述する第二段階相溶工程を兼ねることも出来、その場合は相溶に必要な温度で混合することが好ましい。
【0012】
次いで、上記の方法で得られた混合物を膜状に成形する。製膜成型方法には特に制限はなく、例えばプレス成型、ロール成型、押し出し成型などの通常の方法で成型可能である。製膜時間に制限はないが、厚さむらの無い膜状態に成形できる時間が設定され、好ましくは5秒から10分である。なお、上記混合を第二段階相溶に必要な温度下で行った場合、得られた膜状成型物については、以下に述べる第二段階を経る事なく、直ちに第三段階相分離工程の処理を行う事が可能である。
【0013】
第二段階相溶工程は、第一工程で得られた膜状物を、曇点以上の温度下で加熱し、該膜状物を構成する2種以上の重合体を分子レベルで均一化させるためのものである。ここでいう曇点とは、系が降温過程で実質的に相分離を開始する温度であり、光散乱法により比較的容易に決定できる。すなわち、高温下で融解状態にある系にレーザー光線を当て、その散乱光を検知しながら温度を下げていく過程で、検知している散乱光量が急激に増加する温度が曇点である。系は相分離しない系では、曇点は観測されない。
【0014】
実際の工程では、第一工程で得られた膜状物を上記の方法で予め決定した曇点以上の温度に一定時間保持することにより行う。保持温度は、曇点から1〜200℃以上の範囲が好ましく、保持時間に関しては、1〜30分の範囲が好ましい。
第三段階の相分離工程は、第二段階で得られた相溶物を曇点以下の所定の温度まで降下させ、その温度にて保持することにより行う。この工程における、保持温度、保持時間を操作することにより、最終的に得られる交換膜のスポンジ状ミクロ構造を制御することができる。保持温度、時間は、用いる含フッ素重合体の組み合わせとその混合比にも依るが、例えば、Aciplex系重合体の場合、50℃〜曇点の温度で2時間〜1分である。以上のような、スポンジ状ミクロ構造制御手法により、先述した写真1における、球状構造の球径を好適には、2.5μm以下にする事ができる。該球径は光散乱法により測定できる。
【0015】
以上の三工程を経て、相分離を起こさせた膜状物を急冷することにより、本発明のスポンジ状ミクロ構造が完成する。急冷法については、上記第三工程で曇点に保った加熱装置から、膜状物を素早く取り除くことで、実質的に曇点から室温までの急冷を行うのが最も簡単であるが、これ以外にも、膜を構成する重合体が不溶である溶媒を予め低温に保っておき、その中に相分離状態にある膜状物を素早く浸漬してもよい。急冷温度は、曇点よりも80℃以下であることが好ましい。
【0016】
重合体官能基がスルホン酸基前駆体あるいはカルボン酸前駆体である場合、これら前駆体からスルホン酸基あるいはカルボン酸基への変換は、通常、酸又は塩基での加水分解により達成される。塩基での加水分解、特に熱溶液、例えば沸点付近の溶液の使用は速い加水分解に好適である。加水分解に必要な時間は、構造物の厚さとともに増大する。水と混和する有機化合物例えばジメチルスルホキシドを加水分解浴に含有させることも有効である。
【0017】
本発明の固体電解質膜は、種々の優れた性能を有するために各種の目的、分野、用途に広範囲に適用できる。例えば、電気透析、電解還元、燃料電池、食塩電解、各種センサーなどが例示される。かかる各種用途において単独で用いても良いし、他の公知技術に従って積層・複合化して用いてもよい。
特に、燃料電池用途においては、PTFEなどの多孔膜と積層(特開平6−342666、特開平7−233267)して使用したり、ガス拡散電極と一体化して使用できる(特開平6−349498)。また、食塩電解ではパーフルオロカーボンカルボン酸膜と積層した膜として使用したり、PTFEなどからなる布、網などの織布、不織布、又は金属製のメッシュ、多孔体などで補強できる。さらに本発明の電解質膜を用いた複合膜は、その表面を粗面化したりあるいは金属酸化物粒子からなる多孔質層や薄層をその表面に形成することも可能である。
【0018】
【発明実施の形態】
以下、実施例、比較例を挙げさらに具体的に説明する。
本願実施例、比較例において得られた膜の物性測定法は、以下の通りである。
得られた膜の機械的強度として強伸度を、テンシロン(オリエンテック製RTCー1210)を用いて測定した。試料は湿潤状態で幅1cm、長さ10cmに切断した試験片で、両端を保持し、室温100mm/分の速度で伸張した。
【0019】
また、得られた膜の直流抵抗値を塩化ナトリウムの電気分解条件下で測定した。陰極液である12%水酸化ナトリウム(和光純薬製、特級)水溶液の液面と、陽極液である3.5N、塩化ナトリウム(和光純薬製)水溶液の液面を両液面の間に固体電解質膜を挟んで接触させ、液漏れが無いように固定した。固体電解質膜の有効面積は1cm2である。作用電極に白金電極を用い、固体電解質膜の極近辺両側に電位差を測定する白金線を配置し、50℃にて、一定電流を通じたときの電圧を測定した。電流をAアンペア、その時の電解質膜両側の電位差をVボルト、膜の厚さをTcmとすると、膜の抵抗値(R;Ω・cm)は(2)式で計算される。
R=V/(A・T) [式2]
曇点測定及び解質膜中スポンジ状ミクロ構造の孔部分に相当する球状相当径は、光散乱装置(大塚電子株式会社製、DAYNA3000)にて行った。一般に、光散乱法では試料にレーザー光を照射し、散乱する光を受光しているが、散乱光強度の温度依存性により曇点を、また散乱光の角度依存性のデバイービュッヘ解析により球状相当径を求めた。また、スポンジ状ミクロ構造を直接位相差顕微鏡(ニコン製E4−PH−21)で観察した。
【0020】
【実施例1】
スルホニルフルオライド型のペルフルオロカーボンであるAciplexR(旭化成工業株式会社製、交換容量1.05ミリ当量/g)の粉体70gにカルボン酸メチルエステル型のペルフルオロカーボンであるAciplex(旭化成工業株式会社製、交換容量0.83ミリ当量/g)の粉体30gを加えプラストミル(東洋精機製作所製50MR)を用いて回転数50rpm、200℃、1時間混合した。得られた混合ポリマ−を用い、240℃、50kg/cm2 の圧力で5分間ホットプレス製膜し、膜厚120μmの均一膜を得た。
【0021】
得られた膜の曇点を測定したところ208℃であった。この膜をオーブンで230℃で3分間加熱処理後100℃のオーブンに移し1分保持した後室温に取り出した。得られた膜のスポンジ状ミクロ構造の球状相当径は2.30μmであった。その膜を加水分解し、スルホン酸ナトリウム型及びカルボン酸ナトリウム型にした後測定した結果、引っ張り破断強度1.39kg/mm2 、直流抵抗値41Ωcm-1であった。
【0022】
【比較例1】
スルホニルフルオライド型のペルフルオロカーボンであるAciplexR(旭化成工業株式会社製、交換容量1.05ミリ当量/g)の粉体70gにカルボン酸メチルエステル型のペルフルオロカーボンであるAciplex(旭化成工業株式会社製、交換容量0.83ミリ当量/g)の粉体30gを加えプラストミル(東洋精機製作所製50MR)を用いて回転数50rpm、170℃、1時間混合した。得られた混合ポリマ−を用い、170℃、50kg/cm2 の圧力で5分間ホットプレス製膜し、膜厚120μmの均一膜を得た。得られた膜を加水分解した後、測定した結果引っ張り破断強度1.30kg/cm2 、直流抵抗42Ωcm-1であった。
【0023】
【実施例2】
スルホニルフルオライド型のペルフルオロカーボンであるAciplexR(旭化成工業株式会社製、交換容量1.05ミリ当量/g)の粉体70gにカルボン酸メチルエステル型のペルフルオロカーボンであるAciplex(旭化成工業株式会社製、交換容量0.83ミリ当量/g)の粉体30gを加えプラストミル(東洋精機製作所製50MR)を用いて回転数50rpm、200℃、1時間混合した。得られた混合ポリマ−を用い、240℃、50kg/cm2 の圧力で5分間ホットプレス製膜し、膜厚120μmの均一膜を得た。
【0024】
得られた膜の曇点を測定したところ208℃であった。この膜をオーブンで230℃で3分間加熱処理後80℃のオーブンに移し1分保持した後室温に取り出した。得られた膜のスポンジ状ミクロ構造の球径は1.74μmであった。その膜を加水分解し、スルホン酸ナトリウム型及びカルボン酸ナトリウム型にした後測定した結果、引っ張り破断強度1.42kg/mm2 、直流抵抗値42Ωcm-1であった。
【0025】
【発明の効果】
従来、両立させることが、困難であった低い電気抵抗と高い機械強度を併せ持つ固体電解質膜を与えることができる。
【図面の簡単な説明】
【図1】実施例1のスポンジ状ミクロ構造の粒子構造を示す位相差顕微鏡写真。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solid polymer electrolyte membrane having a high mechanical strength, particularly a high tensile strength, and relates to a solid electrolyte membrane useful for applications such as a polymer electrolyte fuel cell, water electrolysis, salt electrolysis, and various sensors.
[0002]
[Prior art]
The electrolyte membrane functions as a conductor that moves protons generated by dissociation of hydrogen to the oxygen side. Generally, the proton conductivity increases as the membrane exchange capacity increases, and the membrane resistance increases as the membrane thickness decreases. Is preferable. Conventionally, a perfluorocarbon sulfonic acid membrane has been used as an electrolyte membrane for a polymer electrolyte fuel cell, and exhibits relatively good performance. Actually, a membrane having an exchange capacity of about 1.25 meq / g and a perfluorocarbon-based electrolyte membrane having a thickness of about 50 μm are made and marketed, and a typical example thereof is Nafion (registered trademark) (DuPont, USA). Manufactured, hereinafter simply Nafion), Aciplex <registered trademark> (manufactured by Asahi Kasei Kogyo Co., hereinafter simply Aciplex), Flemion <registered trademark> (manufactured by Asahi Glass, hereinafter simply Flemion), and the like.
[0003]
However, conventional electrolyte membranes have the disadvantages of decreasing cell voltage and mechanical strength due to chemical shorts as the amount of permeation of gas components increases. Has been.
For example, in order to suppress a decrease in mechanical strength, a porous substrate such as a woven fabric made of a fluoropolymer such as polytetrafluoroethylene (PTFE) is inserted into the membrane (Japanese Patent Laid-Open No. 53-56192, JP-A-58-37186, JP-A-58-37187, etc.), impregnating a porous film with a solution of a fluorine-containing polymer having a functional group, followed by drying and heat treatment (JP-A-6-342666), Means for mixing a fibrillated fiber with a fluorinated cation exchange resin having a sulfonic acid group or a carboxylic acid group (Japanese Patent Laid-Open Nos. 53-14988, 54-1283, 54-107479, 54-107) 157777) has been attempted. In addition, a fluoropolymer having a sulfonic acid group or a precursor thereof and a carboxylic acid group or a precursor thereof is mechanically mixed (Japanese Examined Patent Publication No. 62-7217, Japanese Examined Patent Publication No. 60-17034, Japanese Unexamined Patent Publication No. Sho 62-53341, Japanese Patent Publication No. Shoko). 59-15934) Attempts have been made.
[0004]
However, each of the above examples has a drawback that the electrical resistance increases with the improvement of the mechanical strength of the membrane, and there is a strong demand for a means for achieving the maintenance or reduction of the electrical resistance along with the improvement of the strength.
[0005]
[Problems to be solved by the invention]
It is an object of the present invention to provide a solid electrolyte membrane having a low mechanical resistance and excellent mechanical strength, and a method for producing the same.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventor has found that two or more fluoropolymers having an acidic functional group or the precursor form a compatible state, and thereafter It has been discovered that the temperature shifts from a compatible state to a phase separation state, and the phase separation structure can be controlled by manipulating the temperature of the system. It was found that the mechanical strength of the film can be improved by reflecting it in the microstructure, and the present invention has been made.
[0007]
Hereinafter, the present invention will be described in detail.
The acidic functional group possessed by the fluoropolymer according to the present application is a sulfonic acid group, a carboxylic acid group, a phosphonic acid group, a hydroquinone group, a thiol group, etc., and the precursor is a chemical reaction such as hydrolysis or substitution reaction. Can be converted into an acidic functional group. As a typical example, one or more polymerizable monomers represented by the following formula (1) and one or more polymerizable monomers selected from the group of polymerizable monomers described below are used. And a copolymer composed of a body.
Y- (CF 2 ) a- (CFRt) b- (CFRt ') cO- (C (CF 2 X) F-CF 2 -O) n-CF = CF 2 [Formula 1]
(Wherein, -Y is, -SO 3 H, -SO 2 F , -SO 3 Na, -SO 3 K, -SO 2 NH 2, -SO 2 NH 4, -COOH, -CN, -COF, - COOR (R is an alkyl group having 1 to 10 carbon atoms), - PO 3 H 2 or -PO 3 H in which .a is an integer of 0 to 6, b is an integer of 0 to 6, c is 0 or 1 And a + b + c ≠ 0 and n is an integer of 0 to 6. X is one of Cl, Br or F, or a combination of two or more when n ≧ 1, and Rt and Rt ′ are F, Cl, a perfluoroalkyl group having 1 to 10 carbon atoms and a fluorochloroalkyl group having 1 to 10 carbon atoms.)
Examples of polymerizable monomers to be copolymerized therewith include tetrafluoroethylene, trifluoromonochloroethylene, trifluoroethylene, vinylidene fluoride, 1,1-difluoro-2,2-dichloroethylene, 1,1-difluoro-2. -Chloroethylene, hexafluoropropylene, 1,1,1,3,3-pentafluoropropylene, octafluoroisobutylene, ethylene, vinyl chloride, alkyl vinyl ester and the like.
[0008]
In the present invention, the two or more types of fluoropolymers are sufficiently compatible to form a homogeneous mixed melt from the polymers exemplified above, and below the melting point of the melt. Selected as a combination of those that cause phase separation under the following temperature conditions. For example, a combination of two or more kinds of fluoropolymers having different average molecular weights, a combination of two or more kinds of fluoropolymers having different functional groups, and the like, are easy to achieve phase separation of a mixed solution. Therefore, a combination of polymers having different functional groups is preferable, and among them, a polymer having a sulfonic acid functional group and a carboxylic acid functional group are preferably selected from the balance of mechanical properties and electric resistance of the finally obtained exchange membrane. A combination of polymers is particularly preferred.
[0009]
When the precursor of the acidic group is used, an acidic group, for example, a sulfonic acid group precursor is converted into a sulfonic acid group after film formation by a method described later.
The exchange capacity of the fluoropolymer having a sulfonic acid group or a precursor thereof of the present invention is 0.8 to 1.5 meq / g, preferably 0.9 to 1.3 meq / g. Alternatively, when the precursor is included, the exchange capacity is 0.6 to 1.2 meq / g, preferably 0.7 to 1.1 meq / g, from the viewpoint of ionic conductivity of the membrane. Particularly preferred. The fluorine-containing polymer having a sulfonic acid group has a smaller electric resistance at the same exchange capacity than the fluorine-containing polymer having a carboxylic acid group, and the mechanical strength of the fluorine-containing polymer having a carboxylic acid group is large. It is known to researchers in the field. Therefore, it is advantageous for obtaining the target solid electrolyte to impart the strength of the fluoropolymer having a carboxylic acid group to the fluoropolymer having a sulfonic acid group having a low electric resistance. Therefore, in the sponge-like microstructure solid electrolyte membrane of the present invention, the fluorinated polymer having a carboxylic acid group or its precursor is preferably 5 to 40% by weight.
[0010]
The microstructure of the solid polymer film of the present invention is sponge-like. The microstructure can be observed as a structure formed from a plurality of phases having different refractive indexes using a phase contrast microscope. Photo 1 shows the sponge-like microstructure of the electrolyte membrane obtained in Example 1. As is apparent from the photograph, it consists of two phases: a white network structure having a relatively small refractive index and a black spherical structure having a large refractive index. Both the network structure and the spherical structure are three-dimensionally continuous, and each forms one continuous phase uniformly distributed in the system. If the system does not form a sponge-like microstructure, at least one of the above structures is discontinuous, and one structure is divided and surrounded by the other structure as a fine drop-like structure within the system. A so-called sea-island structure is formed.
[0011]
The solid polymer membrane having the above-mentioned sponge-like microstructure is formed by phase separation of two or more kinds of fluoropolymers. In order to cause this phase separation in an actual exchange membrane manufacturing process, a film forming process is required as the first stage, a compatibility process as the second stage, and a phase separation process as the third stage.
In the first-stage film-forming process, as will be described later, a film-like product is formed by a known method from a system comprising two or more kinds of fluoropolymers in an appropriate combination. For example, it can be performed by mixing using a general-purpose kneader such as a wheel shape, a plate shape or a roll shape. The mixing time is based on the time until two or more kinds of fluoropolymers are mixed in the state of each primary particle, but is preferably 10 minutes to 2 hours. Although there is no restriction | limiting in particular in mixing temperature, What is necessary is just temperature enough to show sufficient fluidity | liquidity for 2 or more types of polymers to achieve mixing. Furthermore, it can also serve as a second-stage compatibilizing step to be described later, in which case it is preferable to mix at a temperature necessary for compatibilization.
[0012]
Next, the mixture obtained by the above method is formed into a film. There is no restriction | limiting in particular in the film forming molding method, For example, it can shape | mold by normal methods, such as press molding, roll molding, and extrusion molding. Although there is no restriction | limiting in the film forming time, the time which can shape | mold in the film | membrane state without thickness unevenness is set, Preferably it is 5 to 10 minutes. In addition, when the above mixing is performed at a temperature necessary for the second-stage compatibility, the obtained film-like molded product is immediately processed in the third-stage phase separation step without going through the second stage described below. Can be performed.
[0013]
In the second step compatibility process, the film-like material obtained in the first process is heated at a temperature equal to or higher than the cloud point to homogenize two or more polymers constituting the film-like substance at the molecular level. Is for. The cloud point here is a temperature at which the system substantially starts phase separation in the temperature lowering process and can be determined relatively easily by a light scattering method. That is, in the process of applying a laser beam to a system that is in a molten state at a high temperature and decreasing the temperature while detecting the scattered light, the temperature at which the amount of scattered light that is detected increases rapidly is the cloud point. No cloud point is observed when the system is not phase separated.
[0014]
In the actual process, the film-like material obtained in the first process is maintained for a certain period of time at a temperature equal to or higher than the cloud point determined in advance by the above method. The holding temperature is preferably in the range of 1 to 200 ° C. from the cloud point, and the holding time is preferably in the range of 1 to 30 minutes.
The phase separation step in the third stage is performed by lowering the compatible material obtained in the second stage to a predetermined temperature below the cloud point and holding at that temperature. By controlling the holding temperature and holding time in this step, the sponge-like microstructure of the finally obtained exchange membrane can be controlled. The holding temperature and time depend on the combination of the fluorine-containing polymers used and the mixing ratio thereof. For example, in the case of an Aciplex polymer, the temperature is from 50 ° C. to the cloud point and is from 2 hours to 1 minute. By the sponge-like microstructure control method as described above, the spherical diameter of the spherical structure in the above-mentioned photograph 1 can be preferably 2.5 μm or less. The sphere diameter can be measured by a light scattering method.
[0015]
The sponge-like microstructure of the present invention is completed by rapidly cooling the film-like material having undergone phase separation through the above three steps. For the rapid cooling method, it is easiest to substantially cool rapidly from the cloud point to room temperature by quickly removing the film-like material from the heating device maintained at the cloud point in the third step. In addition, a solvent in which the polymer constituting the membrane is insoluble may be kept at a low temperature in advance, and the film-like material in a phase separation state may be quickly immersed therein. The quenching temperature is preferably 80 ° C. or lower than the cloud point.
[0016]
When the polymer functional group is a sulfonic acid group precursor or carboxylic acid precursor, the conversion of these precursors into sulfonic acid groups or carboxylic acid groups is usually achieved by hydrolysis with an acid or a base. Hydrolysis with a base, especially the use of hot solutions, for example solutions near the boiling point, is suitable for fast hydrolysis. The time required for hydrolysis increases with the thickness of the structure. It is also effective to include an organic compound miscible with water, such as dimethyl sulfoxide, in the hydrolysis bath.
[0017]
Since the solid electrolyte membrane of the present invention has various excellent performances, it can be widely applied to various purposes, fields and applications. Examples include electrodialysis, electrolytic reduction, fuel cell, salt electrolysis, various sensors, and the like. In such various uses, it may be used alone, or may be laminated and combined according to other known techniques.
In particular, in fuel cell applications, it can be used by being laminated with a porous film such as PTFE (Japanese Patent Laid-Open No. 6-342666, Japanese Patent Laid-Open No. 7-233267) or can be used integrally with a gas diffusion electrode (Japanese Patent Laid-Open No. 6-349498). . In salt electrolysis, it can be used as a film laminated with a perfluorocarbon carboxylic acid film, or can be reinforced with a cloth made of PTFE or the like, a woven cloth such as a net, a non-woven fabric, or a metal mesh or a porous body. Furthermore, the composite membrane using the electrolyte membrane of the present invention can be roughened on its surface, or a porous layer or a thin layer made of metal oxide particles can be formed on its surface.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Examples and comparative examples will be described below in more detail.
The method for measuring physical properties of the films obtained in Examples and Comparative Examples of the present application is as follows.
As the mechanical strength of the obtained film, the high elongation was measured using Tensilon (RTC-1210 manufactured by Orientec). The sample was a test piece cut to a width of 1 cm and a length of 10 cm in a wet state. Both ends were held and stretched at a speed of 100 mm / min at room temperature.
[0019]
Moreover, the direct current resistance value of the obtained film | membrane was measured on the electrolysis conditions of sodium chloride. Between the liquid level of the 12% sodium hydroxide (made by Wako Pure Chemicals, special grade) aqueous solution as the catholyte and the level of 3.5N sodium chloride (made by Wako Pure Chemicals) aqueous solution as the anolyte The solid electrolyte membrane was put in contact and fixed so as not to leak. The effective area of the solid electrolyte membrane is 1 cm2. A platinum electrode was used as the working electrode, platinum wires for measuring the potential difference were arranged on both sides in the immediate vicinity of the solid electrolyte membrane, and the voltage when a constant current was passed at 50 ° C. was measured. When the current is A ampere, the potential difference between both sides of the electrolyte membrane is V volts, and the thickness of the membrane is Tcm, the resistance value (R; Ω · cm) of the membrane is calculated by the equation (2).
R = V / (A · T) [Formula 2]
The cloud equivalent measurement and the spherical equivalent diameter corresponding to the pore portion of the sponge-like microstructure in the denatured film were performed with a light scattering device (manufactured by Otsuka Electronics Co., Ltd., DAYNA3000). In general, in the light scattering method, a sample is irradiated with laser light and scattered light is received. However, the cloud equivalent is detected by the temperature dependence of the scattered light intensity, and the spherical equivalent diameter is obtained by Debye-Buche analysis of the angle dependence of the scattered light. Asked. In addition, the sponge-like microstructure was directly observed with a phase contrast microscope (Nikon E4-PH-21).
[0020]
[Example 1]
Aciplex (manufactured by Asahi Kasei Kogyo Co., Ltd.), which is a carboxylic acid methyl ester type perfluorocarbon, is added to 70 g of Aciplex® (manufactured by Asahi Kasei Kogyo Co., Ltd., exchange capacity 1.05 meq / g) which is a sulfonyl fluoride type perfluorocarbon. 30 g of powder having an exchange capacity of 0.83 meq / g) was added, and the mixture was mixed for 1 hour at a rotation speed of 50 rpm and 200 ° C. using a plastmill (50MR manufactured by Toyo Seiki Seisakusho). Using the obtained mixed polymer, hot press film formation was performed at 240 ° C. and a pressure of 50 kg / cm 2 for 5 minutes to obtain a uniform film having a thickness of 120 μm.
[0021]
The cloud point of the obtained film was measured and found to be 208 ° C. This film was heat-treated in an oven at 230 ° C. for 3 minutes, transferred to an oven at 100 ° C., held for 1 minute, and then taken out to room temperature. The spherical equivalent diameter of the sponge-like microstructure of the obtained film was 2.30 μm. The membrane was hydrolyzed to obtain a sodium sulfonate type and a sodium carboxylate type. As a result, the tensile strength at break was 1.39 kg / mm 2 and the DC resistance value was 41 Ωcm −1 .
[0022]
[Comparative Example 1]
Aciplex (manufactured by Asahi Kasei Kogyo Co., Ltd.), which is a carboxylic acid methyl ester type perfluorocarbon, is added to 70 g of Aciplex® (manufactured by Asahi Kasei Kogyo Co., Ltd., exchange capacity 1.05 meq / g) which is a sulfonyl fluoride type perfluorocarbon. 30 g of powder having an exchange capacity of 0.83 meq / g) was added, and the mixture was mixed for 1 hour at a rotational speed of 50 rpm and 170 ° C. using a plastomill (50MR manufactured by Toyo Seiki Seisakusho). Using the obtained mixed polymer, hot press film formation was performed at 170 ° C. and a pressure of 50 kg / cm 2 for 5 minutes to obtain a uniform film having a thickness of 120 μm. The obtained film was hydrolyzed and then measured, and the tensile breaking strength was 1.30 kg / cm 2 and the DC resistance was 42 Ωcm −1 .
[0023]
[Example 2]
Aciplex (manufactured by Asahi Kasei Kogyo Co., Ltd.), which is a carboxylic acid methyl ester type perfluorocarbon, is added to 70 g of Aciplex® (manufactured by Asahi Kasei Kogyo Co., Ltd., exchange capacity 1.05 meq / g) which is a sulfonyl fluoride type perfluorocarbon. 30 g of powder having an exchange capacity of 0.83 meq / g) was added, and the mixture was mixed for 1 hour at a rotation speed of 50 rpm and 200 ° C. using a plastmill (50MR manufactured by Toyo Seiki Seisakusho). Using the obtained mixed polymer, hot press film formation was performed at 240 ° C. and a pressure of 50 kg / cm 2 for 5 minutes to obtain a uniform film having a thickness of 120 μm.
[0024]
The cloud point of the obtained film was measured and found to be 208 ° C. This film was heat-treated in an oven at 230 ° C. for 3 minutes, then transferred to an 80 ° C. oven, held for 1 minute, and then taken out to room temperature. The spherical diameter of the sponge-like microstructure of the obtained film was 1.74 μm. The membrane was hydrolyzed to obtain a sodium sulfonate type and a sodium carboxylate type. As a result, the tensile strength at break was 1.42 kg / mm 2 and the DC resistance value was 42 Ωcm −1 .
[0025]
【The invention's effect】
A solid electrolyte membrane having both low electrical resistance and high mechanical strength, which has been difficult to achieve in the past, can be provided.
[Brief description of the drawings]
1 is a phase contrast micrograph showing the particle structure of a sponge-like microstructure of Example 1. FIG.

Claims (4)

スルホン酸基あるいはその前駆体を有する含フッ素重合体1と、
前記含フッ素重合体1とは異なり、カルボン酸基あるいはその前駆体を有する含フッ素重合体2と、
の混合物からなり、
そのミクロ構造が、異なる屈折率を有する複数の相から形成されたスポンジ構造を有し、前記スポンジ構造における球状相当径が2.5μm以下であることを特徴とする固体電解質膜。
A fluoropolymer 1 having a sulfonic acid group or a precursor thereof,
Unlike the fluoropolymer 1, the fluoropolymer 2 having a carboxylic acid group or a precursor thereof,
A mixture of
A solid electrolyte membrane characterized in that the microstructure has a sponge structure formed of a plurality of phases having different refractive indexes, and the spherical equivalent diameter in the sponge structure is 2.5 μm or less .
前記含フッ素重合体1の交換容量が0.8〜1.5ミリ等量/gであり、
前記含フッ素重合体2の交換容量が0.6〜1.2ミリ等量/gであり、
前記含フッ素重合体2を5〜40重量%の割合で含有することを特徴とする請求項に記載の固体電解質膜。
The exchange capacity of the fluoropolymer 1 is 0.8 to 1.5 milliequivalent / g ,
The exchange capacity of the fluoropolymer 2 is 0.6 to 1.2 milliequivalent / g,
2. The solid electrolyte membrane according to claim 1 , wherein the fluoropolymer 2 is contained in a proportion of 5 to 40% by weight.
請求項1又は2に記載の固体電解質膜の製造方法であって、
スルホン酸基あるいはその前駆体を有する含フッ素重合体1と、前記含フッ素重合体1とは異なり、カルボン酸基あるいはその前駆体を有する含フッ素重合体2と、の混合物を、前記混合物の曇点以上の温度に保持した後、前記曇点より低い温度に急冷することを特徴とする製造方法。
It is a manufacturing method of the solid electrolyte membrane according to claim 1 or 2,
A fluorinated polymer 1 having a sulfonic acid group or its precursor, unlike the fluoropolymer 1, the fluorinated polymer 2 having a carboxylic acid group or a precursor thereof, a mixture of fogging of the mixture after holding the temperature above points, manufacturing method manufactured by you, characterized in that quenching to a temperature below the cloud point.
前記曇点より低い温度に急冷する際、前記曇点よりも80℃以下の温度まで急冷する請求項3に記載の製造方法。The manufacturing method according to claim 3, wherein when rapidly cooling to a temperature lower than the cloud point, the product is rapidly cooled to a temperature of 80 ° C. or lower than the cloud point.
JP09884499A 1999-04-06 1999-04-06 High strength solid electrolyte membrane Expired - Fee Related JP4332607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09884499A JP4332607B2 (en) 1999-04-06 1999-04-06 High strength solid electrolyte membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09884499A JP4332607B2 (en) 1999-04-06 1999-04-06 High strength solid electrolyte membrane

Publications (2)

Publication Number Publication Date
JP2000294034A JP2000294034A (en) 2000-10-20
JP4332607B2 true JP4332607B2 (en) 2009-09-16

Family

ID=14230570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09884499A Expired - Fee Related JP4332607B2 (en) 1999-04-06 1999-04-06 High strength solid electrolyte membrane

Country Status (1)

Country Link
JP (1) JP4332607B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0307623D0 (en) * 2003-04-02 2003-05-07 Victrex Mfg Ltd Polymeric materials
JP2005293910A (en) * 2004-03-31 2005-10-20 Yamanashi Tlo:Kk Fuel cell and its aggregate

Also Published As

Publication number Publication date
JP2000294034A (en) 2000-10-20

Similar Documents

Publication Publication Date Title
JP5823601B2 (en) Polymer electrolyte membrane
JP5849148B2 (en) Polymer electrolyte membrane
JP6218723B2 (en) Biaxially stretched porous membrane
US4298697A (en) Method of making sheet or shaped cation exchange membrane
JP2014500392A (en) Ionomer and ion conductive composition
JP6684356B2 (en) Solid polymer electrolyte membrane and method for producing the same
JP7388192B2 (en) electrolyte membrane
JP2014507753A (en) Ionomer and ion conductive composition for use as one or more electrodes in a fuel cell
JPWO2017179664A1 (en) Ion exchange membrane for alkali chloride electrolysis, method for producing the same, and alkali chloride electrolyzer
JP2001029800A (en) Ion exchange film, ion exchange film/electrode conjugate and production of them
KR20180044848A (en) Liquid composition, coating liquid for forming catalyst layer, and method for producing membrane electrode assembly
KR20020091827A (en) Ion exchange polymer dispersion and process for its production
JP4332607B2 (en) High strength solid electrolyte membrane
JP2014110232A (en) Fluorine-based polymer electrolyte film
US20220336836A1 (en) Composite electrolyte membrane, electrolyte membrane having catalyst layer attached thereto, membrane-electrode composite, solid polymer-type fuel cell, and method for producing composite electrolyte membrane
JP2000340031A (en) Ion exchange membrane and its manufacture
JP2000243135A (en) Solid electrolyte membrane
JP2021052001A (en) Composite electrolyte membrane and membrane electrode composite using the same, and polymer electrolyte fuel cell
JP2000222938A (en) Solid electrolyte film
WO1982003868A1 (en) Method of making sheet or shaped cation exchange membrane
JP2003183467A (en) Dissolved composition of sulfonic group-containing fluorocarbon polymer and its dissolving method
JP2003183469A (en) Fluorocarbon copolymer composition
JP2000309653A (en) Ion exchange membrane
JP2004238488A (en) Method for producing solution composition and the resultant solution composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090326

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090507

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090526

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees