JP4332346B2 - Quality retainer - Google Patents

Quality retainer Download PDF

Info

Publication number
JP4332346B2
JP4332346B2 JP2002377775A JP2002377775A JP4332346B2 JP 4332346 B2 JP4332346 B2 JP 4332346B2 JP 2002377775 A JP2002377775 A JP 2002377775A JP 2002377775 A JP2002377775 A JP 2002377775A JP 4332346 B2 JP4332346 B2 JP 4332346B2
Authority
JP
Japan
Prior art keywords
oxygen
titanium dioxide
quality
titanium oxide
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002377775A
Other languages
Japanese (ja)
Other versions
JP2004201640A (en
Inventor
光雄 加瀬
市郎 森屋
敏郎 四元
博史 垰田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Advanced Industrial Science and Technology AIST
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Advanced Industrial Science and Technology AIST
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Advanced Industrial Science and Technology AIST, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2002377775A priority Critical patent/JP4332346B2/en
Publication of JP2004201640A publication Critical patent/JP2004201640A/en
Application granted granted Critical
Publication of JP4332346B2 publication Critical patent/JP4332346B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、新規な品質保持剤に関する。さらに詳しくは、加工食品・農水産品などの食品類、金属製品、精密機械などの工業製品、医薬品、美術工芸品、文化財などの広い分野の物品の保存用に好適な品質保持剤を提供することを目的とする。
【0002】
【従来の技術】
従来、食品類の品質保持については、好気性菌、カビなどの繁殖による腐敗や、乾性油の酸化劣化を防止する目的で、鉄系を中心とした種々の脱酸素剤が提案されている(例えば、特許文献1、2および3参照)。しかし、この鉄系の脱酸素剤を封入した食品包装品は、針や金属片などの金属異物の混入防止のために用いる金属探知機に感応し誤動作を生じる欠点が以前から指摘されている(例えば、特許文献4参照)。また、この鉄系の脱酸素剤を封入した食品包装品は電子レンジに使用することができないなどさらに改善されるべき実用上の重大な課題を残している。
【0003】
このような脱酸素剤の金属探知機への誤動作を改善する方法として、有機化合物であって酸素吸収能を有するアスコルビン酸を主剤とする脱酸素剤や、フェノール誘導体を主剤とする脱酸素剤などが提案されている(例えば、特許文献5、6および7参照)。しかし、これらの脱酸素剤は何れも有機物質であるため、使用の条件によっては溶融、溶解を生じることが危惧され、また、有機化合物であるため反応などに伴う発熱による燃焼の危険性も指摘されている(例えば、特許文献8参照)。
【0004】
野菜や果実等からはその保存中にエチレンガスが発生し、この発生したエチレンガスが野菜や果実自身の腐敗を促進する作用を有するため、このようなエチレンガスを除去するためのエチレンガス吸着剤が鮮度保持剤として提案されているが、その性能は未だ不十分である。
また、食品類などの腐敗の原因となる嫌気性菌等に対しては、脱酸素剤などを使用してもその効果が認められず、銀などを含んだ抗菌剤や殺菌剤が使用されているが、安全性の点で問題があり、その用途が限定されるという問題がある。
【0005】
一方、酸素欠損を有する二酸化チタンを用いて、食品、衣料品、医薬品、革製品、木製品、精密機械などの種々の物品や商品を、カビ、菌、虫、および酸化などによる品質の劣化から防止する品質保持剤として使用することが提案されている(例えば、特許文献9参照)。そして、この酸素欠損を有する二酸化チタンは、二酸化チタンを無酸素雰囲気下で加熱することにより製造することができるとしており、酸素吸収能力を大きくするには加熱温度が高いほどよく800℃程度までの加熱が好ましいとしている。しかし、加熱温度が800℃のような高温になると二酸化チタンの結晶転移が急激に起こり、アナターゼ型結晶からルチル型結晶になることが報告されているところから(例えば、非特許文献1および2参照)、800℃付近までの加熱によって二酸化チタンの結晶構造の転移や変化と共に、酸素欠損個所に歪みを生じることが予想されるため、酸素吸収量が低下して、安定して良好な酸素吸収剤を得ることが難しい。
【0006】
また、二酸化チタンについては、それが光触媒作用を有するため前記したエチレンガスの分解に効果があることが期待されるとともに、抗菌作用による食品類などの品質保持剤としての利用が期待されるが、これらの性質を十分に生かした品質保持剤は見出されていない。
以上述べたように、これまで種々の品質保持剤が提案されているが、脱酸素、鮮度保持、抗菌というさまざまな要請をすべて十分に満足する、広い分野に有効な品質保持剤は未だ提案されていない。
【0007】
【特許文献1】
特開昭56−2845号公報(第1〜18頁)
【特許文献2】
特開昭56−130222号公報(第97〜100頁)
【特許文献3】
特開昭58−128145号公報(第243〜246頁)
【特許文献4】
特開平10−314581号公報(第1頁)
【特許文献5】
特開昭59−29033号公報(第195〜196頁)
【特許文献6】
特許第2658640号公報(第1〜8頁)
【特許文献7】
特開2000−50849号公報(第1〜6頁)
【特許文献8】
特開平10−314581号公報(第2頁)
【特許文献9】
特許3288265号公報(第1〜10頁)
【非特許文献1】
田部浩三、清山哲郎、笛木和夫編、「金属酸化物と複合酸化物」講談社サイエンティフィク(1978年)、103頁
【非特許文献2】
西本精一、大谷文章、坂本章、鍵谷勉、日本化学会誌、1984、246-252(1984)
【0008】
【発明が解決しようとする課題】
本発明は、安全性が高く、金属探知機等への影響がなく、酸素吸収能が優れ、かつ光触媒作用による抗菌性、鮮度保持性も併せ持つ、食品類、金属製品、精密機械などの工業製品、医薬品、美術工芸品、文化財などの広い分野の物品の保存用に好適な品質保持剤を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
本発明者らは、以上の状況に鑑み、また上記の課題を解決するために鋭意研究を行い、特定の低次酸化チタンを塩基性化合物で処理することによって得られた物質が、その酸素吸収速度が著しく増大することを見出して、本発明を完成するに至った。
【0010】
すなわち、本発明は、以下の内容をその要旨とするものである。
(1)アルカリ金属および/またはアルカリ土類金属の炭酸塩、炭酸水素塩、水酸化物、アンモニア、炭酸アンモニウム、および炭酸水素アンモニウムからなる群から選ばれる塩基性化合物で処理し、硫酸根及びニッケル種を含有し、かつ、二酸化チタンのオリジナルの結晶構造を保持し、一般式TiO 2−x (ここで、xは0.1から0.5の実数を示す)で表される構造を有するものである低次酸化チタン複合体低次酸化チタンを含有することを特徴とする、品質保持剤。
(2)前記(1)に記載の品質保持剤を、無酸素雰囲気下で気密性の包装容器に封入した形態である、品質保持剤製品。
【0011】
【発明の実施の形態】
以下に本発明を具体的に説明する。
本発明に使用する低次酸化チタンは、TiOで表される二酸化チタンの酸素原子が一部脱離したTiO2−xで表され、ここでxは0.1から0.5の実数を示すものを言う。このような低次酸化チタンは、二酸化チタンを還元処理することによって得られるが、二酸化チタンのオリジナルの結晶構造を保持した状態のものが好ましい。
【0012】
また、本発明に使用する硫酸根を含有する低次酸化チタン複合体は、二酸化チタンに含浸、吸着、共沈殿又は物理的混合によって硫酸根を含有させ、還元処理を施すことによって酸素原子が一部脱離した結晶構造の低次酸化チタンと硫酸根の複合体であり、又は、原料の二酸化チタンとして硫酸根を含むものを使用し、これを還元処理することによって得られる酸素原子が一部脱離した低次酸化チタンと硫酸根の複合体である。或いは、これに含浸、吸着、共沈殿又は物理的混合によって更にニッケル種を含有させ、還元処理した低次酸化チタン複合体が更に好ましい。また、この場合、これらの低次酸化チタン複合体は原料の二酸化チタンのオリジナルの結晶構造を保持したものが好ましい。
【0013】
本発明において用いる二酸化チタン(TiO2)は、アナターゼ型、ルチル型若しくはブルッカイト型の結晶系のもの、又はアモルファスのもののいずれも使用し得るが、アナターゼ型の二酸化チタンが光触媒作用が優れているから好適である。その形状は、特に制限はなく、例えば粒状、球状、顆粒状、粉末状であってもよいが、表面積が大きいほうが、還元反応がしやすく、還元反応で製造された低次酸化チタンの酸素吸収能が大きく、また光触媒作用も優れるため好ましい。それらの粒径は、1nm(10 9m)から1μm(10−6m)程度のものまでを使用でき、より好ましくは3nm(3×10 9m)から0.1μm(10−5m)のものが使用できるが、一般には粒径の小さいものが好ましい。また、望ましくは、直径1mm程度の大きさの粒状に造粒した二酸化チタンを使用してもよい。比表面積は5m2/gから400m2/g程度、好ましくは50m2/gから390m2/gのものを使用することができるが、比較的に大きな値を有するものが還元処理には効果的である。以上の二酸化チタンは製品として市販されているものを原料としてそのまま使用することも可能であり、あるいは硫酸チタン、四塩化チタン、硝酸チタンなど無機酸のチタン塩あるいはチタンテトラエトキシド、チタンテトライソプロポキシドあるいはチタンテトラ(2−エチルヘキサノエート)などのチタン化合物を加水分解あるいは苛性ソーダで中和、沈殿などの方法により調製することもできる。
【0014】
市販のアナターゼ型二酸化チタンの代表的な製品としては、堺化学工業株式会社製のSSP25、CSPM、テイカ株式会社製のAMT−100、石原産業株式会社製のST01あるいはMC−50などが知られている。更にこれらの二酸化チタンを使用して、以下に詳しく記載する本発明のニッケル種や硫酸根を含む二酸化チタンを使用することができる。
【0015】
本発明に使用するニッケル種とは、ニッケル原子を必須成分とする化合物、又はニッケル原子を必須成分とする金属若しくは合金を言う。また、ここでニッケル原子はいわゆる電離したイオン状態のものも含む。
ニッケル原子を必須成分とする化合物としては、例えば、無機酸のニッケル塩、有機酸のニッケル塩、ニッケルアルコキシド、および配位子を配位したニッケル錯塩からなる群から選ばれるニッケル原子を必須成分として含む化合物である。このような化合物としては、例えば、硝酸ニッケル、塩化ニッケル、硫酸ニッケルなどの無機酸のニッケル塩;酢酸ニッケル、プロピオン酸ニッケル、蓚酸ニッケルなどの有機酸のニッケル塩;その無水和物、結晶水を持つ水和物が挙げられ、あるいはそれらにアンモニア、エチレンジアミンなどの配位したニッケル錯塩、アセチルアセトンなどを配位したニッケル化合物、ニッケルイソプロポキシドなどのニッケルアルコキシドを用いることができる。
【0016】
また、ニッケル原子を必須成分とする金属または合金としては、例えば、ニッケル金属そのものまたはニッケルと他の元素から構成される合金、ニッケル金属と他の金属との混合物である。このような合金又は金属混合物としては、例えば、ニッケルとコバルト、鉄、マグネシウム、カルシウム、アルミニウムなどから選ばれる金属との合金又は混合物が挙げられる。
【0017】
本発明の品質保持剤は、通常は低次酸化チタンに硫酸根を含有し、更にはニッケル種を含有した低次酸化チタン複合体を、塩基性化合物で処理したものである。該低次酸化チタン複合体は、塩基性化合物で処理することによって、低次酸化チタンの酸素吸収速度が著しく増加する。その作用機構は明らかではないが、低次酸化チタン粒子内部への酸素の拡散速度を速め、その結果、酸素吸収速度を速めているものと考えられる。
【0018】
本発明に使用する塩基性化合物としては、アルカリ金属および/またはアルカリ土類金属の炭酸塩、炭酸水素塩、水酸化物、例えば、炭酸ナトリウム、炭酸カリウム、炭酸カルシウム、炭酸マグネシウム、炭酸水素ナトリウム、水酸化カリウム、水酸化ナトリウム、水酸化マグネシウムなどが挙げられ、それにアンモニア、炭酸アンモニウム、炭酸水素アンモニウムなどが挙げられる。
【0019】
以上のような本発明の品質保持剤は、鉄系の成分を一切使用しないため、従来の鉄系の酸素吸収剤にみられる金属探知機等へ感応するという悪影響がなく、また、アスコルビン酸系の酸素吸収剤のような有機化合物にみられる融解、溶解、燃焼などのトラブルが発生する心配も存在せず、安全性の高い品質保持剤として広い用途に適用し得るものである。即ち、本発明の品質保持剤は、良好な酸素吸収能を有しており品質保持剤としての性能に優れると同時に、二酸化チタンを使用しているため、毒性が少なく、広い温度範囲にわたり固体状であり融解や溶解による食品等への汚染の心配がないこと、不燃性であること等の点において、従来の品質保持剤に比べて優れた性質と極めて広範な安全性を有するものである。
【0020】
また、本発明に使用する二酸化チタンは、二酸化チタンのオリジナルの結晶構造を保持したまま還元を行うことが好ましい。そして、アナターゼ型の結晶構造の二酸化チタンを使用する場合には光触媒作用を有しており、この光触媒作用による抗菌性、鮮度保持性をも併せて品質保持剤の作用として付与させることができる。従って、酸素吸収、抗菌、鮮度保持を目的として幅広い用途に品質保持剤として使用でき、かつ安全性の優れた品質保持剤として提供することができる。
【0021】
本発明に使用する低次酸化チタンは、オリジナルの二酸化チタン(TiO2)の結晶構造を保持したものであることが好ましい。
低次酸化チタンを製造する方法としては、二酸化チタンを水素ガス等の還元剤を用いて還元する方法等が考えられる。オリジナルの二酸化チタン(TiO2)の結晶構造を保持した状態で還元を行なうためには、できるだけ低い温度で還元反応を行うことが望ましく、450℃以下で行うことがより好ましい。還元反応に使用する二酸化チタンには、硫酸根を含むものが好ましく、更にこれにニッケル種を含むものを使用することが好ましい。硫酸根及びニッケル種を含む二酸化チタンを使用することによって、350℃以下の比較的低い温度、好ましくは150から300℃、より好ましくは180から280℃、最も好ましくは180から260℃という低い温度で、オリジナルの二酸化チタンの結晶構造を保持したまま容易に還元することができ、酸素吸収能の優れた低次酸化チタンまたはその複合体が得られる。硫酸根とニッケル種との作用は明らかではないが、還元反応の触媒的な働きをしているものと考えられる。
【0022】
硫酸根を含有する二酸化チタンを得る方法としては、例えば、チタン鉱石を硫酸で溶解し、加熱してメタチタン酸または水酸化チタンにして濾過、洗浄後焼成して製造する工程において、洗浄の程度を調節して硫酸根を残留させる方法、二酸化チタンの製造過程で硫酸根が含有されない場合には、製造された二酸化チタンを硫酸水溶液に含浸し、乾燥後焼成することにより硫酸根を含有する二酸化チタンを得る方法等が挙げられる。
二酸化チタン中の硫酸根の含有量は、チタン原子に対して通常0.01から10質量%(以下、単に「%」と記載する)程度であるが、特に望むなら20%あるいはそれ以上の量を用いてもよい。硫酸根の含有量が少なすぎる場合は、還元後の二酸化チタンの酸素吸収量が不十分であり、また硫酸根の含有量が多すぎても、酸素吸収量はそれほど向上しない。
【0023】
ニッケル種を含む二酸化チタンを得る方法としては、二酸化チタンに前記したニッケル化合物を溶液の形で含浸または吸着する方法、無機酸のチタン塩等のチタン化合物の水溶液と前記ニッケル化合物の水溶液を共沈殿する方法、さらに特に望むなら二酸化チタンと前記ニッケル化合物又はニッケル原子含有金属粉をごく微細な状態にして単に混合する方法などがある。また、本発明に使用するニッケル種を含む二酸化チタンとしては、上記のように含浸、吸着、共沈殿、あるいは混合により得られるもののほかに、これらのニッケル種を含む二酸化チタンを、更にその後、洗浄、加熱乾燥、焼成、粉砕等の諸工程で熱分解などにより化学構造変化を生じたものも含む。
【0024】
二酸化チタン中のニッケル種の含有割合は、二酸化チタンを還元するために必要な量であって特別な制限を求めないが、還元の際に触媒としての作用を発揮する量であればよく、少量でよい。一般的に、二酸化チタンに対して、ニッケル原子として0.01から15%、好ましくは0.03から10%の範囲で用いるのがよい。
ニッケル種の含有割合が0.01%よりも少ないと二酸化チタンの還元があまり進まず、その結果酸素吸収量が不十分となり、またニッケル種の含有割合が15%より多くても酸素吸収量の向上がみられないのみならず、酸化チタンの結晶構造がアナターゼ型になりにくく、光触媒作用の十分なものが得られ難い。
【0025】
本発明に使用する低次酸化チタン複合体は、硫酸根及び更にはニッケル種を含む二酸化チタンを還元剤、通常は水素ガスを用いて還元することにより容易に製造することができる。還元温度は450℃以下の温度で実施することが二酸化チタンの結晶構造をそのままに保つ上から望ましく、好ましくは150から300℃範囲、さらに好ましくは180から280℃、最も好ましくは180から260℃である。
【0026】
還元剤としては水素ガスが最も好ましく、水素ガスによって支障なく還元を行い得るが、従来から還元剤として知られる化合物、例えば、エチルアルコールなどのアルコール類、プロピレンなどの炭化水素化合物を使用してもよい。また、特に望むなら、紫外線などの照射による反応を促進する方法も妨げるものではない。
還元処理に際しては、特に望むならばアルミナあるいはシリカなどを併用してもよく、また、ニッケル以外の原子、例えば、コバルト、鉄、マグネシウム、カルシウム、アルミニウムなどの原子を必須成分とする化合物および/または金属をニッケル種とともに使用してもよい。
【0027】
還元反応は、酸素ガスを遮断し、その混入のない装置で行なうことが求められる。本発明に使用する二酸化チタンの還元では、還元に用いる装置について特別の制限は設けない。通常はステンレス製反応管式で耐圧性を備えたものを用い、不活性ガスをキャリアーガスに用い、加圧、加熱下に還元剤、例えば水素ガスを導入して還元反応を行う。キャリアーガスとしてはアルゴンガスなどの希ガス、窒素ガスが用いられる。反応器内の圧力は通常0.01MPaから0.7MPa程度、好ましくは0.05MPaから0.5MPaの範囲で行う。還元反応は、反応器内を上記の圧力に保ち、還元温度は、上述の如く450℃以下、好ましくは150℃から300℃の範囲で数時間かけて行う。二酸化チタンは、水素ガスなどの還元剤により還元処理を行われると二酸化チタンの酸素の一部が水素との反応により脱離して水を生成する。還元反応を終了して得られる反応物は暗灰色から黒色を呈し、冷却後、反応器と共にグローブボックスに移し酸素を遮断した窒素ガス気流中で密封容器中に取出される。
【0028】
このようにして得られた低次酸化チタン複合体を、無酸素雰囲気下で塩基性化合物によって処理することにより本発明の品質保持剤が得られる。
低次酸化チタンを塩基性化合物で処理する方法としては、塩基性化合物を直接低次酸化チタンと混合する方法、塩基性化合物を水に溶解させ、その水溶液をスプレー等で低次酸化チタンの表面に噴霧する方法、塩基性化合物水溶液をシリカ粉などに坦持させてから低次酸化チタンに分散・混合させる方法、塩基性化合物または塩基性化合物水溶液を加温したりして、気体状にし、低次酸化チタンと接触させる方法などがあげられる。低次酸化チタンと塩基性化合物との混合は、窒素ガス雰囲気等の酸素ガスのない雰囲気下で行なうのが好ましい。
【0029】
低次酸化チタンを処理する塩基性化合物の添加量は、低次酸化チタンに含まれる硫酸根等の官能基の量に対応する量以上、20倍量以下であることが好ましい。塩基性化合物の添加量が少なすぎる場合は酸素吸収速度向上効果が少なく、また、塩基性化合物添加量が多すぎても、酸素吸収速度はそれほど向上しない。例えば、硫酸根が0.3モル含まれる場合、一価の塩基性化合物(アンモニア等)なら0.6モルから12モルの範囲の量を添加し、二価の塩基性化合物(炭酸ナトリウム等)なら0.3モルから6モルの範囲の量を添加するようにする。
【0030】
このようにして得られた塩基性化合物で処理した低次酸化チタン複合体を、好ましくは窒素などで置換した無酸素雰囲気下で、気密性の包装容器や包装袋の中に入れて、本発明の品質保持剤製品とする。包装容器は気密性の合成樹脂製や金属製のもので、使用時に気密状態を開放する構造のものであればよい。包装袋は酸素透過性のない合成樹脂製や金属箔、その他の材料でできたもので、使用時にその封を開いて使用する構造のものであればよい。
また、本発明の品質保持剤製品には、補助的な成分として、シリカ、モンモリロナイトなどの天然産の鉱物、活性白土などの加工された鉱物、合成シリカ、ゼオライトなどの合成鉱物、活性炭などの吸着剤を必要に応じて使用してもよい。また、従来から使用されている酸素吸収促進剤の成分なども必要に応じて、本発明の特徴を損なわない範囲で併用することを妨げるものではない。
【0031】
二酸化チタンを還元して得られる低次酸化チタンのみの場合は、通常100から700時間をかけてゆっくりと酸素を吸収する。しかし、本発明の塩基性化合物で処理した低次酸化チタンを使用した品質保持剤の場合には、酸素吸収の速度が大きく増加し、20から40時間程度で酸素の吸収を完了する。
また、本発明の品質保持剤は、いったん使用して酸素を吸収したものを、製造時と同じ条件で水素ガス等によって還元することにより、再び同じ程度の酸素吸収能力を回復することができ、品質保持剤として繰り返して使用することができる。
【0032】
また、アナターゼ型の二酸化チタンを出発原料に用いた場合には、光触媒作用をも兼ね備えているので、エチレン分解性、抗菌活性などの付加的な機能を有する従来のものに見られない、より一層広い用途の品質保持剤を提供することができる。
【0033】
【実施例】
次に実施例により本発明をさらに詳細に説明するが、本発明は以下に示す実施例に限定されるものではない。なお、実施例中、「%」は、特別に記載しない限り質量基準である。
【0034】
実施例1:
1.1 酢酸ニッケルの含浸による二酸化チタン複合体( 1-2 )の調製
堺化学工業株式会社より提供された硫酸根(SO4)10.0%を含むアナターゼ型の結晶構造を有する白色の二酸化チタン(1-1、比表面積 268.0 m2/g)の20.0g(250mmol)を磁性のシャーレに入れ、次いで酢酸ニッケル(Ni(CH3COO)・4H2O)3.1g(12.5mmol)と水20.0gの均一溶液を加えて、よく混合した後、一夜放置する。マッフル炉で250℃、2.5時間乾燥し、冷却後、粉砕し、硫酸根とニッケル種を含む二酸化チタン複合体(1-2)[TiO2・(Ni(CH3COO)2)0.05 、MW:88.7、硫酸根は分子量の計算に含めない]の20.4g(88.3%)を得た。この硫酸根とニッケル種を含む二酸化チタン複合体(1-2)は、X線回折装置(XRD)の測定結果からアナターゼ型の結晶構造を有することが確かめられた。なお、X線回折装置(XRD)はマックサイエンス社製、全自動回折装置、MXP3A を用いた。
【0035】
1.2 二酸化チタン複合体( 1-2 )の水素還元
ステンレス製1/8インチ管に圧力ゲージの付いたイナートガスライン、同じく水素ガスラインを、温度計を付したステンレス製の内径35mm、高さ130mmの円筒形のステンレス製反応器に接続し、反応器の排出ガス用ステンレス製1/8インチ管ラインに組成分析用のガスクロマトグラム、トラップ、バックプレッシャーバルブを付した反応装置を用意した。この反応装置を用い、上記の硫酸根とニッケル種を含む二酸化チタン(1-2)の5.0g(56.4mmol)を反応器内に仕込んだ。キャリアガスとしてアルゴンガスを付加圧力0.4MPa、流速100ml/minで導入し、加熱を開始した。180℃の温度で水素ガスの付加圧力0.4MPa、バックプレッシャーバルブのゲージ圧を0.3MPaに設定し、すなわち反応装置内の圧力を0.3MPaに保って、還元ガスとして水素ガスを流速で22ml/minで導入して還元反応を開始し、反応状況をガスクロマトグラムにより調べた。180℃で水素ガスの導入を開始すると水素ガスが二酸化チタンの酸素原子を還元したことによると推定される水の生成が認められた。180℃の温度で60分を経過すると水の生成量の低下がみられたため、200℃に昇温して水の生成量の低下するまで継続し、以後、反応温度を220℃、240℃、260℃と段階的に高めて合計480分間(8時間)水素ガスを導入して還元反応を行った。この間に生成した水の量を積算すると硫酸根とニッケル種を含む二酸化チタン複合体(1-2)[TiO2・(Ni(CH3COO)2)0.05、分子量:88.7]の1グラム(11.3mmol)当たり水47.8ml(2.13mmol 、0℃の換算値)であった。反応器を冷却した後バルブを閉じ加圧状態で、グローブボックス内に反応物を移し窒素ガスで完全に置換してグローブボックス内の酸素濃度が30ppm以下に到達した後、窒素ガス流通下に酸素濃度を50ppm以下に保ちながら反応物(1-3)を反応器から気密な二つのプラスチック包装容器(ガスバリヤー袋)に分けて取り出した。これを計量し、黒色の反応物(1-3)の4.4gを得た。
【0036】
この二つのプラスチック袋に納められた反応物(1-3)のうちの一つの、反応物(1-3)2.0gを含むプラスチック包装容器(ガスバリヤー袋)に空気500mlを導入し、その後の酸素濃度を測定した。この結果から、反応物(1-3)は約30日で酸素の吸収を終了し、酸素の吸収量は23.8ml/g(1.06mmol/g、0℃の換算値)であることが判明した。この酸素吸収量から算出したxの値は0.188(=1.06×2/11.3)であり、TiO2−xで表した場合にTiO1.81である低次酸化チタンが得られた。この反応物(1-3) は、X線回折装置(XRD)の測定結果からアナターゼ型の結晶構造を有することが確かめられた。これらの結果から、反応物(1-3) は、オリジナルの二酸化チタンの結晶構造を保持し、かつ(TiO 1.81)で表わされる低次酸化チタンに硫酸根及びニッケル種を含む低次酸化チタン複合体であることが確かめられた。グローブボックスから取り出した際は黒色であった反応物(1-3)は、酸素を吸収した後、淡い灰色に変化した(1-4)。この酸素を吸収した淡い灰色の反応物(1-4)は、XRDの測定結果からアナターゼ型の結晶構造を有することが確認された。酸素濃度の分析にはPBI‐Dansensor A/S社製、酸素濃度計Check Mate O2/CO2を使用した。以下の実施例においても同じ装置を用いて測定した。
【0037】
1.3 低次酸化チタン複合体( 1-3 )のアンモニア処理
この二つのプラスチック袋に納められた反応物(1-3)のうちの一つの上記の反応物2.4gを、気密なプラスチック包装容器(ガスバリヤー袋)に取出す際に、少量の脱脂綿を同時に袋内の反応物に触れない状態で収め、ヒートシールにより密封し600mlの空気を封入した。次いで、12.5%濃度のアンモニア水1gを袋内の脱脂綿に注射器で注入した。なお、封入の際には、ゴムテープを袋に貼り付け注入の際における外気の混入を防いだ。脱脂綿の部分を外部から15分間暖めてアンモニアガスを気化させ、5時間放置し、反応物(1-3)をアンモニアで処理し、本発明の品質保持剤に相当するアンモニア処理した反応物(1-5)を得た。このアンモニア処理した反応物(1-5)の酸素吸収量を測定したところ、15時間後における累計の酸素吸収量は21.1ml/g(25℃)、24時間後における累積の酸素吸収量は25.8ml/g(25℃)に達し、この値は48時間経過した後も同じであった。アンモニア処理した反応物(1-5)も、同様に酸素を吸収した後、その外観が淡い灰色に変化した(1-6)。
以上のように、アンモニア処理を行なわない反応物(1-3)に空気を封入しそのまま放置した場合には酸素を吸収するのに30日余りを要するが、アンモニア処理を行なった反応物(1-5)の場合には、酸素吸収が加速され、24時間程度で同程度の酸素吸収量に達することができ、品質保持剤として使用した場合に優れた作用を発揮することがわかった。
【0038】
1.4酸素を吸収した反応物( 1-6 )の光触媒作用によるエチレンガスの分解
上記の1-3で得られた酸素を吸収したアンモニア処理反応物 (1-6)の0.1gを内径8.5cm(57cm)のガラス製シャーレに採り、3gの純水を加えて均一に混合し、乾燥して箔膜状にし、後述する蛍光灯(BL東芝ライテック社製FL20S・BLB-A 20W/本を6本使用)を3時間照射して反応物(1-6)の表面を清浄な状態にした。このシャーレをテドラーバッグ(Tedlar bags、材質 フッ素樹脂、サイズ170mm×250mm、井内盛栄堂製)に収め、熱シールする。袋内の空気をアルゴン/酸素=80/20の混合ガスで置換し、ついでエチレンガス1000ppmを注射器で注入した。封入の際には、ゴムテープを袋に貼り付け注入の際における外気の混入を防いだ。この試料などを収めたテドラーバッグを光照射箱に収め、40ワット蛍光灯(ブラックライト(BL)、0.1mW/cm(光の波長436nm)、1mW/cm2(光の波長365nm))で照射したところ、5時間経過後で当初のエチレンガス濃度が1000ppmから500ppm以下に半減した。従って、酸素吸収後の反応物(1-6)は優れた光触媒作用を有していた。
【0039】
実施例1のまとめ
実施例1では、硫酸根とニッケル種を含む二酸化チタンを還元した。その結果、180℃〜260℃の温和な加熱条件で、容易に二酸化チタンに含まれる酸素原子が還元され酸素原子が一部脱離した低次酸化チタン複合体を得た。この低次酸化チタン複合体の結晶構造はアナターゼ型を保持していた。この低次酸化チタン複合体の収量4.4gのうち2.4gを使用しアンモニア水溶液で処理して得た本発明の品質保持剤について、その酸素吸収能を測定した。その結果、酸素吸収量は25.8ml(25℃)つまり23.6ml/g(0℃の換算値)と優れ、24時間で酸素吸収が終了するような、酸素吸収速度も優れた低次酸化チタンが得られた。また、エチレンガス分解能も優れ、光触媒作用を有していることが確認された。
一方、アンモニア水溶液で処理しない低次酸化チタン複合体を使用した場合には、酸素吸収量は23.8ml/g(0℃の換算値)と同程度の酸素吸収量を有するものの、酸素吸収に要する合計時間が約720時間(30日)と非常に遅い結果であった。即ち、アンモニア水溶液の処理によって、酸素吸収速度が30倍に促進され、このような塩基性化合物で処理した低次酸化チタンが酸素吸収速度が大きく、品質保持剤として優れていることがわかった。
【0040】
実施例2
2.1 酸素を吸収した反応物 (1-6) より低次酸化チタンの再生とその酸素吸収
1.1で調製したアナターゼ型の硫酸根とニッケル種を含む二酸化チタン複合体(1-2)の5.0gを用い、前記1.1および1.2に記載したと同様の方法で還元した反応物(1-3)に酸素を吸収させた淡い灰色の反応物(1-4)の3.0gを出発原料として、これを1.2で用いた還元反応装置に仕込んだ。キャリアガスとしてアルゴンガス100ml/min、還元ガスとして水素ガス14ml/minの条件で再還元を行い、反応物(1-3)に相当する黒色の反応物(1-3b)の2.4gを得た。この反応物(1-3b)、すなわち再生された低次酸化チタン複合体の酸素吸収速度を測定したところ約30日で酸素の吸収を終了し、酸素の吸収量は24.3ml/g(1.08mmol/g、0℃換算値)であった。この結果より算出したxの値は0.191(=1.08×2/11.3)であり、これはTiO2− Xで表した場合にTiO1.81である低次酸化チタン複合体であり、酸素吸収前の反応物(1-3)が再生されたことが確認された。
【0041】
2.2 低次酸化チタン複合体 (1-3b) の炭酸ナトリウム処理
2.1にて得た反応物、すなわち低次酸化チタン複合体(1-3b)の1.4gをガスバリヤー袋に入れ、併せて炭酸ナトリウム(Na2CO3)0.7gを水2gに溶解し、更に合成シリカ(日本シリカ工業株式会社製のニップシールNS-K)の1gを加えて混合し、低次酸化チタン複合体(1-3b)の炭酸ナトリウム処理を行なった。得られた炭酸ナトリウム処理した低次酸化チタン複合体(1-5b)の5.1gを同じバリヤー袋に入れ、ヒートシールにより密封し、350mlの空気を封入した。1時間放置した後における酸素吸収量は12ml/g(25℃)、24時間後における累計の酸素吸収量は20.8ml/g(25℃)に達し、この値は48時間後も同じであった。
【0042】
この酸素吸収量20.8ml/g(25℃)は0℃換算すると、20.8×273/298=19.1ml/gとなり、0.85mmol/gである。この酸素吸収量から算出したxの値は0.150(=0.85×2/11.3)であり、TiO2-Xで表した場合にTiO1.85である低次酸化チタン複合体が得られた。この酸素を吸収した炭酸ナトリウム処理した反応物(1-6b)は、X線解析装置(XRD)の測定結果からアナターゼ型の結晶構造を有することが確かめられた。また、グローブボックスから取り出した際は黒色であった反応物(1-3b)は酸素を吸収した後、淡い灰色に変化した(1-4b)。これらの結果から、炭酸ナトリウムで処理した反応物(1-5b)は、オリジナルの二酸化チタンの結晶構造を保持した低次酸化チタン複合体(TiO1.85)であり、酸素吸収速度が大きく品質保持剤として有用であることが確かめられた。
以上のように、塩基性物質で処理を行なわない低次酸化チタンに空気を封入しそのまま放置した場合には酸素を吸収するのに30日余りを要するが、本発明の品質保持剤である炭酸ナトリウム処理を行なった反応物(1-5b)の場合には、酸素吸収が加速され、24時間程度で同程度の酸素吸収量に達することができた。
【0043】
実施例3:
3.1 酢酸ニッケルの含浸による二酸化チタン複合体 (2-2) の調製
堺化学工業株式会社より提供された硫酸根を含むアナターゼ型の結晶構造を有する白色の二酸化チタン CSPM(2-1)[比表面積:120m2/g、蛍光X線による硫黄の分析値(S=2.68%)であり、硫酸根への換算値8.0%]の20.0g(250mmol)を磁性のシャーレに入れ、次いで酢酸ニッケル[Ni(CH3COO)2・4H2O]3.1g(12.5mmol)と水19.2gの均一溶液を加えて、よく混合した後、一夜放置した。マッフル炉で250℃で2.0時間乾燥し、冷却後、粉砕し、硫酸根とニッケル種を含む二酸化チタン複合体(2-2) [TiO2・Ni(CH3COO)2)0.05、MW:88.7、硫酸根は分子量の計算に含めない]の20.8g(89.7%)を得た。この硫酸根とニッケル種を含む二酸化チタン複合体(2-2)は、XRDの測定結果からアナターゼ型の結晶構造を有することが確かめられた。
【0044】
3.2二酸化チタン複合体 (2-2) の水素還元
実施例1と同じ反応装置を用い、上記の硫酸根とニッケル種を含む二酸化チタン複合体(2-2)の5.0g(56.4mmol)を反応器内に仕込んだ。イナートガスとして窒素ガスを付加圧力0.2MPa、流速100ml/minで導入し、240℃の温度に加熱し、水素ガスの付加圧力0.4MPa、バックプレッシャーバルブのゲージ圧を0.1MPaに設定し、すなわち反応装置内を0.1MPaに保って、水素ガスの流速を22ml/minで導入して還元反応を開始し、反応状況をガスクロマトグラムにより調べた。235℃から240℃の反応温度で水素ガスの導入を開始すると、水素が二酸化チタンの酸素原子を還元したことによると推定される水の生成が認められた。合計320分間水素ガスを導入して反応を終了した。この間に生成した水の量を積算すると硫酸根とニッケル種を含む二酸化チタン[TiO2・Ni(CH3COO)2)0.05、MW:88.7]の1グラム(11.3mmol)当たり水49.5ml(2.21mmol、0℃の換算値)であった。反応器を冷却した後バルブを閉じ加圧状態で、グローブボックス内に反応物を移し窒素ガスで完全に置換してグローブボックス内の酸素濃度が30ppm以下に到達した後、窒素ガス流通下に酸素濃度を50ppm以下に保ちながら反応物(2-3)を反応器から機密な二つの包装容器(ガスバリヤー袋)に分けて取出した。これを計量し、黒色の反応物(2-3)の4.3gを得た。
【0045】
この二つのプラスチック袋に収められた反応物(2-3)のうちの一つの、反応物(2-3)の2.4gを含んだガスバリヤー袋に空気600mlを導入したところ、30日余りで酸素の吸収を終了した。この測定した結果から、反応物(2-3)は22.6ml/g(1.01mmol/g、0℃の換算値)の酸素を吸収していることが判明した。酸素ガス吸収量から算出したxの値は0.18(=1.01×2/11.3)であり、TiO2−xで表した場合にTiO1.82である酸化チタンを得た。この反応物(2-3)はXRDの測定結果からアナターゼ型の結晶構造を有することが確かめられ、オリジナルの二酸化チタンの結晶構造を保持した低次酸化チタン複合体(TiO1.82)であることが確かめられた。
また、グローブボックスから取出した際は黒色であった反応物(2-3)は酸素を吸収した後、淡い灰色に変化した(2-4)。この酸素を吸収した淡い灰色の反応物(2-4)は、XRDの測定結果からアナターゼ型の結晶構造を有することが確認され、もとの結晶構造の酸化チタン(TiO)が再生していることがわかった。
【0046】
3.3 低次酸化チタン (2-3) のアンモニア処理
この二つのプラスチック袋に収められた反応物(2-3)のうちのもう一つの反応物の1.9gを、気密なプラスチック包装容器(ガスバリヤー袋)に取出す際に、少量の脱脂綿を同時に袋内に反応物に触れない状態で収め、ヒートシールにより密封し、475mlの空気を封入した。12.5%濃度のアンモニア水0.8gを袋内の脱脂綿に注射器で注入した。封入の際には、ゴムテープを袋に貼り付け注入の際におこる外気の混入を防いだ。脱脂綿の部分を外部から15分間、暖めてアンモニアガスを気化させ、24時間放置し、反応物(2-3)をアンモニアで処理し、本発明の品質保持剤に相当するアンモニア処理した反応物(2-5)を得た。このアンモニア処理した反応物(2-5)の酸素吸収量を測定したところ、30時間後における酸素吸収量は21.8ml/g(25℃)であり、48時間後における累計の酸素吸収量は22.7ml/g(25℃)であった。
また、グローブボックスから取出した際は黒色だったアンモニア処理した反応物(2-5)は酸素を吸収した後、淡い灰色に変化した(2-6)。この酸素を吸収した淡い灰色の反応物(2-6)は、XRDの測定結果からアナターゼ型の結晶構造を有することが確認された。
【0047】
以上のように、反応物(2-3)に空気を封入しそのまま放置した場合には酸素を吸収するのに30日余りを要するが、塩基性物質であるアンモニア水で処理した反応物(2-5)の場合には、酸素吸収が加速され、1日から2日程度で同程度の酸素吸収量に達することができ、品質保持剤として使用した場合に優れた作用を発揮することがわかった。
この反応物(2-5)の酸素吸収量22.7ml/g(25℃)は、0℃に換算すると20.8ml/gであり、0.93mmol/gに相当する。そして、酸化チタンをTiO2−xで表した時の酸素吸収量から算出したxの値は0.16(=0.93×2/11)であり、TiO2−xで表した場合にTiO1.84である酸化チタンを得た。この反応物(2-5)はXRDの測定結果からアナターゼ型の結晶構造を有することがたしかめられ、オリジナルの二酸化チタンの結晶構造を保持した低次酸化チタン複合体(TiO 1.84)であることが確かめられた。
【0048】
3.4 酸素を吸収した反応物 (2-6) の光触媒作用によるエチレンガスの分解
酸素を吸収したアンモニア処理反応物(2-6)の0.1gを用いて、実施例1に記載したと同じ方法でエチレンガスの分解を試験した結果、5時間で当初の1000ppmから500ppm以下の濃度に半減した。
【0049】
3.5 酸素を吸収した反応物 (2-6) より低次酸化チタンの再生とその酸素吸収
3.1で調製したアナターゼ型の硫酸根とニッケル種を含む二酸化チタン複合体(2-2)の5.0gを用い、2.1および2.2に記載したと同じ還元装置と方法で還元した反応物(2-3)に酸素を吸収させた淡い灰色の反応物(2-4)の3.0gを出発原料として、これを2.2で用いた還元反応装置に仕込んだ。キャリアガスとして窒素ガス100ml/min、還元ガスとして水素ガス14ml/minの条件で再還元を行い、反応物(2-3)に相当する黒色の反応物(2-3b)2.4gを得た。この反応物(2-3b)、すなわち再生された低次酸化チタン複合体の酸素吸収速度を測定したところ約30日で酸素の吸収を終了し、酸素の吸収量はアンモニア処理なしの場合で23.1ml/g(1.03mmol/g、0℃換算値)であった。この結果より算出したxの値は0.182(=1.03×2/11.3)であり、これはTiO2-Xで表した場合にTiO1.82である低次酸化チタン複合体であり、酸素吸収前の反応物(2-3)が再生されたことが確認された。
【0050】
実施例3のまとめ
実施例3も、硫酸根とニッケル種を含む二酸化チタン複合体を還元した。その結果、235℃〜240℃の温和な加熱条件で、容易に二酸化チタンに含まれる酸素原子が還元され酸素原子が一部脱離した低次酸化チタン複合体を得た。この低次酸化チタン複合体の結晶構造はアナターゼ型を保持していた。この低次酸化チタン複合体の収量4.3gのうち1.9gを使用しアンモニア水溶液で処理して得た本発明の品質保持剤について、その酸素吸収能を測定した。その結果、酸素吸収量は22.7ml(25℃)つまり20.8ml/g(0℃の換算値)と優れ、24時間〜48時間で酸素吸収が終了するような、酸素吸収速度も優れた低次酸化チタン複合体が得られた。また、エチレンガス分解能も優れ、光触媒作用を有していることが確認された。
一方、アンモニア水溶液で処理しない低次酸化チタン複合体を使用した場合には、酸素吸収量は22.6ml/g(0℃の換算値)とアンモニア水溶液処理した場合と同程度の酸素吸収量を有するものの、酸素吸収に要する合計時間が約720時間(30日)と非常に遅い結果であった。即ち、炭酸ナトリウム水溶液の処理によって、酸素吸収速度が15〜30倍増加し、このような塩基性化合物で処理した低次酸化チタンは酸素吸収速度が大きく、品質保持剤として優れていることがわかった。
【0051】
実施例4:保存試験
4.1品質保持剤製品の作製
グローブボックス内で、無酸素の窒素雰囲気下で、実施例1の1.2と同様に調製した低次酸化チタン複合体の6.0gに、水6.0gに炭酸ナトリウム(Na2CO3)2.0gを溶解した炭酸ナトリウム水溶液、および合成シリカ(日本シリカ工業株式会社製ニップシールNS-K)の3.0gを加えて均一に混合して、低次酸化チタンの炭酸ナトリウム処理を行い、本発明の品質保持剤を調製した。この品質保持剤をポリエチレンテレフタレートとポリエチレンをラミネートし、小孔を開けた通気性の袋(約6cm×約6cm)に入れて品質保持剤入り小袋を製作し、これを更に気密性の透明な袋に入れて、すばやく熱シールして品質保持剤製品を製造した。
【0052】
4.2洋菓子(ワッフル)を用いた品質保持試験
ガスバリヤー性の透明な袋に、4.1で作成した品質保持剤製品から取り出した小袋と86gのワッフルをすばやく入れ、入り口を熱シールし、内部の空気を注射器で抜き出し、あらたに、空気500mlを注射器で注入した。注射器で排出、注入の際には、ゴムテープを袋に貼り付け外気の混入を防いだ。袋内の酸素濃度を測定したところ、24時間後に3.7%、48時間後に3.1%、72時間後には0%になっていた。このサンプルを室温(15〜25℃)、暗所に15日放置したが、ワッフルの外観の変化はなく、品質の変化も生じなかった。二酸化炭素濃度は、初期から15日間の放置の間を通して、常に1%以下であった。
【0053】
比較例1
ガスバリヤー製の袋に、87gのワッフルのみを入れ、入り口を熱シールし、内部の空気を注射器で抜き出し、あらたに、空気500mlを注射器で注入した。注射器で排出、注入の際には、ゴムテープを袋に貼り付け外気の混入を防いだ。このサンプルを室温(15〜25℃)で、暗所で放置し、酸素濃度を測定したところ、24〜48時間後で20%、72時間後で9.4%であり、4日目には表面にカビが発生し幾つもの黒青色を呈するカビのコロニーが認められた。また、カビは発生後徐々に拡大した。酸素濃度は低下して、96時間後に0%になった。
この時の二酸化炭素の濃度は41%となり、二酸化炭素が非常に多く発生しており、カビの増殖作用で酸素濃度が低下し、二酸化炭素濃度が急増したと思われる。このことから、72時間後には、目視では確認できなかったが、すでにカビが増殖を開始して酸素濃度が低下していたと思われる。
【0054】
実施例4と比較例1の比較
実施例4では、本発明の塩基性化合物で処理した低次酸化チタンを用いた品質保持剤の効果により、サンプル作成後48〜72時間の間に、ガスバリヤー袋内の酸素濃度が0%になり、ワッフルも15日以上保存しても異常が認められなかった。これに較べて、比較例1では、3日後にワッフルにカビが増殖を始め、4日目に肉眼で認められ、その後も急速に増殖を続けた。
【0055】
【発明の効果】
このような本発明の品質保持剤は、大きな酸素吸収能と酸素吸収速度を有するとともに、従来から使用されている鉄系の酸素吸収剤と異なり、鉄系の成分を使用しないため金属探知機での誤動作や電子レンジ等での使用に問題を生じない。また、本発明の品質保持剤は、その成分が無機化合物であるため、従来の有機化合物を使用した酸素吸収剤に見られる融解、溶解、燃焼などのトラブルの心配も存在しないため安全性が高く、広い用途に適用し得る品質保持剤を提供するものである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel quality-preserving agent. More specifically, the present invention provides a quality-preserving agent suitable for preserving foods such as processed foods, agricultural and fishery products, industrial products such as metal products and precision machinery, pharmaceuticals, arts and crafts, and cultural properties. For the purpose.
[0002]
[Prior art]
Conventionally, with regard to maintaining the quality of foods, various oxygen scavengers centered on iron have been proposed for the purpose of preventing spoilage due to reproduction of aerobic bacteria, mold, etc., and oxidative degradation of dry oil ( For example, see Patent Documents 1, 2, and 3.) However, it has been pointed out for some time that food packaging products containing this iron-based oxygen scavenger are sensitive to metal detectors used to prevent contamination of metal foreign objects such as needles and metal pieces and cause malfunctions ( For example, see Patent Document 4). In addition, food packaging products in which this iron-based oxygen scavenger is sealed cannot be used in a microwave oven, leaving serious problems in practical use that should be further improved.
[0003]
As a method for improving the malfunction of such oxygen scavengers to metal detectors, oxygen scavengers based on ascorbic acid, which is an organic compound and having oxygen absorption ability, oxygen scavengers based on phenol derivatives, etc. Has been proposed (see, for example, Patent Documents 5, 6 and 7). However, since these oxygen scavengers are all organic substances, they may be melted or dissolved depending on the conditions of use. Also, since they are organic compounds, there is a risk of combustion due to heat generated by the reaction. (For example, see Patent Document 8).
[0004]
Ethylene gas is generated from vegetables and fruits during storage, and the generated ethylene gas has an action of promoting the decay of vegetables and fruits themselves, so an ethylene gas adsorbent for removing such ethylene gas Has been proposed as a freshness-preserving agent, but its performance is still insufficient.
Also, for anaerobic bacteria that cause spoilage of foods, etc., the effect is not recognized even if an oxygen scavenger is used, and antibacterial agents and bactericides containing silver are used. However, there is a problem in terms of safety, and there is a problem that its use is limited.
[0005]
On the other hand, using titanium dioxide with oxygen deficiency, various products and products such as food, clothing, pharmaceuticals, leather products, wooden products, precision machinery, etc. are prevented from quality deterioration due to mold, fungi, insects, and oxidation. It has been proposed to use it as a quality-preserving agent (for example, see Patent Document 9). Titanium dioxide having oxygen vacancies can be produced by heating titanium dioxide in an oxygen-free atmosphere. To increase oxygen absorption capacity, the higher the heating temperature, the better up to about 800 ° C. Heating is preferred. However, it has been reported that when the heating temperature is as high as 800 ° C., the crystal transition of titanium dioxide suddenly occurs and the anatase type crystal changes to the rutile type crystal (for example, see Non-Patent Documents 1 and 2). ) Heating up to around 800 ° C. is expected to cause distortions in the oxygen deficient part along with the transition and change of the crystal structure of titanium dioxide, so that the oxygen absorption amount is reduced and the oxygen absorbent is stable and good. Difficult to get.
[0006]
In addition, titanium dioxide is expected to be effective in the above-described decomposition of ethylene gas because it has a photocatalytic action, and is expected to be used as a quality-preserving agent such as foods due to antibacterial action, No quality-preserving agent that makes full use of these properties has been found.
As described above, various quality-preserving agents have been proposed so far. However, effective quality-preserving agents for a wide range of fields that satisfy all the various requirements of deoxygenation, freshness preservation, and antibacterial have been proposed. Not.
[0007]
[Patent Document 1]
JP 56-2845 A (pages 1 to 18)
[Patent Document 2]
JP 56-130222 A (pages 97 to 100)
[Patent Document 3]
JP 58-128145 (pp. 243 to 246)
[Patent Document 4]
Japanese Patent Laid-Open No. 10-314581 (first page)
[Patent Document 5]
JP 59-29033 (pp. 195-196)
[Patent Document 6]
Japanese Patent No. 2658640 (pages 1-8)
[Patent Document 7]
JP 2000-50849 A (pages 1 to 6)
[Patent Document 8]
JP 10-314581 A (2nd page)
[Patent Document 9]
Japanese Patent No. 3288265 (pages 1 to 10)
[Non-Patent Document 1]
Kozo Tabe, Tetsuro Kiyoyama, Kazuo Fueki, “Metal oxide and composite oxide” Kodansha Scientific (1978), p. 103
[Non-Patent Document 2]
Seiichi Nishimoto, Fumi Otani, Akira Sakamoto, Tsutomu Kagiya, Journal of the Chemical Society of Japan, 1984, 246-252 (1984)
[0008]
[Problems to be solved by the invention]
The present invention is an industrial product such as foods, metal products, and precision machinery that is highly safe, has no effect on metal detectors, has excellent oxygen absorption capacity, and has antibacterial properties and freshness retention due to photocatalysis. An object of the present invention is to provide a quality-preserving agent suitable for preserving articles in a wide range of fields such as pharmaceuticals, arts and crafts, and cultural assets.
[0009]
[Means for Solving the Problems]
In view of the above situation, the present inventors have conducted intensive research to solve the above-mentioned problems, and a substance obtained by treating a specific low-order titanium oxide with a basic compound has an oxygen-absorbing property. It was found that the speed was significantly increased and the present invention was completed.
[0010]
  That is, the gist of the present invention is as follows.
(1) Treated with a basic compound selected from the group consisting of alkali metal and / or alkaline earth metal carbonates, hydrogen carbonates, hydroxides, ammonia, ammonium carbonate, and ammonium hydrogen carbonate, sulfate radicals and nickel Contains seedAnd retains the original crystal structure of titanium dioxide, with the general formula TiO 2-x (Where x represents a real number from 0.1 to 0.5).Low quality titanium oxide composite A quality maintaining agent, comprising low order titanium oxide.
(2) A quality-preserving agent product in a form in which the quality-preserving agent according to (1) is enclosed in an airtight packaging container in an oxygen-free atmosphere.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be specifically described below.
The low-order titanium oxide used in the present invention is TiO.2TiO from which oxygen atoms of titanium dioxide represented by2-xWhere x is a real number from 0.1 to 0.5. Such low-order titanium oxide can be obtained by reducing titanium dioxide, but it is preferably in a state in which the original crystal structure of titanium dioxide is retained.
[0012]
In addition, the low-order titanium oxide composite containing sulfate radicals used in the present invention contains sulfate radicals in titanium dioxide by impregnation, adsorption, coprecipitation or physical mixing, and is subjected to a reduction treatment to reduce oxygen atoms. Partially desorbed crystal structure of low-order titanium oxide and sulfate radicals, or a material containing sulfate radicals as raw material titanium dioxide and partially reduced oxygen atoms It is a complex of desorbed low-order titanium oxide and sulfate radicals. Alternatively, a low-order titanium oxide composite obtained by further containing nickel species by impregnation, adsorption, coprecipitation or physical mixing and then reducing treatment is more preferable. In this case, these low-order titanium oxide composites preferably retain the original crystal structure of the raw material titanium dioxide.
[0013]
Titanium dioxide (TiO2) used in the present invention2) May be any of anatase type, rutile type or brookite type crystal type, or amorphous type, but anatase type titanium dioxide is preferred because of its excellent photocatalytic action. The shape is not particularly limited, and may be, for example, granular, spherical, granular, or powdery. However, the larger the surface area, the easier the reduction reaction, and the oxygen absorption of low-order titanium oxide produced by the reduction reaction. It is preferable because of its high performance and excellent photocatalytic activity. Their particle size is 1 nm (10 9m) to 1 μm (10-6m), and more preferably 3 nm (3 × 10 9m) to 0.1 μm (10-5m) can be used, but generally those having a small particle size are preferred. Desirably, titanium dioxide granulated into a particle having a diameter of about 1 mm may be used. Specific surface area is 5m2/ G to 400m2/ G, preferably 50m2/ G to 390m2/ G can be used, but those having a relatively large value are effective for the reduction treatment. The above titanium dioxide can be used as a raw material as a raw material as it is, or titanium salt of inorganic acid such as titanium sulfate, titanium tetrachloride, titanium nitrate, titanium tetraethoxide, titanium tetraisopropoxy Or titanium compounds such as titanium tetra (2-ethylhexanoate) can be prepared by hydrolysis, neutralization with caustic soda or precipitation.
[0014]
As typical products of commercially available anatase type titanium dioxide, SSP25 and CSPM manufactured by Sakai Chemical Industry Co., Ltd., AMT-100 manufactured by Teika Co., Ltd., ST01 or MC-50 manufactured by Ishihara Sangyo Co., Ltd. are known. Yes. Further, titanium dioxide containing nickel species and sulfate radicals of the present invention described in detail below can be used by using these titanium dioxides.
[0015]
The nickel species used in the present invention refers to a compound having a nickel atom as an essential component, or a metal or alloy having a nickel atom as an essential component. Here, the nickel atom includes a so-called ionized ion state.
As a compound having a nickel atom as an essential component, for example, a nickel atom selected from the group consisting of a nickel salt of an inorganic acid, a nickel salt of an organic acid, a nickel alkoxide, and a nickel complex salt coordinated with a ligand is used as an essential component. It is a compound containing. Examples of such compounds include nickel salts of inorganic acids such as nickel nitrate, nickel chloride and nickel sulfate; nickel salts of organic acids such as nickel acetate, nickel propionate and nickel oxalate; Hydrates possessed by them, or nickel complex salts coordinated with ammonia, ethylenediamine and the like, nickel compounds coordinated with acetylacetone, and nickel alkoxides such as nickel isopropoxide can be used.
[0016]
Examples of the metal or alloy containing nickel atoms as essential components include nickel metal itself, alloys composed of nickel and other elements, and mixtures of nickel metal and other metals. Examples of such an alloy or metal mixture include an alloy or a mixture of nickel and a metal selected from cobalt, iron, magnesium, calcium, aluminum, and the like.
[0017]
The quality-preserving agent of the present invention is usually a low-order titanium oxide containing a sulfate radical, and further a nickel-containing low-order titanium oxide complex treated with a basic compound.Is. TheLow-order titanium oxide compositeBy treating with a basic compound, the oxygen absorption rate of low-order titanium oxide is remarkably increased. Although the mechanism of action is not clear, it is considered that the diffusion rate of oxygen into the low-order titanium oxide particles is increased, and as a result, the oxygen absorption rate is increased.
[0018]
The basic compound used in the present invention includes alkali metal and / or alkaline earth metal carbonates, hydrogen carbonates, hydroxides such as sodium carbonate, potassium carbonate, calcium carbonate, magnesium carbonate, sodium hydrogen carbonate, Examples thereof include potassium hydroxide, sodium hydroxide, magnesium hydroxide, and ammonia, ammonium carbonate, ammonium hydrogen carbonate and the like.
[0019]
Since the quality-preserving agent of the present invention as described above does not use any iron-based components, there is no adverse effect of being sensitive to metal detectors and the like found in conventional iron-based oxygen absorbers, and ascorbic acid-based Therefore, there is no fear of problems such as melting, dissolution, and combustion found in organic compounds such as oxygen absorbers, and it can be applied to a wide range of uses as a highly safe quality-preserving agent. That is, the quality-preserving agent of the present invention has a good oxygen-absorbing ability and excellent performance as a quality-preserving agent, and at the same time uses titanium dioxide, so it is less toxic and solid in a wide temperature range. It has superior properties and extremely wide safety compared to conventional quality-preserving agents in that it does not have to worry about contamination of foods and the like due to melting and dissolution, and is nonflammable.
[0020]
The titanium dioxide used in the present invention is preferably reduced while maintaining the original crystal structure of titanium dioxide. When titanium dioxide having an anatase type crystal structure is used, it has a photocatalytic action, and the antibacterial property and the freshness-retaining property due to this photocatalytic action can be imparted together as an action of the quality-preserving agent. Therefore, it can be used as a quality-preserving agent for a wide range of applications for the purpose of oxygen absorption, antibacterial properties, and freshness maintenance, and can be provided as a quality-preserving agent with excellent safety.
[0021]
The low-order titanium oxide used in the present invention is the original titanium dioxide (TiO2It is preferable that the crystal structure is retained.
As a method for producing low-order titanium oxide, a method in which titanium dioxide is reduced using a reducing agent such as hydrogen gas can be considered. Original titanium dioxide (TiO2), The reduction reaction is desirably performed at a temperature as low as possible, more preferably 450 ° C. or lower. The titanium dioxide used for the reduction reaction preferably contains a sulfate radical, and further preferably contains a nickel species. By using titanium dioxide containing sulfate radicals and nickel species, at relatively low temperatures of 350 ° C. or less, preferably 150 to 300 ° C., more preferably 180 to 280 ° C., most preferably 180 to 260 ° C. Further, reduction can be easily carried out while maintaining the crystal structure of the original titanium dioxide, and a low-order titanium oxide having excellent oxygen absorption ability or a composite thereof can be obtained. Although the action of sulfate radicals and nickel species is not clear, it is thought that they act as a catalyst for the reduction reaction.
[0022]
As a method for obtaining titanium dioxide containing a sulfate group, for example, in the step of dissolving titanium ore with sulfuric acid, heating to metatitanic acid or titanium hydroxide, filtering, washing and firing, the degree of washing is set. A method of adjusting to leave sulfate radicals. If sulfate radicals are not contained in the production process of titanium dioxide, titanium dioxide containing sulfate radicals is impregnated by impregnating the produced titanium dioxide in an aqueous sulfuric acid solution and drying and firing. And the like.
The content of sulfate radicals in titanium dioxide is usually about 0.01 to 10% by mass (hereinafter simply referred to as “%”) with respect to titanium atoms, but if desired, an amount of 20% or more. May be used. When the sulfate group content is too small, the oxygen absorption amount of titanium dioxide after the reduction is insufficient, and even when the sulfate group content is too large, the oxygen absorption amount is not so improved.
[0023]
As a method of obtaining titanium dioxide containing nickel species, a method of impregnating or adsorbing the above-described nickel compound in the form of a solution to titanium dioxide, a coprecipitation of an aqueous solution of a titanium compound such as a titanium salt of an inorganic acid and an aqueous solution of the nickel compound And, if desired, simply mixing titanium dioxide and the nickel compound or nickel atom-containing metal powder in a very fine state. Moreover, as titanium dioxide containing nickel species used in the present invention, in addition to those obtained by impregnation, adsorption, coprecipitation, or mixing as described above, titanium dioxide containing these nickel species is further washed. In addition, those in which chemical structure changes are caused by thermal decomposition in various processes such as heat drying, baking, and grinding.
[0024]
The content ratio of nickel species in titanium dioxide is an amount necessary for reducing titanium dioxide and does not require any special limitation, but may be an amount that exhibits an effect as a catalyst during reduction, and a small amount. It's okay. Generally, it is good to use in the range of 0.01 to 15%, preferably 0.03 to 10% as nickel atoms with respect to titanium dioxide.
If the nickel species content is less than 0.01%, the reduction of titanium dioxide does not proceed much, resulting in insufficient oxygen absorption, and even if the nickel species content is greater than 15%, Not only the improvement is not seen, but also the crystal structure of titanium oxide is unlikely to become anatase type, and it is difficult to obtain a photocatalyst sufficient.
[0025]
  Used in the present inventionLow-order titanium oxide compositeCan be easily produced by reducing titanium dioxide containing sulfate radicals and further nickel species using a reducing agent, usually hydrogen gas. The reduction temperature is preferably 450 ° C. or less from the viewpoint of keeping the crystal structure of titanium dioxide as it is, preferably in the range of 150 to 300 ° C., more preferably 180 to 280 ° C., and most preferably 180 to 260 ° C. is there.
[0026]
As the reducing agent, hydrogen gas is most preferable, and reduction can be performed without any problem by hydrogen gas. However, conventionally known compounds as reducing agents, for example, alcohols such as ethyl alcohol, and hydrocarbon compounds such as propylene may be used. Good. In addition, if desired, the method for promoting the reaction by irradiation with ultraviolet rays or the like is not disturbed.
In the reduction treatment, alumina or silica may be used in combination if desired, and a compound having an atom other than nickel, for example, an atom such as cobalt, iron, magnesium, calcium, aluminum, etc. as an essential component and / or Metals may be used with nickel species.
[0027]
The reduction reaction is required to be performed in an apparatus that blocks oxygen gas and does not contain the oxygen gas. In the reduction of titanium dioxide used in the present invention, no particular limitation is imposed on the apparatus used for the reduction. Usually, a stainless steel reaction tube type with pressure resistance is used, an inert gas is used as a carrier gas, and a reducing agent such as hydrogen gas is introduced under pressure and heating to carry out the reduction reaction. As the carrier gas, a rare gas such as argon gas or nitrogen gas is used. The pressure in the reactor is usually about 0.01 MPa to 0.7 MPa, preferably 0.05 MPa to 0.5 MPa. The reduction reaction is carried out in the reactor at the above pressure, and the reduction temperature is 450 ° C. or lower, preferably 150 ° C. to 300 ° C. over several hours as described above. When titanium dioxide is subjected to a reduction treatment with a reducing agent such as hydrogen gas, part of the oxygen of titanium dioxide is desorbed by reaction with hydrogen to produce water. The reaction product obtained after completion of the reduction reaction exhibits a dark gray to black color. After cooling, the reaction product is transferred to a glove box together with the reactor and taken out into a sealed container in a nitrogen gas stream in which oxygen is blocked.
[0028]
  Obtained in this wayLow-order titanium oxide compositeIs treated with a basic compound in an oxygen-free atmosphere to obtain the quality-preserving agent of the present invention.
  As a method of treating low-order titanium oxide with a basic compound, a method in which a basic compound is directly mixed with low-order titanium oxide, a basic compound is dissolved in water, and an aqueous solution thereof is sprayed on the surface of the low-order titanium oxide. A method of spraying, a method in which a basic compound aqueous solution is supported on silica powder and the like and then dispersed and mixed in low-order titanium oxide, a basic compound or a basic compound aqueous solution is heated, and gasified, Examples thereof include a method of contacting with low-order titanium oxide. The mixing of the low-order titanium oxide and the basic compound is preferably performed in an atmosphere without an oxygen gas such as a nitrogen gas atmosphere.
[0029]
The addition amount of the basic compound for treating low-order titanium oxide is preferably not less than the amount corresponding to the amount of functional groups such as sulfate radicals contained in the low-order titanium oxide and not more than 20 times. When the addition amount of the basic compound is too small, the effect of improving the oxygen absorption rate is small, and when the addition amount of the basic compound is too large, the oxygen absorption rate is not improved so much. For example, when 0.3 mol of sulfate radical is contained, a monovalent basic compound (such as ammonia) is added in an amount ranging from 0.6 mol to 12 mol, and a divalent basic compound (such as sodium carbonate) is added. If so, an amount in the range of 0.3 to 6 moles is added.
[0030]
  Treated with the basic compound thus obtainedLow-order titanium oxide compositeIs placed in an airtight packaging container or packaging bag, preferably in an oxygen-free atmosphere substituted with nitrogen or the like to obtain the quality-preserving agent product of the present invention. The packaging container may be made of an airtight synthetic resin or metal and may have a structure that opens an airtight state when used. The packaging bag may be made of a synthetic resin, metal foil, or other material having no oxygen permeability, and may have any structure that can be used by opening the seal at the time of use.
  In addition, the quality-preserving agent product of the present invention can adsorb natural minerals such as silica and montmorillonite, processed minerals such as activated clay, synthetic minerals such as synthetic silica and zeolite, and activated carbon as auxiliary components. You may use an agent as needed. In addition, components of oxygen absorption accelerators that have been used in the past do not preclude the combined use within a range that does not impair the characteristics of the present invention, if necessary.
[0031]
In the case of only low-order titanium oxide obtained by reducing titanium dioxide, oxygen is slowly absorbed usually over 100 to 700 hours. However, in the case of a quality-preserving agent using low-order titanium oxide treated with the basic compound of the present invention, the rate of oxygen absorption is greatly increased, and the oxygen absorption is completed in about 20 to 40 hours.
In addition, the quality-preserving agent of the present invention, once used to absorb oxygen, can be restored again with the same level of oxygen-absorbing ability by reducing it with hydrogen gas or the like under the same conditions as in production, It can be used repeatedly as a quality-preserving agent.
[0032]
In addition, when anatase-type titanium dioxide is used as a starting material, it also has a photocatalytic action, so it cannot be found in conventional ones having additional functions such as ethylene decomposability and antibacterial activity. It is possible to provide a quality retainer for a wide range of uses.
[0033]
【Example】
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited to the Example shown below. In the examples, “%” is based on mass unless otherwise specified.
[0034]
Example 1:
1.1Titanium dioxide composite impregnated with nickel acetate ( 1-2 Preparation of
Sulfate radical (SO) provided by Sakai Chemical Industry Co., Ltd.Four) White titanium dioxide with anatase type crystal structure containing 10.0% (1-1, specific surface area 268.0 m)2/ g) of 20.0 g (250 mmol) in a magnetic petri dish, then nickel acetate (Ni (CHThreeCOO)2・ 4H2O) Add a homogeneous solution of 3.1 g (12.5 mmol) and 20.0 g of water and mix well, then leave overnight. Drying in a muffle furnace at 250 ° C. for 2.5 hours, cooling, pulverizing, titanium dioxide composite containing sulfate radical and nickel species (1-2) [TiO2・ (Ni (CHThreeCOO)2)0.05 , MW: 88.7, sulfate radical not included in molecular weight calculation], 20.4 g (88.3%). The titanium dioxide composite (1-2) containing sulfate groups and nickel species was confirmed to have an anatase type crystal structure from the measurement result of the X-ray diffractometer (XRD). The X-ray diffractometer (XRD) is a fully automatic diffractometer, MXP, manufactured by Mac Science.3A Was used.
[0035]
1.2Titanium dioxide composite ( 1-2 ) Hydrogen reduction
Connect an inert gas line with a pressure gauge to a stainless steel 1 / 8-inch tube, and also a hydrogen gas line to a stainless steel reactor with a thermometer and an inner diameter of 35 mm and a height of 130 mm. Was prepared by attaching a gas chromatogram for composition analysis, a trap, and a back pressure valve to a stainless steel 1/8 inch pipe line for exhaust gas. Using this reactor, 5.0 g (56.4 mmol) of titanium dioxide (1-2) containing the sulfate group and nickel species was charged into the reactor. Argon gas was introduced as a carrier gas at an additional pressure of 0.4 MPa and a flow rate of 100 ml / min, and heating was started. At a temperature of 180 ° C., an additional pressure of hydrogen gas is set to 0.4 MPa, a back pressure valve gauge pressure is set to 0.3 MPa, that is, the pressure in the reactor is maintained at 0.3 MPa, and hydrogen gas is used as a reducing gas at a flow rate. The reduction reaction was started by introducing at 22 ml / min, and the reaction state was examined by gas chromatogram. When the introduction of hydrogen gas was started at 180 ° C., it was observed that water was estimated to be due to the reduction of oxygen atoms of titanium dioxide by the hydrogen gas. After 60 minutes at a temperature of 180 ° C., a decrease in the amount of water produced was observed, so the temperature was raised to 200 ° C. and continued until the amount of water produced decreased. Thereafter, the reaction temperature was 220 ° C., 240 ° C., The reduction reaction was performed by gradually increasing the temperature to 260 ° C. and introducing hydrogen gas for a total of 480 minutes (8 hours). When the amount of water produced during this period is integrated, the titanium dioxide composite containing sulfate radicals and nickel species (1-2) [TiO2・ (Ni (CHThreeCOO)2)0.05, Molecular weight: 88.7] per gram (11.3 mmol) was 47.8 ml of water (2.13 mmol, converted to 0 ° C.). After the reactor is cooled, the valve is closed and under pressure, the reactant is transferred into the glove box and completely replaced with nitrogen gas, and the oxygen concentration in the glove box reaches 30 ppm or less. While maintaining the concentration at 50 ppm or less, the reactant (1-3) was taken out from the reactor into two airtight plastic packaging containers (gas barrier bags). This was weighed to obtain 4.4 g of a black reaction product (1-3).
[0036]
500 ml of air is introduced into a plastic packaging container (gas barrier bag) containing 2.0 g of the reactant (1-3), one of the reactants (1-3) contained in the two plastic bags, and then The oxygen concentration of was measured. From this result, the reaction product (1-3) finished absorbing oxygen in about 30 days, and the absorbed amount of oxygen was 23.8 ml / g (1.06 mmol / g, converted value at 0 ° C.). found. The value of x calculated from this oxygen absorption amount is 0.188 (= 1.06 × 2 / 11.3), and TiO2-xTiO when expressed as1.81A low-order titanium oxide was obtained. This reaction product (1-3) was confirmed to have an anatase type crystal structure from the measurement result of the X-ray diffractometer (XRD). From these results, the reactant (1-3) retains the crystal structure of the original titanium dioxide and (TiO1.81It was confirmed that it was a low-order titanium oxide composite containing sulfate groups and nickel species in the low-order titanium oxide represented by The reactant (1-3), which was black when taken out of the glove box, turned light gray after absorbing oxygen (1-4). This light gray reactant (1-4) that absorbed oxygen was confirmed to have an anatase type crystal structure from the measurement result of XRD. For analysis of oxygen concentration, an oxygen concentration meter Check Mate O2 / CO2 manufactured by PBI-Dansensor A / S was used. In the following examples, the same apparatus was used for measurement.
[0037]
1.3Low-order titanium oxide composite ( 1-3 Ammonia treatment
When taking out 2.4 g of the above reactant (1-3) out of the reactants (1-3) contained in the two plastic bags into an airtight plastic packaging container (gas barrier bag), a small amount of absorbent cotton is simultaneously added. The bag was stored without touching the reactants, sealed by heat sealing, and sealed with 600 ml of air. Next, 1 g of 12.5% strength aqueous ammonia was injected into the absorbent cotton in the bag with a syringe. At the time of sealing, rubber tape was attached to the bag to prevent outside air from being mixed during injection. The absorbent cotton part is warmed from the outside for 15 minutes to evaporate ammonia gas, left for 5 hours, the reaction product (1-3) is treated with ammonia, and the ammonia-treated reaction product (1 -5) was obtained. When the oxygen absorption amount of the ammonia-treated reactant (1-5) was measured, the cumulative oxygen absorption amount after 15 hours was 21.1 ml / g (25 ° C.), and the cumulative oxygen absorption amount after 24 hours was It reached 25.8 ml / g (25 ° C.) and this value remained the same after 48 hours. The ammonia-treated reaction product (1-5) also changed its appearance to light gray after absorbing oxygen in the same manner (1-6).
As described above, when air is sealed in the reactant (1-3) that is not treated with ammonia and left as it is, it takes about 30 days to absorb oxygen. In the case of -5), it was found that oxygen absorption was accelerated, and the same amount of oxygen absorption could be reached in about 24 hours.
[0038]
1.4Reactant that has absorbed oxygen ( 1-6 Of ethylene gas by photocatalytic action of
0.1 g of the oxygen-treated ammonia-treated reaction product (1-6) obtained in 1-3 above was transferred to an inner diameter of 8.5 cm (57 cm).2), Add 3 g of pure water, mix uniformly, dry to form a foil film, and use 6 fluorescent lamps (FL 20S / BLB-A 20W / BL manufactured by BL Toshiba Lighting & Technology) ) Was irradiated for 3 hours to clean the surface of the reaction product (1-6). Place this petri dish in a tedlar bag (Tedlar bags, material fluoropolymer, size 170mm x 250mm, manufactured by Seiei Inoue) and heat seal. The air in the bag was replaced with a mixed gas of argon / oxygen = 80/20, and then 1000 ppm of ethylene gas was injected with a syringe. At the time of sealing, rubber tape was attached to the bag to prevent outside air from being mixed during injection. A Tedlar bag containing this sample is placed in a light irradiation box, and a 40-watt fluorescent lamp (black light (BL), 0.1 mW / cm)2(Light wavelength 436nm) 1mW / cm2(Light wavelength 365 nm)), the original ethylene gas concentration was halved from 1000 ppm to 500 ppm after 5 hours. Therefore, the reactant (1-6) after oxygen absorption had an excellent photocatalytic action.
[0039]
Summary of Example 1
In Example 1, titanium dioxide containing sulfate radicals and nickel species was reduced. As a result, under a mild heating condition of 180 ° C. to 260 ° C., a low-order titanium oxide composite in which oxygen atoms contained in titanium dioxide were easily reduced and oxygen atoms were partially eliminated was obtained. The crystal structure of this low-order titanium oxide complex retained the anatase type. The oxygen-absorbing ability of the quality-preserving agent of the present invention obtained by treating 2.4 g out of the 4.4 g yield of this low-order titanium oxide composite with an aqueous ammonia solution was measured. As a result, the oxygen absorption amount is excellent at 25.8 ml (25 ° C.), that is, 23.6 ml / g (converted value of 0 ° C.), and low-order oxidation with an excellent oxygen absorption rate that completes oxygen absorption in 24 hours. Titanium was obtained. Further, it was confirmed that the ethylene gas resolution was excellent and it had a photocatalytic action.
On the other hand, when a low-order titanium oxide composite that is not treated with an aqueous ammonia solution is used, the oxygen absorption amount is equivalent to 23.8 ml / g (converted value at 0 ° C.), but it absorbs oxygen. The total time required was about 720 hours (30 days), which was a very slow result. That is, the oxygen absorption rate was accelerated 30 times by the treatment with the aqueous ammonia solution, and it was found that the low-order titanium oxide treated with such a basic compound has a high oxygen absorption rate and is excellent as a quality retainer.
[0040]
Example 2
2.1Reactant that has absorbed oxygen (1-6) Regeneration of lower order titanium oxide and its oxygen absorption
A reaction product (1-3) reduced in the same manner as described in 1.1 and 1.2 above using 5.0 g of the titanium dioxide complex (1-2) containing anatase-type sulfate radical and nickel species prepared in 1.1. ) 3.0 g of the light gray reactant (1-4) in which oxygen was absorbed was charged as a starting material into the reduction reactor used in 1.2. Re-reduction is performed under the conditions of argon gas 100 ml / min as a carrier gas and hydrogen gas 14 ml / min as a reducing gas to obtain 2.4 g of a black reactant (1-3b) corresponding to the reactant (1-3). It was. The oxygen absorption rate of this reactant (1-3b), that is, the regenerated low-order titanium oxide complex was measured. As a result, the absorption of oxygen was completed in about 30 days, and the oxygen absorption amount was 24.3 ml / g (1 0.08 mmol / g, converted to 0 ° C.). The value of x calculated from this result is 0.191 (= 1.08 × 2 / 11.3), which is TiO2- XTiO1.81It was confirmed that the reaction product (1-3) before oxygen absorption was regenerated.
[0041]
2.2Low-order titanium oxide composite (1-3b) Sodium carbonate treatment
The reaction product obtained in 2.1, that is, 1.4 g of the low-order titanium oxide composite (1-3b) was put in a gas barrier bag, and sodium carbonate (Na2COThree) Dissolve 0.7g in 2g of water, and add 1g of synthetic silica (Nipsil NS-K manufactured by Nippon Silica Kogyo Co., Ltd.) and mix to treat the low-order titanium oxide composite (1-3b) with sodium carbonate. Was done. 5.1 g of the obtained low-order titanium oxide composite (1-5b) treated with sodium carbonate was put in the same barrier bag, sealed by heat sealing, and 350 ml of air was enclosed. The oxygen absorption after standing for 1 hour reached 12 ml / g (25 ° C.), the cumulative oxygen absorption after 24 hours reached 20.8 ml / g (25 ° C.), and this value was the same after 48 hours. It was.
[0042]
This oxygen absorption amount of 20.8 ml / g (25 ° C.) is 20.8 × 273/298 = 19.1 ml / g in terms of 0 ° C., which is 0.85 mmol / g. The value of x calculated from this oxygen absorption amount is 0.150 (= 0.85 × 2 / 11.3), and TiO2-XTiO1.85Thus, a low-order titanium oxide composite was obtained. It was confirmed that the reaction product (1-6b) treated with sodium carbonate that absorbed oxygen had an anatase type crystal structure from the measurement result of the X-ray analyzer (XRD). The reaction product (1-3b), which was black when taken out from the glove box, absorbed oxygen and then turned light gray (1-4b). From these results, the reaction product treated with sodium carbonate (1-5b) is a low-order titanium oxide composite (TiO2) that retains the original titanium dioxide crystal structure.1.85It was confirmed that the oxygen absorption rate was large and it was useful as a quality-preserving agent.
As described above, when air is sealed in low-order titanium oxide not treated with a basic substance and left as it is, it takes about 30 days to absorb oxygen. In the case of the reactant (1-5b) treated with sodium, the oxygen absorption was accelerated, and the oxygen absorption amount of the same level could be reached in about 24 hours.
[0043]
Example 3:
3.1Titanium dioxide composite by impregnation with nickel acetate (2-2) Preparation of
White titanium dioxide CSPM (2-1) with anatase type crystal structure containing sulfate radical provided by Sakai Chemical Industry Co., Ltd. [specific surface area: 120m2/ g, analytical value of sulfur by fluorescent X-ray (S = 2.68%), 20.0 g (250 mmol) of the converted value to sulfate radical] was put into a magnetic petri dish, and then nickel acetate [Ni (CHThreeCOO)2・ 4H2O] A homogeneous solution of 3.1 g (12.5 mmol) and 19.2 g of water was added, mixed well, and allowed to stand overnight. Drying in a muffle furnace at 250 ° C. for 2.0 hours, cooling, pulverizing, titanium dioxide composite containing sulfate radical and nickel species (2-2) [TiO2・ Ni (CHThreeCOO)2)0.05, MW: 88.7, sulfate radical not included in molecular weight calculation], 20.8 g (89.7%). The titanium dioxide composite (2-2) containing sulfate groups and nickel species was confirmed to have an anatase type crystal structure from the XRD measurement results.
[0044]
3.2Titanium dioxide composite (2-2) Hydrogen reduction
Using the same reaction apparatus as in Example 1, 5.0 g (56.4 mmol) of the above-mentioned titanium dioxide complex (2-2) containing sulfate radical and nickel species was charged into the reactor. Nitrogen gas as an inert gas is introduced at an additional pressure of 0.2 MPa and a flow rate of 100 ml / min, heated to a temperature of 240 ° C., an additional pressure of hydrogen gas is set to 0.4 MPa, and a gauge pressure of the back pressure valve is set to 0.1 MPa. That is, the inside of the reaction apparatus was kept at 0.1 MPa, the hydrogen gas flow rate was introduced at 22 ml / min to start the reduction reaction, and the reaction state was examined by gas chromatogram. When the introduction of hydrogen gas was started at a reaction temperature of 235 ° C. to 240 ° C., it was observed that water was estimated to be due to the reduction of oxygen atoms of titanium dioxide by hydrogen. Hydrogen gas was introduced for a total of 320 minutes to complete the reaction. When the amount of water generated during this period is integrated, titanium dioxide containing sulfate radicals and nickel species [TiO2・ Ni (CHThreeCOO)2)0.05, MW: 88.7] / gram (11.3 mmol) was 49.5 ml of water (2.21 mmol, converted at 0 ° C.). After the reactor is cooled, the valve is closed and under pressure, the reactant is transferred into the glove box and completely replaced with nitrogen gas, and the oxygen concentration in the glove box reaches 30 ppm or less. While maintaining the concentration at 50 ppm or less, the reaction product (2-3) was separated from the reactor into two confidential packaging containers (gas barrier bags). This was weighed to obtain 4.3 g of a black reaction product (2-3).
[0045]
When 600 ml of air was introduced into a gas barrier bag containing 2.4 g of the reactant (2-3), one of the reactants (2-3) contained in these two plastic bags, it took about 30 days. Then, the absorption of oxygen was completed. From this measurement result, it was found that the reactant (2-3) absorbed 22.6 ml / g (1.01 mmol / g, converted value at 0 ° C.) of oxygen. The value of x calculated from the oxygen gas absorption amount is 0.18 (= 1.01 × 2 / 11.3), and TiO2-xTiO when expressed as1.82Titanium oxide was obtained. This reaction product (2-3) was confirmed to have an anatase-type crystal structure from the XRD measurement results, and a low-order titanium oxide composite (TiO 2) that retained the original crystal structure of titanium dioxide.1.82).
In addition, the reaction product (2-3), which was black when taken out from the glove box, changed to light gray after absorbing oxygen (2-4). The light gray reactant (2-4) that absorbed oxygen was confirmed to have an anatase-type crystal structure from the XRD measurement results, and titanium oxide (TiO 2) of the original crystal structure was confirmed.2) Was playing.
[0046]
3.3Low-order titanium oxide (2-3) Ammonia treatment
When taking out 1.9 g of the other reactant (2-3) in the two plastic bags into an airtight plastic packaging container (gas barrier bag), a small amount of absorbent cotton is simultaneously added. The reaction product was placed in a bag without touching, sealed by heat sealing, and 475 ml of air was enclosed. 0.8 g of 12.5% strength aqueous ammonia was injected into the absorbent cotton in the bag with a syringe. At the time of sealing, rubber tape was attached to the bag to prevent outside air from entering during injection. The absorbent cotton portion was heated from the outside for 15 minutes to evaporate ammonia gas, left to stand for 24 hours, the reaction product (2-3) was treated with ammonia, and the ammonia-treated reaction product corresponding to the quality-preserving agent of the present invention ( 2-5) was obtained. When the amount of oxygen absorbed in the ammonia-treated reactant (2-5) was measured, the amount of oxygen absorbed after 30 hours was 21.8 ml / g (25 ° C.), and the total amount of oxygen absorbed after 48 hours was It was 22.7 ml / g (25 ° C.).
In addition, the ammonia-treated reaction product (2-5), which was black when taken out from the glove box, turned to light gray after absorbing oxygen (2-6). This pale gray reactant (2-6) that absorbed oxygen was confirmed to have an anatase-type crystal structure from the XRD measurement results.
[0047]
As described above, when air is sealed in the reactant (2-3) and left as it is, it takes about 30 days to absorb oxygen, but the reactant (2 In the case of -5), the oxygen absorption is accelerated and can reach the same amount of oxygen absorption in about 1 to 2 days. It was.
The oxygen absorption 22.7 ml / g (25 ° C.) of the reaction product (2-5) is 20.8 ml / g in terms of 0 ° C., which corresponds to 0.93 mmol / g. And titanium oxide is TiO2-xThe value of x calculated from the amount of oxygen absorbed when expressed by the formula is 0.16 (= 0.93 × 2/11), and TiO2-xTiO when expressed as1.84Titanium oxide was obtained. This reaction product (2-5) was confirmed to have an anatase-type crystal structure from the XRD measurement results, and a low-order titanium oxide composite (TiO 2) that retained the original titanium dioxide crystal structure.1.84).
[0048]
3.4Reactant that has absorbed oxygen (2-6) Of ethylene gas by photocatalysis of water
Using 0.1 g of the ammonia-treated reactant (2-6) that absorbed oxygen, the decomposition of ethylene gas was tested in the same manner as described in Example 1. As a result, the initial 1000 ppm to 500 ppm or less in 5 hours. The concentration was halved.
[0049]
3.5Reactant that has absorbed oxygen (2-6) Regeneration of lower order titanium oxide and its oxygen absorption
Using 5.0 g of the titanium dioxide complex (2-2) containing the anatase-type sulfate radical and nickel species prepared in 3.1, the reactant reduced by the same reduction apparatus and method as described in 2.1 and 2.2 (2- Using 3.0 g of the light gray reactant (2-4) in which oxygen was absorbed in 3) as a starting material, this was charged into the reduction reactor used in 2.2. Re-reduction was performed under conditions of nitrogen gas 100 ml / min as carrier gas and hydrogen gas 14 ml / min as reducing gas to obtain 2.4 g of black reactant (2-3b) corresponding to reactant (2-3). . When the oxygen absorption rate of this reactant (2-3b), that is, the regenerated low-order titanium oxide composite was measured, the absorption of oxygen was completed in about 30 days, and the amount of oxygen absorbed was 23 without ammonia treatment. It was 1 ml / g (1.03 mmol / g, 0 degreeC conversion value). The value of x calculated from this result is 0.182 (= 1.03 × 2 / 11.3), which is TiO2-XTiO1.82It was confirmed that the reaction product (2-3) before oxygen absorption was regenerated.
[0050]
Summary of Example 3
Example 3 also reduced a titanium dioxide composite containing sulfate radicals and nickel species. As a result, under a mild heating condition of 235 ° C. to 240 ° C., a low-order titanium oxide composite in which oxygen atoms contained in titanium dioxide were easily reduced and oxygen atoms were partially eliminated was obtained. The crystal structure of this low-order titanium oxide complex retained the anatase type. The oxygen-absorbing ability of the quality-preserving agent of the present invention obtained by treating 1.9 g out of 4.3 g of this low-order titanium oxide composite with an aqueous ammonia solution was measured. As a result, the oxygen absorption amount was excellent at 22.7 ml (25 ° C.), that is, 20.8 ml / g (converted value of 0 ° C.), and the oxygen absorption rate was excellent so that the oxygen absorption was completed within 24 to 48 hours. A low-order titanium oxide composite was obtained. Further, it was confirmed that the ethylene gas resolution was excellent and it had a photocatalytic action.
On the other hand, when using a low-order titanium oxide composite that is not treated with an aqueous ammonia solution, the oxygen absorption is 22.6 ml / g (converted value at 0 ° C.), which is the same as the amount of oxygen absorbed by the aqueous ammonia treatment. However, the total time required for oxygen absorption was very slow, about 720 hours (30 days). That is, the treatment with the sodium carbonate aqueous solution increased the oxygen absorption rate by 15 to 30 times, and it was found that low-order titanium oxide treated with such a basic compound has a high oxygen absorption rate and is excellent as a quality retention agent. It was.
[0051]
Example 4: Preservation test
4.1Production of quality preservation products
In a glove box under an oxygen-free nitrogen atmosphere, 6.0 g of the low-order titanium oxide composite prepared in the same manner as in Example 1 1.2, 6.0 g of water and sodium carbonate (Na2COThree) Add 3.0 g of a sodium carbonate aqueous solution in which 2.0 g is dissolved, and 3.0 g of synthetic silica (Nipsil NS-K manufactured by Nippon Silica Industry Co., Ltd.) A quality maintaining agent of the present invention was prepared. This quality-preserving agent is laminated with polyethylene terephthalate and polyethylene, and put into a breathable bag (about 6cm x about 6cm) with a small hole to produce a pouch with quality-preserving agent, which is further sealed with airtightness. And quickly heat sealed to produce a quality-preserving product.
[0052]
4.2Quality maintenance test using Western confectionery (waffle)
Quickly put a sachet and 86g waffle taken from the quality preservation product made in 4.1 into a gas barrier transparent bag, heat seal the inlet, take out the air inside with a syringe, and newly add 500ml of air Was injected with a syringe. When discharging and injecting with a syringe, rubber tape was attached to the bag to prevent outside air from entering. When the oxygen concentration in the bag was measured, it was 3.7% after 24 hours, 3.1% after 48 hours, and 0% after 72 hours. This sample was allowed to stand at room temperature (15 to 25 ° C.) in a dark place for 15 days, but there was no change in the appearance of the waffle and no change in quality. The carbon dioxide concentration was always 1% or less throughout the 15-day standing period.
[0053]
Comparative Example 1
Only 87 g of waffle was put in a gas barrier bag, the inlet was heat-sealed, the air inside was extracted with a syringe, and 500 ml of air was newly injected with the syringe. When discharging and injecting with a syringe, rubber tape was attached to the bag to prevent outside air from entering. This sample was allowed to stand in the dark at room temperature (15 to 25 ° C.), and the oxygen concentration was measured. As a result, it was 20% after 24 to 48 hours and 9.4% after 72 hours. Molds appeared on the surface, and some black-blue colonies were observed. The mold gradually expanded after the outbreak. The oxygen concentration decreased and became 0% after 96 hours.
At this time, the concentration of carbon dioxide was 41%, so that a large amount of carbon dioxide was generated, and the oxygen concentration decreased due to the growth of mold, and the carbon dioxide concentration seemed to increase rapidly. From this, after 72 hours, it could not be confirmed visually, but it seems that the mold has already started to grow and the oxygen concentration has been lowered.
[0054]
Comparison between Example 4 and Comparative Example 1
In Example 4, the oxygen concentration in the gas barrier bag was reduced to 0% within 48 to 72 hours after the preparation of the sample due to the effect of the quality retainer using low-order titanium oxide treated with the basic compound of the present invention. As a result, no abnormality was observed even when the waffles were stored for 15 days or longer. In comparison, in Comparative Example 1, mold started to grow in the waffle after 3 days, and was observed with the naked eye on the 4th day, and continued to grow rapidly thereafter.
[0055]
【The invention's effect】
Such a quality-maintaining agent of the present invention has a large oxygen absorption capacity and oxygen absorption rate, and unlike a conventional iron-based oxygen absorber, it does not use an iron-based component. Will not cause any problems in malfunction or use in microwave ovens. Moreover, since the component of the quality-preserving agent of the present invention is an inorganic compound, there is no fear of troubles such as melting, dissolution, and combustion found in oxygen absorbers using conventional organic compounds, so the safety is high. The present invention provides a quality-preserving agent that can be applied to a wide range of uses.

Claims (2)

アルカリ金属および/またはアルカリ土類金属の炭酸塩、炭酸水素塩、水酸化物、アンモニア、炭酸アンモニウム、および炭酸水素アンモニウムからなる群から選ばれる塩基性化合物で処理し、硫酸根及びニッケル種を含有し、かつ、二酸化チタンのオリジナルの結晶構造を保持し、一般式TiO 2−x (ここで、xは0.1から0.5の実数を示す)で表される構造を有するものである低次酸化チタン複合体を含有することを特徴とする、品質保持剤。Treated with a basic compound selected from the group consisting of carbonates, bicarbonates, hydroxides, ammonia, ammonium carbonates, and ammonium bicarbonates of alkali metals and / or alkaline earth metals, containing sulfate radicals and nickel species And retains the original crystal structure of titanium dioxide and has a structure represented by the general formula TiO 2-x (where x represents a real number of 0.1 to 0.5). A quality-preserving agent comprising a titanium suboxide composite. 請求項1に記載の品質保持剤を、無酸素雰囲気下で気密性の包装容器に封入した形態である、品質保持剤製品。  A quality-preserving agent product in a form in which the quality-preserving agent according to claim 1 is enclosed in an airtight packaging container in an oxygen-free atmosphere.
JP2002377775A 2002-12-26 2002-12-26 Quality retainer Expired - Lifetime JP4332346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002377775A JP4332346B2 (en) 2002-12-26 2002-12-26 Quality retainer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002377775A JP4332346B2 (en) 2002-12-26 2002-12-26 Quality retainer

Publications (2)

Publication Number Publication Date
JP2004201640A JP2004201640A (en) 2004-07-22
JP4332346B2 true JP4332346B2 (en) 2009-09-16

Family

ID=32814849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002377775A Expired - Lifetime JP4332346B2 (en) 2002-12-26 2002-12-26 Quality retainer

Country Status (1)

Country Link
JP (1) JP4332346B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4288499B2 (en) * 2003-09-10 2009-07-01 独立行政法人産業技術総合研究所 Oxygen scavenger and method for producing the same
CN1845787A (en) * 2003-09-10 2006-10-11 独立行政法人产业技术综合研究所 Oxygen scavenger and method for production thereof
JP4484195B2 (en) * 2003-09-16 2010-06-16 テイカ株式会社 Method for producing titanium oxide
WO2006033177A1 (en) * 2004-09-24 2006-03-30 Kiichirou Sumi Method for manufacturing titanium ball
JP4784063B2 (en) * 2004-10-12 2011-09-28 凸版印刷株式会社 Printing ink composition having oxygen absorption ability and oxygen-absorbing laminate using the same
JP2006131699A (en) * 2004-11-04 2006-05-25 Toppan Printing Co Ltd Adhesive composition having oxygen-absorbing capacity and layered product using the same
JP2006131242A (en) * 2004-11-04 2006-05-25 Toppan Printing Co Ltd Oxygen-absorptive packaging mounting member and package mounted with it
JP4600987B2 (en) * 2005-03-04 2010-12-22 中央化学株式会社 Oxygen-absorbing container
JP2008279407A (en) * 2007-05-14 2008-11-20 Kanac Corp Visible light response type titanium dioxide photocatalyst powder and its manufacturing method and device
CN103153452B (en) 2011-01-31 2015-05-20 三菱瓦斯化学株式会社 Oxygen absorber and method for storing same
JP5288079B1 (en) * 2011-11-15 2013-09-11 三菱瓦斯化学株式会社 Oxygen-absorbing resin composition, oxygen-absorbing multilayer body, and oxygen-absorbing hollow container
WO2014021430A1 (en) * 2012-08-02 2014-02-06 三菱瓦斯化学株式会社 Method for producing oxygen absorber
ITPD20130228A1 (en) 2013-08-07 2015-02-08 Unox Spa METHOD FOR CONSERVATION OF FOODS
JP6610929B2 (en) * 2015-08-26 2019-11-27 国立研究開発法人物質・材料研究機構 Fine particle production method, sintered body crushing method

Also Published As

Publication number Publication date
JP2004201640A (en) 2004-07-22

Similar Documents

Publication Publication Date Title
JP4332346B2 (en) Quality retainer
Liu et al. Fabrication of TiO2/Ag2O heterostructure with enhanced photocatalytic and antibacterial activities under visible light irradiation
JP2020124710A (en) Material to which functional material is attached and its production method, water cleaner and its production method, water cleaner cartridge and its production method, air cleaner and its production method, filter member and its production method, support member and its production method, foamed polyurethane foam and its production method, bottle and its production method, container and its production method, cap or member made of lid and its production method, solidified porous carbon material or material made of pulverized product of the porous carbon material and binder and its production method, and porous carbon material and its production method
Mohamed et al. Copper (II) phthalocyanines immobilized on alumina and encapsulated inside zeolite-X and their applications in photocatalytic degradation of cyanide: a comparative study
JP4261154B2 (en) Novel low-order titanium oxide and method for producing the same
CN105688660B (en) Using photocatalyst of titanium dioxide as material for air purification of base material and preparation method thereof
CN107185535A (en) It is a kind of it is unglazed except aldehyde catalyst, comprising the catalyst except aldehyde system and application thereof
Kokilavani et al. Novel NiS/Ag2MoO4 heterostructure nanocomposite: Synthesis, characterization and superior antibacterial and enhanced photocatalytic activity
Hoai et al. Removal of ethylene by synthesized Ag/TiO2 photocatalyst under visible light irradiation
US8753535B2 (en) Composite absorbent for catalyst residues removal from polyolefin solution polymerization mixture
CN113662004A (en) Slow-release chlorine dioxide disinfection card using zeolite as carrier
JP4352113B2 (en) Quality retainer
JPH02138935A (en) Freshness preserver for vegetables
JP3288265B2 (en) Oxygen absorbent and its use
JP4072592B2 (en) Novel oxygen absorber and method for producing the same
US20070037722A1 (en) Oxygen scavenger and method for production thereof
JP4288499B2 (en) Oxygen scavenger and method for producing the same
JP2961231B1 (en) Method for producing oxygen scavenger
Fan et al. Ag‐Enhanced TiO2–x/C Composites with Metal‐Organic Frameworks as Precursors for Photodegradation of Methyl Blue
JP2013139029A (en) Porous adsorbent having visible light absorbency, and method for producing the same at low temperature
CN101195477A (en) Energy-activated compositions for controlled sustained release of a gas
CN203379809U (en) High-performance air purifier
CN115999619B (en) Low-temperature photo-deposition preparation method of ozone adsorption catalyst
JPS62286521A (en) Method for purifying exhaust gas
Jaramillo Fierro Synthesis, characterization and theoretical calculations of ZnTiO3 for the adsorption and photocatalytic removal of Methylene Blue dye

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051128

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061124

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20061124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061124

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20070529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080917

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080922

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090622

R150 Certificate of patent or registration of utility model

Ref document number: 4332346

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term