JP4331763B2 - Method for developing conductive particles - Google Patents

Method for developing conductive particles Download PDF

Info

Publication number
JP4331763B2
JP4331763B2 JP2007021847A JP2007021847A JP4331763B2 JP 4331763 B2 JP4331763 B2 JP 4331763B2 JP 2007021847 A JP2007021847 A JP 2007021847A JP 2007021847 A JP2007021847 A JP 2007021847A JP 4331763 B2 JP4331763 B2 JP 4331763B2
Authority
JP
Japan
Prior art keywords
particles
magnetic
developing
conductive
roller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007021847A
Other languages
Japanese (ja)
Other versions
JP2008185980A (en
Inventor
平原秀昭
山岸則夫
小沼崇明
Original Assignee
株式会社アフィット
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アフィット filed Critical 株式会社アフィット
Priority to JP2007021847A priority Critical patent/JP4331763B2/en
Publication of JP2008185980A publication Critical patent/JP2008185980A/en
Application granted granted Critical
Publication of JP4331763B2 publication Critical patent/JP4331763B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Dry Development In Electrophotography (AREA)
  • Developing Agents For Electrophotography (AREA)

Description

本発明は静電印刷法や電子写真法の現像に関わり、特に導電性粒子によって現像する方法及び装置に関わる。 The present invention relates to the development of electrostatic printing and electrophotography, and more particularly to a method and apparatus for developing with conductive particles.

1983年にカールソンによって発明された電子写真法はその解像性と出力速度の速さによって全世界に広がり、改良を重ねて今日に至っている。
静電潜像を現像する現像剤はトナーと称され、種々の改良工夫がなされてきた事が複写機やプリンターの世界で大きな発展をしてきた要因ともいえる。
The electrophotographic method invented by Carlson in 1983 has spread all over the world due to its resolution and high output speed, and has been improved today.
A developer for developing an electrostatic latent image is called a toner, and it can be said that various improvements have been made in the world of copiers and printers.

一般のトナーは顔料と樹脂の混合の粒子であり、乾式の場合は磁性粒子または現像スリーブとの摩擦帯電を利用し、液体の場合は溶媒和を利用して帯電させ静電潜像を現像するのが一般的である。
トナーは帯電した電荷を保持しているために磁性粒子又は現像スリーブに付着し、静電像坦持体の近くまで搬送され、電界によって該像坦持体に付着現像される。現像されなかったトナーは磁性粒子又はスリーブに付着しているので、掻き取り板或いはブラシ、ローラー等によって回収され、トナー溜まりの現像材と混合され、再度現像に使用される。現像剤はさらに静電転写を要する系では、像坦持体上でもトナーは帯電を維持し、転写部で被転写体に電界で転写する。
General toner is a mixture of pigment and resin particles. In the case of dry type, the electrostatic latent image is developed by using triboelectric charging with magnetic particles or developing sleeve, and in the case of liquid using solvation. It is common.
Since the toner holds the charged electric charge, the toner adheres to the magnetic particles or the developing sleeve, is transported to the vicinity of the electrostatic image carrier, and is developed to adhere to the image carrier by an electric field. Since the undeveloped toner adheres to the magnetic particles or the sleeve, it is collected by a scraping plate, a brush, a roller or the like, mixed with the developer in the toner reservoir, and used again for development. In a system that further requires electrostatic transfer, the toner maintains charge even on the image carrier and is transferred to the transfer target by an electric field at the transfer portion.

これら一連の動作を成り立たせるためには少なくともトナーの表面の一部は帯電を維持するためにほぼ絶縁体でなければならない。
近年電子写真法の解像性と出力速度の速さ及びデジタルデータから直接ハード出力が得られる利点を利用して、デジタルデータから直接配線基板等を製作したいという要求があり、導電性のトナーを現像できるように種々の工夫がなされてきている。
In order to realize such a series of operations, at least a part of the surface of the toner must be substantially an insulator in order to maintain charging.
In recent years, there has been a demand for manufacturing a wiring board directly from digital data by taking advantage of the resolution of electrophotography, the speed of output speed, and the advantage of obtaining hard output directly from digital data. Various ideas have been made to enable development.

例えば特許例として、以下のものがある。
特開昭59−189617号公報 特開昭59−202682号公報 特開昭60−137886号公報 特開昭60−160690号公報 特開2000−221780号公報これらの特許例では、導電性粒子の周囲に絶縁性樹脂で被覆した金属トナーを利用する方法が開示されている。これらは金属粒子に薄い絶縁被膜を施すことによって、あたかも絶縁性のトナーと同等の振る舞いを起こさせることによって電子写真法で現像転写を行うことを目指しているものである。静電印刷法や電子写真法における導電トナーや金属トナーと称するものはほとんどがこの類であり、単純な導電性粒子や金属ではない。
Examples of patents include the following.
JP 59-189617 A JP 59-202682 A JP-A-60-137886 JP 60-160690 A In these patent examples, a method is disclosed that uses a metal toner that is coated with an insulating resin around conductive particles. These are intended to be developed and transferred by electrophotography by applying a thin insulating film to the metal particles to cause a behavior equivalent to that of insulating toner. Most of the toners referred to as conductive toners and metal toners in the electrostatic printing method and electrophotographic method are of this type, and are not simple conductive particles or metals.

導電材料に絶縁被膜を施したり樹脂を含むということは、静電印刷法あるいは電子写真法にとって取り扱い易い方法であるが、導電材料を利用する目的からは非常にやっかいなものになる。
導電性の目的はそこに電流を流すという大目的があり、いかに絶縁被膜材料の工夫がされたとしても、結果的には電気抵抗の高い電極あるいは配線とならざるを得ない。
その為、絶縁被膜を高温で飛ばしてしまうというような限られた用途にしか使われていないのが現状である。
Applying an insulating film to the conductive material or including a resin is a method that is easy to handle for the electrostatic printing method or the electrophotographic method, but is extremely troublesome for the purpose of using the conductive material.
The purpose of electrical conductivity has a large purpose of flowing current therethrough, and no matter how the insulating coating material is devised, the result is an electrode or wiring with high electrical resistance.
For this reason, the current situation is that it is used only for limited applications such as blowing off the insulating coating at a high temperature.

また、上記の導通性の改善のために、特開昭58−57783号公報、特開平07−254768号公報が提案されている。これらの特許ではメッキ開始の基材となるバナジューム等をトナーの表面に含ませ、パターン化した後にその上にメッキして導電パターンを形成する方法が提案されている。しかしメッキ法では別の行程が付加され、デジタルデータから直接配線基板を製作することからは外れてしまい、メリットも半減してしまう。
また配線基板製作以外でも導電材料に何ら不純物を含ませないでパターン化したいといった要求もあり、導電材料そのものを扱いたいという要求が高まっている。
In order to improve the above-mentioned conductivity, Japanese Patent Laid-Open Nos. 58-57883 and 07-254768 have been proposed. In these patents, a method is proposed in which vanadium or the like serving as a base material for initiating plating is included in the surface of the toner, and after patterning, plating is performed thereon to form a conductive pattern. However, in the plating method, another process is added, and it is out of the production of the wiring board directly from the digital data, and the merit is also halved.
In addition to the production of the wiring board, there is a demand for patterning without including any impurities in the conductive material, and there is an increasing demand for handling the conductive material itself.

電子写真法や静電印刷法で樹脂等の処理を施さない導電性材料そのものをうまく取り扱えない理由は、静電法のトナーに要求される特性にことごとく反するからである。 The reason why a conductive material itself that is not treated with resin or the like in electrophotography or electrostatic printing method cannot be handled well is because it completely contradicts the characteristics required for electrostatic toner.

トナーはまず、1個1個の粒子に分散していなければならない。像坦持体近くまで搬送されなければならない。搬送される際に飛散してはならない。静電潜像を破壊してはならない。確実に目的の極性に帯電し、目的潜像以外の部分には付着してはならない。等々の特性が求められる。 The toner must first be dispersed into individual particles. It must be transported close to the image carrier. Do not splash when transported. Do not destroy the electrostatic latent image. Be sure to be charged to the desired polarity and not adhere to any part other than the target latent image. Etc. are required.

通常のトナーはほぼ絶縁体であり、接触帯電等で帯電すれば自然とお互いに反発力が働き1個1個の粒子に分散する。また、帯電することによって磁性粒子と称する搬送材料に静電的に付着し自由に搬送され、動的に振り回されても飛散することは少ない。さらに像坦持体に接触しても絶縁体であれば潜像を壊すことは無く、静電的に引き合うところだけに付着し、逆極性部分には付着しない。
このようにトナーはいかに1個1個の粒子が均一に確実に目的極性に帯電するか工夫されているのである。
Ordinary toner is almost an insulator, and when charged by contact charging or the like, the repulsive force acts naturally and disperses into individual particles. In addition, when charged, it electrostatically adheres to a conveying material called magnetic particles and is freely conveyed, and even if it is dynamically swung, it hardly scatters. Further, even if it is in contact with the image carrier, if it is an insulator, it will not destroy the latent image, and will adhere only to the electrostatic attracting area, and will not adhere to the reverse polarity part.
In this way, the toner is devised to ensure that each particle is charged uniformly and reliably to the target polarity.

しかし、導電材料であると、1個1個の粒子に分散して帯電させることが難しいことや、帯電を維持することが難しく、そのため搬送で飛散すること、潜像に接触すれば導体であるために電荷が漏洩して静電潜像が壊されてしまうことになる。 However, if it is a conductive material, it is difficult to disperse and charge each individual particle, and it is difficult to maintain the charge, so that it is a conductor if it is scattered by conveyance and touches the latent image. As a result, the electric charge leaks and the electrostatic latent image is destroyed.

これらの解決のために発明者等は特願2005−214192で、樹脂を含まない導電性粒子を現像する方法を提案した。それは導電性粒子をフェライト粒子又は鉄粒子等の磁性材料と混合し、磁性集合体を内包した導電性非磁性スリーブに運ばれる磁性材料に抱え込ませることによって像坦持体近傍まで搬送し、電界によって該導電性粒子を像坦持体に飛翔させることで現像する現像方法である。これによって特開昭63−88893に示される方式と比べ、感光体に対して横位置に配置できるなど、従来現像器と同じように比較的自由なシステム構成が出来るようになった。 In order to solve these problems, the inventors proposed in Japanese Patent Application No. 2005-214192 a method of developing conductive particles not containing a resin. It mixes conductive particles with magnetic materials such as ferrite particles or iron particles, and transports them to the vicinity of the image carrier by holding them in a magnetic material carried in a conductive nonmagnetic sleeve containing a magnetic aggregate, and by an electric field This is a developing method in which the conductive particles are developed by flying onto an image carrier. As a result, compared to the system disclosed in Japanese Patent Laid-Open No. 63-88893, a relatively free system configuration can be achieved as in the case of a conventional developing device, such as being arranged laterally with respect to the photoreceptor.

しかしその発明による現像器では導電粉は磁性粉に抱え込まれているだけで付着力がないため、現像スリーブを高速に回転すると、導電粉が遠心力で飛散し、バックグラウンドにも付着するため、低速のシステムにしか使えないという限定が生じている。 However, in the developing device according to the invention, since the conductive powder is only held in the magnetic powder and has no adhesion, when the developing sleeve is rotated at a high speed, the conductive powder is scattered by centrifugal force and adheres to the background. There is a limitation that it can only be used on low-speed systems.

本発明は高速のシステムにも対応できる樹脂を含まない導電性粒子を現像する方法を提供するものである。 The present invention provides a method of developing conductive particles that do not contain a resin that can be applied to a high-speed system.

本発明の基本的構成を図1に従って説明する。
トナーホッパー9から供給された導電性粒子1は磁性粒子2とパドル5の回転によって混合され、メカニカルに分散される。磁性ロールは導電性非磁性のスリーブ3と磁性集合体4で構成され、磁性粒子2は導電粒子1を抱え込んで磁性集合体4の磁力に引き寄せられスリーブ3に取り付く。スリーブ3は回転しており、磁性集合体4による磁力によって導電粒子1を抱え込んだ該磁性粒子2を多量に運ぼうとするが、厚み規制ブレード6によって規制し、該磁性粒子2のスリーブ3上の厚みを一定にする。これは前記磁性ローラと離間して配置される現像ローラ12にスリーブ3上の該磁性粒子2及び導電粒子1が確実に接触しないよう間隙を形成するためである。
The basic configuration of the present invention will be described with reference to FIG.
The conductive particles 1 supplied from the toner hopper 9 are mixed by the rotation of the magnetic particles 2 and the paddle 5 and mechanically dispersed. The magnetic roll is composed of a conductive non-magnetic sleeve 3 and a magnetic assembly 4, and the magnetic particles 2 hold the conductive particles 1 and are attracted to the magnetic force of the magnetic assembly 4 to be attached to the sleeve 3. The sleeve 3 is rotating and tries to carry a large amount of the magnetic particles 2 holding the conductive particles 1 by the magnetic force of the magnetic aggregate 4. Keep the thickness constant. This is because a gap is formed so that the magnetic particles 2 and the conductive particles 1 on the sleeve 3 do not come into contact with the developing roller 12 spaced apart from the magnetic roller.

現像ローラ12には現像バイアス電源7が接続されており、スリーブ3には補助電源8が接続されており、それぞれに印加される電圧差によって導電粒子1は間隙を飛翔し、現像ローラ12に付着して像担持体10の近傍まで運ばれる。 A developing bias power source 7 is connected to the developing roller 12, and an auxiliary power source 8 is connected to the sleeve 3, and the conductive particles 1 fly through the gap due to a voltage difference applied to each, and adhere to the developing roller 12. Then, it is carried to the vicinity of the image carrier 10.

現像ローラー12とスリーブ3上の該磁性粒子2及び導電粒子1が接触状態であると、現像をーラー12とスリーブ3とがショートしてしまい、現像ローラー12とスリーブ3時電圧差が生じなくなり、導電粒子1は飛翔できなくなり、現像スリーブ12に付着することが出来なくなる。 If the magnetic particles 2 and the conductive particles 1 on the developing roller 12 and the sleeve 3 are in contact with each other, the developing roller 12 and the sleeve 3 are short-circuited, and a voltage difference between the developing roller 12 and the sleeve 3 does not occur. The conductive particles 1 cannot fly and cannot adhere to the developing sleeve 12.

現像ローラ12は、表面に付着した導電粒子1が像担持体10とも接触しないよう間隙をもって配置されている。像坦持体は導電性基材11と絶縁性被膜あるいは感光体10で構成され静電潜像が作られている。信号潜像だけに導電粒子1が現像ローラから飛翔し、バックグラウンドには飛翔しないような電界を現像バイアス電源12により供給することによって現像する。
磁性ローラが高速回転すれば導電性粒子は飛散するが、図1の如く現像ローラ12、スクレーパー13,及びケース等によって囲まれ、外部に飛散することは無いので高速の現像が可能となる。
The developing roller 12 is arranged with a gap so that the conductive particles 1 attached to the surface do not come into contact with the image carrier 10. The image carrier is composed of a conductive substrate 11 and an insulating coating or a photoreceptor 10 to form an electrostatic latent image. Development is performed by supplying an electric field by the developing bias power source 12 so that the conductive particles 1 fly from the developing roller only to the signal latent image but not to the background.
When the magnetic roller rotates at a high speed, the conductive particles are scattered. However, as shown in FIG. 1, the conductive particles are surrounded by the developing roller 12, the scraper 13, and the case and are not scattered outside, so that high speed development is possible.

図1の構成は一見樹脂トナーを飛翔現像する現像器の構成に似ているが、それぞれの働いている機構が全く異なる。その異なる点を詳しく説明する。 The configuration of FIG. 1 is similar to the configuration of a developing device that performs resin-toning development at first glance, but the working mechanisms are completely different. The different points will be described in detail.

まず分散部分では、導電粒子は磁性粒子との撹拌により帯電して分散するわけではなく、メカニカルに磁性粒子が導電粒子を磨砕して微粒子に分散させている。例えば磁性粒子としてフェライト粒子、導電性粒子として銅粉とを使用し、これらを攪拌した混合粒子を顕微鏡で観察するとフェライト粒子と銅粉は分離しており、お互いが付着している様子は無い。
磁性粒子は磁性ロールの磁性集合体4の磁力に引き寄せられスリーブ3に取り付く。この際も導電粒子1は磁性粒子2との撹拌により帯電して磁性粒子2またはスリーブ3に付着するのではなく、磁性粒子間に巻き込まれ、抱え込まれて搬送される。
First, in the dispersed portion, the conductive particles are not charged and dispersed by stirring with the magnetic particles, but the magnetic particles are mechanically ground to disperse the conductive particles into fine particles. For example, when ferrite particles are used as magnetic particles and copper powder is used as conductive particles, and the mixed particles obtained by stirring these particles are observed with a microscope, the ferrite particles and the copper powder are separated, and there is no appearance that they are adhered to each other.
The magnetic particles are attracted by the magnetic force of the magnetic assembly 4 of the magnetic roll and are attached to the sleeve 3. Also at this time, the conductive particles 1 are not charged by the stirring with the magnetic particles 2 and attached to the magnetic particles 2 or the sleeve 3 but are caught between the magnetic particles, held and conveyed.

磁性集合体4は回転しないように固定する方法と、スリーブ3の回転と逆方向へ回転する方法がある。それぞれ特徴があり、何れを選択するかは使用する磁性粒子や導電粒子の大きさや形状などによって決定する。 There are a method of fixing the magnetic assembly 4 so as not to rotate and a method of rotating in the direction opposite to the rotation of the sleeve 3. Each has its own characteristics, and which is selected depends on the size and shape of the magnetic particles and conductive particles used.

図2は磁性集合体4とスリーブ3が相対的に移動したときの磁性粒子2の動きを、理解しやすいように磁性集合体を固定し、移動するスリーブ上の一個の磁性粒子の様子を表現している。磁性粒子は磁性集合体4の磁力線に沿って引っ張られながら向きを変えるため、スリーブ上で転がることになる。もしスリーブ3と磁性集合体4を相対的に反対方向に回転すると磁性粒子はより高速に回転することになり、奥の方に抱え込まれた導電粒子もまんべんなく表面に出てきて次の段階における飛翔効率を上げることになる。 FIG. 2 shows the state of one magnetic particle on the moving sleeve by fixing the magnetic assembly so that the movement of the magnetic particle 2 when the magnetic assembly 4 and the sleeve 3 move relatively can be easily understood. is doing. Since the magnetic particles change their direction while being pulled along the magnetic force lines of the magnetic assembly 4, they roll on the sleeve. If the sleeve 3 and the magnetic assembly 4 are rotated in the opposite directions, the magnetic particles will rotate at a higher speed, and the conductive particles held in the back will come out to the surface evenly and fly in the next stage. Increase efficiency.

磁性集合体4が固定されている場合は、磁極の部分で磁性粒子はスリーブに対して垂直に立つため、スリーブに近い位置の導電粒子も自由になるため次の段階における飛翔効率を上げることになる。つまり、磁性粒子に遮蔽されることなく電界にさらされれば飛翔しやすくなる。 When the magnetic assembly 4 is fixed, the magnetic particles stand perpendicular to the sleeve at the magnetic pole portion, so that the conductive particles near the sleeve are free. Become. That is, it is easy to fly if exposed to an electric field without being shielded by magnetic particles.

そして、このまま飛翔させないでスリーブ回転だけを行うと、導電粒子1は下にこぼれてしまう。これは、銅粉等の金属粒子のように比重の重いものはもちろんであるが、カーボン粒子のように比重の小さいものも同様であった。この現象からも導電粒子1は磁性粒子2にもスリーブ3にも付着しにくいことを示している。
磁性粒子2は導電粒子1を磁性ローラにより搬送することだけが役目であるため、磁性粒子の種類に左右されない。フェライト粒子のように電気的に絶縁性のものでも良いし、金属磁性粒子でも良い。またそれらを樹脂で結着させたもの、樹脂の表面にそれら磁性粒子をコートしたもの、逆に磁性粒子の表面に樹脂コートしたものなど、樹脂を含んだものも問題ない。
Then, if only the sleeve is rotated without flying as it is, the conductive particles 1 will spill downward. This is the same for a metal particle such as copper powder having a high specific gravity, but also for a carbon particle having a low specific gravity. This phenomenon also indicates that the conductive particles 1 hardly adhere to the magnetic particles 2 and the sleeve 3.
Since the magnetic particles 2 are only used for transporting the conductive particles 1 by a magnetic roller, they are not affected by the type of magnetic particles. An electrically insulating material such as a ferrite particle or a metal magnetic particle may be used. Also, those containing resin, such as those obtained by binding them with a resin, those obtained by coating those magnetic particles on the surface of the resin, and those obtained by coating the surface of the magnetic particles with a resin are also acceptable.

磁性粒子の表面に樹脂コートしたものは樹脂と金属粒子が摩擦して帯電し、付着しそうであるが、金属粒子がよほど微粒子でない限り付着しそうには無い。発明者らが確認したところでは、フェライト粒子にアクリル樹脂、ポリテトラフルオロエチレン樹脂等をコートし、5ミクロン〜20ミクロン程度の粒径のカーボンや銅粉を混合したところではほとんどが付着する様子は無かった。例え僅かな摩擦帯電が有ったとしても、付着するだけの力が得られないと考えられる。 The resin particles coated on the surfaces of the magnetic particles are likely to be charged due to friction between the resin and the metal particles, but are unlikely to adhere unless the metal particles are very fine. The inventors have confirmed that ferrite particles are coated with acrylic resin, polytetrafluoroethylene resin, etc., and when carbon or copper powder having a particle size of about 5 to 20 microns is mixed, most of the appearance is attached. There was no. Even if there is a slight frictional charge, it is considered that a force sufficient to adhere cannot be obtained.

現像ローラ12に接続された現像バイアス電源7とスリーブ3に接続された補助電源8によって、磁性粒子2に抱え込まれた導電粒子1が現像ローラ12に飛翔するための電界があたえられる。磁性粒子2が絶縁性の場合、導電粒子1はスリーブ3に接触したときにスリーブ3から電荷が注入され帯電し飛翔するか、あるいは電界に従って分極し、電界の強さに従って分極した片方の電荷を放出して帯電し飛翔する。磁性粒子2が導電性の場合、導電粒子1は磁性粒子2からも電荷が注入され帯電し飛翔する。また、電荷を放出し易くするためには導電粒子1が接触している磁性粒子2も分極していた方が良いと考えられる。従って、磁性粒子2がフェライトの様な電気絶縁性の場合には表面を導電処理すると飛翔効率は上がるであろう。
飛翔した導電粒子1は現像ローラ12に付着し、像担持体10の近傍まで運ばれる。現像ローラ12は通常アルミ引き抜き材やステンレススチールであり、本発明でも同様のものが使用できることが確認された。ここで、なぜ導電粒子がかなり低い導電体である現像ローラに付着するかが疑問となる。
The developing bias power source 7 connected to the developing roller 12 and the auxiliary power source 8 connected to the sleeve 3 provide an electric field for the conductive particles 1 held in the magnetic particles 2 to fly to the developing roller 12. When the magnetic particles 2 are insulative, the conductive particles 1 are injected with charge from the sleeve 3 when they contact the sleeve 3, and then charge or fly, or are polarized according to the electric field, and are charged according to the strength of the electric field. Release, charge and fly. When the magnetic particles 2 are conductive, the conductive particles 1 are charged from the magnetic particles 2 and charged and fly. In addition, it is considered that the magnetic particles 2 in contact with the conductive particles 1 should also be polarized in order to facilitate the discharge of charges. Therefore, when the magnetic particles 2 are electrically insulating like ferrite, the flying efficiency will increase if the surface is conductively treated.
The flying conductive particles 1 adhere to the developing roller 12 and are carried to the vicinity of the image carrier 10. The developing roller 12 is usually made of an aluminum drawing material or stainless steel, and it has been confirmed that the same can be used in the present invention. Here, it becomes a question why the conductive particles adhere to the developing roller which is a very low conductor.

前述したように飛翔した導電粒子1は帯電して現像ローラ12に到達する。このとき、現像ローラ12は導電体であるために帯電していた電荷を失って静電気力による付着力も失うはずである。事実表面電位計で計測してもほとんど電位を表示しない。この場合支配的になっている付着力はファンデルワールス力ではないかと考えられる。ファンデルワールス力による付着力は現像ローラ12と導電粒子1が密着すればするほど大きく接触面積が大きいほど大きい。そしてこの力が、現像ローラ12の遠心力及び導、電粒子1自身の重力より大きければ付着し続けることになる。その密着性と接触面積を大きくする現象は、飛翔によって導電粒子1を現像ローラ12表面に付着させることにより得られているものと考えられる。そして、一度付着するとその付着を剥がす外力がないため付着し続ける事が出来ると考えられる。このような状況は他の手段ではなかなか得られない。 As described above, the flying conductive particles 1 are charged and reach the developing roller 12. At this time, since the developing roller 12 is a conductor, the charged electric charge should be lost and the adhesion due to electrostatic force should be lost. In fact, even if measured with a surface electrometer, the potential is hardly displayed. In this case, the dominant adhesion is considered to be van der Waals force. The adhesion force due to the van der Waals force increases as the developing roller 12 and the conductive particles 1 come into close contact with each other, and increases as the contact area increases. If this force is greater than the centrifugal force and guidance of the developing roller 12 and the gravity of the electroparticles 1 themselves, they will continue to adhere. It is considered that the phenomenon of increasing the adhesion and the contact area is obtained by causing the conductive particles 1 to adhere to the surface of the developing roller 12 by flying. And once attached, since there is no external force which peels off the attachment, it is thought that it can continue adhering. Such a situation can hardly be obtained by other means.

整理しますと、付着力は、接触面積つまり接触点の数により左右されると考えられます。また、剥離方向に働く力は、重力、遠心力、粒子自身の運動エネルギー及び外部から受ける衝突エネルギー等により左右されると考えられます。
付着原理が上記の通りであれば、導電粒子1の形状や重量によって付着状況が左右されることになる。
細かい実験は行っていないが、銅粒子で不定形のもので粒径約100ミクロン以上になると付着する確率は極端に減ってくること、また球形であると粒径80ミクロンでも付着できないことが確認された。鉄粉、カーボン粒子等の他素材は確認していないが、おそらく銅粒子の比重との割合で付着できる粒径が求められるのではないかと考える。
When organized, the adhesive force is considered to depend on the contact area, that is, the number of contact points. The force acting in the peeling direction is thought to depend on gravity, centrifugal force, kinetic energy of the particles themselves, and impact energy received from the outside.
If the adhesion principle is as described above, the adhesion situation depends on the shape and weight of the conductive particles 1.
Although detailed experiments have not been conducted, it is confirmed that the probability of adhesion is extremely reduced when the particle size is about 100 microns or more with copper particles having an irregular shape, and that even when the particle size is spherical, it cannot be adhered even with a particle size of 80 microns. It was done. Although other materials such as iron powder and carbon particles have not been confirmed, it is considered that a particle size that can be adhered is probably required in proportion to the specific gravity of the copper particles.

特開平07−333980では導電性トナーを用いて磁性キャリアと混合し、一般的に電子写真法で使用される磁性ロールで搬送し、規制ブレードで磁性キャリアだけを阻止し、導電性トナーだけがスリーブ上に付着して像担持体近くまで搬送する実施例が記載されている。この方法では、スリーブ上に付着した導電性トナーに対し規制ブレードで阻止された磁性キャリアが、スリーブに付着した導電性トナーと衝突し、導電性トナーをスリーブから剥がす方向に働くため、スリーブに十分な導電性トナーを付着させられない。 In Japanese Patent Application Laid-Open No. 07-333980, a conductive toner is mixed with a magnetic carrier, conveyed by a magnetic roll generally used in electrophotography, only the magnetic carrier is blocked by a regulating blade, and only the conductive toner is a sleeve. An embodiment is described in which it is deposited on top and conveyed to the vicinity of the image carrier. In this method, the magnetic carrier blocked by the regulating blade against the conductive toner adhering to the sleeve collides with the conductive toner adhering to the sleeve and works in the direction of peeling the conductive toner from the sleeve. The conductive toner cannot be adhered.

以上のように本発明は、帯電して付着するトナーの動作とは全く違う原理で付着搬送を行っているのである。そして、導電粒子は帯電していないので、電界の向き(電圧の極性)には関係なく、電位差の大きさだけで、飛翔の有無が決定されるのが特徴的である。
このように導電粒子の帯電極性は供給する現像バイアス電圧の極性によって自由にコントロール出来る。また、現像バイアス電源7の電圧は直流のみでも良いが、交流成分を重畳させるとより飛翔効果が上がる。これらを以下の実施例で説明する。
As described above, according to the present invention, adhesion and conveyance are performed based on a completely different principle from the operation of toner that is charged and adhered. Since the conductive particles are not charged, the presence or absence of flight is determined only by the magnitude of the potential difference regardless of the direction of the electric field (voltage polarity).
Thus, the charging polarity of the conductive particles can be freely controlled by the polarity of the developing bias voltage supplied. Further, the voltage of the developing bias power source 7 may be only DC, but if the AC component is superimposed, the flying effect is further improved. These are illustrated in the following examples.

図1の構成に於いて、導電性粒子1として平均粒径5クロンのカーボン粒子、磁性粒子2として平均粒径100ミクロンの鉄粉を使用した。スリーブ3と現像ロール12は共に材質はアルミとし、スリーブ3表面と現像ロール12の表面の最も狭い間隙を4mm、スリーブ3と規制ブレード6との間隙を1mmとし、現像ロール4の表面と像担持体の表面の最も狭い間隙を1mmとした。像担持体の静電潜像の信号電位がプラス100V、バックグラウンドがプラス700Vとし、像担持体の表面スピードが100mm/secとした場合、現像バイアス電源7にプラス800V、補助電源8には0Vあるいはプラス1600Vを印加することによって、かぶりがなく、ある程度コントラストのある現像が出来きた。 In the configuration of FIG. 1, carbon particles having an average particle size of 5 cron were used as the conductive particles 1, and iron powder having an average particle size of 100 microns was used as the magnetic particles 2. Both the sleeve 3 and the developing roll 12 are made of aluminum, the narrowest gap between the surface of the sleeve 3 and the developing roll 12 is 4 mm, the gap between the sleeve 3 and the regulating blade 6 is 1 mm, the surface of the developing roll 4 and the image carrier The narrowest gap on the surface of the body was 1 mm. When the signal potential of the electrostatic latent image on the image carrier is plus 100 V, the background is plus 700 V, and the surface speed of the image carrier is 100 mm / sec, the developing bias power source 7 is plus 800 V, and the auxiliary power source 8 is 0 V. Alternatively, by applying plus 1600 V, development with no fogging and a certain degree of contrast has been achieved.

補助電源8と現像バイアス電源7との電位差は同じく800Vであり、補助電源8を0Vにした場合は、電界の方向に従って銅粒子はスリーブ3上からマイナスに帯電して現像ローラに飛翔し、補助電源8をプラス1600Vにした場合はカーボン粒子はプラスに帯電して現像ローラに飛翔する。カーボン粒子がどちらの極性に帯電していても現像ローラに付着した時点ではその電荷を失うため現像ローラからの飛翔条件は変わらず、いずれの場合もプラスに帯電して信号潜像であるプラス100V部分に飛翔する。信号潜像部は700Vの電位差によって飛翔しており、バックグラウンドとの電位差100Vでは飛翔しない。 The potential difference between the auxiliary power supply 8 and the developing bias power supply 7 is also 800 V, and when the auxiliary power supply 8 is set to 0 V, the copper particles are negatively charged from above the sleeve 3 according to the direction of the electric field and fly to the developing roller. When the power source 8 is set to plus 1600 V, the carbon particles are charged plus and fly to the developing roller. Regardless of the polarity of the carbon particles, the charge is lost when the carbon particles are attached to the developing roller, so the flying condition from the developing roller does not change. In either case, the signal latent image is positively charged plus 100V. Fly to the part. The signal latent image portion flies with a potential difference of 700 V, and does not fly with a potential difference of 100 V from the background.

図1の構成に於いて、実施例1と同様に導電性粒子1として平均粒径5ミクロンのカーボン粒子、磁性粒子2として平均粒径100ミクロンの鉄粉を使用した。スリーブ3と現像ロール12は共に材質はアルミとし、スリーブ3表面と現像ロール12の表面の最も狭い間隙を3mm、スリーブ3と規制ブレード6との間隙を1mmとし、現像ロール4の表面と像担持体の表面の最も狭い間隙を1mmとした。像担持体の静電潜像が実施例1とは逆に信号電位がプラス700V、バックグラウンドがプラス100Vとし、像担持体の表面スピードが100mm/secとした場合、現像バイアス電源7には0V、補助電源にはプラス800Vあるいはマイナス800Vを印加することによって、かぶりがなくある程度コントラストのある現像が出来た。 In the configuration of FIG. 1, as in Example 1, carbon particles having an average particle size of 5 microns were used as the conductive particles 1, and iron powder having an average particle size of 100 microns was used as the magnetic particles 2. Both the sleeve 3 and the developing roll 12 are made of aluminum, the narrowest gap between the surface of the sleeve 3 and the developing roll 12 is 3 mm, the gap between the sleeve 3 and the regulating blade 6 is 1 mm, and the surface of the developing roll 4 and the image carrier The narrowest gap on the surface of the body was 1 mm. When the electrostatic latent image on the image carrier has a signal potential of +700 V, a background of +100 V, and the surface speed of the image carrier is 100 mm / sec, contrary to the first embodiment, the developing bias power supply 7 has 0 V. By applying plus 800V or minus 800V to the auxiliary power source, development with no fogging and some contrast could be achieved.

現像ローラから潜像へはカーボン粒子がマイナスに帯電して飛翔しており実施例1とは異なっているが、飛翔の有無の条件は実施例1と全く同じで、信号潜像部は700Vの電位差によって飛翔しており、バックグラウンドとの電位差100Vでは飛翔しない。このように潜像がポジであれ、ネガであれ電源条件だけを条件あわせするだけで、他の構成要素は一切変更しないで成立させることが出来る。 The carbon particles are negatively charged and fly from the developing roller to the latent image, which is different from that in the first embodiment, but the conditions for the presence or absence of the flight are exactly the same as those in the first embodiment, and the signal latent image portion has 700V. It flies due to a potential difference, and does not fly when the potential difference from the background is 100V. In this way, whether the latent image is positive or negative, it can be established without changing any other components by adjusting only the power supply conditions.

図1の構成に置いて、導電性粒子1として平均粒径10ミクロンの銅粉、磁性粒子2として平均粒径100ミクロンのフェライト粒子を使用した。スリーブ3と現像ロール12は共に材質はアルミとし、スリーブ3表面と現像ロール12の表面の最も狭い間隙を4mm、スリーブ3と規制ブレード6との間隙を1mmとし、現像ロール4の表面と像担持体の表面の最も狭い間隙を1mmとした。像担持体の静電潜像が信号電位がプラス100V、バックグラウンドがプラス700Vとし、像担持体の表面スピードが100mm/secとした場合、現像バイアス電源7にDCプラス500V及び500HzのAC400VP−Pの重畳電圧、補助電源8には0Vを印加すると、かぶりがなく、濃度の高い非常にコントラストのある現像が出来た。 In the configuration of FIG. 1, copper particles having an average particle size of 10 microns were used as the conductive particles 1, and ferrite particles having an average particle size of 100 microns were used as the magnetic particles 2. Both the sleeve 3 and the developing roll 12 are made of aluminum, the narrowest gap between the surface of the sleeve 3 and the developing roll 12 is 4 mm, the gap between the sleeve 3 and the regulating blade 6 is 1 mm, the surface of the developing roll 4 and the image carrier The narrowest gap on the surface of the body was 1 mm. When the electrostatic latent image of the image carrier has a signal potential of plus 100 V, the background is plus 700 V, and the surface speed of the image carrier is 100 mm / sec, the development bias power supply 7 is supplied with DC 400 V and 500 Hz AC 400 VP-P. When 0V was applied to the superposed voltage 8 and the auxiliary power source 8, there was no fog and development with high density and high contrast was achieved.

交番電界は導電性粒子を振動させ、凝集を解すと共に、飛翔し易くする効果があると考えられる。論文によれば、従来のトナー飛翔では、一旦トナーを像担持体全面に飛翔させ、バックグラウンドはACの逆電界時に引き戻すというように説明されているが、本発明が対象としている樹脂を含まない導電性粒子では抵抗が低いために全面に飛翔させて引き戻したら潜像電荷分布を壊してしまい、正規の画像とならない。バックグラウンドには飛翔させない条件を与えることが必要であり、従来の重畳作用とは異なる。 The alternating electric field is considered to have an effect of vibrating the conductive particles to dissolve the particles and to facilitate the flight. According to the paper, in the conventional toner flying, it is explained that the toner once flies over the entire surface of the image carrier and the background is pulled back at the time of the reverse electric field of the AC, but does not include the resin targeted by the present invention. Since the conductive particles have low resistance, the latent image charge distribution is destroyed when the particles are returned to the entire surface and pulled back, and a normal image is not obtained. It is necessary to give the background a condition not to fly, which is different from the conventional superposition action.

実施例3の条件で真球に近い粒径100ミクロンの銅粒子を現像しようとしたが、銅粒子はアルミ素材の現像ローラ12に付着せず現像できなかった。現像ローラ12の表面に絶縁フィルムチューブを被せたところ、現像ローラ12には付着するが像担持体には非常に飛翔し難くなった。現像ローラ12の表面に半導電性のフィルムチューブを被せたところ、ほぼ実施例3の電界条件で前記銅粒子が付着し、現像できることが出来た。その他現像ローラ12の表面に半導電性のゴムを巻くこと、樹脂とカーボンを混練した半導電性樹脂を塗布すること等いずれも効果が有った。半導電性の抵抗値は、現像ローラの表面に導電性の板を一定の圧力で押したそのニップ幅と電圧を印加したときの電流を計測し比較した。それらの計算値からほぼ10の9乗Ω・cm以下で有れば十分良好な現像が出来ると結論された。 An attempt was made to develop copper particles having a particle size of 100 microns close to a true sphere under the conditions of Example 3, but the copper particles did not adhere to the developing roller 12 made of aluminum and could not be developed. When the surface of the developing roller 12 was covered with an insulating film tube, it adhered to the developing roller 12 but it was very difficult to fly to the image carrier. When the surface of the developing roller 12 was covered with a semiconductive film tube, the copper particles adhered under the electric field conditions of Example 3 and could be developed. Other effects such as winding a semiconductive rubber around the surface of the developing roller 12 and applying a semiconductive resin obtained by kneading resin and carbon were effective. The semiconductive resistance value was measured by comparing the nip width obtained by pressing a conductive plate on the surface of the developing roller with a constant pressure and the current when a voltage was applied. From these calculated values, it was concluded that sufficiently good development can be achieved if it is about 10 9 Ω · cm or less.

現像ローラー12を半導電性にすることによる付着効果は論理的には定かでない。現実の材料が純粋半導体物理で取り扱うようなものではなく、ほとんどが、導電物質と絶縁体の混合による平均的な抵抗値で取り扱っているため、現実には微小部分では帯電保持出来る部分があり、付着した導電性粒子に僅かな静電荷が残って、その静電気力で付着力が増すとも考えられる。また、樹脂との混合物である材料は金属よりも硬度は低いため、導電性粒子は飛翔してきて衝突する際の緩衝効果があり、接触面積や密着性が金属より大きくなり、ファンデルワールス力による付着力が増すとも考えられる。あるいは上記二つの現象が共に生じて更に強い付着力を生じているのかもしれない。 The adhesion effect by making the developing roller 12 semiconductive is not logically clear. Real materials are not like those handled by pure semiconductor physics, but most are handled with an average resistance value by mixing conductive materials and insulators, so in reality there are parts that can be charged and held in minute parts, It is considered that a slight electrostatic charge remains on the adhered conductive particles, and the adhesion force is increased by the electrostatic force. In addition, since the material that is a mixture with the resin is lower in hardness than the metal, the conductive particles have a buffering effect when flying and colliding, the contact area and adhesion are larger than the metal, due to van der Waals force It is thought that the adhesion force increases. Alternatively, the above two phenomena may occur together, resulting in stronger adhesion.

上記実施例の印加電圧や距離等の諸条件は代表例であって、導電粒子の材質、粒径、比重等などによって適正条件が異なり、本発明を制限するものではない。 Various conditions such as applied voltage and distance in the above embodiment are representative examples, and appropriate conditions differ depending on the material, particle diameter, specific gravity, etc. of the conductive particles, and do not limit the present invention.

本発明の基本構成の説明図Illustration of the basic configuration of the present invention スリーブ上の磁性粒子の挙動の説明図Illustration of the behavior of magnetic particles on the sleeve

符号の説明Explanation of symbols

1・・・・・導電粒子
2・・・・・磁性粒子
3・・・・・導電性非磁性のスリーブ
4・・・・・磁性集合体
5・・・・・パドル
6・・・・・規制ブレード
7・・・・・現像バイアス電源
8・・・・・補助電源
9・・・・・トナーホッパー
10・・・・静電像担持体
11・・・・導電基材
12・・・・現像ローラ
13・・・・スクレーパー
DESCRIPTION OF SYMBOLS 1 ... Conductive particle 2 ... Magnetic particle 3 ... Conductive nonmagnetic sleeve 4 ... Magnetic assembly 5 ... Paddle 6 ... Regulating blade 7... Development bias power supply 8... Auxiliary power supply 9... Toner hopper 10... Electrostatic image carrier 11. Developing roller 13 ··· Scraper

Claims (5)

静電像坦持体と現像器を具備する装置において、現像剤が樹脂を含まない導電性粒子であって、該現像器は該導電性粒子と磁性粒子を攪拌し混合する機構と磁性集合体を内包した導電性非磁性スリーブを備えた磁性ローラと該磁性ローラ上の磁性粒子の厚みを規制する規制ブレード及び非磁性の現像ローラを具備し、該磁性ローラ上の該導電性粒子と該現像ローラは非接触に配置され、さらに現像ローラ上の該導電性粒子と該静電像担持体が非接触に配置され、該導電性粒子を電界によって該磁性ローラから該現像ローラに飛翔させ、さらに該現像ローラから像担持体へ電界によって飛翔させる事によって現像する事を特徴とする現像方法。 In an apparatus comprising an electrostatic image carrier and a developing device, the developer is a conductive particle containing no resin, and the developing device has a mechanism and magnetic assembly for stirring and mixing the conductive particle and the magnetic particle. A magnetic roller having a conductive nonmagnetic sleeve enclosing the magnetic roller, a regulating blade for regulating the thickness of the magnetic particles on the magnetic roller, and a nonmagnetic developing roller, and the conductive particles on the magnetic roller and the developing The roller is disposed in a non-contact manner, and the conductive particles on the developing roller and the electrostatic image carrier are disposed in a non-contact manner, and the conductive particles are caused to fly from the magnetic roller to the developing roller by an electric field. A developing method characterized in that development is performed by causing an electric field to fly from the developing roller to the image carrier. 該現像剤がカーボン粒子または金属粒子である事を特徴とする請求項1に記載の現像方法。 2. The developing method according to claim 1, wherein the developer is carbon particles or metal particles. 該磁性粒子がフェライト粒子又は磁性金属粒子、又はそれらの粒子が樹脂を含んだ粒子であることを特徴とする請求項1に記載の現像方法。 2. The developing method according to claim 1, wherein the magnetic particles are ferrite particles or magnetic metal particles, or the particles include a resin. 該現像ローラの表面が金属又は半導電性材料で構成され、電気抵抗が10の9乗Ω・cm以下である事を特徴とする請求項1に記載の現像方法。 2. The developing method according to claim 1, wherein the surface of the developing roller is made of a metal or a semiconductive material and has an electric resistance of 10 <9> [Omega] .cm or less. 該導電性粒子を飛翔させる電界が、直流電界と交番電界の重畳であることを特徴とする請求項1に記載の現像法。 2. The developing method according to claim 1, wherein the electric field for causing the conductive particles to fly is a superposition of a DC electric field and an alternating electric field.
JP2007021847A 2007-01-31 2007-01-31 Method for developing conductive particles Expired - Fee Related JP4331763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007021847A JP4331763B2 (en) 2007-01-31 2007-01-31 Method for developing conductive particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007021847A JP4331763B2 (en) 2007-01-31 2007-01-31 Method for developing conductive particles

Publications (2)

Publication Number Publication Date
JP2008185980A JP2008185980A (en) 2008-08-14
JP4331763B2 true JP4331763B2 (en) 2009-09-16

Family

ID=39729043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007021847A Expired - Fee Related JP4331763B2 (en) 2007-01-31 2007-01-31 Method for developing conductive particles

Country Status (1)

Country Link
JP (1) JP4331763B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011257684A (en) * 2010-06-11 2011-12-22 Toray Eng Co Ltd Development method
JP5729748B2 (en) * 2010-07-08 2015-06-03 株式会社アフィット Circuit board manufacturing method and manufacturing apparatus
JP2015184551A (en) 2014-03-25 2015-10-22 富士ゼロックス株式会社 Liquid developer and circuit board
KR102399741B1 (en) * 2015-05-22 2022-05-20 삼성전자주식회사 Display module and method of manufacturing the same

Also Published As

Publication number Publication date
JP2008185980A (en) 2008-08-14

Similar Documents

Publication Publication Date Title
JP4331763B2 (en) Method for developing conductive particles
EP0106322A1 (en) Developing apparatus
JP4018110B2 (en) Method for developing conductive particles
JP2011048269A (en) Developing device
JP3177090B2 (en) Developing device
JP2998461B2 (en) Developing device
JP5115453B2 (en) Developing device and image forming apparatus
JPS62208079A (en) Developing device
JP2010276900A (en) Developing device and image forming apparatus with the same
JP3042908B2 (en) Developing device
JP3044958B2 (en) Developing device
JP2006113397A (en) Developing device
JPS6053960A (en) Formation of image
JPS58205172A (en) Electrostatic latent image developing device
JPH1138762A (en) Developing device
JPH0131612B2 (en)
JPH1152730A (en) Developing device
JP2004054036A (en) Developing apparatus and image forming apparatus
JPS6113269A (en) Developing device
JPH05119607A (en) Electrifying method for two-component developer
JP2006163296A (en) Image forming apparatus
JPH05158353A (en) Developing device
JPH08320614A (en) Developer carrier and developing device
JPH07306568A (en) Electrifying device
JPS62173481A (en) Electrostatic recording device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090618

R150 Certificate of patent or registration of utility model

Ref document number: 4331763

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150626

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S303 Written request for registration of pledge or change of pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316303

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S303 Written request for registration of pledge or change of pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316303

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316803

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees