JP4330898B2 - Process for producing optically active 2-phenyl-2,3-dihydroxypropylazole derivative - Google Patents

Process for producing optically active 2-phenyl-2,3-dihydroxypropylazole derivative Download PDF

Info

Publication number
JP4330898B2
JP4330898B2 JP2003035961A JP2003035961A JP4330898B2 JP 4330898 B2 JP4330898 B2 JP 4330898B2 JP 2003035961 A JP2003035961 A JP 2003035961A JP 2003035961 A JP2003035961 A JP 2003035961A JP 4330898 B2 JP4330898 B2 JP 4330898B2
Authority
JP
Japan
Prior art keywords
group
optionally substituted
general formula
tert
methyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003035961A
Other languages
Japanese (ja)
Other versions
JP2003327578A (en
Inventor
秀俊 角田
恭子 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2003035961A priority Critical patent/JP4330898B2/en
Publication of JP2003327578A publication Critical patent/JP2003327578A/en
Application granted granted Critical
Publication of JP4330898B2 publication Critical patent/JP4330898B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Pyrane Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、医農薬分野をはじめ多方面において製造上の重要な化合物である光学活性2−フェニル−2,3−ジヒドロキシプロピルアゾール誘導体の短工程な新規製造法に関するものである。
【0002】
【従来の技術】
近年、AIDS等の感染による免疫不全患者の増加や高度医療の進展または高齢者の増加等による免疫力低下患者の増大によって、いわゆる日和見感染症に代表される真菌感染症が問題となっている。特に免疫低下者にとって、カンジタ症やアスペルギルス症等の深在性の真菌感染症は、生命にも拘わる重篤な場合も少なくなく、医療現場においては注意すべき感染症の一つである。 従来、これら感染症に対してはフルコナゾールに代表されるアゾール系の抗真菌剤が多用されてきたが、近年、耐性菌の出現や基本的な作用不足が指摘されるようになり、より広範囲な菌種に有効でより強力な治療薬の開発が望まれている(医薬ジャーナル, vol37(7), pp.115-119)。
【0003】
一方、近年開発中のアゾール系の抗真菌剤は、構造がより複雑化する傾向にあり、特にアゾールメチル基が結合する不斉炭素およびそれに連続して存在する不斉炭素部位をいかに効率よく構築するかが大きな技術上の問題点となっている(J.Med.Chem., Vol.41, pp.1869-1882, 1998)。しかし現在に至るまで、工業的な観点から、安価でかつ安定的な製造方法は確立されていない。
【0004】
以下に従来の製造技術に関して述べる。
連続する不斉部位の構築方法として、いずれの場合もα−ヒドロキシフェニルケトン誘導体を経由して、ケトン基に対するジアステレオ選択的な増炭エポキシ化を行なうことで構築している(Chem.Pharm.Bull., Vol.41(6), pp.1035-1042, 1993)。しかし従来の製造法は、(1)ジアステレオ選択性が約4:1と悪く、(2)目的とする異性体のみ単離しようとすると低収率であり、(3)工程数が長く、単離、精製工程が極めて煩雑であり、(4)反応条件によってはラセミ化する等、工業的に見て極めて問題のある製造方法であった。加えて、α−ヒドロキシフェニルケトン誘導体自体の製造方法も多工程(Bioorg.Med.Chem.Lett., vol1(7), pp.349-352, 1991)、または不斉触媒等の高価な反応試薬(Tetrahedron Letters, vol37(36), pp.6531-6534, 1996)を必要とし、工業的な製造方法としては十分満足するものではなかった。近年、これらの既存法を改良したL-アラニンを出発原料とする新規な製造法も報告されているが(US6300522)、α−ヒドロキシフェニルケトン誘導体を経由する点において根本的な問題を解決には至っておらず、必ずしも工業的に満足する製造方法ではなかった。
【0005】
このように、より有用な新規アゾール系の抗真菌剤の開発が望まれているにも拘わらず、2つの不斉炭素を有する光学活性な化合物であるため、従来の製造技術では、工業的な観点から安価でかつ安定的な製造方法は確立されておらず、これら中間体化合物に関して、より効率的な新規製造法の早急な開発が望まれている。
【0006】
【特許文献1】
米国特許第6300522号公報
【0007】
【非特許文献1】
医薬ジャーナル, vol.37(7), pp.115-119
【0008】
【非特許文献2】
J.Med.Chem., Vol.41, pp.1869-1882, 1998
【0009】
【非特許文献3】
Chem.Pharm.Bull., Vol.41(6), pp.1035-1042, 1993
【0010】
【非特許文献4】
Tetrahedron Letters, vol.37(36), pp.6531-6534, 1996
【0011】
【発明が解決しようとする課題】
本発明の課題は、医・農薬分野における有用な化合物であり、特に光学活性なアゾール系抗真菌剤の製造過程において極めて重要な中間体となる、光学活性2−フェニル−2,3−ジヒドロキシプロピルアゾール誘導体の製造に関して、工業的な観点から、短い工程で安価にかつ安定的に製造する方法と新規な中間体を提供することである。
【0012】
【課題を解決するための手段】
本発明者らは、上記課題を解決する為に鋭意検討を重ねた結果、光学活性なα−ヒドロキシカルボン酸誘導体を出発原料とし、ハロ酢酸誘導体と反応させ、医農薬の非常に重要な中間体である光学活性なハロメチルケトン誘導体を製造し、さらに、アルキル化反応を、保護基の選択と反応条件によって、自由にアンチあるいはシン配置にできる、高ジアステレオ選択的反応を見出し、医農薬の非常に重要な中間体である光学活性ハロメチルアルコール誘導体を製造し、さらにトリアゾールまたはイミダゾールと反応させ、光学活性アゾールメチルアルコール誘導体を製造し、さらに、選択的に脱保護を行うことで、医農薬の非常に重要な中間体である光学活性2−フェニル−2,3−ジヒドロキシプロピルアゾール誘導体を得るまったく新しい製造ルートを見出した。
【0013】
上記反応ルートにおいては、反応に伴なうラセミ化がほとんど無く、高い光学純度で望む立体配置を有する化合物を選択的に製造できることを見出した。特に、光学活性なα−ヒドロキシカルボン酸誘導体として安価な乳酸誘導体を利用し、保護基としてシリル系の保護基を用い、光学活性な新規シリルオキシ−ハロアルキルケトン誘導体を経由し、非常に高いシン選択性でアルキル化が行えることを見出し、光学活性なアゾール系抗真菌剤の製造のために極めて重要な中間体である新規光学活性シリルオキシ−ハロメチルアルコール誘導体および光学活性シリルオキシ−エポキシド誘導体を得られることを見出した。これらにより、光学活性なアゾール系抗真菌剤の製造のために極めて重要な中間体であり、高い光学純度で望む立体配置を有する2−フェニル−2,3−ジヒドロキシプロピルアゾール誘導体の製造が、工業的な観点から短い工程で安価にかつ安定的に行い得ることが可能となり、本発明を完成するに至った。
【0014】
すなわち、本発明は以下の[1]〜[9]に記載のとおりである。
[1] 一般式(1)[化9]
【0015】
【化9】

Figure 0004330898
【0016】
(式中R1は置換されてもよいアルキル基、置換されてもよいアラルキル基、置換されてもよいアリール基または置換されてもよいヘテロ環を示し、R2は水酸基の保護基としてのエーテル系の保護基、アセタール系の保護基またはシリル系の保護基を示し、R3は水酸基、ハロゲン原子、置換されていてもよいアシル基、置換されてもよいカーボネート基、置換されてもよいアルキルオキシ基、置換されてもよいアラルキルオキシ基、置換されてもよいフェノキシ基または置換されてもよいアミノ基を示し、炭素原子上の*は不斉炭素を意味し、R配置あるいはS配置を取ることができる。)で表されるα−ヒドロキシカルボン酸誘導体と、一般式(2)[化10]
【0017】
【化10】
Figure 0004330898
【0018】
(式中、R4は水素原子、置換されてもよいアルキル基、置換されてもよいアラルキル基、置換されてもよいアリール基、アルカリ金属またはアルカリ土類金属を示し、Xはハロゲン原子を示す。)で表されるハロ酢酸誘導体を塩基性条件下反応させ、一般式(3)[化11]
【0019】
【化11】
Figure 0004330898
【0020】
(式中R1、R2、Xおよび*は前記と同義である。)で表されるハロメチルケトン誘導体を製造し、さらに該ハロメチルケトン誘導体を一般式(4)[化12]
【0021】
【化12】
Figure 0004330898
【0022】
(式中R5およびR6は互いに独立してハロゲン原子、アルキルオキシカルボニル基、アリールオキシカルボニル基、置換されてもよいアミノ基、置換されてもよいアミド基、置換されてもよいアルキル基、置換されてもよいアルキルオキシ基、置換されてもよいアラルキル基、置換されてもよいアラルキルオキシ基、置換されてもよいフェニル基、置換されてもよいフェニルオキシ基、置換されてもよいヘテロ環または置換されてもよいヘテロ環オキシ基を示し、AはLi、MgX、ZnX、TiX3、Ti(OR7)3、CuXまたはCuLiを示す。ただし、Xはハロゲン原子を示し、R7は低級アルキル基を示す。)で表されるフェニル金属試薬をジアステレオ選択的に反応させ、一般式(5)[化13]
【0023】
【化13】
Figure 0004330898
【0024】
(式中R1、R2、R5、R6、Xおよび*は前記と同義である。)で表される光学活性ハロメチルアルコール誘導体を製造し、さらに該光学活性ハロメチルアルコール誘導体をトリアゾールまたはイミダゾールと反応させ、一般式(6)[化14]
【0025】
【化14】
Figure 0004330898
【0026】
(式中R1、R2、R5、R6および*は前記と同義である。Yは炭素原子又は窒素原子を示す。)で表される光学活性アゾールメチルアルコール誘導体を製造し、さらに該光学活性アゾールメチルアルコール誘導体を選択的に脱保護することで一般式(7)[化15]
【0027】
【化15】
Figure 0004330898
【0028】
(式中R1、R5、R6、Yおよび*は前記と同義である。)で表される光学活性2−フェニル−2,3−ジヒドロキシプロピルアゾール誘導体を製造する方法であり、
[2] 一般式(1)(式中R1、R2、R3*は前記と同義である。)で表されるα−ヒドロキシカルボン酸誘導体と、一般式(2)(式中、R4、Xは前記と同義である。)で表されるハロ酢酸誘導体を塩基性条件下反応させ、一般式(3)(式中R1、R2、Xおよび*は前記と同義である。)で表されるハロメチルケトン誘導体を製造し、さらに該ハロメチルケトン誘導体に一般式(4)(式中R5、R6、A、X、R7は前記と同義である。)で表されるフェニル金属試薬をジアステレオ選択的に反応させ、一般式(8)[化16]
【0029】
【化16】
Figure 0004330898
【0030】
(式中R1、R2、R5、R6、および*は前記と同義である。)で表される光学活性エポキシド誘導体を製造し、さらに該光学活性エポキシド誘導体をトリアゾールまたはイミダゾールと反応させ、一般式(6)(式中R1、R2、R5、R6、Yおよび*は前記と同義である。)で表される光学活性アゾールメチルアルコール誘導体を製造し、さらに該光学活性アゾールメチルアルコール誘導体を選択的に脱保護することで一般式(7)(式中R1、R5、R6、Yおよび*は前記と同義である。)で表される光学活性2−フェニル−2,3−ジヒドロキシプロピルアゾール誘導体を製造する方法であり、
[3] 一般式(3)(式中R1、R2、Xおよび*は前記と同義である。)で表されるハロメチルケトン誘導体と、一般式(4)(式中R5、R6、Aは前記と同義である。)で表されるフェニル金属試薬をジアステレオ選択的に反応させ、一般式(5)(式中R1、R2、R5、R6、Xおよび*は前記と同義である。)で表される光学活性ハロメチルアルコール誘導体を製造する方法であり、
[4] 一般式(3)(式中R1、R2、Xおよび*は前記と同義である。)で表されるハロメチルケトン誘導体と、一般式(4)(式中R5、R6、Aは前記と同義である。)で表されるフェニル金属試薬をジアステレオ選択的に反応させ、一般式(8)(式中R1、R2、R5、R6、Xおよび*は前記と同義である。)で表される光学活性エポキシド誘導体を製造する方法であり、
[5] 一般式(5)(式中R1、R2、R5、R6、Xおよび*は前記と同義である。)で表される光学活性ハロメチルアルコール誘導体、あるいは一般式(8)(式中R1、R2、R5、R6、Xおよび*は前記と同義である。)で表される光学活性エポキシド誘導体と、トリアゾールまたはイミダゾールと反応させ、一般式(6)(式中R1、R2、R5、R6、Yおよび*は前記と同義である。)で表される光学活性アゾールメチルアルコール誘導体を製造する方法であり、
[6] 一般式(6)(式中R1、R2、R5、R6、Yおよび*は前記と同義である。)で表される光学活性アゾールメチルアルコール誘導体を脱保護し、一般式(7)(式中R1、R5、R6、Yおよび*は前記と同義である。)で表される光学活性2−フェニル−2,3−ジヒドロキシプロピルアゾール誘導体を製造する方法であり、
[7] R1がメチル基である[1]から[6]の何れか一項に記載の製造法であり、
[8] R1がメチル基、R5、R6がハロゲン原子である[1]から[6]の何れか一項に記載の製造法であり、
[9] 一般式(5)においてR1がメチル基、R5、R6がハロゲン原子である光学活性ハロメチルアルコール誘導体である。
【0031】
【発明の実施の形態】
次に本発明の化合物についてさらに詳細に説明する。
本発明において「置換されてもよいアルキル基」とは、アルキル基の任意の位置が置換されてもよいアルキル基を意味する。アルキル基としては、メチル基、エチル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基またはアリル基等を挙げることができる。置換基としては、水酸基、メトキシ基、ベンジルオキシ基またはメトキシエトキシ基等のアルコキシ基、フェノキシ基、ニトロ基、アミノ基、アミド基、カルボキシル基、アルコキシカルボニル基、フェノキシカルボニル基あるいはフッ素原子、塩素原子、臭素原子またはヨウ素原子等のハロゲン原子等を挙げることができる。
【0032】
本発明において「置換されてもよいアラルキル基」とは、アラルキル基の任意の位置が置換されてもよいアラルキル基を意味する。アラルキル基としては、ベンジル基、ナフチルメチル基、フェニルエチル基または9−フルオレニルメチル基等が挙げられる。置換基としては、メチル基、tert-ブチル基またはベンジル基等のアルキル基、シクロプロパン、シクロペンタンまたはシクロヘキサン等のシクロアルキル基、フェニル基、水酸基、メトキシ基、ベンジルオキシ基またはメトキシエトキシ基等のアルコキシ基、フェノキシ基、ニトロ基、アミノ基、アミド基、カルボキシル基、アルコキシカルボニル基、フェノキシカルボニル基あるいはフッ素原子、塩素原子、臭素原子またはヨウ素原子等のハロゲン原子等を挙げることができる。
【0033】
本発明において「置換されてもよいアリール基」とは、アリール基の任意の位置が置換されてもよいアリール基を意味する。アリール基としては、フェニル基、ナフチル基、アントラセニル基、フルオレニル基またはフェナントレニル基等を挙げることができる。置換基としては、メチル基、tert-ブチル基またはベンジル基等のアルキル基、シクロプロパン、シクロペンタンまたはシクロヘキサン等のシクロアルキル基、フェニル基、水酸基、メトキシ基、ベンジルオキシ基またはメトキシエトキシ基等のアルコキシ基、フェノキシ基、ニトロ基、アミノ基、アミド基、カルボキシル基、アルコキシカルボニル基、フェノキシカルボニル基あるいはフッ素原子、塩素原子、臭素原子またはヨウ素原子等のハロゲン原子等を挙げることができる。
【0034】
本発明において「置換されていてもよいヘテロ環」とは、ヘテロ環の任意の位置が置換されていてもよいヘテロ環を意味する。ヘテロ環としては、テトラヒドロピラニル基、テトラヒドロフラニル基、テトラヒドロチエニル基、ピペリジル基、モルホリニル基、ピペラジニル基、ピロリル基、フリル基、チエニル基、ピリジル基、フルフリル基、テニル基、ピリジルメチル基、ピリミジル基、ピラジル基、イミダゾイル基、イミダゾイルメチル基、インドリル基、インドリルメチル基、イソキノリル基、キノリル基またはチアゾリル基等が挙げられる。置換基としては、メチル基、tert-ブチル基またはベンジル基等のアルキル基、シクロプロパン、シクロペンタンまたはシクロヘキサン等のシクロアルキル基、フェニル基、水酸基、メトキシ基、ベンジルオキシ基またはメトキシエトキシ基等のアルコキシ基、フェノキシ基、ニトロ基、アミノ基、アミド基、カルボキシル基、アルコキシカルボニル基、フェノキシカルボニル基あるいはフッ素原子、塩素原子、臭素原子またはヨウ素原子等のハロゲン原子等を挙げることができる。
【0035】
本発明において「水酸基の保護基としてのエーテル系の保護基」とは、水酸基を保護する目的でエーテル結合を有する保護基を意味し、メチル基、エチル基、tert-ブチル基、オクチル基、アリル基、ベンジル基、p-メトキシベンジル基、フルオレニル基、トリチル基、ベンズヒドリル基等を挙げることができる。
【0036】
本発明において「アセタール系の保護基」とは、水酸基を保護する目的でアセタール結合を有する保護基を意味し、メトキシメチル基、メトキシエトキシメチル基、テトラヒドロピラン−2−イル基、テトラヒドロフラン−2−イル基等を挙げることができる。
【0037】
本発明において「シリル系の保護基」とは、水酸基を保護する目的でシリルオキシ結合を有する保護基を意味し、トリメチルシリル基、トリエチルシリル基、tert-ブチルジメチルシリル基、tert-ブチルジフェニルシリル基等を挙げることができる。
【0038】
本発明において「ハロゲン原子」としては、フッ素、塩素、臭素またはヨウ素等を挙げることができる。
【0039】
本発明において「置換されていてもよいアシル基」とは、アシル基の任意の位置が置換されていてもよいアシル基を意味する。アシル基としては、ホルミル基、アセチル基、プロピオニル基、ピバロイル基、ベンゾイル基等を挙げることができる。置換基としては、メチル基、tert-ブチル基またはベンジル基等のアルキル基、シクロプロパン、シクロペンタンまたはシクロヘキサン等のシクロアルキル基、フェニル基、水酸基、メトキシ基、ベンジルオキシ基またはメトキシエトキシ基等のアルコキシ基、フェノキシ基、ニトロ基、アミノ基、アミド基、カルボキシル基、アルコキシカルボニル基、フェノキシカルボニル基あるいはフッ素原子、塩素原子、臭素原子またはヨウ素原子等のハロゲン原子等を挙げることができる。
【0040】
本発明において「置換されていてもよいカーボネート基」とは、カーボネート基の任意の位置が置換されていてもよいカーボネート基を意味する。カーボネート基としては、メチルカーボネート基、エチルカーボネート基、イソプロピルカーボネート基、ベンジルカーボネート基等を挙げることができる。置換基としては、メチル基、tert-ブチル基またはベンジル基等のアルキル基、シクロプロパン、シクロペンタンまたはシクロヘキサン等のシクロアルキル基、フェニル基、水酸基、メトキシ基、ベンジルオキシ基またはメトキシエトキシ基等のアルコキシ基、フェノキシ基、ニトロ基、アミノ基、アミド基、カルボキシル基、アルコキシカルボニル基、フェノキシカルボニル基あるいはフッ素原子、塩素原子、臭素原子またはヨウ素原子等のハロゲン原子等を挙げることができる。
【0041】
本発明において「置換されてもよいアルキルオキシ基」とは、アルキルオキシ基の任意の位置が置換されてもよいアルキルオキシ基を意味する。アルキルオキシ基としては、メトキシ基、エトキシ基、イソプロポキシ基、tert-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、デシルオキシ基またはアリルオキシ基等を挙げることができる。置換基としては、水酸基、メトキシ基、ベンジルオキシ基またはメトキシエトキシ基等のアルコキシ基、フェノキシ基、ニトロ基、アミノ基、アミド基、カルボキシル基、アルコキシカルボニル基、フェノキシカルボニル基あるいはフッ素原子、塩素原子、臭素原子またはヨウ素原子等のハロゲン原子等を挙げることができる。
【0042】
本発明において「置換されてもよいアラルキルオキシ基」とは、アラルキルオキシ基の任意の位置が置換されてもよいアラルキルオキシ基を意味する。アラルキルオキシ基としては、ベンジルオキシ基、ナフチルメチルオキシ基、フェニルエチルオキシ基または9−フルオレニルメチルオキシ基等が挙げられる。置換基としては、メチル基、tert-ブチル基またはベンジル基等のアルキル基、シクロプロパン、シクロペンタンまたはシクロヘキサン等のシクロアルキル基、フェニル基、水酸基、メトキシ基、ベンジルオキシ基またはメトキシエトキシ基等のアルコキシ基、フェノキシ基、ニトロ基、アミノ基、アミド基、カルボキシル基、アルコキシカルボニル基、フェノキシカルボニル基あるいはフッ素原子、塩素原子、臭素原子またはヨウ素原子等のハロゲン原子等を挙げることができる。
【0043】
本発明において「置換されてもよいフェノキシ基」とは、フェノキシ基の任意の位置が置換されてもよいフェノキシ基を意味する。置換基としては、メチル基、tert-ブチル基またはベンジル基等のアルキル基、シクロプロパン、シクロペンタンまたはシクロヘキサン等のシクロアルキル基、フェニル基、水酸基、メトキシ基、ベンジルオキシ基またはメトキシエトキシ基等のアルコキシ基、フェノキシ基、ニトロ基、アミノ基、アミド基、カルボキシル基、アルコキシカルボニル基、フェノキシカルボニル基あるいはフッ素原子、塩素原子、臭素原子またはヨウ素原子等のハロゲン原子等を挙げることができる。
【0044】
本発明において「置換されてもよいアミノ基」とは、アミノ基の任意の位置が置換されてもよいアミノ基を意味する。置換基としては、メチル基、tert-ブチル基またはベンジル基等のアルキル基、シクロプロパン、シクロペンタンまたはシクロヘキサン等のシクロアルキル基、フェニル基等を挙げることができる。
【0045】
本発明において「アルカリ金属」とは、リチウム、ナトリウム、カリウム、ルビジウム、セシウム等を挙げることができる。
【0046】
本発明において「アルカリ土類金属塩」とは、マグネシウム、カルシウム、ストロンチウム、バリウムベリリウム等の塩を意味し、ハロゲン化マグネシウム、アルコキシマグネシウム、ハロゲン化カルシウム、アルコキシカルシウム、ハロゲン化ストロンチウム、ハロゲン化バリウム、ハロゲン化ベリリウム等が挙げられる。さらに詳しくは−MgCl、−MgBr、−MgOMe、−MgOEt等のマグネシウム塩、−CaCl、−CaBr、−CaOMe、−CaOEt等のカルシウム塩、−BaCl、−BaBr、−BaOMe、−BaOEt等のバリウム塩を挙げることができる。また、アゾール酢酸誘導体2分子が1つのアルカリ土類金属塩を形成することもできる。
【0047】
本発明において「アルキルオキシカルボニル基」としては、メトキシカルボニル基、エトキシカルボニル基、tert-ブトキシカルボニル基等を挙げることができる。
【0048】
本発明において「アリールオキシカルボニル基」としては、フェノキシカルボニル、ナフチルオキシカルボニル基等を挙げることができる。
【0049】
本発明において「置換されてもよいアミド基」とは、アミド基の任意の位置が置換されてもよいアミノ基を意味する。置換基としては、メチル基、tert-ブチル基またはベンジル基等のアルキル基、シクロプロパン、シクロペンタンまたはシクロヘキサン等のシクロアルキル基、フェニル基等を挙げることができる。
【0050】
本発明において「置換されていてもよいヘテロ環オキシ基」とは、ヘテロ環オキシ基の任意の位置が置換されていてもよいヘテロ環オキシ基を意味する。ヘテロ環オキシ基としては、テトラヒドロピラニルオキシ基、テトラヒドロフラニルオキシ基、テトラヒドロチエニルオキシ基、ピペリジルオキシ基、モルホリニルオキシ基、ピペラジニルオキシ基、ピロリルオキシ基、フリルオキシ基、チエニルオキシ基、ピリジルオキシ基、フルフリルオキシ基、テニルオキシ基、ピリジルメチルオキシ基、ピリミジルオキシ基、ピラジルオキシ基、イミダゾイルオキシ基、イミダゾイルメチルオキシ基、インドリルオキシ基、インドリルメチルオキシ基、イソキノリルオキシ基、キノリルオキシ基またはチアゾリルオキシ基等が挙げられる。置換基としては、メチル基、tert-ブチル基またはベンジル基等のアルキル基、シクロプロパン、シクロペンタンまたはシクロヘキサン等のシクロアルキル基、フェニル基、水酸基、メトキシ基、ベンジルオキシ基またはメトキシエトキシ基等のアルコキシ基、フェノキシ基、ニトロ基、アミノ基、アミド基、カルボキシル基、アルコキシカルボニル基、フェノキシカルボニル基あるいはフッ素原子、塩素原子、臭素原子またはヨウ素原子等のハロゲン原子等を挙げることができる。
【0051】
一般式(3)のハロメチルケトン誘導体から一般式(5)の光学活性ハロメチルアルコール誘導体あるいは(8)の光学活性エポキシド誘導体へのジアステレオ選択的に反応とは、一般式(3)のハロメチルケトン誘導体の不斉炭素の立体に対し選択的に新しい不斉炭素を生じることであり、アンチ選択的とは、ある面上に炭素鎖をジグザグに置いたときに、光学活性な炭素原子上のR2O−基に対して逆側に水酸基を生じるものであり、シン選択的とは同じ側に水酸基を生じる選択性を意味する。ジアステレオ選択的に反応し得られた一般式(5)の光学活性ハロメチルアルコール誘導体は反応条件下あるいは塩基や熱等の処理によりジアステレオ選択性を保ったまま一般式(8)で表される光学活性エポキシドに誘導することができる。すなわち、アンチ選択的とは一般式(9)[化17]
【0052】
【化17】
Figure 0004330898
【0053】
に表されるようなジアステレオ選択性であり、(S)体から(S,S)体を生じ、(R)体から(R,R)体を生じる反応である。
また、シン選択性とは一般式(10)[化18]
【0054】
【化18】
Figure 0004330898
【0055】
に表されるようなジアステレオ選択性であり、(S)体から(S,R)体を生じ、(R)体から(R,S)体を生じる反応である。
【0056】
以下に、本発明の代表的な製造法について説明する。
[1] 一般式(3)で表されるハロメチルケトン誘導体の製造法について述べる。
一般式(1)で表されるα−ヒドロキシカルボン酸誘導体に対し、一般式(2)で表されるハロ酢酸誘導体を塩基性条件下にて反応させることで一般式(3)で表されるハロメチルケトン誘導体を製造することができる。本反応は、炭素−炭素結合反応の後に、あるいは同時に脱炭酸反応を進行させることで、効率良くハロメチル基を導入することが可能である。また本反応において、出発原料に光学活性体を用いるが、反応による光学純度の低下はほとんど観察されない。
【0057】
使用可能な塩基としては特に制限は無いが、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム等の無機塩基が挙げられる。また、トリエチルアミン、ピリジン、1,8−ジアザビシクロウンデセン等の有機アミン塩基が挙げられる。また、ナトリウムメトキシド、ナトリウムエトキシド、カリウムt-ブトキシド等のアルコキシドが挙げられる。また、水素化リチウム、水素化ナトリウム等の金属水素化物が挙げられる。また、アルキルリチウム、Grignard試薬等の有機金属塩基、中でもn-ブチルリチウム、エチルマグネシウムブロマイド、n-ブチルマグネシウムクロライド、tert-ブチルマグネシウムクロライド等が挙げられる。また、ナトリウムアミド、リチウムアミド、マグネシウムアミド等の金属アミド塩基、中でもリチウムジイソプロピルアミド、ハロゲン化マグネシウムジアルキルアミド、中でも塩化マグネシウムジイソプロピルアミド等の金属アミド塩基等を挙げることができる。これらの塩基は単独あるいは併用して用いることができる。
【0058】
使用可能な溶媒としては、反応の進行を妨げないものであれば特に制限はないが、水、メタノール、エタノール、ブタノール等のアルコール系溶媒、ヘキサン、トルエン、キシレン等の炭化水素系溶媒、酢酸エチル、酢酸ブチル等のエステル系溶媒、ジエチルエーテル、ジオキサン、エチレングリコールジメチルエーテル、テトラヒドロフラン等のエーテル系溶媒、クロロホルム、ジクロロメタン等のハロゲン系溶媒、アセトニトリル、ジメチルホルムアミド、ジメチルスルホキシド、ジメチルイミダゾリジノン等を挙げることができる。またこれら溶媒は単独で、あるいは2種以上の任意の比率での混合溶媒として使用可能である。
【0059】
反応温度に関しては、−78℃から使用する溶媒の沸点まで実施可能であるが、好ましくは、−20℃から溶媒の沸点の温度範囲である。反応時間は特に制限は無いが、数分間から24時間、好ましくは30分間から6時間の範囲である。
【0060】
[2] 一般式(5)で表されるハロメチルアルコール誘導体の製造法または(8)で表されるエポキサイド誘導体の製造法について述べる。
一般式(3)で表されるハロメチルケトン誘導体に対し、一般式(4)で表されるフェニル金属試薬を反応させることで一般式(5)または(8)で表される誘導体を製造することができる。この反応において、R2で示される水酸基の保護基とAで示される金属種の組み合わせにより、ジアステレオ選択性が変わり、適切な保護基と金属種を組み合わせることで、自由にシンあるいはアンチの立体を作り分けることができる。
【0061】
概論すれば、R2O基における酸素原子と反応に関与するカルボニル基が金属の配位により立体が固定された、いわゆるキレーションモデルにしたがって有機金属試薬が反応することで、高いアンチのジアステレオ選択性で目的物を得ることができる。より具体的には、S配置の化合物からはS−R配置の化合物を、R配置の化合物からはR−S配置の化合物を選択的に製造することができる。保護基として具体的にはベンジル基、メトキシメチル基等を用い、有機金属試薬としてGrignard試薬を用いることで高いアンチ選択性(>9:1)で目的の反応が行うことができる。
【0062】
また、R2で示される水酸基の保護基を立体的に大きくし、適切な金属試薬を選択することで、高いシン選択性で目的物を得ることができる。より具体的には、S配置の化合物からはS−S配置の化合物を、R配置の化合物からはR−R配置の化合物を高いシン選択性(>5:1)で製造することができる。具体的には、保護基としてシリル系の保護基を用いることで非常に高いシン選択性(>7:1)で目的の反応が行うことができる。シリル系の保護基としては、トリメチルシリル基、t−ブチルジメチルシリル基、t−ブチルジフェニルシリル基、トリエチルシリル基等が挙げられる。
一般式(8)で表されるエポキサイド誘導体は、高いジアステレオ選択性で一般式(5)で表されるハロメチルアルコール誘導体が生成された後、反応条件下あるいは塩基や熱等の処理により環化反応が起こることで得ることができる。この場合、初めの反応で生じたジアステレオ選択性は失われることはない。
【0063】
また、本反応において、出発原料を光学活性体とした場合、反応による光学純度の低下はほとんど観察されない。使用可能なフェニル金属化合物としては、フェニルリチウム誘導体、フェニルマグネシウム誘導体、フェニル亜鉛誘導体、フェニルチタン誘導体、フェニル銅誘導体またはフェニル銅リチウム誘導体等を挙げることができる。さらに、反応系に様々の添加物を加え、ジアステレオ選択性を変化させ、あるいは収率を向上させることができる。添加物として具体的には、ルイス酸、4級アンモニウム塩、等が挙げられる。さらに詳しくは、CeCl3、MgBr2、MgCl2、ZnCl2、ZnBr2、CuCl2、TiCl4、BF3、AlCl3、SnCl4、SnCl2等が挙げられる。
【0064】
使用可能な溶媒としては、反応の進行を妨げないものであれば特に制限はないが、水、メタノール、エタノール、ブタノール等のアルコール系溶媒、ヘキサン、トルエン、キシレン等の炭化水素系溶媒、酢酸エチル、酢酸ブチル等のエステル系溶媒、ジエチルエーテル、ジオキサン、エチレングリコールジメチルエーテル、テトラヒドロフラン等のエーテル系溶媒、クロロホルム、ジクロロメタン等のハロゲン系溶媒、アセトニトリル、ジメチルホルムアミド、ジメチルスルホキシド、ジメチルイミダゾリジノン等を挙げることができる。またこれら溶媒は単独で、あるいは2種以上の任意の比率での混合溶媒として使用可能である。
【0065】
反応温度に関しては、−78℃から使用する溶媒の沸点まで実施可能であるが、好ましくは、−40℃から室温の範囲である。反応時間は特に制限は無いが、数分間から24時間、好ましくは30分間から6時間の範囲である。
【0066】
[3]一般式(6)で表されるアゾールメチルアルコール誘導体の製造法について述べる。
一般式(5)または(8)で表される誘導体に対し、トリアゾールまたはイミダゾールを反応させることで一般式(6)で表されるアゾールメチルアルコール誘導体を製造することができる。反応は、トリアゾールまたはイミダゾールを単独あるいは塩基共存下で実施することが可能である。使用可能な塩基としては特に制限は無いが、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム等の無機塩基、トリエチルアミン、ピリジン、1,8−ジアザビシクロウンデセン等の有機アミン塩基、水素化リチウム、水素化ナトリウム等の金属水素化物、n-ブチルリチウム、エチルマグネシウムブロマイド、n-ブチルマグネシウムクロライド、tert-ブチルマグネシウムクロライド等の有機金属塩基、またはナトリウムアミド、リチウムジイソプロピルアミド、塩化マグネシウムジイソプロピルアミド等の金属アミド塩基等を挙げることができる。
【0067】
使用可能な溶媒としては、反応の進行を妨げないものであれば特に制限はないが、水、メタノール、エタノール、ブタノール等のアルコール系溶媒、ヘキサン、トルエン、キシレン等の炭化水素系溶媒、酢酸エチル、酢酸ブチル等のエステル系溶媒、ジエチルエーテル、ジオキサン、エチレングリコールジメチルエーテル、テトラヒドロフラン等のエーテル系溶媒、クロロホルム、ジクロロメタン等のハロゲン系溶媒、アセトニトリル、ジメチルホルムアミド、ジメチルスルホキシド等を挙げることができる。またこれら溶媒は単独で、あるいは2種以上の任意の比率での混合溶媒として使用可能である。
【0068】
反応温度に関しては、−20℃から使用する溶媒の沸点まで実施可能であるが、好ましくは、0℃から溶媒の沸点の温度範囲である。反応時間は特に制限は無いが、数分から72時間、好ましくは30分間から12時間の範囲である。
【0069】
[4]一般式(7)で表される光学活性2−フェニル−2,3−ジヒドロキシプロピルアゾール誘導体の製造法について述べる。
一般式(6)で表される光学活性アゾールメチルアルコール誘導体のR2で表される水酸基部分の保護基を選択的に脱保護化することで、一般式(7)で表される光学活性2−フェニル−2,3−ジヒドロキシプロピルアゾール誘導体を製造することができる。水酸基の脱保護方法は、脱保護される部分以外の構造に変化を与えない方法であれば特に制限はない。エーテル系の保護基の場合は、塩酸、硫酸、トリフルオロ酢酸、p-トルエンスルホン酸または酢酸等による酸処理、あるいはパラジウム−炭素等を触媒とする接触水素化分解処理等により実施可能である。また、アセタール系の保護基の場合は、塩酸、硫酸、トリフルオロ酢酸、p-トルエンスルホン酸、ピリジニウムp-トルエンスルホン酸または酢酸等による酸処理等を用いることができ、シリル系の保護基の場合は、塩酸、硫酸、トリフルオロ酢酸、p-トルエンスルホン酸、ピリジニウムp-トルエンスルホン酸または酢酸等による酸処理、またはテトラn-ブチルアンモニウムフルオライド等のフッ素アニオン処理によって実施可能である。
【0070】
使用可能な溶媒としては、反応の進行を妨げないものであれば特に制限はないが、水、メタノール、エタノール、ブタノール等のアルコール系溶媒、ヘキサン、トルエン、キシレン等の炭化水素系溶媒、酢酸エチル、酢酸ブチル等のエステル系溶媒、ジエチルエーテル、ジオキサン、エチレングリコールジメチルエーテル、テトラヒドロフラン等のエーテル系溶媒、クロロホルム、ジクロロメタン等のハロゲン系溶媒、アセトニトリル、ジメチルホルムアミド、ジメチルスルホキシド等を挙げることができる。またこれら溶媒は単独で、あるいは2種以上の任意の比率での混合溶媒として使用可能である。
【0071】
反応温度に関しては、−20℃から使用する溶媒の沸点まで実施可能である。反応時間は特に制限は無いが、数分間から24時間、好ましくは30分間から6時間の範囲である。
【0072】
なお、本発明の出発原料である一般式(1)で表される光学活性α−ヒドロキシカルボン酸誘導体は、市販で容易に入手可能であるか、または一般的に広く知られた方法で合成可能である。例えば、乳酸(Chem.Pharm.Bull., Vol.41(6), pp.1035-1042, 1993)、各種アミノ酸(Synthesis, 1987, p.479)、α−ハロカルボン酸誘導体(Tetrahedron Lett., 1985, Vol.26, p.5257)から既知の方法で合成可能である。また、製造方法として特に明記していない試薬および使用原料に関しては一般的に市販されており、いずれも入手は容易である。
【0073】
【実施例】
以下に、本発明の実施例を記載するが、本発明はこれらによって制限されるものではない。
[実施例1] (3R)-1-クロロ-3-(3,4,5,6-テトラヒドロ-2H-ピラン-2-イルオキシ)-2-ブタノンの合成[化19]
【0074】
【化19】
Figure 0004330898
【0075】
tret-ブチルマグネシウムクロライド(0.94M テトラヒドロフラン溶液)(200ml)に室温にてジイソプロピルアミン(19.4g)を加え、70℃で1.5時間加熱還流後、室温まで冷却した(これを反応溶液Aとした)。別の反応容器に(2R)-メチル-2-(3,4,5,6-テトラヒドロ-2H-ピラン-2-イルオキシ)プロピオネート(9.1g)を入れ、テトラヒドロフラン(40ml)に溶解し、室温にてクロロ酢酸ナトリウム(11.3g)を加えた。これを氷冷し、塩化マグネシウム(9.3g)を少量ずつ加えてから室温で4時間攪拌した(これを反応溶液Bとした)。反応溶液Bを氷冷して反応溶液Aを内温5℃以下で滴下し、これを70℃で2時間加熱還流後、室温まで冷却した。反応溶液を氷冷下で硫酸(18.0g)/水(150ml)/酢酸エチル(225ml)の混合溶液に注加し、室温で40分間攪拌した。この溶液を分液し、有機層を飽和炭酸水素ナトリウム水溶液、飽和塩化ナトリウム水溶液で洗浄後、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(426g,ヘキサン−酢酸エチル=4:1)で単離精製し、目的化合物の保護基THPに由来する2種のジアステレオマーを黄色油状物質として得た。
【0076】
収量=9.2g
収率=92%
ジアステレオマーA
1H-NMR(400MHz, CDCl3) δ=4.65(dd, 1H, J=4.4, 2.8Hz), 4.45(quartet, 1H, J=6.8Hz), 4.42(d, 1H, J=16Hz), 4.36(d, 1H, J=16Hz), 3.91-3.82(m, 2H), 1.88-1.45(m, 6H), 1.41(d, 3H, J=6.8Hz)
ジアステレオマーB
1H-NMR(400MHz,CDCl3) δ=4.66(d,1H,J=17Hz), 4.55(dd,1H,J=6.4,2.4Hz), 4.42(d,1H,J=17Hz) 4.25(quartet, 1H, J=6.8Hz), 3.56-3.50(m, 1H), 3.47-3.41(m, 1H), 1.92-1.49(m, 6H), 1.35(d, 3H, J=6.8Hz)
IR(neat, diastereomixture) ν=2946, 2870, 1741, 1433, 1398, 1327, 1203, 1130, 1078, 1035, 974, 892, 874, 816, 781cm-1
【0077】
[実施例2] (2R,3R)-1-クロロ-2-(2,4-ジフルオロフェニル)-3-(3,4,5,6-テトラヒドロ-2H-ピラン-2-イルオキシ)-2-ブタノールの合成[化20]
【0078】
【化20】
Figure 0004330898
【0079】
窒素雰囲気化でマグネシウム (1.5g)をテトラヒドロフラン(25ml)に懸濁し、ヨウ素(50mg)を加えてから25℃〜30℃で2,4-ジフルオロブロモベンゼン(11.0g)/テトラヒドロフラン(20ml)溶液を滴下した。室温で1.5時間攪拌しこれを溶液A(49.2g)とした。別の反応容器に実施例1で得られた化合物(2.0g)を入れ、テトラヒドロフラン(20ml)に溶解して-20℃に冷却した。これに溶液A(9.1g)を-5℃以下で滴下し、−10℃〜0℃で1時間、0℃〜10℃で2時間攪拌した。反応液を5℃に冷却し、1N塩酸(9ml)を加えてpH8に調整した。5℃〜10℃で30分間攪拌した後酢酸エチル、水を加えて抽出し、有機層を飽和塩化ナトリウム水溶液で洗浄した。有機層を無水硫酸マグネシウムにて乾燥した後溶媒を減圧濃縮し、淡褐色残さを得た。
【0080】
[反応のジアステレオ選択性]
アンチ誘導体(2R,3R):シン誘導体(2S,3R)=10:1
ジアステレオ選択性は、シリカゲルカラムクロマトグラフィーによる精製を行なわず混合物のまま、実施例3および4に記載の方法を実施し、(2S,3R)-2-(2,4-ジフルオロフェニル)-1-(1H-1,2,4-トリアゾール-1-イル)-2,3-ブタンジオールおよび(2R,3R)-2-(2,4-ジフルオロフェニル)-1-(1H-1,2,4-トリアゾール-1-イル)-2,3-ブタンジオールに誘導した後、HPLCを用いて決定した(分析条件/YMC-PACK ODS A-303, 溶離液組成 メタノール:水:酢酸=70:30:0.2, 検出法 UV 254nm)。
また、上記操作により得られた淡褐色残渣を、シリカゲルカラムクロマトグラフィー(68g, ヘキサン−酢酸エチル=4:1)にて単離精製して、(2R,3R)の立体配置を持つ主生成物のテトラヒドロピラン部位に由来する2種のジアステレオマー混合物を白色アモルファスとして得た。
【0081】
収量=2.0g
収率=64%
アンチ誘導体(2R,3R)のジアステレオマーA
1H-NMR(400MHz, CDCl3) δ=7.71(td, 1H, J=9.0,6.8Hz), 6.94-6.89(m, 1H), 6.83-6.76(m, 1H), 4.61(dd, 1H, J=4.8,2.4Hz), 4.38(d, 1H, J=11Hz), 4.21(d, 1H, J=11Hz), 4.12(quartet, 1H, J=6.8Hz), 4.00(s, 1H), 3.52-3.46(m, 2H), 1.86-1.32(m, 6H), 1.27(d, 3H, J=6.8Hz)
アンチ誘導体(2R,3R)のジアステレオマーB
1H-NMR(400MHz, CDCl3) δ=7.62(td, 1H, J=8.8, 6.4Hz), 6.94-6.89(m, 1H), 6.83-6.76(m, 1H), 4.29(m, 1H), 4.03(quartet, 1H, J=6.4Hz), 4.00(s, 1H), 3.95(dd, 1H, J=11, 2.4Hz), 3.91(dd, 1H, J=11, 2.4Hz), 3.46-3.37(m, 2H), 1.86-1.32(m, 6H), 1.13(dd, 3H, J=1.2, 6.4Hz)
IR(KBr-disk, diastereomixture) ν=3437, 3079, 2943, 2873, 1736, 1616, 1502, 1469, 1421, 1356, 1273, 1201, 1121, 1084, 1025, 973, 927, 863, 815, 756, 726, 680, 632, 558, 543, 515cm-1
【0082】
[実施例3] (2S,3R)-2-(2,4-ジフルオロフェニル)-3-(3,4,5,6-テトラヒドロ-2H-ピラン-2-イルオキシ)-1-(1H-1,2,4-トリアゾール-1-イル)-2-ブタノールの合成[化21]
【0083】
【化21】
Figure 0004330898
【0084】
窒素雰囲気下、水素化ナトリウム(0.36g)をN,N-ジメチルホルムアミド(6ml)に懸濁し、氷冷下で1,2,4-トリアゾールを少量ずつ加え、室温で40分間攪拌した。これに実施例2で得られたジアステレオマー混合物(0.71g)/ N,N-ジメチルホルムアミド(5ml)溶液を滴下し、室温で4時間、70℃で6時間加熱攪拌した。反応液を室温まで冷却し、氷水中に注加して1N塩酸でpH4に調整した。酢酸エチルを加えて抽出し、有機層を飽和塩化ナトリウム水溶液で洗浄後、無水硫酸マグネシウムにて乾燥した。溶媒を減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(32g, クロロホルム−メタノール=25:1)にて単離精製して、テトラヒドロピラン部位に由来する2種のジアステレオマー混合物を淡黄色アモルファスとして得た。
この反応では、不斉炭素の立体構造はアンチで変わらないが、塩素原子がトリアゾールに変わることで2位の立体表記が(R)から(S)に変化する。
【0085】
収量=0.68g
収率=86%
ジアステレオマーA
1H-NMR(400MHz, CDCl3) δ=8.12(s, 1H), 8.02(s, 1H), 7.73(d, 1H, J=11Hz), 7.55(td, 1H, J=9.0, 6.8Hz), 6.80-6.69(m, 1H), 5.15(dd, 1H, J=14,1.2Hz), 4.78(s, 1H), 4.62-4.61(m, 1H),4.56(dd, 1H, J=14, 1.2Hz), 4.10(quartet, 1H, J=6.4Hz), 3.45-3.41(m, 2H), 1.86-1.34(m, 6H), 1.17(dd, 3H, J=6.4,1.2Hz)
ジアステレオマーB
1H-NMR(400MHz, CDCl3) δ=8.05(s, 1H), 8.02(s, 1H), 7.73(d, 1H, J=11Hz), 7.44(td, 1H, J=9.0, 6.4Hz), 6.80-6.69(m, 1H), 4.98(dd, 1H, J=14,1.2Hz), 4.48(dd, 1H, J=14,0.8Hz), 4.41(s, 1H), 416(qd, 1H, J=6.0, 0.8Hz), 3.41-3.38(m, 2H), 1.86-1.34(m, 6H), 1.13(d, 3H, J=6.0Hz)
IR(neat, diastereomixture) ν=3392, 3128, 2945, 2872, 1669, 1616, 1502, 1419, 1387, 1274, 1203, 1137, 1078, 1033, 973, 872, 816, 729, 680, 660, 551cm-1
【0086】
[実施例4] (2S,3R)-2-(2,4-ジフルオロフェニル)-1-(1H-1,2,4-トリアゾール-1-イル)-2,3-ブタンジオールの合成[化22]
【0087】
【化22】
Figure 0004330898
【0088】
実施例3で得られた化合物(0.51g)をエタノール(7ml)に溶解し、ピリジニウムパラトルエンスルホン酸(149mg)を加えて室温で1時間、55℃で2.5時間加熱攪拌した。反応溶液を室温まで冷却してから濃縮し、残渣に酢酸エチル、水を加えて抽出した。有機層を水洗後、無水硫酸マグネシウムにて乾燥した。溶媒を減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(32g, クロロホルム−メタノール=9:1)にて単離精製して、目的化合物を白色アモルファスとして得た。
【0089】
収量=0.22g
収率=57%
1H-NMR(400MHz, CDCl3) δ=8.03(d, 1H, J=1.2Hz), 7.76(s, 1H), 7.54(td, 1H, J=9.2, 6.4Hz), 6.83-6.78(m, 1H), 6.72(ddd, 1H, J=12,8.8,2.8Hz), 5.03(d, 1H, J=14,1.6Hz), 5.01(s, 1H),4.56(dd, 1H, J=14, 1.6Hz), 4.00(quartet, 1H, J=6.4Hz), 2.65(d, 1H, J=5.2Hz), 1.26(dd, 3H, J=6.4,1.2Hz)
IR(KBr-disk) ν=3406, 3136, 2982, 2938, 1618, 1501, 1421, 1277, 1207, 1139, 1082, 1021, 967, 853, 815, 663, 633, 548cm-1
【0090】
[実施例5] (3S)-1-クロロ-3-ベンジルオキシ-2-ブタノンの合成[化23]
【0091】
【化23】
Figure 0004330898
【0092】
(2S)-メチル-2-ベンジルオキシプロピオネート(4.70g, 24.2mmol)をTHF(20ml)に溶解し、クロロ酢酸ナトリウム(5.63g)および塩化マグネシウム(4.61g)を加え、窒素雰囲気下、室温にて1時間撹拌した(A液)。市販の0.97M tert-ブチルマグネシウムクロライド−THF溶液(100ml)に、窒素雰囲気下、室温にて、ジイソプロピルアミン(9.90g)を滴下し、65〜70℃に1時間加熱撹拌した(B液)。A液を−15℃に冷却し、B液を滴下した(滴下時の内温は0℃以下を保った)。滴下終了後、反応液を65〜70℃に加温し、2時間撹拌した。反応液を冷却後、氷冷した酢酸エチル(100g)-10%硫酸(90g)の混合液に注加し、そのまま30分間撹拌した。有機層を分取し、5%−食塩水で洗浄し、無水硫酸マグネシウムにて乾燥した。有機層を減圧濃縮し、得られた残さをシリカゲルカラムクロマトグラフィー(C-300, 100g, ヘキサン‐酢酸エチル=10:1→8:1)で単離精製した。
【0093】
収量=4.06g
収率=79%
1H-N.M.R.(400MHz, CDCl3) δ=7.40-7.30(m, 5H), 4.61(d, 1H, J=11.5Hz), 4.53(d, 1H, J=11.5Hz), 4.46(d, 1H, J=14.5Hz), 4.39(d, 1H, J=14.5Hz), 4.15(q, 1H), J=6.8Hz), 1.40(d, 3H, J=6.8Hz)
IR(neat)ν=3033, 2986, 2939, 2870, 1742, 1497, 1455, 1396, 1308, 1115, 741, 699cm-1
【0094】
[実施例6] (2S,3S)-1-クロロ-2-(2,4-ジフルオロフェニル)-3-ベンジルオキシ-2-ブタノールの合成[化24]
【0095】
【化24】
Figure 0004330898
【0096】
実施例5で得られた化合物(3.19g, 15mmol)をTHF(15ml)に溶解し、-15℃に冷却した。予め2,4-ジフロロブロモベンゼン(3.47g, 18mmol)から調製したグリニヤ試薬(THF/20ml)を-5℃以下で滴下した。反応液を30分間撹拌の後、水(20ml)を5℃以下で滴下し、続いて1N-塩酸(30ml)を5℃以下で滴下した。酢酸エチル(50ml)で抽出し、2回水洗した。有機層を無水硫酸マグネシウムにて乾燥後、減圧濃縮し、淡褐色残さを得た。
【0097】
[ジアステレオ選択性]
アンチ誘導体(2S,3S):シン誘導体(2R,3S)=10:1
ジアステレオ選択性は、得られた淡褐色残さをシリカゲルカラムクロマトグラフィー精製することなく混合物のままで1H-N.M.R.(400MHz, CDCl3)を測定し、各ピークの積分比から決定した。
さらに、上記操作で得られた淡褐色残さをシリカゲルカラムクロマトグラフィー(C-300, 200g, ヘキサン‐酢酸エチル=10:1→6:1)で単離精製し、標題化合物を得た。
【0098】
アンチ誘導体(2S,3S)の収量=2.50g
アンチ誘導体(2S,3S)の収率=51%
アンチ誘導体(2S,3S)
1H-N.M.R.(400MHz, CDCl3) δ=7.67-7.60(m, 1H), 7.28-7.25(m, 3H), 7.08-7.05(m, 2H), 6.94-6.90(m, 1H), 6.77-6.72(m, 1H), 4.49(d, 1H, J=11.7Hz), 4.27(d, 1H, J=11.7Hz), 4.20(d, 1H, J=11.2Hz), 3.92-3.87(m, 2H), 3.17(s, 1H), 1.22(dd, 3H, J=0.7, 6.4Hz)
IR(neat) ν=3538, 3066, 3032, 2978, 2938, 2873, 1616, 1501, 1420, 1271, 1131, 1091, 973, 852, 750, 698cm-1
シン誘導体(2R,3S)
1H-N.M.R.(400MHz, CDCl3) δ=7.74-65(m, 1H), 7.38-7.31(m, 5H), 6.94-6.87(m, 1H), 6.79-6.71(m, 1H), 4.70(d, 1H, J=11.6Hz), 4.47(d, 1H, J=11.6Hz), 4.11-4.00(m, 3H), 2.99(s, 1H), 1.01(d, 3H, J=5.9Hz)
このとき、原料であるBCMKを1.33g回収した。BCMKの回収を考慮すると、換算収率は87%であった。
【0099】
[実施例7] (2S,3S)-1-クロロ-2-(2,4-ジフルオロフェニル)-3-ベンジルオキシ-2-ブタノールの合成[化25]
【0100】
【化25】
Figure 0004330898
【0101】
窒素雰囲気下、マグネシウム(6.0g, 46mmol)をテトラヒドロフラン(120ml)に分散させ、よう素(5mg)加えて攪拌した。 2,4-ジフルオロブロモベンゼン(48g, 248mmol)のテトラヒドロフラン(120ml)溶液を、内温が30〜35℃になるように滴下し、グリニヤ試薬Aとした。別途、無水塩化セリウム(10g, 40.8mmol)を減圧下、130℃で1時間乾燥した。室温まで冷却した後、窒素雰囲気下にてテトラヒドロフラン(40ml)を加えて、懸濁の状態で30分間超音波処理を行ない懸濁溶液Bとした。続いて、 実施例5で得られた化合物(4.34g, 20.4mmol)のテトラヒドロフラン(10ml)溶液を、懸濁溶液Bに加え、さらに30分間超音波処理を行なった。テトラヒドロフラン(4ml)を懸濁溶液Bに追加した後、0℃から−5℃に保って、上記で調整したグリニヤ試薬A(24ml, 24mmol)を滴下した。滴下後更に12時間攪拌した。 氷冷下、1N塩酸(200ml)を滴下、酢酸エチル(400ml)で抽出した。有機層を飽和炭酸水素ナトリウム水溶液(400ml)、飽和食塩水(400ml)で洗浄し、硫酸マグネシウムで乾燥、ろ過、濃縮して、淡褐色残さを得た。
【0102】
[ジアステレオ選択性]
アンチ誘導体(2S,3S):シン誘導体(2R,3S)=10:1
ジアステレオ選択性の決定は、実施例6と同様に行なった。
さらに、上記操作で得られた淡褐色残さをシリカゲルカラムクロマトグラフィー(C-300, 200g, ヘキサン‐酢酸エチル=10:1→6:1)で単離精製し、標題化合物を得た。
アンチ誘導体(2S,3S)の収量=6.13g
アンチ誘導体(2S,3S)の収率=92%
1H-N.M.R.(400MHz, CDCl3)およびIR(neat)値は、実施例6と一致した。
【0103】
[実施例8] (2R,3S)-2-(2,4-ジフルオロフェニル)-3-ベンジルオキシ-1-(1H-1,2,4-トリアゾール-1-イル)-2-ブタノールの合成[化26]
【0104】
【化26】
Figure 0004330898
【0105】
60%-水素化ナトリウム(800g, 20mmol)をDMF(7g)に懸濁し、窒素雰囲気下、氷冷にてトリアゾール(1.38g, 20mmol)を粉体装入した(内温は15℃以下を保持した)。氷冷下にて1時間撹拌し、ほぼ均一な淡褐色溶液を得た後に、実施例8で得られた化合物(1.63g, 5mmol)をDMF(7g)に溶解した溶液を10℃以下で滴下装入した。反応液を70〜75℃に加温し、6時間撹拌した。反応液を冷却後、水(60g)に注加し、酢酸エチル(100ml)で抽出した。水洗(60gで3回)をし、無水硫酸マグネシウムで乾燥後、有機層を減圧濃縮した。得られた残さをシリカゲルカラムクロマトグラフィー(C-300, 100g, ヘキサン‐酢酸エチル=1:2)で単離精製し、黄色シロップを得た。
この反応では、不斉炭素の立体構造はアンチで変わらないが、塩素原子がトリアゾールに変わることで2位の立体表記が(S)から(R)に変化する。
【0106】
収量=1.33g
収率=80%
1H-N.M.R.(400MHz, CDCl3) δ=7.99(s, 1H), 7.72(s, 1H), 7.49-7.43(m, 1H), 7.29-7.26(m, 3H), 7.10-7.08(m, 2H), 6.80-6.75(m, 1H), 6.71-6.65(m, 1H), 4.96(d, 1H, J=14.5Hz), 4.53(d, 1H, J=10.4Hz), 4.45(d, 1H, J=14.5Hz), 4.36(s, 1H), 4.27(d, 1H, J=10.4Hz), 3.90(q, 1H, J=6.1Hz), 1.25(d, 3H, J=6.1Hz)
IR(neat) ν=3259, 3166, 3086, 1617, 1502, 1274, 1135, 1096, 966, 858, 747, 667cm-1
このシロップのうち1.1gから結晶化(ヘキサン−THF)し、乳白色結晶を得た。
収量=960mg
【0107】
[実施例9] (2R,3S)-2-(2,4-ジフルオロフェニル)-1-(1H-1,2,4-トリアゾール-1-イル)-2,3-ブタンジオールの合成[化27]
【0108】
【化27】
Figure 0004330898
【0109】
実施例8で得られた化合物(719g, 2mmol)をメタノール(30ml)に溶解し、10%-パラジウム/炭素(0.3g)を加え、オートグレーブ中、水素初期圧(1.0MPa)、50℃にて8時間撹拌した。反応液から触媒をろ別し、ろ液を減圧濃縮した。
【0110】
収量=480mg
収率=89%
1H-NMR(400MHz, CDCl3) δ=8.03(d, 1H, J=1.2Hz), 7.76(s, 1H), 7.54(td, 1H, J=9.2, 6.4Hz), 6.83-6.78(m, 1H), 6.72(ddd, 1H, J=12,8.8,2.8Hz), 5.03(d, 1H, J=14,1.6Hz), 5.01(s, 1H),4.56(dd, 1H, J=14, 1.6Hz), 4.00(quartet, 1H, J=6.4Hz), 2.65(d, 1H, J=5.2Hz), 1.26(dd, 3H, J=6.4,1.2Hz)
IR(KBr-disk) ν=3406, 3136, 2982, 2938, 1618, 1501, 1421, 1277, 1207, 1139, 1082, 1021, 967, 853, 815, 663, 633, 548cm-1
【0111】
[実施例10] (3R)-3-(tert-ブチルジフェニルシリルオキシ) -1-クロロ-2-ブタノンの合成[化28]
【0112】
【化28】
Figure 0004330898
【0113】
(2R)-メチル-2-(tert-ブチルジフェニルシリルオキシ)プロピオネート(6.83g, 20mmol)を用い、実施例1と同様に処理し、標題化合物を無色透明シロップとして得た。
【0114】
収量=5.78g
収率=80%
1H-N.M.R.(400MHz, CDCl3) δ=7.70-7.59(m, 4H), 7.49-7.32(m, 6H), 4.52(d, 1H, J=17.1Hz), 4.38(d, 1H, J=17.4Hz), 4.38(q, 1H, J=6.9Hz), 1.24(d, 3H, J=6.9Hz), 1.11(s, 9H)
【0115】
[実施例11] (2R)-2-[(1'R)-1-(tert-ブチルジフェニルシリルオキシ)エチル]-2-(2,4-ジフルオロフェニル)オキシランおよび(2S)-2-[(1'R)-1-(tert-ブチルジフェニルシリルオキシ)エチル]-2-(2,4-ジフルオロフェニル)オキシランの合成[化29]
【0116】
【化29】
Figure 0004330898
【0117】
実施例10で合成した化合物(3.61g, 10mmol)を用い実施例2と同様に処理し、標題化合物を無色透明シロップとして得た(ジアステレオマー混合物)。
【0118】
[ジアステレオ選択性]
アンチ誘導体(1'R,2S):シン誘導体(1'R,2R)=1:7.25
ジアステレオ選択性は、1H-N.M.R.(400MHz, CDCl3)を測定し、各ピークの積分比から決定した。
収量=2.20g(ジアステレオマー混合物)
収率=50%
アンチ誘導体(1'R,2S)
1H-N.M.R.(270MHz, CDCl3): δ=7.74-7.21(m, 11H), 6.90-6.71(m, 2H), 3.99(q, 1H, J=6.0HZ), 2.99(d, 1H, J=5.8Hz), 2.78(d, 1H, J=5.8Hz), 1.02(s, 9H), 1.02(d, 3H, J=6.0Hz)
シン誘導体(1'R,2R)
1H-N.M.R.(270MHz, CDCl3): δ=7.74-7.21(m, 11H), 6.90-6.71(m, 2H), 4.02(q, 1H, J=6.2Hz), 3.18(d, 1H, J=5.3Hz), 2.82(dd, 1H, J=1.0, 5.3Hz), 1.06(s, 9H), 0.95(dd, 3H, J=1.7, 6.2Hz)
【0119】
[実施例12] (2R,3R)-2-(2,4-ジフルオロフェニル)-1-(1H-1,2,4-トリアゾール-1-イル)-2,3-ブタンジオールおよび(2S,3R)-2-(2,4-ジフルオロフェニル)-1-(1H-1,2,4-トリアゾール-1-イル)-2,3-ブタンジオールの合成[化30]
【0120】
【化30】
Figure 0004330898
【0121】
60%-水素化ナトリウム(400g, 10mmol)をDMF(7g)に懸濁し、窒素雰囲気下、氷冷にてトリアゾール(690mg, 10mmol)を粉体装入した(内温は15℃以下を保持した)。氷冷下にて1時間撹拌し、ほぼ均一な淡褐色溶液を得た後に、実施例11で得られたジアステレオマー混合物(1.10g, 2.5mmol)をDMF(7g)に溶解した溶液を10℃以下で滴下装入した。反応液を70〜75℃に加温し、6時間撹拌した。反応液を冷却後、水(30g)に注加し、酢酸エチル(50ml)で抽出した。水洗(30gで3回)をし、無水硫酸マグネシウムで乾燥後、有機層を減圧濃縮した。得られた残さをテトラヒドロフラン(10g)に溶解し、テトラ-n-ブチルアンモニウムフロリド(980mg,3.75mmol)を加え、室温にて30分間撹拌した。反応液に水(10g)および酢酸エチル(20g)を加え、10分間撹拌の後、有機層を分取した。有機層を無水硫酸マグネシウムで乾燥し、乾燥剤をろ別後、ろ液を減圧濃縮し、標題化合物をジアステレオマー混合物の淡黄色シロップとして得た。
【0122】
[ジアステレオマー比]
アンチ誘導体(1'R,2S):シン誘導体(1'R,2R)=1:7.25
ジアステレオ比は、HPLCによる分析によって決定した。分析条件/YMC-PACK ODS A-303, 溶離液組成 メタノール:水:酢酸=70:30:0.2, 検出法 UV 254nmさらに、上記操作によって得られたジアステレオマー混合物である淡黄色シロップからトルエンを用いて結晶化させ、(2R,3R)-2-(2,4-ジフルオロフェニル)-1-(1H-1,2,4-トリアゾール-1-イル)-2,3-ブタンジオール(498mg, 74%)を優先的に白色結晶として得た。
【0123】
融点:116-117℃
ジアステレオマー過剰率=96%de
分析条件/YMC-PACK ODS A-303, 溶離液組成 メタノール:水:酢酸=70:30:0.2, 検出法 UV 254nm
光学純度=99%ee
【0124】
光学純度の測定は、(2R,3R)-2-(2,4-ジフルオロフェニル)-1-(1H-1,2,4-トリアゾール-1-イル)-2,3-ブタンジオールをChem.Phram.Bull.41(6)1035-1042(1993)に記載の方法に準じて既知化合物である(2S,3R)-2-(2,4-ジフルオロフェニル)-3-メチル-2-(1H-1,2,4-トリアゾール-1-イル)メチルオキシランに誘導し、HPLC分析によって決定した。分析条件/DAICEL CHIRALCEL OF, 溶離液組成 ヘキサン:2−プロパノール:ジエチルアミン=60:40:0.1, 検出法 UV 254nm
(2R,3R)体
1H-N.M.R.(270MHz, CDCl3): δ=7.84(s, 1H), 7.82(s, 1H), 7.46-7.37(m., 1H), 6.80-6.72(m, 2H), 4.87-4.77(m, 3H ), 4.36-4.29(m, 1H), 2.63(d, 1H, J=9.2Hz), 0.97(d, 3H, J=6.5Hz)
(2S,3R)体
1H-N.M.R. (270MHz, CDCl3)は、実施例4と一致した。
【0125】
【発明の効果】
医農薬の非常に重要な中間体である、光学活性ハロメチルアルコール誘導体および光学活性エポキシド誘導体の高立体選択的製造法を見出し、工業的な観点から光学活性2−フェニル−2,3−ジヒドロキシプロピルアゾール誘導体が短工程で安価にかつ安定的に製造することが可能となった。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel process for producing an optically active 2-phenyl-2,3-dihydroxypropylazole derivative, which is an important compound for production in various fields including medical and agrochemical fields, in a short process.
[0002]
[Prior art]
In recent years, fungal infections typified by so-called opportunistic infections have become a problem due to an increase in immunodeficiency patients due to infections such as AIDS, an increase in patients with reduced immunity due to advancement of advanced medical care or an increase in the elderly. In particular, for those who are immunocompromised, deep fungal infections such as candidiasis and aspergillosis are often serious and life-threatening, and are one of the infections to be noted in the medical field. Conventionally, azole antifungal agents typified by fluconazole have been frequently used for these infectious diseases, but in recent years, the emergence of resistant bacteria and the lack of basic action have been pointed out. Development of more effective therapeutic agents effective against bacterial species is desired (Pharmaceutical Journal, vol37 (7), pp.115-119).
[0003]
On the other hand, the azole antifungal agents currently under development tend to be more complex in structure, especially how to efficiently construct the asymmetric carbon to which the azolemethyl group is bonded and the asymmetric carbon moiety present continuously. Is a major technical problem (J. Med. Chem., Vol. 41, pp. 1869-1882, 1998). However, until now, an inexpensive and stable production method has not been established from an industrial viewpoint.
[0004]
The conventional manufacturing technique will be described below.
As a method for constructing a continuous asymmetric site, in any case, it is constructed by carrying out diastereoselective carbon increase epoxidation to a ketone group via an α-hydroxyphenyl ketone derivative (Chem. Pharm. Bull., Vol.41 (6), pp.1035-1042, 1993). However, the conventional production method has (1) poor diastereoselectivity of about 4: 1, (2) low yield when trying to isolate only the desired isomer, and (3) a long number of steps, The isolation and purification steps were extremely complicated, and (4) the production method was extremely problematic from an industrial point of view, such as racemization depending on the reaction conditions. In addition, the α-hydroxyphenyl ketone derivative itself is produced by a multi-step process (Bioorg. Med. Chem. Lett., Vol1 (7), pp.349-352, 1991) or an expensive reaction reagent such as an asymmetric catalyst. (Tetrahedron Letters, vol37 (36), pp.6531-6534, 1996) was required, and it was not fully satisfactory as an industrial production method. In recent years, a new production method using L-alanine as a starting material, which has improved these existing methods, has been reported (US6300522), but in order to solve the fundamental problem in that it passes through an α-hydroxyphenyl ketone derivative. However, it was not always an industrially satisfactory production method.
[0005]
As described above, since it is an optically active compound having two asymmetric carbons even though the development of a more useful novel azole antifungal agent is desired, the conventional production technique is industrially effective. From the viewpoint, an inexpensive and stable production method has not been established, and rapid development of a more efficient new production method is desired for these intermediate compounds.
[0006]
[Patent Document 1]
U.S. Pat.No. 6300522
[0007]
[Non-Patent Document 1]
Pharmaceutical Journal, vol.37 (7), pp.115-119
[0008]
[Non-Patent Document 2]
J.Med.Chem., Vol.41, pp.1869-1882, 1998
[0009]
[Non-Patent Document 3]
Chem. Pharm. Bull., Vol. 41 (6), pp.1035-1042, 1993
[0010]
[Non-Patent Document 4]
Tetrahedron Letters, vol.37 (36), pp.6531-6534, 1996
[0011]
[Problems to be solved by the invention]
An object of the present invention is an optically active 2-phenyl-2,3-dihydroxypropyl which is a useful compound in the field of medicine and agricultural chemicals, and is an especially important intermediate in the production process of an optically active azole antifungal agent. With respect to the production of azole derivatives, from an industrial point of view, it is to provide a method for producing inexpensively and stably in a short process and a novel intermediate.
[0012]
[Means for Solving the Problems]
As a result of intensive studies in order to solve the above-mentioned problems, the present inventors made an optically active α-hydroxycarboxylic acid derivative as a starting material, reacted with a haloacetic acid derivative, and a very important intermediate for medical and agricultural chemicals. In addition, an optically active halomethyl ketone derivative is produced, and further, a high diastereoselective reaction that allows the alkylation reaction to be freely anti- or syn-configured depending on the selection of the protecting group and the reaction conditions has been found. By producing an optically active halomethyl alcohol derivative, which is a very important intermediate, and further reacting with triazole or imidazole to produce an optically active azolemethyl alcohol derivative, and further selectively deprotecting it, medical and agricultural chemicals A completely new intermediate for obtaining optically active 2-phenyl-2,3-dihydroxypropyl azole derivatives We found a manufacturing route.
[0013]
It has been found that in the above reaction route, there is almost no racemization accompanying the reaction, and a compound having a desired configuration can be selectively produced with high optical purity. In particular, an inexpensive lactic acid derivative is used as the optically active α-hydroxycarboxylic acid derivative, a silyl-based protective group is used as a protective group, and a very high syn selectivity is obtained via a novel optically active silyloxy-haloalkylketone derivative. And found that novel optically active silyloxy-halomethyl alcohol derivatives and optically active silyloxy-epoxide derivatives, which are extremely important intermediates for the production of optically active azole antifungal agents, can be obtained. I found it. As a result, the production of 2-phenyl-2,3-dihydroxypropyl azole derivatives, which are extremely important intermediates for the production of optically active azole antifungal agents and have the desired configuration with high optical purity, From a general viewpoint, it has become possible to carry out the process stably and inexpensively with a short process, and the present invention has been completed.
[0014]
That is, the present invention is as described in [1] to [9] below.
[1] General formula (1)
[0015]
[Chemical 9]
Figure 0004330898
[0016]
(Wherein R1 represents an alkyl group which may be substituted, an aralkyl group which may be substituted, an aryl group which may be substituted or a heterocyclic ring which may be substituted; R2 represents an ether group as a hydroxyl-protecting group; A protecting group, an acetal protecting group or a silyl protecting group, wherein R3 is a hydroxyl group, a halogen atom, an optionally substituted acyl group, an optionally substituted carbonate group, an optionally substituted alkyloxy group, An aralkyloxy group that may be substituted, a phenoxy group that may be substituted, or an amino group that may be substituted is shown, * on the carbon atom means an asymmetric carbon, and can take R configuration or S configuration .) And an α-hydroxycarboxylic acid derivative represented by the general formula (2)
[0017]
[Chemical Formula 10]
Figure 0004330898
[0018]
(In the formula, R 4 represents a hydrogen atom, an optionally substituted alkyl group, an optionally substituted aralkyl group, an optionally substituted aryl group, an alkali metal or an alkaline earth metal, and X represents a halogen atom. The haloacetic acid derivative represented by the general formula (3)
[0019]
Embedded image
Figure 0004330898
[0020]
(Wherein R1, R2, X and * are as defined above), and the halomethyl ketone derivative is further represented by the general formula (4) [Chemical Formula 12]
[0021]
Embedded image
Figure 0004330898
[0022]
(Wherein R5 and R6 are each independently a halogen atom, an alkyloxycarbonyl group, an aryloxycarbonyl group, an amino group that may be substituted, an amide group that may be substituted, an alkyl group that may be substituted, An optionally substituted alkyloxy group, an optionally substituted aralkyl group, an optionally substituted aralkyloxy group, an optionally substituted phenyl group, an optionally substituted phenyloxy group, an optionally substituted heterocycle or substituted Represents a heterocyclic oxy group which may be substituted, and A represents Li, MgX, ZnX, TiXThree, Ti (OR7)Three, CuX or CuLi. However, X shows a halogen atom and R7 shows a lower alkyl group. And a phenyl metal reagent represented by the following formula (5):
[0023]
Embedded image
Figure 0004330898
[0024]
(Wherein R1, R2, R5, R6, X and * are as defined above), and the optically active halomethyl alcohol derivative is further reacted with triazole or imidazole. General formula (6)
[0025]
Embedded image
Figure 0004330898
[0026]
(Wherein R 1, R 2, R 5, R 6 and * are as defined above. Y represents a carbon atom or a nitrogen atom), and an optically active azole methyl derivative is produced. By selectively deprotecting the alcohol derivative, the general formula (7)
[0027]
Embedded image
Figure 0004330898
[0028]
(Wherein R 1, R 5, R 6, Y and * are as defined above), an optically active 2-phenyl-2,3-dihydroxypropyl azole derivative represented by
[2] An α-hydroxycarboxylic acid derivative represented by the general formula (1) (wherein R1, R2, and R3 * are as defined above) and the general formula (2) (wherein R4 and X are The haloacetic acid derivative represented by the general formula (3) is reacted under basic conditions, and the halo represented by the general formula (3) (wherein R1, R2, X and * are as defined above). A methyl ketone derivative is produced, and a phenyl metal reagent represented by the general formula (4) (wherein R5, R6, A, X and R7 are as defined above) is diastereoselectively selected for the halomethyl ketone derivative. Reaction is carried out to give a general formula (8)
[0029]
Embedded image
Figure 0004330898
[0030]
(Wherein R1, R2, R5, R6, and * are as defined above), and the optically active epoxide derivative is further reacted with triazole or imidazole to give a general formula ( 6) (wherein R1, R2, R5, R6, Y and * are as defined above) are produced, and the optically active azole methyl alcohol derivative is selectively selected. By deprotecting, an optically active 2-phenyl-2,3-dihydroxypropylazole derivative represented by the general formula (7) (wherein R1, R5, R6, Y and * are as defined above) is produced. And how to
[3] A halomethyl ketone derivative represented by the general formula (3) (wherein R1, R2, X and * are as defined above) and the general formula (4) (wherein R5, R6 and A are And a general formula (5) (wherein R1, R2, R5, R6, X and * are as defined above). A method for producing an optically active halomethyl alcohol derivative represented by:
[4] A halomethyl ketone derivative represented by the general formula (3) (wherein R1, R2, X and * are as defined above) and the general formula (4) (wherein R5, R6 and A are And a phenyl metal reagent represented by the general formula (8) (wherein R1, R2, R5, R6, X and * are as defined above). A method for producing an optically active epoxide derivative represented by:
[5] An optically active halomethyl alcohol derivative represented by the general formula (5) (wherein R1, R2, R5, R6, X and * are as defined above), or a general formula (8) (wherein R 1, R 2, R 5, R 6, X and * are as defined above) and a triazole or imidazole to react with general formula (6) (wherein R 1, R 2, R 5, R6, Y and * are as defined above.), An optically active azole methyl alcohol derivative represented by
[6] An optically active azole methyl alcohol derivative represented by the general formula (6) (wherein R1, R2, R5, R6, Y and * are as defined above) is deprotected to give the general formula (7) (Wherein R 1, R 5, R 6, Y and * are as defined above), an optically active 2-phenyl-2,3-dihydroxypropyl azole derivative represented by
[7] The production method according to any one of [1] to [6], wherein R1 is a methyl group;
[8] The production method according to any one of [1] to [6], wherein R1 is a methyl group, and R5 and R6 are halogen atoms.
[9] An optically active halomethyl alcohol derivative in which R1 is a methyl group and R5 and R6 are halogen atoms in the general formula (5).
[0031]
DETAILED DESCRIPTION OF THE INVENTION
Next, the compound of the present invention will be described in more detail.
In the present invention, the “alkyl group that may be substituted” means an alkyl group that may be substituted at any position of the alkyl group. Examples of the alkyl group include a methyl group, an ethyl group, an isopropyl group, a tert-butyl group, a pentyl group, a hexyl group, an octyl group, a decyl group, and an allyl group. Substituents include alkoxy groups such as hydroxyl group, methoxy group, benzyloxy group or methoxyethoxy group, phenoxy group, nitro group, amino group, amide group, carboxyl group, alkoxycarbonyl group, phenoxycarbonyl group or fluorine atom, chlorine atom And halogen atoms such as bromine atom or iodine atom.
[0032]
In the present invention, the “aralkyl group which may be substituted” means an aralkyl group in which any position of the aralkyl group may be substituted. Examples of the aralkyl group include a benzyl group, a naphthylmethyl group, a phenylethyl group, and a 9-fluorenylmethyl group. Examples of the substituent include an alkyl group such as a methyl group, tert-butyl group or benzyl group, a cycloalkyl group such as cyclopropane, cyclopentane or cyclohexane, a phenyl group, a hydroxyl group, a methoxy group, a benzyloxy group or a methoxyethoxy group. Examples thereof include an alkoxy group, a phenoxy group, a nitro group, an amino group, an amide group, a carboxyl group, an alkoxycarbonyl group, a phenoxycarbonyl group, or a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
[0033]
In the present invention, the “aryl group that may be substituted” means an aryl group that may be substituted at any position of the aryl group. Examples of the aryl group include a phenyl group, a naphthyl group, an anthracenyl group, a fluorenyl group, and a phenanthrenyl group. Examples of the substituent include an alkyl group such as a methyl group, tert-butyl group or benzyl group, a cycloalkyl group such as cyclopropane, cyclopentane or cyclohexane, a phenyl group, a hydroxyl group, a methoxy group, a benzyloxy group or a methoxyethoxy group. Examples thereof include an alkoxy group, a phenoxy group, a nitro group, an amino group, an amide group, a carboxyl group, an alkoxycarbonyl group, a phenoxycarbonyl group, or a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
[0034]
In the present invention, the “optionally substituted heterocycle” means a heterocycle in which any position of the heterocycle may be substituted. Heterocycles include tetrahydropyranyl, tetrahydrofuranyl, tetrahydrothienyl, piperidyl, morpholinyl, piperazinyl, pyrrolyl, furyl, thienyl, pyridyl, furfuryl, tenenyl, pyridylmethyl, pyrimidyl Group, pyrazyl group, imidazolyl group, imidazolylmethyl group, indolyl group, indolylmethyl group, isoquinolyl group, quinolyl group or thiazolyl group. Examples of the substituent include an alkyl group such as a methyl group, tert-butyl group or benzyl group, a cycloalkyl group such as cyclopropane, cyclopentane or cyclohexane, a phenyl group, a hydroxyl group, a methoxy group, a benzyloxy group or a methoxyethoxy group. Examples thereof include an alkoxy group, a phenoxy group, a nitro group, an amino group, an amide group, a carboxyl group, an alkoxycarbonyl group, a phenoxycarbonyl group, or a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
[0035]
In the present invention, the “ether-based protecting group as a hydroxyl-protecting group” means a protecting group having an ether bond for the purpose of protecting the hydroxyl group, and includes a methyl group, an ethyl group, a tert-butyl group, an octyl group, an allyl group. Group, benzyl group, p-methoxybenzyl group, fluorenyl group, trityl group, benzhydryl group and the like.
[0036]
In the present invention, the “acetal protecting group” means a protecting group having an acetal bond for the purpose of protecting a hydroxyl group,, MeToxiethoxymethyl group, tetrahydropyraN-2-ylGroup, tetrahydrofuraN-2-ylGroups and the like.
[0037]
In the present invention, the “silyl protecting group” means a protecting group having a silyloxy bond for the purpose of protecting a hydroxyl group, such as a trimethylsilyl group, a triethylsilyl group, a tert-butyldimethylsilyl group, a tert-butyldiphenylsilyl group, etc. Can be mentioned.
[0038]
In the present invention, examples of the “halogen atom” include fluorine, chlorine, bromine and iodine.
[0039]
In the present invention, the “optionally substituted acyl group” means an acyl group in which any position of the acyl group may be substituted. Examples of the acyl group include formyl group, acetyl group, propionyl group, pivaloyl group, benzoyl group and the like. Examples of the substituent include an alkyl group such as a methyl group, tert-butyl group or benzyl group, a cycloalkyl group such as cyclopropane, cyclopentane or cyclohexane, a phenyl group, a hydroxyl group, a methoxy group, a benzyloxy group or a methoxyethoxy group. Examples thereof include an alkoxy group, a phenoxy group, a nitro group, an amino group, an amide group, a carboxyl group, an alkoxycarbonyl group, a phenoxycarbonyl group, or a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
[0040]
In the present invention, the “optionally substituted carbonate group” means a carbonate group in which any position of the carbonate group may be substituted. Examples of the carbonate group include a methyl carbonate group, an ethyl carbonate group, an isopropyl carbonate group, and a benzyl carbonate group. Examples of the substituent include an alkyl group such as a methyl group, tert-butyl group or benzyl group, a cycloalkyl group such as cyclopropane, cyclopentane or cyclohexane, a phenyl group, a hydroxyl group, a methoxy group, a benzyloxy group or a methoxyethoxy group. Examples thereof include an alkoxy group, a phenoxy group, a nitro group, an amino group, an amide group, a carboxyl group, an alkoxycarbonyl group, a phenoxycarbonyl group, or a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
[0041]
In the present invention, the “optionally substituted alkyloxy group” means an alkyloxy group in which any position of the alkyloxy group may be substituted. Examples of the alkyloxy group include methoxy group, ethoxy group, isopropoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, octyloxy group, decyloxy group and allyloxy group. Substituents include alkoxy groups such as hydroxyl group, methoxy group, benzyloxy group or methoxyethoxy group, phenoxy group, nitro group, amino group, amide group, carboxyl group, alkoxycarbonyl group, phenoxycarbonyl group or fluorine atom, chlorine atom And halogen atoms such as bromine atom or iodine atom.
[0042]
In the present invention, “optionally substituted aralkyloxy group” means an aralkyloxy group in which any position of the aralkyloxy group may be substituted. Examples of the aralkyloxy group include a benzyloxy group, a naphthylmethyloxy group, a phenylethyloxy group, and a 9-fluorenylmethyloxy group. Examples of the substituent include an alkyl group such as a methyl group, a tert-butyl group or a benzyl group, a cycloalkyl group such as cyclopropane, cyclopentane or cyclohexane, a phenyl group, a hydroxyl group, a methoxy group, a benzyloxy group or a methoxyethoxy group. Examples thereof include an alkoxy group, a phenoxy group, a nitro group, an amino group, an amide group, a carboxyl group, an alkoxycarbonyl group, a phenoxycarbonyl group, or a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
[0043]
In the present invention, “optionally substituted phenoxy group” means a phenoxy group in which any position of the phenoxy group may be substituted. Examples of the substituent include an alkyl group such as a methyl group, tert-butyl group or benzyl group, a cycloalkyl group such as cyclopropane, cyclopentane or cyclohexane, a phenyl group, a hydroxyl group, a methoxy group, a benzyloxy group or a methoxyethoxy group. Examples thereof include an alkoxy group, a phenoxy group, a nitro group, an amino group, an amide group, a carboxyl group, an alkoxycarbonyl group, a phenoxycarbonyl group, or a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
[0044]
In the present invention, the “amino group which may be substituted” means an amino group which may be substituted at any position of the amino group. Examples of the substituent include an alkyl group such as a methyl group, tert-butyl group or benzyl group, a cycloalkyl group such as cyclopropane, cyclopentane or cyclohexane, and a phenyl group.
[0045]
In the present invention, examples of the “alkali metal” include lithium, sodium, potassium, rubidium, cesium and the like.
[0046]
In the present invention, “alkaline earth metal salt” means a salt such as magnesium, calcium, strontium, barium beryllium, etc., magnesium halide, alkoxymagnesium, calcium halide, alkoxycalcium, strontium halide, barium halide, Examples include beryllium halide. More specifically, magnesium salts such as -MgCl, -MgBr, -MgOMe, and -MgOEt, calcium salts such as -CaCl, -CaBr, -CaOMe, and -CaOEt, and barium salts such as -BaCl, -BaBr, -BaOMe, and -BaOEt Can be mentioned. Also, two molecules of azole acetic acid derivative can form one alkaline earth metal salt.
[0047]
In the present invention, examples of the “alkyloxycarbonyl group” include methoxycarbonyl group, ethoxycarbonyl group, tert-butoxycarbonyl group and the like.
[0048]
In the present invention, examples of the “aryloxycarbonyl group” include phenoxycarbonyl and naphthyloxycarbonyl groups.
[0049]
In the present invention, the “amide group that may be substituted” means an amino group that may be substituted at any position of the amide group. Examples of the substituent include an alkyl group such as a methyl group, tert-butyl group or benzyl group, a cycloalkyl group such as cyclopropane, cyclopentane or cyclohexane, and a phenyl group.
[0050]
In the present invention, the “optionally substituted heterocyclic oxy group” means a heterocyclic oxy group in which any position of the heterocyclic oxy group may be substituted. Examples of the heterocyclic oxy group include tetrahydropyranyloxy group, tetrahydrofuranyloxy group, tetrahydrothienyloxy group, piperidyloxy group, morpholinyloxy group, piperazinyloxy group, pyrrolyloxy group, furyloxy group, thienyloxy group, Pyridyloxy group, furfuryloxy group, tenyloxy group, pyridylmethyloxy group, pyrimidyloxy group, pyrazyloxy group, imidazolyloxy group, imidazolylmethyloxy group, indolyloxy group, indolylmethyloxy group, isoquinolyloxy group Quinolyloxy group or thiazolyloxy group. Examples of the substituent include an alkyl group such as a methyl group, tert-butyl group or benzyl group, a cycloalkyl group such as cyclopropane, cyclopentane or cyclohexane, a phenyl group, a hydroxyl group, a methoxy group, a benzyloxy group or a methoxyethoxy group. Examples thereof include an alkoxy group, a phenoxy group, a nitro group, an amino group, an amide group, a carboxyl group, an alkoxycarbonyl group, a phenoxycarbonyl group, or a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
[0051]
The diastereoselective reaction from the halomethyl ketone derivative of the general formula (3) to the optically active halomethyl alcohol derivative of the general formula (5) or the optically active epoxide derivative of (8) is a halo of the general formula (3). A new asymmetric carbon is generated selectively with respect to the asymmetric carbon steric structure of the methyl ketone derivative. Anti-selective means that an optically active carbon atom is formed when a carbon chain is zigzag on a certain surface. A hydroxyl group is formed on the opposite side of the R 2 O— group, and syn-selective means selectivity for generating a hydroxyl group on the same side. The optically active halomethyl alcohol derivative of the general formula (5) obtained by diastereoselective reaction is represented by the general formula (8) while maintaining diastereoselectivity under the reaction conditions or by treatment with a base or heat. An optically active epoxide can be derived. That is, anti-selective means that the general formula (9)
[0052]
Embedded image
Figure 0004330898
[0053]
In this reaction, a (S, S) form is generated from the (S) form, and a (R, R) form is formed from the (R) form.
The syn selectivity is the general formula (10)
[0054]
Embedded image
Figure 0004330898
[0055]
In this reaction, the (S) form is generated from the (S) form and the (R, S) form is produced from the (R) form.
[0056]
Below, the typical manufacturing method of this invention is demonstrated.
[1] A method for producing a halomethyl ketone derivative represented by the general formula (3) will be described.
The α-hydroxycarboxylic acid derivative represented by the general formula (1) is represented by the general formula (3) by reacting the haloacetic acid derivative represented by the general formula (2) under basic conditions. Halomethyl ketone derivatives can be produced. In this reaction, a halomethyl group can be efficiently introduced by allowing the decarboxylation reaction to proceed after or simultaneously with the carbon-carbon bond reaction. In this reaction, an optically active substance is used as a starting material, but almost no decrease in optical purity due to the reaction is observed.
[0057]
Although there is no restriction | limiting in particular as a base which can be used, Inorganic bases, such as lithium hydroxide, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogencarbonate, are mentioned. Moreover, organic amine bases, such as a triethylamine, a pyridine, and a 1, 8- diazabicycloundecene, are mentioned. Moreover, alkoxides, such as sodium methoxide, sodium ethoxide, potassium t-butoxide, are mentioned. Moreover, metal hydrides, such as lithium hydride and sodium hydride, are mentioned. Further, organic metal bases such as alkyl lithium and Grignard reagent, among them, n-butyl lithium, ethyl magnesium bromide, n-butyl magnesium chloride, tert-butyl magnesium chloride and the like can be mentioned. In addition, metal amide bases such as sodium amide, lithium amide, and magnesium amide, among them, lithium diisopropylamide, halogenated magnesium dialkylamide, and particularly metal amide bases such as magnesium chloride diisopropylamide can be used. These bases can be used alone or in combination.
[0058]
Solvents that can be used are not particularly limited as long as they do not interfere with the progress of the reaction, but water, alcohol solvents such as methanol, ethanol, and butanol, hydrocarbon solvents such as hexane, toluene, xylene, and ethyl acetate. , Ester solvents such as butyl acetate, ether solvents such as diethyl ether, dioxane, ethylene glycol dimethyl ether and tetrahydrofuran, halogen solvents such as chloroform and dichloromethane, acetonitrile, dimethylformamide, dimethyl sulfoxide, dimethylimidazolidinone, etc. Can do. These solvents can be used alone or as a mixed solvent in any ratio of two or more.
[0059]
Regarding the reaction temperature, the reaction can be carried out from −78 ° C. to the boiling point of the solvent to be used, but preferably in the temperature range from −20 ° C. to the boiling point of the solvent. The reaction time is not particularly limited, but is in the range of several minutes to 24 hours, preferably 30 minutes to 6 hours.
[0060]
[2] A method for producing a halomethyl alcohol derivative represented by the general formula (5) or a method for producing an epoxide derivative represented by (8) will be described.
The derivative represented by the general formula (5) or (8) is produced by reacting the halomethyl ketone derivative represented by the general formula (3) with the phenyl metal reagent represented by the general formula (4). be able to. In this reaction, the diastereoselectivity changes depending on the combination of the protective group for the hydroxyl group represented by R2 and the metal species represented by A. Can be made separately.
[0061]
In general, the organometallic reagent reacts according to the so-called chelation model in which the carbonyl group involved in the reaction with the oxygen atom in the R2O group is fixed by the coordination of the metal. The object can be obtained. More specifically, it is possible to selectively produce an S—R configuration compound from an S configuration compound and an R—S configuration compound from an R configuration compound. By specifically using a benzyl group, a methoxymethyl group or the like as the protecting group and using a Grignard reagent as the organometallic reagent, the desired reaction can be performed with high anti-selectivity (> 9: 1).
[0062]
Further, the target product can be obtained with high syn selectivity by sterically increasing the hydroxyl protecting group represented by R2 and selecting an appropriate metal reagent. More specifically, an SS configuration compound can be produced from an S configuration compound, and an RR configuration compound from an R configuration compound can be produced with high syn selectivity (> 5: 1). Specifically, the target reaction can be performed with very high syn selectivity (> 7: 1) by using a silyl protecting group as the protecting group. Examples of the silyl-based protecting group include a trimethylsilyl group, a t-butyldimethylsilyl group, a t-butyldiphenylsilyl group, and a triethylsilyl group.
The epoxide derivative represented by the general formula (8) is produced under the reaction conditions or treatment with a base or heat after the halomethyl alcohol derivative represented by the general formula (5) is formed with high diastereoselectivity. It can be obtained when the chemical reaction occurs. In this case, the diastereoselectivity generated in the first reaction is not lost.
[0063]
In this reaction, when the starting material is an optically active substance, a decrease in optical purity due to the reaction is hardly observed. Examples of phenyl metal compounds that can be used include phenyl lithium derivatives, phenyl magnesium derivatives, phenyl zinc derivatives, phenyl titanium derivatives, phenyl copper derivatives, and phenyl copper lithium derivatives. Furthermore, various additives can be added to the reaction system to change the diastereoselectivity or to improve the yield. Specific examples of the additive include a Lewis acid and a quaternary ammonium salt. More specifically, CeCl3, MgBr2MgCl2ZnCl2ZnBr2, CuCl2TiClFour, BFThreeAlClThree, SnClFour, SnCl2Etc.
[0064]
Solvents that can be used are not particularly limited as long as they do not interfere with the progress of the reaction, but water, alcohol solvents such as methanol, ethanol, and butanol, hydrocarbon solvents such as hexane, toluene, xylene, and ethyl acetate. , Ester solvents such as butyl acetate, ether solvents such as diethyl ether, dioxane, ethylene glycol dimethyl ether and tetrahydrofuran, halogen solvents such as chloroform and dichloromethane, acetonitrile, dimethylformamide, dimethyl sulfoxide, dimethylimidazolidinone, etc. Can do. These solvents can be used alone or as a mixed solvent in any ratio of two or more.
[0065]
Regarding the reaction temperature, it can be carried out from −78 ° C. to the boiling point of the solvent used, and is preferably in the range of −40 ° C. to room temperature. The reaction time is not particularly limited, but is in the range of several minutes to 24 hours, preferably 30 minutes to 6 hours.
[0066]
[3] A method for producing an azolemethyl alcohol derivative represented by the general formula (6) will be described.
The azole methyl alcohol derivative represented by the general formula (6) can be produced by reacting the derivative represented by the general formula (5) or (8) with triazole or imidazole. The reaction can be carried out with triazole or imidazole alone or in the presence of a base. Although there is no restriction | limiting in particular as a base which can be used, Inorganic bases, such as lithium hydroxide, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogencarbonate, a triethylamine, a pyridine, 1, 8- diazabicycloun Organic amine bases such as decene, metal hydrides such as lithium hydride and sodium hydride, organometallic bases such as n-butyllithium, ethylmagnesium bromide, n-butylmagnesium chloride, tert-butylmagnesium chloride, or sodium amide, Examples thereof include metal amide bases such as lithium diisopropylamide and magnesium chloride diisopropylamide.
[0067]
Solvents that can be used are not particularly limited as long as they do not interfere with the progress of the reaction, but water, alcohol solvents such as methanol, ethanol, and butanol, hydrocarbon solvents such as hexane, toluene, xylene, and ethyl acetate. And ester solvents such as butyl acetate, ether solvents such as diethyl ether, dioxane, ethylene glycol dimethyl ether and tetrahydrofuran, halogen solvents such as chloroform and dichloromethane, acetonitrile, dimethylformamide and dimethyl sulfoxide. These solvents can be used alone or as a mixed solvent in any ratio of two or more.
[0068]
Regarding the reaction temperature, the reaction can be carried out from −20 ° C. to the boiling point of the solvent to be used, and preferably in the temperature range from 0 ° C. to the boiling point of the solvent. The reaction time is not particularly limited, but is in the range of several minutes to 72 hours, preferably 30 minutes to 12 hours.
[0069]
[4] A method for producing the optically active 2-phenyl-2,3-dihydroxypropylazole derivative represented by the general formula (7) will be described.
By selectively deprotecting the protecting group of the hydroxyl moiety represented by R2 of the optically active azole methyl alcohol derivative represented by the general formula (6), the optical activity 2- Phenyl-2,3-dihydroxypropyl azole derivatives can be produced. The method for deprotecting the hydroxyl group is not particularly limited as long as it does not change the structure other than the portion to be deprotected. In the case of an ether-based protecting group, it can be carried out by acid treatment with hydrochloric acid, sulfuric acid, trifluoroacetic acid, p-toluenesulfonic acid or acetic acid, or catalytic hydrogenolysis treatment using palladium-carbon or the like as a catalyst. In the case of an acetal type protective group, acid treatment with hydrochloric acid, sulfuric acid, trifluoroacetic acid, p-toluenesulfonic acid, pyridinium p-toluenesulfonic acid or acetic acid, etc. can be used. In this case, it can be carried out by acid treatment with hydrochloric acid, sulfuric acid, trifluoroacetic acid, p-toluenesulfonic acid, pyridinium p-toluenesulfonic acid or acetic acid, or fluorine anion treatment such as tetra n-butylammonium fluoride.
[0070]
Solvents that can be used are not particularly limited as long as they do not interfere with the progress of the reaction, but water, alcohol solvents such as methanol, ethanol, and butanol, hydrocarbon solvents such as hexane, toluene, xylene, and ethyl acetate. And ester solvents such as butyl acetate, ether solvents such as diethyl ether, dioxane, ethylene glycol dimethyl ether and tetrahydrofuran, halogen solvents such as chloroform and dichloromethane, acetonitrile, dimethylformamide and dimethyl sulfoxide. These solvents can be used alone or as a mixed solvent in any ratio of two or more.
[0071]
Regarding the reaction temperature, it can be carried out from −20 ° C. to the boiling point of the solvent used. The reaction time is not particularly limited, but is in the range of several minutes to 24 hours, preferably 30 minutes to 6 hours.
[0072]
The optically active α-hydroxycarboxylic acid derivative represented by the general formula (1), which is a starting material of the present invention, can be easily obtained commercially or synthesized by a generally well-known method. It is. For example, lactic acid (Chem. Pharm. Bull., Vol.41 (6), pp.1035-1042, 1993), various amino acids (Synthesis, 1987, p.479), α-halocarboxylic acid derivatives (Tetrahedron Lett., 1985) , Vol.26, p.5257). In addition, reagents and raw materials used that are not particularly specified as production methods are generally commercially available, and both are easily available.
[0073]
【Example】
Examples of the present invention will be described below, but the present invention is not limited by these.
[Example 1] Synthesis of (3R) -1-chloro-3- (3,4,5,6-tetrahydro-2H-pyran-2-yloxy) -2-butanone
[0074]
Embedded image
Figure 0004330898
[0075]
Diisopropylamine (19.4 g) was added to tret-butylmagnesium chloride (0.94 M tetrahydrofuran solution) (200 ml) at room temperature, heated to reflux at 70 ° C. for 1.5 hours, and then cooled to room temperature (this was designated as reaction solution A). In a separate reaction vessel, (2R) -methyl-2- (3,4,5,6-tetrahydro-2H-pyran-2-yloxy) propionate (9.1 g) was added and dissolved in tetrahydrofuran (40 ml) at room temperature. Sodium chloroacetate (11.3 g) was added. This was ice-cooled, magnesium chloride (9.3 g) was added in small portions, and the mixture was stirred at room temperature for 4 hours (this was designated as reaction solution B). The reaction solution B was ice-cooled, and the reaction solution A was added dropwise at an internal temperature of 5 ° C. or lower, and this was heated to reflux at 70 ° C. for 2 hours and then cooled to room temperature. The reaction solution was poured into a mixed solution of sulfuric acid (18.0 g) / water (150 ml) / ethyl acetate (225 ml) under ice-cooling and stirred at room temperature for 40 minutes. This solution was separated, and the organic layer was washed with a saturated aqueous sodium hydrogen carbonate solution and a saturated aqueous sodium chloride solution and then dried over anhydrous magnesium sulfate. The residue obtained by distilling off the solvent under reduced pressure was isolated and purified by silica gel column chromatography (426 g, hexane-ethyl acetate = 4: 1), and two kinds of diastereomers derived from the protecting group THP of the target compound were obtained. Obtained as a yellow oil.
[0076]
Yield = 9.2g
Yield = 92%
Diastereomer A
1H-NMR (400MHz, CDClThree) δ = 4.65 (dd, 1H, J = 4.4, 2.8Hz), 4.45 (quartet, 1H, J = 6.8Hz), 4.42 (d, 1H, J = 16Hz), 4.36 (d, 1H, J = 16Hz) , 3.91-3.82 (m, 2H), 1.88-1.45 (m, 6H), 1.41 (d, 3H, J = 6.8Hz)
Diastereomer B
1H-NMR (400MHz, CDClThree) δ = 4.66 (d, 1H, J = 17Hz), 4.55 (dd, 1H, J = 6.4,2.4Hz), 4.42 (d, 1H, J = 17Hz) 4.25 (quartet, 1H, J = 6.8Hz), 3.56-3.50 (m, 1H), 3.47-3.41 (m, 1H), 1.92-1.49 (m, 6H), 1.35 (d, 3H, J = 6.8Hz)
IR (neat, diastereomixture) ν = 2946, 2870, 1741, 1433, 1398, 1327, 1203, 1130, 1078, 1035, 974, 892, 874, 816, 781cm-1
[0077]
Example 2 (2R, 3R) -1-Chloro-2- (2,4-difluorophenyl) -3- (3,4,5,6-tetrahydro-2H-pyran-2-yloxy) -2- Synthesis of butanol [Chemical Formula 20]
[0078]
Embedded image
Figure 0004330898
[0079]
Magnesium (1.5 g) was suspended in tetrahydrofuran (25 ml) under a nitrogen atmosphere, iodine (50 mg) was added, and a solution of 2,4-difluorobromobenzene (11.0 g) / tetrahydrofuran (20 ml) was added at 25-30 ° C. It was dripped. The mixture was stirred at room temperature for 1.5 hours to obtain a solution A (49.2 g). In a separate reaction vessel, the compound (2.0 g) obtained in Example 1 was placed, dissolved in tetrahydrofuran (20 ml), and cooled to -20 ° C. Solution A (9.1 g) was added dropwise thereto at −5 ° C. or lower, and the mixture was stirred at −10 ° C. to 0 ° C. for 1 hour and at 0 ° C. to 10 ° C. for 2 hours. The reaction solution was cooled to 5 ° C., and adjusted to pH 8 by adding 1N hydrochloric acid (9 ml). After stirring at 5 ° C. to 10 ° C. for 30 minutes, ethyl acetate and water were added for extraction, and the organic layer was washed with a saturated aqueous sodium chloride solution. The organic layer was dried over anhydrous magnesium sulfate, and then the solvent was concentrated under reduced pressure to obtain a light brown residue.
[0080]
[Diastereoselectivity of reaction]
Anti-derivative (2R, 3R): Sin derivative (2S, 3R) = 10: 1
The diastereoselectivity was determined by carrying out the method described in Examples 3 and 4 while maintaining the mixture without purification by silica gel column chromatography, and (2S, 3R) -2- (2,4-difluorophenyl) -1 -(1H-1,2,4-triazol-1-yl) -2,3-butanediol and (2R, 3R) -2- (2,4-difluorophenyl) -1- (1H-1,2, After derivatization to 4-triazol-1-yl) -2,3-butanediol, it was determined using HPLC (analysis conditions / YMC-PACK ODS A-303, eluent composition methanol: water: acetic acid = 70: 30 : 0.2, detection method UV 254 nm).
The pale brown residue obtained by the above operation is isolated and purified by silica gel column chromatography (68 g, hexane-ethyl acetate = 4: 1), and the main product having the configuration of (2R, 3R). Two diastereomeric mixtures derived from the tetrahydropyran moiety were obtained as white amorphous.
[0081]
Yield = 2.0g
Yield = 64%
Diastereomer A of anti-derivative (2R, 3R)
1H-NMR (400MHz, CDClThree) δ = 7.71 (td, 1H, J = 9.0, 6.8Hz), 6.94-6.89 (m, 1H), 6.83-6.76 (m, 1H), 4.61 (dd, 1H, J = 4.8, 2.4Hz), 4.38 (d, 1H, J = 11Hz), 4.21 (d, 1H, J = 11Hz), 4.12 (quartet, 1H, J = 6.8Hz), 4.00 (s, 1H), 3.52-3.46 (m, 2H), 1.86 -1.32 (m, 6H), 1.27 (d, 3H, J = 6.8Hz)
Diastereomer B of anti-derivative (2R, 3R)
1H-NMR (400MHz, CDClThree) δ = 7.62 (td, 1H, J = 8.8, 6.4Hz), 6.94-6.89 (m, 1H), 6.83-6.76 (m, 1H), 4.29 (m, 1H), 4.03 (quartet, 1H, J = 6.4Hz), 4.00 (s, 1H), 3.95 (dd, 1H, J = 11, 2.4Hz), 3.91 (dd, 1H, J = 11, 2.4Hz), 3.46-3.37 (m, 2H), 1.86- 1.32 (m, 6H), 1.13 (dd, 3H, J = 1.2, 6.4Hz)
IR (KBr-disk, diastereomixture) ν = 3437, 3079, 2943, 2873, 1736, 1616, 1502, 1469, 1421, 1356, 1273, 1201, 1121, 1084, 1025, 973, 927, 863, 815, 756, 726, 680, 632, 558, 543, 515cm-1
[0082]
[Example 3] (2S, 3R) -2- (2,4-difluorophenyl) -3- (3,4,5,6-tetrahydro-2H-pyran-2-yloxy) -1- (1H-1 , 2,4-Triazol-1-yl) -2-butanol
[0083]
Embedded image
Figure 0004330898
[0084]
Under a nitrogen atmosphere, sodium hydride (0.36 g) was suspended in N, N-dimethylformamide (6 ml), 1,2,4-triazole was added little by little under ice cooling, and the mixture was stirred at room temperature for 40 minutes. To this was added dropwise the diastereomer mixture (0.71 g) / N, N-dimethylformamide (5 ml) solution obtained in Example 2, and the mixture was stirred with heating at room temperature for 4 hours and at 70 ° C. for 6 hours. The reaction solution was cooled to room temperature, poured into ice water, and adjusted to pH 4 with 1N hydrochloric acid. Ethyl acetate was added for extraction, and the organic layer was washed with saturated aqueous sodium chloride solution and dried over anhydrous magnesium sulfate. The solvent was concentrated under reduced pressure, and the resulting residue was isolated and purified by silica gel column chromatography (32 g, chloroform-methanol = 25: 1), and a mixture of two diastereomers derived from the tetrahydropyran site was pale yellow. Obtained as amorphous.
In this reaction, the steric structure of the asymmetric carbon is not changed by anti, but the two-dimensional steric notation is changed from (R) to (S) by changing the chlorine atom to triazole.
[0085]
Yield = 0.68g
Yield = 86%
Diastereomer A
1H-NMR (400MHz, CDClThree) δ = 8.12 (s, 1H), 8.02 (s, 1H), 7.73 (d, 1H, J = 11Hz), 7.55 (td, 1H, J = 9.0, 6.8Hz), 6.80-6.69 (m, 1H) , 5.15 (dd, 1H, J = 14,1.2Hz), 4.78 (s, 1H), 4.62-4.61 (m, 1H), 4.56 (dd, 1H, J = 14, 1.2Hz), 4.10 (quartet, 1H , J = 6.4Hz), 3.45-3.41 (m, 2H), 1.86-1.34 (m, 6H), 1.17 (dd, 3H, J = 6.4, 1.2Hz)
Diastereomer B
1H-NMR (400MHz, CDClThree) δ = 8.05 (s, 1H), 8.02 (s, 1H), 7.73 (d, 1H, J = 11Hz), 7.44 (td, 1H, J = 9.0, 6.4Hz), 6.80-6.69 (m, 1H) , 4.98 (dd, 1H, J = 14,1.2Hz), 4.48 (dd, 1H, J = 14,0.8Hz), 4.41 (s, 1H), 416 (qd, 1H, J = 6.0, 0.8Hz), 3.41-3.38 (m, 2H), 1.86-1.34 (m, 6H), 1.13 (d, 3H, J = 6.0Hz)
IR (neat, diastereomixture) ν = 3392, 3128, 2945, 2872, 1669, 1616, 1502, 1419, 1387, 1274, 1203, 1137, 1078, 1033, 973, 872, 816, 729, 680, 660, 551cm-1
[0086]
Example 4 Synthesis of (2S, 3R) -2- (2,4-difluorophenyl) -1- (1H-1,2,4-triazol-1-yl) -2,3-butanediol 22]
[0087]
Embedded image
Figure 0004330898
[0088]
The compound (0.51 g) obtained in Example 3 was dissolved in ethanol (7 ml), pyridinium paratoluenesulfonic acid (149 mg) was added, and the mixture was heated and stirred at room temperature for 1 hour and at 55 ° C. for 2.5 hours. The reaction solution was cooled to room temperature and concentrated, and the residue was extracted with ethyl acetate and water. The organic layer was washed with water and dried over anhydrous magnesium sulfate. The solvent was concentrated under reduced pressure, and the resulting residue was isolated and purified by silica gel column chromatography (32 g, chloroform-methanol = 9: 1) to obtain the target compound as a white amorphous.
[0089]
Yield = 0.22g
Yield = 57%
1H-NMR (400MHz, CDClThree) δ = 8.03 (d, 1H, J = 1.2Hz), 7.76 (s, 1H), 7.54 (td, 1H, J = 9.2, 6.4Hz), 6.83-6.78 (m, 1H), 6.72 (ddd, 1H , J = 12,8.8,2.8Hz), 5.03 (d, 1H, J = 14,1.6Hz), 5.01 (s, 1H), 4.56 (dd, 1H, J = 14, 1.6Hz), 4.00 (quartet, 1H, J = 6.4Hz), 2.65 (d, 1H, J = 5.2Hz), 1.26 (dd, 3H, J = 6.4, 1.2Hz)
IR (KBr-disk) ν = 3406, 3136, 2982, 2938, 1618, 1501, 1421, 1277, 1207, 1139, 1082, 1021, 967, 853, 815, 663, 633, 548cm-1
[0090]
[Example 5] Synthesis of (3S) -1-chloro-3-benzyloxy-2-butanone
[0091]
Embedded image
Figure 0004330898
[0092]
(2S) -Methyl-2-benzyloxypropionate (4.70 g, 24.2 mmol) was dissolved in THF (20 ml), sodium chloroacetate (5.63 g) and magnesium chloride (4.61 g) were added, and under a nitrogen atmosphere, The mixture was stirred at room temperature for 1 hour (solution A). To a commercially available 0.97M tert-butylmagnesium chloride-THF solution (100 ml), diisopropylamine (9.90 g) was added dropwise at room temperature under a nitrogen atmosphere, and the mixture was heated and stirred at 65 to 70 ° C. for 1 hour (solution B). Liquid A was cooled to −15 ° C., and liquid B was added dropwise (the internal temperature during the addition was kept at 0 ° C. or lower). After completion of dropping, the reaction solution was heated to 65 to 70 ° C. and stirred for 2 hours. The reaction mixture was cooled, poured into a mixture of ice-cooled ethyl acetate (100 g) -10% sulfuric acid (90 g), and stirred as it was for 30 minutes. The organic layer was separated, washed with 5% -saline solution and dried over anhydrous magnesium sulfate. The organic layer was concentrated under reduced pressure, and the resulting residue was isolated and purified by silica gel column chromatography (C-300, 100 g, hexane-ethyl acetate = 10: 1 → 8: 1).
[0093]
Yield = 4.06g
Yield = 79%
1H-N.M.R. (400MHz, CDClThree) δ = 7.40-7.30 (m, 5H), 4.61 (d, 1H, J = 11.5Hz), 4.53 (d, 1H, J = 11.5Hz), 4.46 (d, 1H, J = 14.5Hz), 4.39 ( d, 1H, J = 14.5Hz), 4.15 (q, 1H), J = 6.8Hz), 1.40 (d, 3H, J = 6.8Hz)
IR (neat) ν = 3033, 2986, 2939, 2870, 1742, 1497, 1455, 1396, 1308, 1115, 741, 699cm-1
[0094]
[Example 6] Synthesis of (2S, 3S) -1-chloro-2- (2,4-difluorophenyl) -3-benzyloxy-2-butanol
[0095]
Embedded image
Figure 0004330898
[0096]
The compound (3.19 g, 15 mmol) obtained in Example 5 was dissolved in THF (15 ml) and cooled to −15 ° C. A Grignard reagent (THF / 20 ml) prepared in advance from 2,4-difluorobromobenzene (3.47 g, 18 mmol) was added dropwise at -5 ° C. or lower. After stirring the reaction solution for 30 minutes, water (20 ml) was added dropwise at 5 ° C. or lower, and 1N hydrochloric acid (30 ml) was added dropwise at 5 ° C. or lower. Extracted with ethyl acetate (50 ml) and washed twice with water. The organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure to obtain a light brown residue.
[0097]
[Diastereoselectivity]
Anti-derivative (2S, 3S): Thin derivative (2R, 3S) = 10: 1
Diastereoselectivity means that the resulting light brown residue remains as a mixture without purification by silica gel column chromatography.1H-N.M.R. (400MHz, CDClThree) Was measured and determined from the integration ratio of each peak.
Further, the pale brown residue obtained by the above operation was isolated and purified by silica gel column chromatography (C-300, 200 g, hexane-ethyl acetate = 10: 1 → 6: 1) to obtain the title compound.
[0098]
Yield of anti-derivative (2S, 3S) = 2.50g
Yield of anti-derivative (2S, 3S) = 51%
Anti-derivative (2S, 3S)
1H-N.M.R. (400MHz, CDClThree) δ = 7.67-7.60 (m, 1H), 7.28-7.25 (m, 3H), 7.08-7.05 (m, 2H), 6.94-6.90 (m, 1H), 6.77-6.72 (m, 1H), 4.49 ( d, 1H, J = 11.7Hz), 4.27 (d, 1H, J = 11.7Hz), 4.20 (d, 1H, J = 11.2Hz), 3.92-3.87 (m, 2H), 3.17 (s, 1H), 1.22 (dd, 3H, J = 0.7, 6.4Hz)
IR (neat) ν = 3538, 3066, 3032, 2978, 2938, 2873, 1616, 1501, 1420, 1271, 1131, 1091, 973, 852, 750, 698cm-1
Thin derivatives (2R, 3S)
1H-N.M.R. (400MHz, CDClThree) δ = 7.74-65 (m, 1H), 7.38-7.31 (m, 5H), 6.94-6.87 (m, 1H), 6.79-6.71 (m, 1H), 4.70 (d, 1H, J = 11.6Hz) , 4.47 (d, 1H, J = 11.6Hz), 4.11-4.00 (m, 3H), 2.99 (s, 1H), 1.01 (d, 3H, J = 5.9Hz)
At this time, 1.33 g of the raw material BCMK was recovered. Considering the recovery of BCMK, the conversion yield was 87%.
[0099]
[Example 7] Synthesis of (2S, 3S) -1-chloro-2- (2,4-difluorophenyl) -3-benzyloxy-2-butanol
[0100]
Embedded image
Figure 0004330898
[0101]
Under a nitrogen atmosphere, magnesium (6.0 g, 46 mmol) was dispersed in tetrahydrofuran (120 ml), and iodine (5 mg) was added and stirred. A solution of 2,4-difluorobromobenzene (48 g, 248 mmol) in tetrahydrofuran (120 ml) was added dropwise so that the internal temperature was 30 to 35 ° C., and Grignard reagent A was obtained. Separately, anhydrous cerium chloride (10 g, 40.8 mmol) was dried under reduced pressure at 130 ° C. for 1 hour. After cooling to room temperature, tetrahydrofuran (40 ml) was added under a nitrogen atmosphere, and sonication was performed for 30 minutes in a suspended state to obtain a suspension solution B. Subsequently, a solution of the compound (4.34 g, 20.4 mmol) obtained in Example 5 in tetrahydrofuran (10 ml) was added to the suspension solution B, and sonication was further performed for 30 minutes. Tetrahydrofuran (4 ml) was added to the suspension solution B, and then maintained at 0 ° C. to −5 ° C., the Grignard reagent A (24 ml, 24 mmol) prepared above was added dropwise. After dropping, the mixture was further stirred for 12 hours. Under ice cooling, 1N hydrochloric acid (200 ml) was added dropwise, and the mixture was extracted with ethyl acetate (400 ml). The organic layer was washed with saturated aqueous sodium hydrogen carbonate solution (400 ml) and saturated brine (400 ml), dried over magnesium sulfate, filtered and concentrated to give a light brown residue.
[0102]
[Diastereoselectivity]
Anti-derivative (2S, 3S): Thin derivative (2R, 3S) = 10: 1
Determination of diastereoselectivity was performed in the same manner as in Example 6.
Further, the pale brown residue obtained by the above operation was isolated and purified by silica gel column chromatography (C-300, 200 g, hexane-ethyl acetate = 10: 1 → 6: 1) to obtain the title compound.
Yield of anti-derivative (2S, 3S) = 6.13g
Yield of anti-derivative (2S, 3S) = 92%
1H-N.M.R. (400MHz, CDClThree) And IR (neat) values were consistent with Example 6.
[0103]
[Example 8] Synthesis of (2R, 3S) -2- (2,4-difluorophenyl) -3-benzyloxy-1- (1H-1,2,4-triazol-1-yl) -2-butanol [Chemical 26]
[0104]
Embedded image
Figure 0004330898
[0105]
60% -sodium hydride (800 g, 20 mmol) was suspended in DMF (7 g), and triazole (1.38 g, 20 mmol) was charged in ice-cooled nitrogen atmosphere (internal temperature kept at 15 ° C. or lower) did). After stirring for 1 hour under ice-cooling to obtain an almost uniform light brown solution, a solution obtained by dissolving the compound (1.63 g, 5 mmol) obtained in Example 8 in DMF (7 g) was added dropwise at 10 ° C. or lower. I was charged. The reaction was warmed to 70-75 ° C. and stirred for 6 hours. The reaction mixture was cooled, poured into water (60 g), and extracted with ethyl acetate (100 ml). After washing with water (3 times at 60 g) and drying over anhydrous magnesium sulfate, the organic layer was concentrated under reduced pressure. The obtained residue was isolated and purified by silica gel column chromatography (C-300, 100 g, hexane-ethyl acetate = 1: 2) to obtain a yellow syrup.
In this reaction, the steric structure of the asymmetric carbon is not changed by anti, but the steric notation at the 2-position is changed from (S) to (R) by changing the chlorine atom to triazole.
[0106]
Yield = 1.33g
Yield = 80%
1H-N.M.R. (400MHz, CDClThree) δ = 7.99 (s, 1H), 7.72 (s, 1H), 7.49-7.43 (m, 1H), 7.29-7.26 (m, 3H), 7.10-7.08 (m, 2H), 6.80-6.75 (m, 1H), 6.71-6.65 (m, 1H), 4.96 (d, 1H, J = 14.5Hz), 4.53 (d, 1H, J = 10.4Hz), 4.45 (d, 1H, J = 14.5Hz), 4.36 ( s, 1H), 4.27 (d, 1H, J = 10.4Hz), 3.90 (q, 1H, J = 6.1Hz), 1.25 (d, 3H, J = 6.1Hz)
IR (neat) ν = 3259, 3166, 3086, 1617, 1502, 1274, 1135, 1096, 966, 858, 747, 667cm-1
Crystallization (hexane-THF) from 1.1 g of the syrup gave milky white crystals.
Yield = 960mg
[0107]
Example 9 Synthesis of (2R, 3S) -2- (2,4-difluorophenyl) -1- (1H-1,2,4-triazol-1-yl) -2,3-butanediol 27]
[0108]
Embedded image
Figure 0004330898
[0109]
The compound (719 g, 2 mmol) obtained in Example 8 was dissolved in methanol (30 ml), 10% -palladium / carbon (0.3 g) was added, and the hydrogen initial pressure (1.0 MPa) was adjusted to 50 ° C. in an autograve. And stirred for 8 hours. The catalyst was filtered off from the reaction solution, and the filtrate was concentrated under reduced pressure.
[0110]
Yield = 480mg
Yield = 89%
1H-NMR (400MHz, CDClThree) δ = 8.03 (d, 1H, J = 1.2Hz), 7.76 (s, 1H), 7.54 (td, 1H, J = 9.2, 6.4Hz), 6.83-6.78 (m, 1H), 6.72 (ddd, 1H , J = 12,8.8,2.8Hz), 5.03 (d, 1H, J = 14,1.6Hz), 5.01 (s, 1H), 4.56 (dd, 1H, J = 14, 1.6Hz), 4.00 (quartet, 1H, J = 6.4Hz), 2.65 (d, 1H, J = 5.2Hz), 1.26 (dd, 3H, J = 6.4, 1.2Hz)
IR (KBr-disk) ν = 3406, 3136, 2982, 2938, 1618, 1501, 1421, 1277, 1207, 1139, 1082, 1021, 967, 853, 815, 663, 633, 548cm-1
[0111]
[Example 10] Synthesis of (3R) -3- (tert-butyldiphenylsilyloxy) -1-chloro-2-butanone
[0112]
Embedded image
Figure 0004330898
[0113]
(2R) -Methyl-2- (tert-butyldiphenylsilyloxy) propionate (6.83 g, 20 mmol) was used in the same manner as in Example 1 to obtain the title compound as a colorless transparent syrup.
[0114]
Yield = 5.78g
Yield = 80%
1H-N.M.R. (400MHz, CDClThree) δ = 7.70-7.59 (m, 4H), 7.49-7.32 (m, 6H), 4.52 (d, 1H, J = 17.1Hz), 4.38 (d, 1H, J = 17.4Hz), 4.38 (q, 1H , J = 6.9Hz), 1.24 (d, 3H, J = 6.9Hz), 1.11 (s, 9H)
[0115]
Example 11 (2R) -2-[(1′R) -1- (tert-butyldiphenylsilyloxy) ethyl] -2- (2,4-difluorophenyl) oxirane and (2S) -2- [ Synthesis of (1'R) -1- (tert-butyldiphenylsilyloxy) ethyl] -2- (2,4-difluorophenyl) oxirane
[0116]
Embedded image
Figure 0004330898
[0117]
The compound synthesized in Example 10 (3.61 g, 10 mmol) was treated in the same manner as in Example 2 to obtain the title compound as a colorless transparent syrup (diastereomer mixture).
[0118]
[Diastereoselectivity]
Anti-derivative (1′R, 2S): Sin derivative (1′R, 2R) = 1: 7.25
Diastereoselectivity is1H-N.M.R. (400MHz, CDClThree) Was measured and determined from the integration ratio of each peak.
Yield = 2.20 g (diastereomeric mixture)
Yield = 50%
Anti-derivative (1'R, 2S)
1H-N.M.R. (270MHz, CDClThree): δ = 7.74-7.21 (m, 11H), 6.90-6.71 (m, 2H), 3.99 (q, 1H, J = 6.0HZ), 2.99 (d, 1H, J = 5.8Hz), 2.78 (d, 1H, J = 5.8Hz), 1.02 (s, 9H), 1.02 (d, 3H, J = 6.0Hz)
Thin derivatives (1'R, 2R)
1H-N.M.R. (270MHz, CDClThree): δ = 7.74-7.21 (m, 11H), 6.90-6.71 (m, 2H), 4.02 (q, 1H, J = 6.2Hz), 3.18 (d, 1H, J = 5.3Hz), 2.82 (dd, 1H, J = 1.0, 5.3Hz), 1.06 (s, 9H), 0.95 (dd, 3H, J = 1.7, 6.2Hz)
[0119]
Example 12 (2R, 3R) -2- (2,4-difluorophenyl) -1- (1H-1,2,4-triazol-1-yl) -2,3-butanediol and (2S, Synthesis of 3R) -2- (2,4-difluorophenyl) -1- (1H-1,2,4-triazol-1-yl) -2,3-butanediol
[0120]
Embedded image
Figure 0004330898
[0121]
60% -sodium hydride (400 g, 10 mmol) was suspended in DMF (7 g), and triazole (690 mg, 10 mmol) was charged in a nitrogen atmosphere under ice-cooling (the internal temperature was kept at 15 ° C. or lower). ). After stirring for 1 hour under ice-cooling to obtain an almost uniform light brown solution, a solution of the diastereomeric mixture (1.10 g, 2.5 mmol) obtained in Example 11 in DMF (7 g) was dissolved in 10 ml. The dripping was carried out at a temperature below 0 ° C. The reaction was warmed to 70-75 ° C. and stirred for 6 hours. The reaction mixture was cooled, poured into water (30 g), and extracted with ethyl acetate (50 ml). The organic layer was concentrated under reduced pressure after washing with water (3 times with 30 g) and drying over anhydrous magnesium sulfate. The obtained residue was dissolved in tetrahydrofuran (10 g), tetra-n-butylammonium fluoride (980 mg, 3.75 mmol) was added, and the mixture was stirred at room temperature for 30 minutes. Water (10 g) and ethyl acetate (20 g) were added to the reaction solution, and after stirring for 10 minutes, the organic layer was separated. The organic layer was dried over anhydrous magnesium sulfate, the desiccant was filtered off, and the filtrate was concentrated under reduced pressure to give the title compound as a pale yellow syrup of a diastereomeric mixture.
[0122]
[Diastereomer ratio]
Anti-derivative (1′R, 2S): Sin derivative (1′R, 2R) = 1: 7.25
The diastereo ratio was determined by analysis by HPLC. Analytical conditions / YMC-PACK ODS A-303, eluent composition Methanol: water: acetic acid = 70: 30: 0.2, detection method UV 254 nm Further, toluene was removed from the pale yellow syrup, which is a diastereomeric mixture obtained by the above operation. (2R, 3R) -2- (2,4-difluorophenyl) -1- (1H-1,2,4-triazol-1-yl) -2,3-butanediol (498 mg, 74%) was preferentially obtained as white crystals.
[0123]
Melting point: 116-117 ℃
Diastereomeric excess = 96% de
Analysis conditions / YMC-PACK ODS A-303, eluent composition Methanol: water: acetic acid = 70: 30: 0.2, detection method UV 254 nm
Optical purity = 99% ee
[0124]
The optical purity was measured using (2R, 3R) -2- (2,4-difluorophenyl) -1- (1H-1,2,4-triazol-1-yl) -2,3-butanediol in Chem. (2S, 3R) -2- (2,4-difluorophenyl) -3-methyl-2- (1H) which is a known compound according to the method described in Phram.Bull.41 (6) 1035-1042 (1993) Derived to -1,2,4-triazol-1-yl) methyloxirane and determined by HPLC analysis. Analysis conditions / DAICEL CHIRALCEL OF, eluent composition hexane: 2-propanol: diethylamine = 60: 40: 0.1, detection method UV 254 nm
(2R, 3R) body
1H-N.M.R. (270MHz, CDClThree): δ = 7.84 (s, 1H), 7.82 (s, 1H), 7.46-7.37 (m., 1H), 6.80-6.72 (m, 2H), 4.87-4.77 (m, 3H), 4.36-4.29 ( m, 1H), 2.63 (d, 1H, J = 9.2Hz), 0.97 (d, 3H, J = 6.5Hz)
(2S, 3R) body
1H-N.M.R. (270MHz, CDClThree) Was consistent with Example 4.
[0125]
【The invention's effect】
A highly stereoselective production method of optically active halomethyl alcohol derivatives and optically active epoxide derivatives, which are very important intermediates for pharmaceuticals and agricultural chemicals, has been found, and optically active 2-phenyl-2,3-dihydroxypropyl from an industrial viewpoint An azole derivative can be produced quickly and stably in a short process.

Claims (25)

一般式(1)[化1]
Figure 0004330898
(式中R1は置換されてもよいアルキル基、置換されてもよいアラルキル基、置換されてもよいアリール基または置換されてもよいヘテロ環を示し、R2はメチル基、エチル基、tert-ブチル基、オクチル基、アリル基、ベンジル基、p-メトキシベンジル基、フルオレニル基、トリチル基、ベンズヒドリル基、メトキシメチル基、メトキシエトキシメチル基、テトラヒドロピラン−2−イル基、テトラヒドロフラン−2−イル基、トリメチルシリル基、トリエチルシリル基、tert-ブチルジメチルシリル基、またはtert-ブチルジフェニルシリル基を示し、R3は水酸基、ハロゲン原子、置換されていてもよいアシル基、置換されてもよいカーボネート基、置換されてもよいアルキルオキシ基、置換されてもよいアラルキルオキシ基、置換されてもよいフェノキシ基または置換されてもよいアミノ基を示し、炭素原子上の*は不斉炭素を意味し、R配置あるいはS配置を取ることができる。)で表されるα−ヒドロキシカルボン酸誘導体と、一般式(2)[化2]
Figure 0004330898
(式中、R4は水素原子、置換されてもよいアルキル基、置換されてもよいアラルキル基、置換されてもよいアリール基、アルカリ金属またはアルカリ土類金属を示し、Xはハロゲン原子を示す。)で表されるハロ酢酸誘導体を塩基性条件下反応させ、一般式(3)[化3]
Figure 0004330898
(式中R1、R2、Xおよび*は前記と同義である。)で表されるハロメチルケトン誘導体を製造し、さらに該ハロメチルケトン誘導体に一般式(4)[化4]
Figure 0004330898
(式中R5およびR6は互いに独立してハロゲン原子、アルキルオキシカルボニル基、アリールオキシカルボニル基、置換されてもよいアミノ基、置換されてもよいアミド基、置換されてもよいアルキル基、置換されてもよいアルキルオキシ基、置換されてもよいアラルキル基、置換されてもよいアラルキルオキシ基、置換されてもよいフェニル基、置換されてもよいフェニルオキシ基、置換されてもよいヘテロ環または置換されてもよいヘテロ環オキシ基を示し、AはMgXを示す。ただし、Xはハロゲン原子を示す。)で表されるフェニル金属試薬をジアステレオ選択的に反応させ、一般式(5)[化5]
Figure 0004330898
(式中R1、R2、R5、R6、Xおよび*は前記と同義である。)で表される光学活性ハロメチルアルコール誘導体を製造し、さらに該光学活性ハロメチルアルコール誘導体をトリアゾールまたはイミダゾールと反応させ、一般式(6)[化6]
Figure 0004330898
(式中R1、R2、R5、R6および*は前記と同義である。Yは炭素原子又は窒素原子を示す。)で表される光学活性アゾールメチルアルコール誘導体を製造し、さらに該光学活性アゾールメチルアルコール誘導体を選択的に脱保護することで一般式(7)[化7]
Figure 0004330898
(式中R1、R5、R6、Yおよび*は前記と同義である。)で表される光学活性2−フェニル−2,3−ジヒドロキシプロピルアゾール誘導体を製造する方法。
General formula (1) [Chemical formula 1]
Figure 0004330898
(Wherein R1 represents an optionally substituted alkyl group, an optionally substituted aralkyl group, an optionally substituted aryl group or an optionally substituted heterocycle, and R2 represents a methyl group, an ethyl group, or tert-butyl. Group, octyl group, allyl group, benzyl group, p-methoxybenzyl group, fluorenyl group, trityl group, benzhydryl group, methoxymethyl group, methoxyethoxymethyl group, tetrahydropyran-2-yl group, tetrahydrofuran-2-yl group, Represents a trimethylsilyl group, a triethylsilyl group, a tert-butyldimethylsilyl group, or a tert-butyldiphenylsilyl group, and R3 represents a hydroxyl group, a halogen atom, an optionally substituted acyl group, an optionally substituted carbonate group, or a substituted group. May be substituted alkyloxy group, may be substituted aralkyloxy group, may be substituted An phenoxy group or an amino group which may be substituted, * on the carbon atom means an asymmetric carbon, and can take an R configuration or an S configuration.) General formula (2) [Chemical formula 2]
Figure 0004330898
(In the formula, R 4 represents a hydrogen atom, an optionally substituted alkyl group, an optionally substituted aralkyl group, an optionally substituted aryl group, an alkali metal or an alkaline earth metal, and X represents a halogen atom. ) And a haloacetic acid derivative represented by the general formula (3)
Figure 0004330898
(Wherein R 1, R 2, X and * are as defined above), and the halomethyl ketone derivative is further represented by the general formula (4)
Figure 0004330898
(Wherein R5 and R6 are each independently a halogen atom, an alkyloxycarbonyl group, an aryloxycarbonyl group, an amino group that may be substituted, an amide group that may be substituted, an alkyl group that may be substituted, An optionally substituted alkyloxy group, an optionally substituted aralkyl group, an optionally substituted aralkyloxy group, an optionally substituted phenyl group, an optionally substituted phenyloxy group, an optionally substituted heterocycle or substituted And a phenyl metal reagent represented by the following general formula (5): embedded image wherein A represents MgX, where X represents a halogen atom. 5]
Figure 0004330898
(Wherein R1, R2, R5, R6, X and * are as defined above), and the optically active halomethyl alcohol derivative is further reacted with triazole or imidazole. General formula (6)
Figure 0004330898
(Wherein R 1, R 2, R 5, R 6 and * are as defined above. Y represents a carbon atom or a nitrogen atom), and an optically active azole methyl derivative is produced. By selectively deprotecting the alcohol derivative, the general formula (7)
Figure 0004330898
(Wherein R1, R5, R6, Y and * are as defined above). A method for producing an optically active 2-phenyl-2,3-dihydroxypropylazole derivative represented by the formula:
一般式(1)
Figure 0004330898
(式中R1は置換されてもよいアルキル基、置換されてもよいアラルキル基、置換されてもよいアリール基または置換されてもよいヘテロ環を示し、R2はメチル基、エチル基、tert-ブチル基、オクチル基、アリル基、ベンジル基、p-メトキシベンジル基、フルオレニル基、トリチル基、ベンズヒドリル基、メトキシメチル基、メトキシエトキシメチル基、テトラヒドロピラン−2−イル基、テトラヒドロフラン−2−イル基、トリメチルシリル基、トリエチルシリル基、tert-ブチルジメチルシリル基、またはtert-ブチルジフェニルシリル基を示し、R3は水酸基、ハロゲン原子、置換されていてもよいアシル基、置換されてもよいカーボネート基、置換されてもよいアルキルオキシ基、置換されてもよいアラルキルオキシ基、置換されてもよいフェノキシ基または置換されてもよいアミノ基を示し、炭素原子上の*は不斉炭素を意味し、R配置あるいはS配置を取ることができる。)
で表されるα−ヒドロキシカルボン酸誘導体と、一般式(2)
Figure 0004330898
(式中、R4は水素原子、置換されてもよいアルキル基、置換されてもよいアラルキル基、置換されてもよいアリール基、アルカリ金属またはアルカリ土類金属を示し、Xはハロゲン原子を示す。)
で表されるハロ酢酸誘導体を塩基性条件下反応させ、一般式(3)
Figure 0004330898
(式中R1、R2、Xおよび*は前記と同義である。)
で表されるハロメチルケトン誘導体を製造し、さらに該ハロメチルケトン誘導体に一般式(4)
Figure 0004330898
(式中R5およびR6は互いに独立してハロゲン原子、アルキルオキシカルボニル基、アリールオキシカルボニル基、置換されてもよいアミノ基、置換されてもよいアミド基、置換されてもよいアルキル基、置換されてもよいアルキルオキシ基、置換されてもよいアラルキル基、置換されてもよいアラルキルオキシ基、置換されてもよいフェニル基、置換されてもよいフェニルオキシ基、置換されてもよいヘテロ環または置換されてもよいヘテロ環オキシ基を示し、AはMgXを示す。ただし、Xはハロゲン原子を示す。)
で表されるフェニル金属試薬をジアステレオ選択的に反応させ、一般式(8)[化8]
Figure 0004330898
(式中R1、R2、R5、R6、および*は前記と同義である。)で表される光学活性エポキシド誘導体を製造し、さらに該光学活性エポキシド誘導体をトリアゾールまたはイミダゾールと反応させ、一般式(6)
Figure 0004330898
(式中R1、R2、R5、R6および*は前記と同義である。Yは炭素原子又は窒素原子を示す。)で表される光学活性アゾールメチルアルコール誘導体を製造し、さらに該光学活性アゾールメチルアルコール誘導体を選択的に脱保護することで一般式(7)
Figure 0004330898
(式中R1、R5、R6、Yおよび*は前記と同義である。)で表される光学活性2−フェニル−2,3−ジヒドロキシプロピルアゾール誘導体を製造する方法。
General formula (1)
Figure 0004330898
(Wherein R1 represents an optionally substituted alkyl group, an optionally substituted aralkyl group, an optionally substituted aryl group or an optionally substituted heterocycle, and R2 represents a methyl group, an ethyl group, or tert-butyl. Group, octyl group, allyl group, benzyl group, p-methoxybenzyl group, fluorenyl group, trityl group, benzhydryl group, methoxymethyl group, methoxyethoxymethyl group, tetrahydropyran-2-yl group, tetrahydrofuran-2-yl group, Represents a trimethylsilyl group, a triethylsilyl group, a tert-butyldimethylsilyl group, or a tert-butyldiphenylsilyl group, and R3 represents a hydroxyl group, a halogen atom, an optionally substituted acyl group, an optionally substituted carbonate group, or a substituted group. May be substituted alkyloxy group, may be substituted aralkyloxy group, may be substituted A phenoxy group or an optionally substituted amino group, on the carbon atoms * means an asymmetric carbon, it can have R configuration or S configuration.)
An α-hydroxycarboxylic acid derivative represented by the general formula (2)
Figure 0004330898
(In the formula, R 4 represents a hydrogen atom, an optionally substituted alkyl group, an optionally substituted aralkyl group, an optionally substituted aryl group, an alkali metal or an alkaline earth metal, and X represents a halogen atom. )
A haloacetic acid derivative represented by the general formula (3)
Figure 0004330898
(Wherein R1, R2, X and * are as defined above.)
The halomethyl ketone derivative represented by the general formula (4)
Figure 0004330898
(Wherein R5 and R6 are each independently a halogen atom, an alkyloxycarbonyl group, an aryloxycarbonyl group, an amino group that may be substituted, an amide group that may be substituted, an alkyl group that may be substituted, An optionally substituted alkyloxy group, an optionally substituted aralkyl group, an optionally substituted aralkyloxy group, an optionally substituted phenyl group, an optionally substituted phenyloxy group, an optionally substituted heterocycle or substituted And A represents MgX, where X represents a halogen atom.
A phenyl metal reagent represented by general formula (8) [Chemical 8]
Figure 0004330898
(Wherein R1, R2, R5, R6, and * are as defined above), and the optically active epoxide derivative is further reacted with triazole or imidazole to give a general formula ( 6)
Figure 0004330898
(Wherein R 1, R 2, R 5, R 6 and * are as defined above. Y represents a carbon atom or a nitrogen atom), and an optically active azole methyl derivative is produced. By selectively deprotecting the alcohol derivative, the general formula (7)
Figure 0004330898
(Wherein R1, R5, R6, Y and * are as defined above). A method for producing an optically active 2-phenyl-2,3-dihydroxypropylazole derivative represented by the formula:
一般式(3)
Figure 0004330898
(式中R1は置換されてもよいアルキル基、置換されてもよいアラルキル基、置換されてもよいアリール基または置換されてもよいヘテロ環を示し、R2はメチル基、エチル基、tert-ブチル基、オクチル基、アリル基、ベンジル基、p-メトキシベンジル基、フルオレニル基、トリチル基、ベンズヒドリル基、メトキシメチル基、メトキシエトキシメチル基、テトラヒドロピラン−2−イル基、テトラヒドロフラン−2−イル基、トリメチルシリル基、トリエチルシリル基、tert-ブチルジメチルシリル基、またはtert-ブチルジフェニルシリル基を示し、炭素原子上の*は不斉炭素を意味し、R配置あるいはS配置を取ることができ、Xはハロゲン原子を示す。)
で表されるハロメチルケトン誘導体と、一般式(4)
Figure 0004330898
(式中R5およびR6は互いに独立してハロゲン原子、アルキルオキシカルボニル基、アリールオキシカルボニル基、置換されてもよいアミノ基、置換されてもよいアミド基、置換されてもよいアルキル基、置換されてもよいアルキルオキシ基、置換されてもよいアラルキル基、置換されてもよいアラルキルオキシ基、置換されてもよいフェニル基、置換されてもよいフェニルオキシ基、置換されてもよいヘテロ環または置換されてもよいヘテロ環オキシ基を示し、AはMgXを示す。ただし、Xはハロゲン原子を示す。)
で表されるフェニル金属試薬をジアステレオ選択的に反応させ、一般式(5)
Figure 0004330898
(式中R1、R2、R5、R6、Xおよび*は前記と同義である。)で表される光学活性ハロメチルアルコール誘導体を製造する方法。
General formula (3)
Figure 0004330898
(Wherein R1 represents an optionally substituted alkyl group, an optionally substituted aralkyl group, an optionally substituted aryl group or an optionally substituted heterocycle, and R2 represents a methyl group, an ethyl group, or tert-butyl. Group, octyl group, allyl group, benzyl group, p-methoxybenzyl group, fluorenyl group, trityl group, benzhydryl group, methoxymethyl group, methoxyethoxymethyl group, tetrahydropyran-2-yl group, tetrahydrofuran-2-yl group, Represents a trimethylsilyl group, a triethylsilyl group, a tert-butyldimethylsilyl group, or a tert-butyldiphenylsilyl group , * on the carbon atom means an asymmetric carbon, and can take R configuration or S configuration, and X is Represents a halogen atom.)
A halomethyl ketone derivative represented by general formula (4):
Figure 0004330898
(Wherein R5 and R6 are each independently a halogen atom, an alkyloxycarbonyl group, an aryloxycarbonyl group, an amino group that may be substituted, an amide group that may be substituted, an alkyl group that may be substituted, An optionally substituted alkyloxy group, an optionally substituted aralkyl group, an optionally substituted aralkyloxy group, an optionally substituted phenyl group, an optionally substituted phenyloxy group, an optionally substituted heterocycle or substituted And A represents MgX, where X represents a halogen atom.
A diastereoselective reaction of a phenyl metal reagent represented by general formula (5):
Figure 0004330898
(Wherein R 1, R 2, R 5, R 6, X and * are as defined above).
一般式(3)
Figure 0004330898
(式中R1は置換されてもよいアルキル基、置換されてもよいアラルキル基、置換されてもよいアリール基または置換されてもよいヘテロ環を示し、R2はメチル基、エチル基、tert-ブチル基、オクチル基、アリル基、ベンジル基、p-メトキシベンジル基、フルオレニル基、トリチル基、ベンズヒドリル基、メトキシメチル基、メトキシエトキシメチル基、テトラヒドロピラン−2−イル基、テトラヒドロフラン−2−イル基、トリメチルシリル基、トリエチルシリル基、tert-ブチルジメチルシリル基、またはtert-ブチルジフェニルシリル基を示し、炭素原子上の*は不斉炭素を意味し、R配置あるいはS配置を取ることができ、Xはハロゲン原子を示す。)
で表されるハロメチルケトン誘導体と、一般式(4)
Figure 0004330898
(式中R5およびR6は互いに独立してハロゲン原子、アルキルオキシカルボニル基、アリールオキシカルボニル基、置換されてもよいアミノ基、置換されてもよいアミド基、置換されてもよいアルキル基、置換されてもよいアルキルオキシ基、置換されてもよいアラルキル基、置換されてもよいアラルキルオキシ基、置換されてもよいフェニル基、置換されてもよいフェニルオキシ基、置換されてもよいヘテロ環または置換されてもよいヘテロ環オキシ基を示し、AはMgXを示す。ただし、Xはハロゲン原子を示す。)
で表されるフェニル金属試薬をジアステレオ選択的に反応させ、一般式(8)
Figure 0004330898
(式中R1、R2、R5、R6、および*は前記と同義である。)で表される光学活性エポキシド誘導体を製造する方法。
General formula (3)
Figure 0004330898
(Wherein R1 represents an optionally substituted alkyl group, an optionally substituted aralkyl group, an optionally substituted aryl group or an optionally substituted heterocycle, and R2 represents a methyl group, an ethyl group, or tert-butyl. Group, octyl group, allyl group, benzyl group, p-methoxybenzyl group, fluorenyl group, trityl group, benzhydryl group, methoxymethyl group, methoxyethoxymethyl group, tetrahydropyran-2-yl group, tetrahydrofuran-2-yl group, Represents a trimethylsilyl group, a triethylsilyl group, a tert-butyldimethylsilyl group, or a tert-butyldiphenylsilyl group , * on the carbon atom means an asymmetric carbon, and can take R configuration or S configuration, and X is Represents a halogen atom.)
A halomethyl ketone derivative represented by general formula (4):
Figure 0004330898
(Wherein R5 and R6 are each independently a halogen atom, an alkyloxycarbonyl group, an aryloxycarbonyl group, an amino group that may be substituted, an amide group that may be substituted, an alkyl group that may be substituted, An optionally substituted alkyloxy group, an optionally substituted aralkyl group, an optionally substituted aralkyloxy group, an optionally substituted phenyl group, an optionally substituted phenyloxy group, an optionally substituted heterocycle or substituted And A represents MgX, where X represents a halogen atom.
A diastereoselective reaction of a phenyl metal reagent represented by general formula (8):
Figure 0004330898
(Wherein R1, R2, R5, R6, Contact and * has the same meaning as defined above.) A method for producing an optically active epoxide derivative represented by the.
【化62】
一般式(5)
Figure 0004330898
(式中R1は置換されてもよいアルキル基、置換されてもよいアラルキル基、置換されてもよいアリール基または置換されてもよいヘテロ環を示し、R2はメチル基、エチル基、tert-ブチル基、オクチル基、アリル基、ベンジル基、p-メトキシベンジル基、フルオレニル基、トリチル基、ベンズヒドリル基、メトキシメチル基、メトキシエトキシメチル基、テトラヒドロピラン−2−イル基、テトラヒドロフラン−2−イル基、トリメチルシリル基、トリエチルシリル基、tert-ブチルジメチルシリル基、またはtert-ブチルジフェニルシリル基を示し、R5およびR6は互いに独立してハロゲン原子、アルキルオキシカルボニル基、アリールオキシカルボニル基、置換されてもよいアミノ基、置換されてもよいアミド基、置換されてもよいアルキル基、置換されてもよいアルキルオキシ基、置換されてもよいアラルキル基、置換されてもよいアラルキルオキシ基、置換されてもよいフェニル基、置換されてもよいフェニルオキシ基、置換されてもよいヘテロ環または置換されてもよいヘテロ環オキシ基を示し、炭素原子上の*は不斉炭素を意味し、R配置あるいはS配置を取ることができ、Xはハロゲン原子を示す。)
で表される光学活性ハロメチルアルコール誘導体と、トリアゾールまたはイミダゾールと反応させ、一般式(6)
Figure 0004330898
(式中R1、R2、R5、R6および*は前記と同義である。Yは炭素原子又は窒素原子を示す。)
で表される光学活性アゾールメチルアルコール誘導体を製造する方法。
Embedded image
General formula (5)
Figure 0004330898
(Wherein R1 represents an optionally substituted alkyl group, an optionally substituted aralkyl group, an optionally substituted aryl group or an optionally substituted heterocycle, and R2 represents a methyl group, an ethyl group, or tert-butyl. Group, octyl group, allyl group, benzyl group, p-methoxybenzyl group, fluorenyl group, trityl group, benzhydryl group, methoxymethyl group, methoxyethoxymethyl group, tetrahydropyran-2-yl group, tetrahydrofuran-2-yl group, Represents a trimethylsilyl group, a triethylsilyl group, a tert-butyldimethylsilyl group, or a tert-butyldiphenylsilyl group, wherein R5 and R6 are each independently a halogen atom, an alkyloxycarbonyl group, an aryloxycarbonyl group, or may be substituted. Amino group, optionally substituted amide group, optionally substituted alkyl group Group, optionally substituted alkyloxy group, optionally substituted aralkyl group, optionally substituted aralkyloxy group, optionally substituted phenyl group, optionally substituted phenyloxy group, optionally substituted A heterocycle or a heterocyclic oxy group which may be substituted, * on the carbon atom means an asymmetric carbon, can take R configuration or S configuration, and X represents a halogen atom.)
And an optically active halomethyl alcohol derivative represented by general formula (6)
Figure 0004330898
(In the formula, R1, R2, R5, R6 and * are as defined above. Y represents a carbon atom or a nitrogen atom.)
A process for producing an optically active azolemethyl alcohol derivative represented by the formula:
請求項4に記載の方法により一般式(8)
Figure 0004330898
(式中R1は置換されてもよいアルキル基、置換されてもよいアラルキル基、置換されてもよいアリール基または置換されてもよいヘテロ環を示し、R2はメチル基、エチル基、tert-ブチル基、オクチル基、アリル基、ベンジル基、p-メトキシベンジル基、フルオレニル基、トリチル基、ベンズヒドリル基、メトキシメチル基、メトキシエトキシメチル基、テトラヒドロピラン−2−イル基、テトラヒドロフラン−2−イル基、トリメチルシリル基、トリエチルシリル基、tert-ブチルジメチルシリル基、またはtert-ブチルジフェニルシリル基を示し、R5およびR6は互いに独立してハロゲン原子、アルキルオキシカルボニル基、アリールオキシカルボニル基、置換されてもよいアミノ基、置換されてもよいアミド基、置換されてもよいアルキル基、置換されてもよいアルキルオキシ基、置換されてもよいアラルキル基、置換されてもよいアラルキルオキシ基、置換されてもよいフェニル基、置換されてもよいフェニルオキシ基、置換されてもよいヘテロ環または置換されてもよいヘテロ環オキシ基を示し、炭素原子上の*は不斉炭素を意味し、R配置あるいはS配置を取ることができ。)
で表される光学活性エポキシド誘導体を製造し、さらに該光学活性エポキシド誘導体と、トリアゾールまたはイミダゾールと反応させ、一般式(6)
Figure 0004330898
(式中R1、R2、R5、R6および*は前記と同義である。Yは炭素原子又は窒素原子を示す。)
で表される光学活性アゾールメチルアルコール誘導体を製造する方法。
One Ri by the method of claim 4 general formula (8)
Figure 0004330898
(Wherein R1 represents an optionally substituted alkyl group, an optionally substituted aralkyl group, an optionally substituted aryl group or an optionally substituted heterocycle, and R2 represents a methyl group, an ethyl group, or tert-butyl. Group, octyl group, allyl group, benzyl group, p-methoxybenzyl group, fluorenyl group, trityl group, benzhydryl group, methoxymethyl group, methoxyethoxymethyl group, tetrahydropyran-2-yl group, tetrahydrofuran-2-yl group, Represents a trimethylsilyl group, a triethylsilyl group, a tert-butyldimethylsilyl group, or a tert-butyldiphenylsilyl group, wherein R5 and R6 are each independently a halogen atom, an alkyloxycarbonyl group, an aryloxycarbonyl group, or may be substituted. Amino group, optionally substituted amide group, optionally substituted alkyl group Group, optionally substituted alkyloxy group, optionally substituted aralkyl group, optionally substituted aralkyloxy group, optionally substituted phenyl group, optionally substituted phenyloxy group, optionally substituted It shows a heterocycle or an optionally substituted heterocyclic oxy group, on a carbon atom * means an asymmetric carbon, Ru can have R configuration or S configuration.)
In to produce an optical active epoxide derivative represented, and further reacted with the optically active epoxide derivative, a triazole or imidazole of the general formula (6)
Figure 0004330898
(In the formula, R1, R2, R5, R6 and * are as defined above. Y represents a carbon atom or a nitrogen atom.)
A process for producing an optically active azolemethyl alcohol derivative represented by the formula:
請求項5に記載の方法により一般式(6)
Figure 0004330898
(式中R1は置換されてもよいアルキル基、置換されてもよいアラルキル基、置換されてもよいアリール基または置換されてもよいヘテロ環を示し、R2はメチル基、エチル基、tert-ブチル基、オクチル基、アリル基、ベンジル基、p-メトキシベンジル基、フルオレニル基、トリチル基、ベンズヒドリル基、メトキシメチル基、メトキシエトキシメチル基、テトラヒドロピラン−2−イル基、テトラヒドロフラン−2−イル基、トリメチルシリル基、トリエチルシリル基、tert-ブチルジメチルシリル基、またはtert-ブチルジフェニルシリル基を示し、R5およびR6は互いに独立してハロゲン原子、アルキルオキシカルボニル基、アリールオキシカルボニル基、置換されてもよいアミノ基、置換されてもよいアミド基、置換されてもよいアルキル基、置換されてもよいアルキルオキシ基、置換されてもよいアラルキル基、置換されてもよいアラルキルオキシ基、置換されてもよいフェニル基、置換されてもよいフェニルオキシ基、置換されてもよいヘテロ環または置換されてもよいヘテロ環オキシ基を示し、炭素原子上の*は不斉炭素を意味し、R配置あるいはS配置を取ることができ、Yは炭素原子又は窒素原子を示す。)
で表される光学活性アゾールメチルアルコール誘導体を製造し、さらに、該光学活性アゾールメチルアルコール誘導体を脱保護し、一般式(7)
Figure 0004330898
(式中R1、R5、R6、Yおよび*は前記と同義である。)で表される光学活性2−フェニル−2,3−ジヒドロキシプロピルアゾール誘導体を製造する方法。
One Ri by the method of claim 5 general formula (6)
Figure 0004330898
(Wherein R1 represents an optionally substituted alkyl group, an optionally substituted aralkyl group, an optionally substituted aryl group or an optionally substituted heterocycle, and R2 represents a methyl group, an ethyl group, or tert-butyl. Group, octyl group, allyl group, benzyl group, p-methoxybenzyl group, fluorenyl group, trityl group, benzhydryl group, methoxymethyl group, methoxyethoxymethyl group, tetrahydropyran-2-yl group, tetrahydrofuran-2-yl group, Represents a trimethylsilyl group, a triethylsilyl group, a tert-butyldimethylsilyl group, or a tert-butyldiphenylsilyl group, wherein R5 and R6 are each independently a halogen atom, an alkyloxycarbonyl group, an aryloxycarbonyl group, or may be substituted. Amino group, optionally substituted amide group, optionally substituted alkyl group Group, optionally substituted alkyloxy group, optionally substituted aralkyl group, optionally substituted aralkyloxy group, optionally substituted phenyl group, optionally substituted phenyloxy group, optionally substituted A heterocycle or a heterocyclic oxy group which may be substituted, * on the carbon atom means an asymmetric carbon, can take R configuration or S configuration, and Y represents a carbon atom or a nitrogen atom.)
In formula to produce an optically active azole-methyl alcohol derivative, further the optically active azole-methyl alcohol derivative was deprotected formula (7)
Figure 0004330898
(Wherein R1, R5, R6, Y and * are as defined above). A method for producing an optically active 2-phenyl-2,3-dihydroxypropylazole derivative represented by the formula:
請求項6に記載の方法により一般式(6)According to the method of claim 6, the general formula (6)
Figure 0004330898
Figure 0004330898
(式中R1は置換されてもよいアルキル基、置換されてもよいアラルキル基、置換されてもよいアリール基または置換されてもよいヘテロ環を示し、R2はメチル基、エチル基、tert-ブチル基、オクチル基、アリル基、ベンジル基、p-メトキシベンジル基、フルオレニル基、トリチル基、ベンズヒドリル基、メトキシメチル基、メトキシエトキシメチル基、テトラヒドロピラン−2−イル基、テトラヒドロフラン−2−イル基、トリメチルシリル基、トリエチルシリル基、tert-ブチルジメチルシリル基、またはtert-ブチルジフェニルシリル基を示し、R5およびR6は互いに独立してハロゲン原子、アルキルオキシカルボニル基、アリールオキシカルボニル基、置換されてもよいアミノ基、置換されてもよいアミド基、置換されてもよいアルキル基、置換されてもよいアルキルオキシ基、置換されてもよいアラルキル基、置換されてもよいアラルキルオキシ基、置換されてもよいフェニル基、置換されてもよいフェニルオキシ基、置換されてもよいヘテロ環または置換されてもよいヘテロ環オキシ基を示し、炭素原子上の*は不斉炭素を意味し、R配置あるいはS配置を取ることができ、Yは炭素原子又は窒素原子を示す。)(Wherein R1 represents an optionally substituted alkyl group, an optionally substituted aralkyl group, an optionally substituted aryl group or an optionally substituted heterocycle, and R2 represents a methyl group, an ethyl group, or tert-butyl. Group, octyl group, allyl group, benzyl group, p-methoxybenzyl group, fluorenyl group, trityl group, benzhydryl group, methoxymethyl group, methoxyethoxymethyl group, tetrahydropyran-2-yl group, tetrahydrofuran-2-yl group, Represents a trimethylsilyl group, a triethylsilyl group, a tert-butyldimethylsilyl group, or a tert-butyldiphenylsilyl group, wherein R5 and R6 are each independently a halogen atom, an alkyloxycarbonyl group, an aryloxycarbonyl group, or may be substituted. Amino group, optionally substituted amide group, optionally substituted alkyl group Group, optionally substituted alkyloxy group, optionally substituted aralkyl group, optionally substituted aralkyloxy group, optionally substituted phenyl group, optionally substituted phenyloxy group, optionally substituted A heterocyclic or optionally substituted heterocyclic oxy group, * on the carbon atom means an asymmetric carbon, can take R or S configuration, Y represents a carbon atom or a nitrogen atom)
で表される光学活性アゾールメチルアルコール誘導体を製造し、さらに、該光学活性アゾールメチルアルコール誘導体を脱保護し、一般式(7)And further deprotecting the optically active azole methyl alcohol derivative represented by the general formula (7):
Figure 0004330898
Figure 0004330898
(式中R1、R5、R6、Yおよび*は前記と同義である。)で表される光学活性2−フェニル−2,3−ジヒドロキシプロピルアゾール誘導体を製造する方法。(Wherein R1, R5, R6, Y and * are as defined above). A method for producing an optically active 2-phenyl-2,3-dihydroxypropylazole derivative represented by the formula:
R1がメチル基である請求項1に記載の製造法。The production method according to claim 1, wherein R1 is a methyl group. R1がメチル基である請求項2に記載の製造法。The production method according to claim 2, wherein R 1 is a methyl group. R1がメチル基である請求項3に記載の製造法。The process according to claim 3, wherein R1 is a methyl group. R1がメチル基である請求項4に記載の製造法。The production method according to claim 4, wherein R 1 is a methyl group. R1がメチル基である請求項5に記載の製造法。The production method according to claim 5, wherein R 1 is a methyl group. R1がメチル基である請求項6に記載の製造法。The production method according to claim 6, wherein R1 is a methyl group. R1がメチル基である請求項7に記載の製造法。The production method according to claim 7, wherein R 1 is a methyl group. R1がメチル基である請求項8に記載の製造法。The production method according to claim 8, wherein R1 is a methyl group. R1がメチル基、R5、R6がハロゲン原子である請求項1に記載の製造法。The process according to claim 1, wherein R1 is a methyl group, and R5 and R6 are halogen atoms. R1がメチル基、R5、R6がハロゲン原子である請求項2に記載の製造法。The production method according to claim 2, wherein R1 is a methyl group, and R5 and R6 are halogen atoms. R1がメチル基、R5、R6がハロゲン原子である請求項3に記載の製造法。The process according to claim 3, wherein R1 is a methyl group, and R5 and R6 are halogen atoms. R1がメチル基、R5、R6がハロゲン原子である請求項4に記載の製造法。The production method according to claim 4, wherein R1 is a methyl group, and R5 and R6 are halogen atoms. R1がメチル基、R5、R6がハロゲン原子である請求項5に記載の製造法。The production method according to claim 5, wherein R1 is a methyl group, and R5 and R6 are halogen atoms. R1がメチル基、R5、R6がハロゲン原子である請求項6に記載の製造法。The production method according to claim 6, wherein R1 is a methyl group, and R5 and R6 are halogen atoms. R1がメチル基、R5、R6がハロゲン原子である請求項7に記載の製造法。The production method according to claim 7, wherein R1 is a methyl group, and R5 and R6 are halogen atoms. R1がメチル基、R5、R6がハロゲン原子である請求項8に記載の製造法。The production method according to claim 8, wherein R1 is a methyl group, and R5 and R6 are halogen atoms. 一般式(5)General formula (5)
Figure 0004330898
Figure 0004330898
においてR1がメチル基、R2はメチル基、エチル基、tert-ブチル基、オクチル基、アリル基、ベンジル基、p-メトキシベンジル基、フルオレニル基、トリチル基、ベンズヒドリル基、メトキシメチル基、メトキシエトキシメチル基、テトラヒドロピラン−2−イル基、テトラヒドロフラン−2−イル基、トリメチルシリル基、トリエチルシリル基、tert-ブチルジメチルシリル基、またはtert-ブチルジフェニルシリル基を示し、R5、R6がハロゲン原子であり、炭素原子上の*は不斉炭素を意味し、R配置あるいはS配置を取ることができ、Xはハロゲン原子を示す、光学活性ハロメチルアルコール誘導体。In which R1 is a methyl group, R2 is a methyl group, ethyl group, tert-butyl group, octyl group, allyl group, benzyl group, p-methoxybenzyl group, fluorenyl group, trityl group, benzhydryl group, methoxymethyl group, methoxyethoxymethyl Group, tetrahydropyran-2-yl group, tetrahydrofuran-2-yl group, trimethylsilyl group, triethylsilyl group, tert-butyldimethylsilyl group, or tert-butyldiphenylsilyl group, R5 and R6 are halogen atoms, An optically active halomethyl alcohol derivative in which * on a carbon atom means an asymmetric carbon, which can take an R configuration or an S configuration, and X represents a halogen atom.
JP2003035961A 2002-02-15 2003-02-14 Process for producing optically active 2-phenyl-2,3-dihydroxypropylazole derivative Expired - Fee Related JP4330898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003035961A JP4330898B2 (en) 2002-02-15 2003-02-14 Process for producing optically active 2-phenyl-2,3-dihydroxypropylazole derivative

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2002-37693 2002-02-15
JP2002037693 2002-02-15
JP2002061377 2002-03-07
JP2002-61377 2002-03-07
JP2003035961A JP4330898B2 (en) 2002-02-15 2003-02-14 Process for producing optically active 2-phenyl-2,3-dihydroxypropylazole derivative

Publications (2)

Publication Number Publication Date
JP2003327578A JP2003327578A (en) 2003-11-19
JP4330898B2 true JP4330898B2 (en) 2009-09-16

Family

ID=29715888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003035961A Expired - Fee Related JP4330898B2 (en) 2002-02-15 2003-02-14 Process for producing optically active 2-phenyl-2,3-dihydroxypropylazole derivative

Country Status (1)

Country Link
JP (1) JP4330898B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1647551B1 (en) * 2003-07-18 2011-05-04 Kaneka Corporation Optically active halohydrin derivative and process for producing optically active epoxy alcohol derivative from the same
JP7111625B2 (en) * 2016-12-28 2022-08-02 株式会社カネカ Method for producing alcohol compound
CN115611870A (en) * 2022-12-05 2023-01-17 南京桦冠生物技术有限公司 Preparation method of isavuconazole intermediate V

Also Published As

Publication number Publication date
JP2003327578A (en) 2003-11-19

Similar Documents

Publication Publication Date Title
CN102712585B (en) Intermediates of neutral endopeptidase inhibitors and preparation method thereof
JP5329969B2 (en) Method for producing epoxybutanol intermediate
JP2007538041A (en) Method for producing diphenylazetidinone derivative
JP2009517413A5 (en)
US6858749B2 (en) Synthesis of 3,6-dialkyl-5,6-dihydro-4-hydroxy-pyran-2-one
US6552204B1 (en) Synthesis of 3,6-dialkyl-5,6-dihydro-4-hydroxy-pyran-2-one
WO2009140932A2 (en) Method of producing (3r,4s)-l-(4-fluorophenyl)-3-[(3s)-3-(4-fluorophenyl)- hydroxypropyl)]-4-(4-hydroxyphenyl)-2-azetidinone
JP3415865B2 (en) Optically active azole compound and use thereof
JP4330898B2 (en) Process for producing optically active 2-phenyl-2,3-dihydroxypropylazole derivative
US10202401B2 (en) Process for making tetracyclic heterocycle compounds
US7271185B2 (en) Optically active azole derivative and process for producing the same
JP4326816B2 (en) Optically active azole derivative and process for producing the same
EP0687672A2 (en) Production of optically active triazole compounds and their intermediates
JP4173335B2 (en) Method for producing optically active 2,3-epoxypropane derivative
AU2002321068B2 (en) Intermediate halophenyl derivatives and their use in a process for preparing azole derivatives
JP3954670B2 (en) Preparation of carbapenem antibiotic intermediates
JPH04356471A (en) Triazole compound and its usage
JP4859461B2 (en) Optically active halohydrin derivative and method for producing optically active epoxy alcohol derivative using the same
JP3008029B2 (en) Method for producing mercapto compounds
CN108218908A (en) A kind of preparation method of novel androgen receptor antagonists
JP2620533B2 (en) New amino acid derivatives
JP2965189B2 (en) Method for producing 5-hydroxy-3-ketoester derivative
KR0142354B1 (en) Process for producing intermediates of triazole compounds
JPH08253452A (en) Production of optically active triazole derivative and its intermediate
JPH0417193B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050715

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090617

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees