JP4330829B2 - Method and apparatus for removing organic acids by electrodialysis - Google Patents

Method and apparatus for removing organic acids by electrodialysis Download PDF

Info

Publication number
JP4330829B2
JP4330829B2 JP2001287692A JP2001287692A JP4330829B2 JP 4330829 B2 JP4330829 B2 JP 4330829B2 JP 2001287692 A JP2001287692 A JP 2001287692A JP 2001287692 A JP2001287692 A JP 2001287692A JP 4330829 B2 JP4330829 B2 JP 4330829B2
Authority
JP
Japan
Prior art keywords
organic acids
exchange membrane
electrodialysis
aqueous solution
anion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001287692A
Other languages
Japanese (ja)
Other versions
JP2003088731A (en
Inventor
武人 川嶋
正一 高村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2001287692A priority Critical patent/JP4330829B2/en
Publication of JP2003088731A publication Critical patent/JP2003088731A/en
Application granted granted Critical
Publication of JP4330829B2 publication Critical patent/JP4330829B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Storage Of Fruits Or Vegetables (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、有機酸類を含む水溶液から電気透析により有機酸類を除去する方法に関する。詳しくは、テトラエチレングリコールに対して特定の透過係数を有する陰イオン交換膜を組み込んだ電気透析により、有価物と不要な有機酸類を含んでいる水溶液から、不要な有機酸類を効率よく除去する方法を提供するものである。
【0002】
【従来の技術】
一般に食品、医薬品などの分野において、発酵法による有価物の生成工程では、不要な有機酸類が副生する場合があるが、不要な有機酸類は何らかの方法で製品化前に除去される場合が多い。また、漬物製造に使用された後の調味液には、有用な調味成分と共に漬物の素材から抽出される不要な無機塩や有機酸類が含まれるが、有用な調味成分から不要な無機塩や有機酸類を除去し調味液をリサイクルすれば、使用後調味液を不要な無機塩や有機酸類が混在するが故に廃棄してしまうより、環境面、経済面で有利である。例えば、調味梅干し製造に使用した後の調味液には、梅から抽出されたクエン酸が多く含まれており、電気透析により塩分及びクエン酸を除去し、調味液のリサイクルが行われている。
【0003】
この様な、有機酸類を含む水溶液から電気透析により有機酸類を除去する従来技術はいくつか知られている。例えば、特許第3013869号にあるように、陰イオン交換膜として一価陰イオン非選択透過性の陰イオン交換膜を用いる技術が知られている。しかし、この場合、一価陰イオン選択透過性の陰イオン交換膜であっても膜構造によっては一価陰イオン非選択透過性の陰イオン交換膜よりも有機酸類を効率よく除去できる場合が有り、類似の膜構造をもつ陰イオン交換膜について一価陰イオン選択透過性の有無での差を示しているのみである。また、例えば、特開2000−135053号公報にあるように、電気抵抗の低い陰イオン交換膜を用い、塩濃縮室にアルカリを添加しながら電気透析を行う技術が知られている。しかしこの場合、アルカリを使う分ランニングコストが高くなり、添加用アルカリの補給という余分な操作が必要でもあり、必ずしも満足できる技術ではない。また、例えば、特開2000−204099号公報では、食塩の拡散係数が3.0〜9.0×10-6の陰イオン交換膜を用いることで、ペプチドと有機酸類を効率よく分離する技術が開示されている。一般にイオン交換膜の緻密性を表わす尺度として食塩の拡散係数を用いる場合があり、特開2000−204099号公報に示されている用途に関しては、ある特定の食塩の拡散係数もつ陰イオン交換膜が有効に用いられる。しかし、膜構造の違う2種以上の陰イオン交換膜を比較した場合、低分子量物質の透過係数が同じでも、透過物質の分子量が増加するとその透過性は異なってくる場合があるので、あくまでも食塩の拡散係数は膜の緻密性を示す一つの目安に過ぎない。従って、この技術は有機酸類を含む水溶液から、電気透析により有機酸類を除去する際に、使用するイオン交換膜の全てに当てはまるとは限らない。
【0004】
一方、上記した従来技術では、有機酸類を含む水溶液から、電気透析により有機酸類を除去する際に効率を悪化させるイオン交換膜の有機汚染については考慮されているものはない。
【0005】
【発明が解決しようとする課題】
本発明は、有機酸類を含む水溶液から、有機酸類を効率よく除去する、新規な電気透析による有機酸類の除去方法及び装置を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
本発明者等は、上記課題を解決するために鋭意研究を重ねた結果、テトラエチレングリコールの透過係数がある特定範囲である陰イオン交換膜を用いて電気透析を行うことにより、その目的に適合しうることを見いだし、この知見に基づいて本発明をなすに至った。
【0007】
すなわち、本発明は下記の通りである。
1.有機酸類を含む水溶液から電気透析により有機酸類を除去する方法において、テトラエチレングリコールの透過係数が0.02g/(hr・m・(g/l))以上である一価陰イオン選択性の陰イオン交換膜を用いることを特徴とする電気透析による有機酸類の除去方法。
.陰イオン交換膜と陽イオン交換膜を用いた電気透析装置において、1.記載の陰イオン交換膜を用いることを特徴とする有機酸類を除去する電気透析装置。
【0008】
【発明の実施の形態】
以下、本願発明について具体的に説明する。
まず、本発明の電気透析に供される有機酸類を含む水溶液としては、食品、医薬品などの分野における発酵液、魚介類等のエキス類、漬物製造に使用された後の調味液等がある。ここから、除去すべき有機酸類は、およそ分子量が200以下のものが対象となり、蟻酸、酢酸、プロピオン酸、酪酸、吉草酸、蓚酸、マロン酸、コハク酸、トリカルバリル酸、クエン酸などのカルボン酸及びその塩、スルホン酸およびその塩等がある。有機酸類と分離すべき有価物としては、オリゴ糖などの糖類、グルタミン酸などのアミノ酸、ビタミン類、オリゴペプチド、抗生物質、タンパク質、核酸、酵素などがあげられる。この他、除去対象としては塩化ナトリウム、塩化カルシウム、硫酸ナトリウム等の無機塩があげられる。
【0009】
本発明では、陽イオン交換膜と陰イオン交換膜を交互に配置し構成した電気透析槽の稀釈室に、上記の有機酸類を含む水溶液を流し、通電することにより有機酸類を除去する。実施にあたっては、陰イオン交換膜としてテトラエチレングリコールの透過係数が0.02g/(hr・m2・(g/l))以上である陰イオン交換膜を用いることが重要である。好ましくは0.025g/(hr・m2・(g/l))以上、更に好ましくは0.025〜0.12g/(hr・m2・(g/l))のテトラエチレングリコールの透過係数を有する陰イオン交換膜を用いる。テトラエチレングリコールの透過係数が0.02g/(hr・m2・(g/l))未満である陰イオン交換膜を用いた場合、有機酸類の除去性能が悪い為、有機酸類の除去時間が極めて長くなってしまう。テトラエチレングリコールの透過係数が0.02g/(hr・m2・(g/l))以上である陰イオン交換膜であれば、有機酸類を含む水溶液より速やかに有機酸類を除去することが出来るが、実際に有機酸類を除去する場合、膜を有機汚染する物質が含まれている場合が多いので、膜の有機汚染を防止し何回使用しても有機酸類の除去性能が落ちないようにする為には一価陰イオン選択性の陰イオン交換膜であることが好ましい。また、特にアミノ酸を含有する有機酸類を含む水溶液から有機酸類を除去し、アミノ酸と分離するには一価陰イオン選択性の陰イオン交換膜であることが好ましい。
【0010】
尚、本発明において特定したテトラエチレングリコールの透過係数は、膜を挟んだ2室セルの片側に10g/lのテトラエチレングリコール水溶液を、もう片側に水を満たし、スターラーを用いてエアを巻き込まない最大の回転数で撹拌下、温度25℃において、水側へのテトラエチレングリコールの透過量が5〜10%となった頃を見計らって(この範囲では、時間に対するテトラエチレングリコール濃度変化が直線近似可能で、かつ濃度測定の誤差が少ない)2室セル両側のテトラエチレングリコール濃度と、透過開始からの時間を測定し、次式により求める。
透過係数(g/(hr・m2・(g/l)))=テトラエチレングリコールの移動量(g)/(時間(hr)×膜面積(m2)×ΔC(g/l))
ΔC:テトラエチレングリコールを透過させている間の平均濃度差
=(最初の濃度差+測定時の濃度差)/2
【0011】
一方、本発明に用いる陽イオン交換膜としては、公知の陽イオン交換膜を特に制限無く用いることができる。
また、本発明に用いる電気透析装置は、陽極と陰極の間に上記の特定した陰イオン交換膜と陽イオン交換膜を配列して構成される基本構造であれば、特に制限無く用いることができる。この際、陽極側が陰イオン交換膜で仕切られ陰極側が陽イオン交換膜で仕切られた部屋が脱塩室となり、陽極側が陽イオン交換膜で仕切られ陰極側が陰イオン交換膜で仕切られた部屋が塩濃縮室となる。電気透析装置を構成するガスケットスペーサーの厚みなどの構造は、処理を実施する有機酸類を含む水溶液の粘度などの液性により適宜選定することができるが、ガスケットスペーサーの厚みは0.3〜3mmが好ましい。電気透析の液流速、印加電圧、電流密度などの運転条件についても、処理を実施する有機酸類を含む水溶液の種類、液性、有機酸類の除去目標に応じて適宜選定できるが、液の線速は1〜20cm/sec、印加電圧は0.1〜5V/対、電流密度は限界電流密度以下であることが好ましい。
次に、実施例によって本発明を説明する。
【0012】
【実施例1】
テトラエチレングリコールの透過係数が0.028g/hr・m2・(g/l)である陰イオン交換膜(商品名「アシプレックスA−501」 旭化成(株))と陽イオン交換膜(商品名「アシプレックスK−501」 旭化成(株))を用いて、2室の脱塩室を有する(有効膜面積20cm2)電気透析装置(商品名「アシライザーS−1」 旭化成(株))用カートリッジを作製した。このカートリッジを電気透析装置「アシライザーS−1」に組み込み、食塩13%、クエン酸4.7%を含有する水溶液を脱塩室に通液し、塩濃縮室には0.3%食塩水、電極室には5%硫酸ナトリウム水溶液を通液し、印加電圧5Vで1時間通電した。この時の脱塩室液からのクエン酸の除去速度は0.16g/hrであった。
【0013】
【実施例2】
陰イオン交換膜(商品名「アシプレックスA−231」 旭化成(株))を、0.3%のポリスチレンスルホン酸ナトリウムを含む水溶液に90℃で24時間浸漬して一価陰イオン選択性の陰イオン交換膜を得た。この膜の、テトラエチレングリコールの透過係数は0.076g/(hr・m2・(g/l))であった。この一価陰イオン選択性の陰イオン交換膜と陽イオン交換膜「アシプレックスK−501」を用いて、実施例1と同様、電気透析装置「アシライザーS−1」用カートリッジを作製し、電気透析装置「アシライザーS−1」に組み込んだ。この電気透析装置を用いて、実施例1と同様、食塩13%、クエン酸4.7%を含有する水溶液を脱塩室に通液し、塩濃縮室には0.3%食塩水、電極室には5%硫酸ナトリウム水溶液を通液し、印加電圧5Vで1時間通電した。この時の脱塩室液からのクエン酸の除去速度は0.16g/hrであった。
【0014】
【実施例3】
脱塩室に通液する脱塩室液に食塩13%、クエン酸4.7%の他に有機汚染物質としてラウリル硫酸ナトリウムを1,000ppm加えた水溶液を用いた以外は、実施例1と同じ条件で電気透析装置「アシライザーS−1」を用いてクエン酸の除去を行った。この時のクエン酸の除去速度は0.08g/hrで、有機汚染物質が存在しない場合の半分の速度になった。
【0015】
【実施例4】
脱塩室に通液する脱塩室液に食塩13%、クエン酸4.7%の他に有機汚染物質としてラウリル硫酸ナトリウムを1,000ppm加えた水溶液を用いた以外は、実施例2と同じ条件で電気透析装置「アシライザーS−1」を用いてクエン酸の除去を行った。この時のクエン酸の除去速度は0.11g/hrで、有機汚染物質が存在しているにもかかわらず、クエン酸の除去速度は有機汚染物質の無い場合と比較して7割が確保されている。
【0016】
【比較例】
テトラエチレングリコールの透過係数が0.015g/(hr・m2・(g/l))である陰イオン交換膜(商品名「アシプレックスA−101」 旭化成(株))と陽イオン交換膜「アシプレックスK−501」を用いて、実施例1と同様、2室の脱塩室を有する(有効膜面積20cm2)電気透析装置「アシライザーS−1」用カートリッジを作製した。実施例1と同様、このカートリッジを電気透析装置「アシライザーS−1」に組み込み、食塩13%、クエン酸4.7%を含有する水溶液を脱塩室に通液し、塩濃縮室には0.3%食塩水、電極室には5%硫酸ナトリウム水溶液を通液し、印加電圧5Vで1時間通電した。この時の脱塩室液からのクエン酸の除去速度は0.05g/hrであり、テトラエチレングリコールの透過係数が0.02g/(hr・m2・(g/l))以上の膜と比較してクエン酸の除去速度が格段に低かった。
【0017】
【発明の効果】
本発明によって、有機酸類を含む水溶液から電気透析により効率よく有機酸類を除去できる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for removing organic acids from an aqueous solution containing organic acids by electrodialysis. Specifically, a method for efficiently removing unnecessary organic acids from an aqueous solution containing valuable materials and unnecessary organic acids by electrodialysis incorporating an anion exchange membrane having a specific permeability coefficient with respect to tetraethylene glycol. Is to provide.
[0002]
[Prior art]
In general, in the fields of foods and pharmaceuticals, unnecessary organic acids may be produced as a by-product in the production process of valuable materials by fermentation, but unnecessary organic acids are often removed by some method before commercialization. . In addition, the seasoning liquid after being used for the production of pickles contains unnecessary inorganic salts and organic acids extracted from the ingredients of the pickles together with useful seasoning ingredients. If the acids are removed and the seasoning liquid is recycled, the seasoning liquid after use is more advantageous in terms of environment and economy than being discarded because unnecessary inorganic salts and organic acids are mixed. For example, the seasoning liquid after being used for the production of seasoned umeboshi contains a large amount of citric acid extracted from plums, and salt and citric acid are removed by electrodialysis, and the seasoning liquid is recycled.
[0003]
Several conventional techniques for removing organic acids from an aqueous solution containing such organic acids by electrodialysis are known. For example, as disclosed in Japanese Patent No. 3013869, a technique using a monovalent anion non-selective permeation anion exchange membrane as an anion exchange membrane is known. However, in this case, even if it is a monovalent anion selective permeable anion exchange membrane, depending on the membrane structure, organic acids may be more efficiently removed than a monovalent anion non-selective permeable anion exchange membrane. Only an anion exchange membrane having a similar membrane structure shows a difference in presence or absence of monovalent anion selective permeability. In addition, for example, as disclosed in Japanese Patent Application Laid-Open No. 2000-135053, a technique is known in which electrodialysis is performed using an anion exchange membrane having low electrical resistance while adding alkali to a salt concentration chamber. However, in this case, the running cost is increased due to the use of alkali, and an extra operation of replenishing the alkali for addition is necessary, which is not always a satisfactory technique. Further, for example, Japanese Patent Application Laid-Open No. 2000-204099 discloses a technique for efficiently separating peptides and organic acids by using an anion exchange membrane having a diffusion coefficient of salt of 3.0 to 9.0 × 10 −6. It is disclosed. In general, the diffusion coefficient of salt is sometimes used as a measure representing the denseness of the ion exchange membrane. For applications shown in Japanese Patent Application Laid-Open No. 2000-204099, an anion exchange membrane having a specific diffusion coefficient of salt is used. Used effectively. However, when two or more types of anion exchange membranes with different membrane structures are compared, even if the permeability coefficient of the low molecular weight substance is the same, the permeability may be different as the molecular weight of the permeated substance increases. The diffusion coefficient is only one measure of the film density. Therefore, this technique does not necessarily apply to all ion exchange membranes used when removing organic acids from an aqueous solution containing organic acids by electrodialysis.
[0004]
On the other hand, none of the above-described conventional techniques considers organic contamination of the ion exchange membrane, which deteriorates efficiency when removing organic acids from an aqueous solution containing organic acids by electrodialysis.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a novel method and apparatus for removing organic acids by electrodialysis that efficiently removes organic acids from an aqueous solution containing organic acids.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors have met the purpose by performing electrodialysis using an anion exchange membrane having a specific permeability coefficient of tetraethylene glycol. Based on this finding, the present inventors have made the present invention.
[0007]
That is, the present invention is as follows.
1. In a method for removing organic acids from an aqueous solution containing organic acids by electrodialysis , a monovalent anion-selective ion having a tetraethylene glycol permeability coefficient of 0.02 g / (hr · m 2 · (g / l)) or more A method for removing organic acids by electrodialysis, comprising using an anion exchange membrane.
2 . In electrodialysis apparatus using an anion-exchange membrane and a cation exchange membrane, 1. Electrodialysis apparatus for removing organic acids, which comprises using a serial mounting of the anion-exchange membrane.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be specifically described.
First, examples of the aqueous solution containing the organic acids used in the electrodialysis of the present invention include fermented liquids in the fields of foods and pharmaceuticals, extracts such as seafood, and seasoning liquids after being used in pickle production. From this, the organic acids to be removed are those having a molecular weight of about 200 or less, such as formic acid, acetic acid, propionic acid, butyric acid, valeric acid, succinic acid, malonic acid, succinic acid, tricarballylic acid, citric acid and the like. Examples include acids and salts thereof, sulfonic acids and salts thereof, and the like. Examples of valuable materials to be separated from organic acids include sugars such as oligosaccharides, amino acids such as glutamic acid, vitamins, oligopeptides, antibiotics, proteins, nucleic acids, enzymes, and the like. In addition, examples of the removal target include inorganic salts such as sodium chloride, calcium chloride, and sodium sulfate.
[0009]
In the present invention, an organic acid is removed by flowing an aqueous solution containing the above-described organic acids into a dilution chamber of an electrodialysis tank in which a cation exchange membrane and an anion exchange membrane are alternately arranged. In the implementation, it is important to use an anion exchange membrane having a tetraethylene glycol permeability coefficient of 0.02 g / (hr · m 2 · (g / l)) or more as the anion exchange membrane. The permeability coefficient of tetraethylene glycol is preferably 0.025 g / (hr · m 2 · (g / l)) or more, more preferably 0.025 to 0.12 g / (hr · m 2 · (g / l)). An anion exchange membrane having When an anion exchange membrane having a tetraethylene glycol permeability coefficient of less than 0.02 g / (hr · m 2 · (g / l)) is used, the removal performance of the organic acids is poor because the removal performance of the organic acids is poor. It will be extremely long. An anion exchange membrane having a tetraethylene glycol permeability coefficient of 0.02 g / (hr · m 2 · (g / l)) or more can remove organic acids more quickly than an aqueous solution containing organic acids. However, when organic acids are actually removed, there are many substances that organically contaminate the membrane, so the organic contamination of the membrane is prevented and the removal performance of organic acids does not deteriorate even if used many times. For this purpose, a monovalent anion selective anion exchange membrane is preferable. Further, in order to remove organic acids from an aqueous solution containing organic acids containing amino acids and separate them from amino acids, a monovalent anion selective anion exchange membrane is preferable.
[0010]
The tetraethylene glycol permeability coefficient specified in the present invention is such that a 10 g / l tetraethylene glycol aqueous solution is filled on one side of a two-chamber cell sandwiching the membrane, water is filled on the other side, and air is not involved using a stirrer. At a temperature of 25 ° C. with stirring at the maximum rotational speed, it was estimated that the amount of tetraethylene glycol permeated to the water side became 5 to 10% (in this range, the change in tetraethylene glycol concentration with respect to time was a linear approximation) It is possible and the concentration measurement error is small.) The tetraethylene glycol concentration on both sides of the two-chamber cell and the time from the start of permeation are measured and determined by the following equation.
Permeability coefficient (g / (hr · m 2 · (g / l))) = transfer amount of tetraethylene glycol (g) / (time (hr) × membrane area (m 2 ) × ΔC (g / l))
ΔC: average concentration difference during permeation of tetraethylene glycol = (initial concentration difference + concentration difference at the time of measurement) / 2
[0011]
On the other hand, as the cation exchange membrane used in the present invention, a known cation exchange membrane can be used without particular limitation.
Further, the electrodialysis apparatus used in the present invention can be used without particular limitation as long as it has a basic structure configured by arranging the above-described anion exchange membrane and cation exchange membrane between an anode and a cathode. . At this time, a room in which the anode side is partitioned by an anion exchange membrane and a cathode side is partitioned by a cation exchange membrane becomes a desalination chamber, and a chamber in which the anode side is partitioned by a cation exchange membrane and the cathode side is partitioned by an anion exchange membrane. It becomes a salt concentration chamber. The structure such as the thickness of the gasket spacer constituting the electrodialysis apparatus can be appropriately selected depending on the liquidity such as the viscosity of the aqueous solution containing the organic acids to be treated, but the thickness of the gasket spacer is 0.3 to 3 mm. preferable. The operating conditions such as the liquid flow rate, applied voltage, and current density of electrodialysis can also be selected as appropriate according to the type of aqueous solution containing the organic acids to be treated, the liquidity, and the removal target of the organic acids. Is preferably 1 to 20 cm / sec, the applied voltage is 0.1 to 5 V / pair, and the current density is preferably not more than the limit current density.
Next, the present invention will be described by way of examples.
[0012]
[Example 1]
Anion exchange membrane (trade name “Aciplex A-501” Asahi Kasei Co., Ltd.) with a permeability coefficient of tetraethylene glycol of 0.028 g / hr · m 2 · (g / l) and cation exchange membrane (trade name) "Aciplex K-501" Asahi Kasei Co., Ltd.) Cartridge for electrodialyzer (trade name "Acylizer S-1" Asahi Kasei Co., Ltd.) having two desalination chambers (effective membrane area 20 cm 2 ) Was made. This cartridge was incorporated into an electrodialyzer “Acylizer S-1”, an aqueous solution containing 13% sodium chloride and 4.7% citric acid was passed through the desalting chamber, and 0.3% saline was added to the salt concentration chamber. A 5% sodium sulfate aqueous solution was passed through the electrode chamber, and energized at an applied voltage of 5 V for 1 hour. The removal rate of citric acid from the desalting chamber solution at this time was 0.16 g / hr.
[0013]
[Example 2]
An anion exchange membrane (trade name “Aciplex A-231” Asahi Kasei Co., Ltd.) was immersed in an aqueous solution containing 0.3% sodium polystyrene sulfonate at 90 ° C. for 24 hours, and a monovalent anion selective anion was obtained. An ion exchange membrane was obtained. The permeability coefficient of tetraethylene glycol of this membrane was 0.076 g / (hr · m 2 · (g / l)). Using this monovalent anion-selective anion exchange membrane and cation exchange membrane “Aciplex K-501”, a cartridge for an electrodialyzer “Acylizer S-1” was prepared in the same manner as in Example 1. It was incorporated into a dialysis machine “Acylizer S-1”. Using this electrodialyzer, as in Example 1, an aqueous solution containing 13% sodium chloride and 4.7% citric acid was passed through the desalting chamber, and the salt concentrating chamber was filled with 0.3% saline and electrodes. A 5% aqueous solution of sodium sulfate was passed through the chamber and energized at an applied voltage of 5 V for 1 hour. The removal rate of citric acid from the desalting chamber solution at this time was 0.16 g / hr.
[0014]
[Example 3]
Same as Example 1 except that an aqueous solution in which 1,000 ppm of sodium lauryl sulfate was added as an organic contaminant in addition to 13% sodium chloride and 4.7% citric acid was used for the desalting chamber liquid passed through the desalting chamber. Citric acid was removed using an electrodialyzer “Acylizer S-1” under conditions. At this time, the citric acid removal rate was 0.08 g / hr, which was half the rate when no organic pollutant was present.
[0015]
[Example 4]
Same as Example 2 except that an aqueous solution in which 1,000 ppm of sodium lauryl sulfate was added as an organic contaminant in addition to 13% sodium chloride and 4.7% citric acid was used for the desalting chamber liquid passed through the desalting chamber. Citric acid was removed using an electrodialyzer “Acylizer S-1” under conditions. At this time, the citric acid removal rate is 0.11 g / hr, and despite the presence of organic pollutants, 70% of citric acid removal rate is secured compared to the case without organic pollutants. ing.
[0016]
[Comparative example]
An anion exchange membrane (trade name “Aciplex A-101” Asahi Kasei Co., Ltd.) having a permeability coefficient of tetraethylene glycol of 0.015 g / (hr · m 2 · (g / l)) and a cation exchange membrane “ Using Aciplex K-501, a cartridge for an electrodialyzer “Acylizer S-1” having two desalting chambers (effective membrane area 20 cm 2 ) was prepared as in Example 1. As in Example 1, this cartridge was incorporated into the electrodialyzer “Acylizer S-1”, an aqueous solution containing 13% sodium chloride and 4.7% citric acid was passed through the desalting chamber, and 0 in the salt concentrating chamber. A 3% saline solution and a 5% sodium sulfate aqueous solution were passed through the electrode chamber and energized for 1 hour at an applied voltage of 5V. At this time, the removal rate of citric acid from the desalting chamber liquid is 0.05 g / hr, and a membrane having a tetraethylene glycol permeability coefficient of 0.02 g / (hr · m 2 · (g / l)) or more In comparison, the citric acid removal rate was much lower.
[0017]
【The invention's effect】
According to the present invention, organic acids can be efficiently removed from an aqueous solution containing organic acids by electrodialysis.

Claims (2)

有機酸類を含む水溶液から電気透析により有機酸類を除去する方法において、テトラエチレングリコールの透過係数が0.02g/(hr・m・(g/l))以上である一価陰イオン選択性の陰イオン交換膜を用いることを特徴とする電気透析による有機酸類の除去方法。In a method for removing organic acids from an aqueous solution containing organic acids by electrodialysis , a monovalent anion-selective property having a tetraethylene glycol permeability coefficient of 0.02 g / (hr · m 2 · (g / l)) or more A method for removing organic acids by electrodialysis, which comprises using an anion exchange membrane. 陰イオン交換膜と陽イオン交換膜を用いた電気透析装置において、請求項1記載の陰イオン交換膜を用いることを特徴とする有機酸類を除去する電気透析装置。In electrodialysis apparatus using an anion-exchange membrane and a cation exchange membrane, electrodialysis apparatus for removing organic acids, which comprises using an anion-exchange membrane of claim 1 Symbol placement.
JP2001287692A 2001-09-20 2001-09-20 Method and apparatus for removing organic acids by electrodialysis Expired - Fee Related JP4330829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001287692A JP4330829B2 (en) 2001-09-20 2001-09-20 Method and apparatus for removing organic acids by electrodialysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001287692A JP4330829B2 (en) 2001-09-20 2001-09-20 Method and apparatus for removing organic acids by electrodialysis

Publications (2)

Publication Number Publication Date
JP2003088731A JP2003088731A (en) 2003-03-25
JP4330829B2 true JP4330829B2 (en) 2009-09-16

Family

ID=19110461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001287692A Expired - Fee Related JP4330829B2 (en) 2001-09-20 2001-09-20 Method and apparatus for removing organic acids by electrodialysis

Country Status (1)

Country Link
JP (1) JP4330829B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100930354B1 (en) * 2002-06-18 2009-12-08 엘지전자 주식회사 Content information playback method in interactive optical disk device and content information provision method in content providing server
JP4703950B2 (en) * 2003-07-23 2011-06-15 花王株式会社 Purification method of sugar phosphate ester
JP4890825B2 (en) * 2005-09-22 2012-03-07 三井造船環境エンジニアリング株式会社 Method for recovering valuable materials from fermentation broth
AT504206B8 (en) * 2006-12-19 2008-09-15 Gruene Bioraffinerie At Gmbh METHOD FOR TREATING A STAFF CURRENT

Also Published As

Publication number Publication date
JP2003088731A (en) 2003-03-25

Similar Documents

Publication Publication Date Title
Ge et al. Electrodialysis with nanofiltration membrane (EDNF) for high-efficiency cations fractionation
JP4230223B2 (en) Method and apparatus for isolating ionic species from a liquid
Wang et al. The possibility of separating saccharides from a NaCl solution by using nanofiltration in diafiltration mode
Enevoldsen et al. Electro-ultrafiltration of industrial enzyme solutions
CA2096828A1 (en) Apparatus and method for electrodialytic treatment of salts to produce acid and/or base of improved purity
Sata et al. Modification of the transport properties of ion exchange membranes. XII. Ionic composition in cation exchange membranes with and without a cationic polyelectrolyte layer at equilibrium and during electrodialysis
Pismenskaya et al. Transport of weak-electrolyte anions through anion exchange membranes: current–voltage characteristics
US20080160357A1 (en) Increased Conductivity and Enhanced Electrolytic and Electrochemical Processes
Kumar et al. Electro‐membrane process for the separation of amino acids by iso‐electric focusing
JP4330829B2 (en) Method and apparatus for removing organic acids by electrodialysis
JPH10512804A (en) Regeneration of acids, especially strong organic acids, using bipolar membranes
JPS6365060B2 (en)
Lee et al. Electrokinetic transport of amino acids through a cation exchange membrane
JP2687980B2 (en) Method of separating salts by electrodialysis
Yeager et al. Membrane applications
JPH07313098A (en) Production of low salt soysauce and apparatus therefor
CA1331361C (en) Method for purifying a dipeptide ester
JP4480903B2 (en) Method for producing dealkalized water glass solution
US5288378A (en) Guard membranes for use in electrodialysis cells
JPH0263527A (en) Method for desalting biochemical substance
Shaposhnik et al. Assisted electromigration of bipolar ions through ion-selective membranes in glycine solutions
JP2004224862A (en) Ion exchange membrane
KR20050034594A (en) Process for improving the purity of quaternary ammonium hydroxides by electrolysis in a two-compartment cell
JPH04284832A (en) Electrodialysis of inorganic salt-containing amphoteric surfactant solution
EP0315510A2 (en) Ion-transport selective membranes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090617

R150 Certificate of patent or registration of utility model

Ref document number: 4330829

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140626

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees