JP4330759B2 - Predictive management system for film thickness and film quality on the workpiece surface - Google Patents

Predictive management system for film thickness and film quality on the workpiece surface Download PDF

Info

Publication number
JP4330759B2
JP4330759B2 JP2000108098A JP2000108098A JP4330759B2 JP 4330759 B2 JP4330759 B2 JP 4330759B2 JP 2000108098 A JP2000108098 A JP 2000108098A JP 2000108098 A JP2000108098 A JP 2000108098A JP 4330759 B2 JP4330759 B2 JP 4330759B2
Authority
JP
Japan
Prior art keywords
film thickness
workpiece
particles
film
film quality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000108098A
Other languages
Japanese (ja)
Other versions
JP2001286798A (en
Inventor
国彦 和田
昌行 伊藤
雅士 高橋
正弘 齋藤
一秀 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000108098A priority Critical patent/JP4330759B2/en
Publication of JP2001286798A publication Critical patent/JP2001286798A/en
Application granted granted Critical
Publication of JP4330759B2 publication Critical patent/JP4330759B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/08Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness for measuring thickness

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Spray Control Apparatus (AREA)
  • Coating Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、溶射、あるいは吹付け塗装施工における膜厚管理や付着効率の予測を行なう被加工物表面の膜厚・膜質予測管理システムに関する。
【0002】
【従来の技術】
従来の吹付け塗装や溶射における膜厚予測ソフトウェアでは、定点に吹付け・溶射用のガンを静止したときにできる塗装や溶射膜厚パターンをガウス分布あるいはβ分布とし、この形状を部品表面に投影することによって部品全体の膜厚を予測している。これにより、製造ラインを止めることなく、施工ロボットのプログラミングを行ない、装置稼働率を向上させることを実現した。
【0003】
【発明が解決しようとする課題】
しかしながら、従来の膜厚推定方法は主にロボットの自動プログラム開発を目的としていることから、計算速度は速いものの、
(1)基本的には塗料や溶射材料を吹付けるガンを加工物に対して一定距離で、かつ直角に保持していることを前提とし、ガンと被加工物との距離や角度による溶射膜厚パターンの変化を取り込むためには、それぞれの施工条件に応じた膨大な試験データが必要であること、
(2)部品全体の溶射効率を推定することができないこと、
などの問題点があり、実際の施工に要求される広範な施工条件の検討を行なうには適していない。
【0004】
本発明は上記のような事情に鑑みてなされたもので、数少ない基礎的な試験データから、複雑形状部品の膜厚ならびに膜質の予測を精度良く行なうことができる被加工物表面の膜厚・膜質予測管理システムを提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は上記の目的を達成するため、次のような手段により被加工物表面の膜厚・膜質予測管理システムを構成する。
【0006】
請求項1に対応する発明は、ガンにより溶射や吹き付け塗装などの粒子を吹き付けて被加工物表面に成膜を形成する施工プロセスにおいて、実際の付着粒子の飛行軌跡の分布データを入力する入力手段と、この入力手段より入力される分布データに基づいて仮想的に発生させた粒子の軌跡を計算する第1の計算手段と、この第1の計算手段により求められた個々の仮想粒子の軌跡と被加工物表面との幾何学的関係に基づいて付着量を推定する第2の計算手段と、この第2の計算手段で求められた付着量をもとに膜厚・膜質を予測して出力する出力手段とを備える。
請求項2に対応する発明は、ガンにより溶射や吹き付け塗装などの粒子を吹き付けて被加工物表面に成膜を形成する施工プロセスにおいて、実際の付着粒子の飛行軌跡の分布データを記憶する手段と、この手段より記憶された分布データに基づいて仮想的に発生させた粒子の軌跡を計算する第1の計算手段と、この第1の計算手段により求められた個々の仮想粒子の軌跡と被加工物表面との幾何学的関係に基づいて付着量を推定する第2の計算手段と、この第2の計算手段で求められた付着量をもとに膜厚・膜質を予測して出力する出力手段とを備える。
【0007】
請求項に対応する発明は、請求項1又は請求項2に対応する発明の被加工物表面の膜厚・膜質予測管理システムにおいて、前記付着粒子の飛行軌跡の分布データは、粒子の飛行軌跡の分布をレーザストロボ又はCCDカメラによってその場で測定した飛行粒子の分布である。
【0008】
請求項に対応する発明は、請求項1又は請求項2に対応する発明の被加工物表面の膜厚・膜質予測管理システムにおいて、前記付着粒子の飛行軌跡の分布データは、粒子の飛行軌跡の分布を試験により実測した膜厚パターンに基づくものである。
【0009】
請求項に対応する発明は、請求項1又は請求項2に対応する発明の被加工物表面の膜厚・膜質予測管理システムにおいて、被加工物の形状を2次元CADデータ、又は3次元CADデータによって入力するインターフェースを有する。
【0010】
請求項に対応する発明は、請求項1乃至請求項5のいずれかに対応する発明の被加工物表面の膜厚・膜質予測管理システムにおいて、第2の計算手段は、被加工物への飛行粒子の付着判断を実測したガン角度と付着効率との関係から確率的に算出する計算機能を有する。
【0011】
請求項に対応する発明は、請求項1乃至請求項5のいずれかに対応する発明の被加工物表面の膜厚・膜質予測管理システムにおいて、第2の計算手段は、被加工物への飛行粒子の付着判断をガン及び被加工物間距離と付着率との関係から確率的に算出する計算機能を有する。
【0012】
請求項に対応する発明は、請求項1乃至請求項5のいずれかに対応する発明の被加工物表面の膜厚・膜質予測管理システムにおいて、単位面積あたりの仮想粒子の付着個数から複雑形状部品の膜厚分布を推測する計算手段を有する。
【0013】
請求項に対応する発明は、請求項1乃至請求項5のいずれかに対応する発明の被加工物表面の膜厚・膜質予測管理システムにおいて、仮想粒子の積層状態から施工プロセス皮膜の積層状態を推測する計算手段を有する。
【0014】
請求項10に対応する発明は、請求項1乃至請求項5のいずれかに対応する発明の被加工物表面の膜厚・膜質予測管理システムにおいて、仮想粒子の付着個数と非付着個数から複雑形状部品全体での付着効率を推測する計算手段を有する。
【0015】
請求項11に対応する発明は、請求項1乃至請求項9のいずれかに対応する発明の被加工物表面の膜厚・膜質予測管理システムにおいて、仮想粒子の付着状態に基づいて溶射や吹付け塗装用のガン移動経路や施工条件の最適化を行う計算手段を有する。
【0016】
【発明の実施の形態】
以下本発明の実施の形態を図面を参照して説明する。
【0017】
図1は本発明による被加工物表面の膜厚・膜厚予測管理システムの全体の概略を示す全体構成図である。
【0018】
図1において、1は入力手段で、この入力手段1は材料、施工条件に対して、実際の付着粒子の飛行軌跡の分布を実験によって予め測定し、これらのデータを初期条件として計算機内の記憶部に入力するものである。
【0019】
また、2はこの記憶部に蓄積されたデータを取込み、この分布にしたがった頻度で計算機内で仮想的に粒子を発生させて粒子飛行モデルを作る第1の計算手段、3は被加工物の表面形状モデル4を用いて、個々の粒子が被加工物表面に衝突した時の角度や距離を演算し、実際の施工における付着確率に基づいて付着または非付着の判断を行なうための粒子の付着予測モデルを作る第2の計算手段である。
【0020】
これら第1の計算手段2および第2の計算手段3で作られる付着予測モデルとしては、流れ場の解析や有限要素法による構造解析等の物理モデルを利用してもよいが、これらの計算は極めて複雑であり、高速な計算には適さないことから、計算機内の乱数を利用した確率統計的な計算モデルを用いることが、高速、且つ精度よく現象を再現する上で好ましい。
【0021】
これらのモデルに基づいて得られた結果を膜厚・層構造の予測モデル5を用いて、最終的な膜厚分布や気孔率の分布等を出力手段6より出力する。
【0022】
ここで、第1の計算手段2には、予測する施工装置や材料、施工条件における実測データを計算機内に蓄積することが不可欠である。このデータの取得方法としては、レーザストロボやCCDカメラを利用して、直接飛行粒子の速度や方向の分布を測定する方法が考えられる。この方法は施工しながら測定することが可能であることから、施工装置や材料、施工条件の変化にすぐに対応でき、計算結果をガンの制御にフィードバックすることにより、知能的な施工システムの構築が可能である。しかし、その反面、装置が大規模で、かつ高価となることなどの問題点もある。
【0023】
また、他の方法としては、予め施工を行なう条件で平板等の単純形状の試験体上に形成された成膜パターンを測定し、このデータから飛行中の粒子の軌跡の分布を推定する手法がある。
【0024】
この方法は、事前に試験が必要になるが、上記の方法に比べて特別な測定装置を必要とすることなく、安価に必要なデータを取得することが可能である。
【0025】
一方、第2の計算手段3で被加工物表面の付着量を推定するには、飛行粒子と被加工物表面との幾何学的関係が重要であることから、被加工物表面を構成する接点と面の情報が必要である。そこで、被加工物の形状データとして2次元CADデータ、又は3次元CADデータを入力するインターフェースが設けられる。
【0026】
このデータ形式としては、接点座標データ、面データともに独自のデータ形式を利用することも可能であるが、DXFやIGESなどの標準的なCADデータ、あるいは汎用の応力解析ソフトの入力データ形式を利用すると、設計や熱応力解析とのシームレス化が可能である。
【0027】
また、第2の計算手段3において、被加工物表面の付着量を求めるには、予め実測したガン角度(溶射角度)と付着効率との関係から被加工物への粒子付着量を求めるか、ガン及び被加工物間距離と付着率との関係から被加工物への粒子付着量を求める。
【0028】
即ち、第1の計算手段2によって粒子の軌跡の計算を行ない、部品を構成する表面との交点を算出すれば、この交点が考慮している粒子の付着点となるが、吹付け塗装や溶射施工の場合には、粒子の衝突角度や飛行距離に応じて付着しないで跳ね返される粒子が必ず発生し、一般的には直角に衝突した場合が最も付着する効率が高い。
【0029】
そこで、平板等の単純形状の試験体によって予めガン角度と付着効率の関係を実測しておき、計算している粒子の飛行方向と被加工物表面との角度から、この角度に見合った付着効率に相当する確率で付着が生じるものとして計算を行なうことで、実際の施工プロセスを模擬するシミュレーションが可能となる。また、吹付けと溶射距離も同様であり、吹付け及び溶射距離と付着効率の実測データを利用して、仮想粒子の付着可否を判定することが、精度良く膜厚を予測する場合、不可欠である。
【0030】
図2は上記のような被加工物表面の膜厚・膜厚予測管理システムの一例を示すものである。なお、本発明は、粒子状の物質が飛行過程を経て被加工物表面に付着して積層するような吹付け加工プロセスであれば、どのようなプロセスでもシミュレート可能であるが、本例では溶射プロセスを用いて説明する。
【0031】
図2において、7は材料、粉末、溶射装置、施工条件等の溶射条件を計算機に入力する入力手段、8は入力手段7より入力される溶接条件として溶射パターン、付着効率と溶射角度との関係、付着効率と溶射距離との関係を示す実験データを記憶するデータベースである。
【0032】
また、10は溶射ガンのターン点座標、移動速度、方向ベクトル、移動データを有するガン移動データ入力手段、11は節点データ、要素データを有する形状データ入力手段である。
【0033】
さらに、9は計算機で、この計算機9はガン移動データ入力手段10からのデータを取込んでガン座標を演算する座標演算部、データベース8より溶射パターンを取込んで乱数による仮想粒子を発生させる仮想粒子発生部、この仮想粒子発生部で発生した仮想粒子の軌跡を求める粒子軌跡演算部、この粒子軌跡演算部で求められた仮想粒子の軌跡と形状データ入力手段11から取込んだ形状データに基づいて粒子の付着点を演算する粒子付着点演算部、この粒子付着点演算部で求められた粒子の付着点とデータベース8から読出した付着効率と溶射角度の関係および付着効率と溶射距離の関係を示すデータを基に乱数による付着可否を判断する付着可否判定部、この付着可否判定部で判断された付着数が必要個数あるか否かを判定し、必要個数なければ仮想粒子発生部にて仮想粒子を発生させる必要個数判定部、この必要個数判定部での判定結果と終了時間とから溶射ガンの位置が最終地点に到達したか否かを判定し、最終地点に到達した時点でシミュレーションを終了する終了時間判定部および膜厚分布・層構造を計算により求めて解析データ出力部12に出力する計算部から構成されている。
【0034】
次に上記のように構成された被加工物表面の膜厚・膜厚予測管理システムの作用を説明する。
【0035】
まず、座標演算部にてガンの座標と向きのベクトル、移動速度のデータを有するガン移動データ入力モジュール10のデータを用いて任意の時間でのガンの座標を求める。
【0036】
その後、仮想粒子発生部にて実際の粒子の飛行経路の確率にしたがって仮想的に粒子を発生させる。この場合、実粒子の飛行経路の確率を求める手法としては、レーザストロボ、CCDカメラなどその場で観察した飛行粒子の経路を実測する方法と、予め予想される施工条件を用いて平板の上に直角に溶射施工したときの溶射の中心からの距離と膜厚との関係からなる溶射パターンのデータから求める方法が考えられる。
【0037】
ここでは、実測した溶射パターンのデータから粒子の飛行経路の確率を算出する方法について述べる。
【0038】
図3に示すように元になる実験データの溶射ガン13と平板試験体との距離と同じ距離15の位置にガンの向き14に対して直交するような平面17を仮想する。
【0039】
一方、実験データから得られた溶射膜厚のパターンは、図4に示すようなものである。図4において、23は溶射中心、24は中心からの距離、25は付着粒子、26は膜厚パターンである。
【0040】
いま、基板上に付着する粒子が均一粒径で、付着時の偏平率が等しいと仮定すれば、図4から明かなように実験で得られた膜厚分布と、任意の位置に堆積している付着粒子の数は比例関係にあると考えてよい。さらに、この平板上の付着粒子の分布は図3に示した仮想平面17上の任意の位置を粒子が通過する個数の分布と等しいものと考えられる。
【0041】
ここで、溶射パターンの膜厚分布を示す関数を付着粒子個数の度数分布と考え、さらにこの度数分布の累積度数関数を求めた後、この関数の逆変換関数を求める。そして、計算機中で〔0,1〕の区間で一様に分布する乱数を発生させて、この乱数を、求めてきた粒子個数の累積分布関数の逆変換の関数に代入すると、得られた値は実際の粒子の分布にしたがった乱数分布を持つ。
【0042】
図5はこのようにして発生させた5000個の乱数の度数分布と、実測した膜厚測定データとを比較したもので、23は溶射中心、26は膜厚パターン、27は発生した乱数の度数を示している。図5から分るように、乱数を用いて、実測した分布に従う仮想粒子を発生させることが可能であり、データ離散化の点数にも依存するが、1つのポイントで数千個の粒子を発生させれば、十分膜厚パターンを再現することができることが分る。
【0043】
したがって、上記の演算から得られた乱数を用いて、仮想平面上の座標を投影すれば、この点は図3に示す仮想平面上を通過する粒子の通過点と考えられる。
【0044】
次に粒子軌跡を表現する方程式を直線、又は2次方程式などの適切な多項式で近似し、すでに述べた演算の結果から得られた仮想平面上の座標と、溶射ガンの座標とを結ぶ曲線を決定すれば、これが個々の飛行粒子の軌跡20を表現している。
【0045】
その後、この飛行粒子の軌跡を示す式と、被加工物の表面形状を構成する接点の座標データと、複数個の接点データの組からなる要素のデータを用いて、粒子の軌跡と被加工物表面との交点を求めれば、この座標が粒子付着の候補点21と考えられる。
【0046】
しかしながら、飛行粒子の付着、非付着の確率は、個々の粒子と被加工物表面との角度や飛行距離によって変化する。そこで、実際の溶射条件を想定した実験から、付着効率と溶射角度との関係、付着効率と溶射距離との関係をそれぞれ求めておく。このデータを用いて、再度計算機内で乱数(区間〔0,1〕)を発生させて、この乱数値が計算される個々の粒子の角度や距離から求められる付着効率(区間〔0,1〕)より小さい場合には粒子が付着、大きい場合には付着しないという判断を行なえば、付着効率に等しい確率で粒子をピックアップすることが可能になる。
【0047】
計算機内で仮想的に発生させた1つの粒子の計算が終了した後、溶射パターンを表現するのに十分な個数の粒子を発生したかどうかの判断を行なう。発生個数が少な過ぎると実際の溶射パターンを表現できず誤差が大きくなり、逆に多過ぎると多くの計算時間を要してしまうことから、最適な個数が存在する。この判断によって、数が満たない場合には、新たな粒子を発生させ、数が十分な場合には、溶射ガンの位置を僅かに移動してから、粒子の計算を行なう。
【0048】
そして、最後に溶射ガンの位置が最終地点に到達したかどうかを判断し、到達した時点でシミュレーションを終了する。
【0049】
ここで、図6に示すようにガン角度を変化させて、平板基材上に施工した場合について考察する。
【0050】
図6において、平板基材31に対して溶射距離28を存して配置された溶射ガン13を溶射中心軌跡30を中心にガン方向ベクトル14をもって、溶射中心角度29の範囲で変化させる。
【0051】
図7はガン角度を変化させて平板基材上に溶射を行なった場合の膜厚分布の変化を示すものである。
【0052】
このように溶射角度が90°から浅くなるにつれ、膜厚が徐々に薄くなり、45°より浅くなる(30°)と、良好なパターンが得られなくなる様子が良く分る。
【0053】
また、ガンの角度と付着効率との関係は、図8に示すように計算結果と実測値とは大変良好な一致を示しており、本手法が付着効率の推定に極めて有効であることが確かめられた。
【0054】
次にガンの角度を直角として、図9に示すようにガンの移動パスの重なりを変化させた条件での積層構造の変化の計算結果の一例を図10に示す。
【0055】
図9において、平板基材31に対してガン方向ベクトル14を一定にして溶射ガンを溶射ピッチ33でガン軌跡32に沿って移動させる。
【0056】
図10はこのような溶射ガンの移動経路で、且つ溶射ピッチを小、中、大にして溶射を行なったときの被膜構造の状態を示すもので、34はコーティング層、35は基材である。
【0057】
このようにパスの重なりが不足した場合には、表面に大きな凹凸が生じ、膜厚の不足する領域が周期的に生まれることが明かである。したがって、本手法は溶射施工パスの重なりや、層内の組織構造を検討するのに好都合であることがわかる。
【0058】
最後に実際のタービン翼背側へ平面的な溶射ガンの移動による溶射施工をシミュレートした例について述べる。
【0059】
近年のガスタービン翼は、その流体性能の向上を目的として、半径方向にねじれが加えられている。このような形状の翼の場合には、単純に2次元平面的なガンの移動では、均一な膜厚が得られないことが知られている。
【0060】
本手法を用いたシミュレーション結果からも、図11に示すように平面的な施工では翼の前縁部37と後縁部38には全く付着していないことや、前縁側の先端部分と後縁側の根元部分にかけて膜厚が徐々に薄くなり、最大膜厚部の約半分ほどの厚さになることが分かった。
【0061】
上記構成の膜厚予測システムでは、単位面積当たりの仮想粒子の付着個数が最終的に得られるが、実際の使用に際しては、この値を膜厚に換算する計算手段が必要なる。以下に最も単純な変換の例を考えてみる。すべての粒子の粒径と衝突時の偏平率が等しいと仮定した場合、単位面積当たりの粒子の付着個数と膜厚は1対1に対応すると考えられる。そこで、膜厚分布を表現するのに十分な数の仮想粒子を発生し、角要素に付着した粒子の数をカウントして、角要素の面積で除することによって、単位面積当たりの粒子付着数を求めることができる。したがって、この値に1個の粒子の厚さを掛け合わせれば、粒子の付着個数を膜厚に換算することで実現できる。
【0062】
このように複雑形状部品の膜厚分布の予測と、ロボットプログラムの製作に極めて有益なツールとなることは明らかである。
【0063】
上記実施の形態において、次のような手段を導入することでにより、信頼性の高い皮膜形成のための施工条件の検討や、ロボットの移動方法の検討に極めて有益な情報を得ることができる。
【0064】
(1)仮想粒子の積層状態から、実施工プロセス皮膜の施工状態を推測する計算手段を組込む。
【0065】
スプレーパターンに比して十分細かい要素を考え、ガンの移動スキャン毎の膜厚分布の変化を求めると、積層内に存在するスキャン毎の重なりを再現することができる。この重なり部分は、特に欠陥が多く存在する部分であることが知られている。したがって、得られる積層構造データから、皮膜内の気孔率の分布等の予測が可能となるので、本シミュレーションに積層状態を推定する計算手段を組み込むことにより、実用上極めて有益な情報を入手することができる。
【0066】
(2)仮想粒子の付着個数と非付着個数から、複雑形状部品全体での付着効率を推測する計算手段を組込む。
【0067】
部品全体の施工における付着効率のデータは、施工コストや施工時間を見積もる上で極めて重要な値である。しかしながら、従来の溶射パターン形状を投影するシミュレーションでは、付着効率の見積もりは全く不可能であった。これに対して、本手法では、非付着粒子の個数も同時にカウントしていることから、付着効率も容易に、且つ十分な精度で予測することが可能である。
【0068】
(3)仮想粒子の付着状態に基づいてガン移動経路や施工条件の最適化を行なう計算手段を組込む。
【0069】
上記実施の形態で述べた計算手段で得られた膜厚や膜構造の予測を用いて、ガンの移動経路の最適化を検討することも可能である。ガンの移動経路や、施工条件を入力としし、膜厚や付着効率、積層構造等を最適化を目指す目的関数として、最急降下法やニューラルネットワーク法、遺伝アルゴリズムなどの最適化法を用いれば、ガン移動経路の最適化や、施工条件の最適化を簡単に行なうことができる。
【0070】
(4)本システムの計算手法による計算結果に基づいてガンの制御を行なう数値制御皮膜形成装置を構成する。
【0071】
本システムから得られたガン移動経路をCAMデータとしてガン移動ロボットの制御に用いれば、本システムを用いた統合的な加工システムを構築することが可能である。また、リアルタイムで粒子分布データを取込み、ガン移動を制御すれば、逐次加工も実現できる。
【0072】
(5)本システムの計算手法によって溶射や吹付け塗装による膜の膜厚や積層構造を予測するプログラムを記録媒体に記録する。
【0073】
以上述べた発明は、施工装置に直接組込まれるだけでなく、ソフトウェアとして提供されれば、汎用のコンピュータ上で膜厚・膜質予測管理システムの構築が可能である。したがって、本ソフトウェアを媒体上に記録し、配付すれば容易且つ安価に本システムを提供できる。
【0074】
【発明の効果】
以上述べたように本発明による被加工物表面の膜厚・膜質予測管理システムによれば、吹付け塗装や、溶射プロセスにおける皮膜厚さや、付着効率、組織構造などを十分な精度で予測することが可能であり、信頼性の高い皮膜形成のための施工条件の検討や、ロボットの移動方法の検討に極めて有益な情報を得ることができる。
【図面の簡単な説明】
【図1】本発明による被加工物表面の膜厚・膜厚予測管理システムの全体の概略を示す全体構成図。
【図2】本発明による被加工物表面の膜厚・膜厚予測管理システムの実施の形態の一例を示す構成図。
【図3】同実施の形態において、溶射施工における被加工物とガンとの幾何的関係の説明図。
【図4】同実施の形態において、溶射膜厚パターンと付着粒子の個数との関係を示す概念図。
【図5】同実施の形態において、計算機によって発生させた乱数の度数分布と膜厚パターンとの比較図。
【図6】同実施の形態において、溶射角度を変化させた平板基板上への施工の模式図。
【図7】同実施の形態において、溶射角度を変化させた時の膜厚パターンの予測結果を記す図。
【図8】同実施の形態において、溶射角度を変化させた時の付着効率の予測値と実測値との比較図。
【図9】同実施の形態において、溶射ガンの移動経路の説明図。
【図10】同実施の形態において、パスの重なりを変化させた時の皮膜構造の変化状態を示す図。
【図11】ガスタービン翼背側における膜厚の予測結果を示す図。
【符号の説明】
1…入力手段
2…第1の計算手段
3…第2の計算手段
4…表面形状モデル
5…膜厚・層構造予測モデル
6…出力手段
7…入力手段
8…データベース
9…計算機
10…移動データ入力手段
11…形状データ入力手段
12…解析データ出力部
13…溶射ガン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a film thickness / film quality prediction management system for a workpiece surface for performing film thickness management and adhesion efficiency prediction in thermal spraying or spray coating construction.
[0002]
[Prior art]
Conventional film thickness prediction software for spray coating and thermal spraying uses a Gaussian or β distribution for the coating and thermal spray film thickness pattern that can be created when the spray / spray gun is stationary at a fixed point, and this shape is projected onto the part surface. By doing so, the film thickness of the entire part is predicted. As a result, it was possible to program the construction robot without stopping the production line and to improve the equipment operating rate.
[0003]
[Problems to be solved by the invention]
However, since the conventional film thickness estimation method is mainly intended for robot automatic program development, although the calculation speed is fast,
(1) Basically, it is assumed that the gun for spraying paint and spray material is held at a constant distance and at a right angle to the workpiece, and the sprayed film depends on the distance and angle between the gun and the workpiece. In order to capture changes in the thickness pattern, a huge amount of test data according to each construction condition is required.
(2) The thermal spraying efficiency of the entire part cannot be estimated,
It is not suitable for studying a wide range of construction conditions required for actual construction.
[0004]
The present invention has been made in view of the above circumstances, and from the few basic test data, the film thickness and film quality on the surface of the workpiece can be accurately predicted for the film thickness and film quality of complex shaped parts. An object is to provide a prediction management system.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the present invention constitutes a film thickness / film quality prediction management system on the surface of a workpiece by the following means.
[0006]
The invention corresponding to claim 1 is an input means for inputting distribution data of the actual flight trajectory of attached particles in a construction process in which a film such as spraying or spray coating is sprayed by a gun to form a film on the surface of the workpiece. And first calculation means for calculating the locus of particles virtually generated based on the distribution data input from the input means; and the locus of each virtual particle obtained by the first calculation means; Second calculation means for estimating the adhesion amount based on the geometrical relationship with the workpiece surface, and the film thickness and film quality are predicted and output based on the adhesion amount obtained by the second calculation means. Output means.
According to a second aspect of the present invention, there is provided means for storing distribution data of actual flight trajectories of adhered particles in a construction process in which a film such as spraying or spray coating is sprayed by a gun to form a film on a workpiece surface; First calculating means for calculating the locus of particles virtually generated based on the distribution data stored by this means, and the locus of each virtual particle obtained by the first calculating means and the workpiece A second calculating means for estimating an adhesion amount based on a geometric relationship with the object surface, and an output for predicting and outputting a film thickness and film quality based on the adhesion amount obtained by the second calculation means. Means.
[0007]
The invention corresponding to claim 3 is the system for predicting and managing the film thickness / film quality on the surface of the workpiece according to claim 1 or 2 , wherein the distribution data of the flight trajectory of the attached particles is the flight trajectory of the particle. Distribution of flying particles measured in situ by a laser strobe or a CCD camera .
[0008]
The invention corresponding to claim 4 is the system for predicting and managing the film thickness / film quality on the surface of the workpiece according to claim 1 or claim 2 , wherein the distribution data of the flight trajectory of the attached particles is the flight trajectory of the particle. those rather based on the distribution thickness pattern measured by the test.
[0009]
According to a fifth aspect of the present invention, there is provided a film thickness / film quality prediction management system for a workpiece surface according to the first or second aspect of the invention, wherein the shape of the workpiece is represented by two-dimensional CAD data or three-dimensional CAD. It has an interface for inputting data.
[0010]
According to a sixth aspect of the present invention, in the system for predicting and managing the film thickness / film quality on the surface of the workpiece according to any one of the first to fifth aspects of the invention, It has a calculation function for probabilistically calculating the flying particle adhesion judgment from the relationship between the measured gun angle and the adhesion efficiency.
[0011]
The invention corresponding to claim 7 is the film thickness / film quality prediction management system for the workpiece surface of the invention corresponding to any one of claims 1 to 5 , wherein the second calculation means applies to the workpiece. It has a calculation function for probabilistically calculating the adhesion determination of flying particles from the relationship between the distance between the gun and the workpiece and the adhesion rate.
[0012]
The invention corresponding to claim 8 is a system for predicting and managing the film thickness / film quality on the workpiece surface according to any one of claims 1 to 5, wherein the complex shape is determined from the number of virtual particles attached per unit area. A calculation means for estimating the film thickness distribution of the component is included.
[0013]
The invention corresponding to claim 9 is the system for predicting and managing the film thickness and film quality on the surface of the workpiece according to any one of claims 1 to 5, wherein the laminated state of the construction process film from the laminated state of virtual particles It has a calculation means which guesses.
[0014]
According to a tenth aspect of the present invention, in the film thickness / film quality prediction management system for a workpiece surface according to any one of the first to fifth aspects, the complex shape is determined from the number of attached and non-attached virtual particles. A calculation means for estimating the adhesion efficiency of the entire part is included.
[0015]
According to an eleventh aspect of the present invention, in the film thickness / film quality prediction management system for a workpiece surface according to any of the first to ninth aspects, thermal spraying or spraying is performed based on the adhesion state of virtual particles. It has calculation means for optimizing the gun movement path and construction conditions for painting.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0017]
FIG. 1 is an overall configuration diagram showing an overall outline of a film thickness / film thickness prediction management system for a workpiece surface according to the present invention.
[0018]
In FIG. 1, reference numeral 1 denotes an input means. The input means 1 preliminarily measures the actual distribution of the flight trajectory of the adhering particles with respect to materials and construction conditions, and stores these data as initial conditions in the computer. Is input to the section.
[0019]
Reference numeral 2 denotes first calculation means for taking in data accumulated in the storage unit and generating particles virtually by generating particles virtually in the computer at a frequency according to the distribution. Use surface shape model 4 to calculate the angle and distance when individual particles collide with the surface of the workpiece, and attach particles to determine adhesion or non-adhesion based on the adhesion probability in actual construction This is a second calculation means for creating a prediction model.
[0020]
As an adhesion prediction model created by the first calculation means 2 and the second calculation means 3, a physical model such as flow field analysis or structural analysis by a finite element method may be used. Since it is extremely complicated and is not suitable for high-speed calculation, it is preferable to use a probability statistical calculation model using random numbers in the computer in order to reproduce the phenomenon with high speed and high accuracy.
[0021]
The result obtained based on these models is output from the output means 6 using the film thickness / layer structure prediction model 5 and the final film thickness distribution, porosity distribution, and the like.
[0022]
Here, it is indispensable for the first calculation means 2 to store the actual measurement data in the construction apparatus, material, and construction condition to be predicted in the computer. As a method of acquiring this data, a method of directly measuring the velocity and direction distribution of flying particles using a laser strobe or a CCD camera can be considered. Since this method can be measured during construction, it can immediately respond to changes in construction equipment, materials, and construction conditions, and build an intelligent construction system by feeding back the calculation results to gun control. Is possible. On the other hand, however, there are problems such as the fact that the apparatus is large and expensive.
[0023]
Another method is to measure the film formation pattern formed on a simple specimen such as a flat plate under the pre-construction conditions and estimate the distribution of the trajectory of the particles in flight from this data. is there.
[0024]
Although this method requires a test in advance, it is possible to obtain necessary data at a low cost without requiring a special measuring device as compared with the above method.
[0025]
On the other hand, since the geometric relationship between the flying particles and the workpiece surface is important for the second calculation means 3 to estimate the amount of adhesion on the workpiece surface, the contact points constituting the workpiece surface are important. And face information is needed. Therefore, an interface is provided for inputting 2-dimensional CAD data or 3-dimensional CAD data as the shape data of the workpiece.
[0026]
As this data format, it is possible to use original data formats for both contact coordinate data and surface data, but use standard CAD data such as DXF and IGES, or input data format of general-purpose stress analysis software. Then, seamless design and thermal stress analysis are possible.
[0027]
Further, in the second calculation means 3, in order to obtain the adhesion amount on the surface of the workpiece, the amount of particle adhesion to the workpiece is obtained from the relationship between the gun angle (spraying angle) measured in advance and the adhesion efficiency, The amount of particles adhering to the workpiece is obtained from the relationship between the gun and the distance between the workpieces and the adhesion rate.
[0028]
That is, if the trajectory of the particle is calculated by the first calculating means 2 and the intersection point with the surface constituting the part is calculated, the intersection point becomes the particle attachment point considered, but spray coating or spraying is performed. In the case of construction, particles that are bounced back without being generated depending on the collision angle and flight distance of the particles are always generated, and generally the efficiency of adhesion is the highest when colliding at a right angle.
[0029]
Therefore, the relationship between the gun angle and the deposition efficiency is measured in advance using a simple specimen such as a flat plate, and the deposition efficiency corresponding to this angle is calculated from the calculated flight direction of the particle and the workpiece surface. It is possible to perform a simulation that simulates an actual construction process by calculating that the adhesion occurs with a probability corresponding to. In addition, spraying and spraying distance are the same, and it is indispensable to determine whether or not virtual particles can be attached using the measured data of spraying and spraying distance and adhesion efficiency when accurately predicting film thickness. is there.
[0030]
FIG. 2 shows an example of the film thickness / film thickness prediction management system on the workpiece surface as described above. The present invention can be simulated by any spraying process in which particulate matter adheres to the surface of the work piece through a flight process and is laminated. It demonstrates using a thermal spraying process.
[0031]
In FIG. 2, 7 is an input means for inputting spraying conditions such as material, powder, spraying device, construction conditions, etc. to the computer, and 8 is a welding condition input from the input means 7 and the relationship between the spraying pattern, the deposition efficiency and the spraying angle. The database stores experimental data indicating the relationship between the deposition efficiency and the spraying distance.
[0032]
Further, 10 is a gun movement data input means having the spray point coordinates, movement speed, direction vector, and movement data, and 11 is a shape data input means having node data and element data.
[0033]
Furthermore, 9 is a computer. This computer 9 is a coordinate calculation unit that takes in data from the gun movement data input means 10 and calculates gun coordinates, and takes a spray pattern from the database 8 to generate virtual particles by random numbers. Based on the particle generation unit, the particle locus calculation unit for obtaining the locus of the virtual particles generated by the virtual particle generation unit, the locus of the virtual particles obtained by the particle locus calculation unit and the shape data acquired from the shape data input means 11 The particle adhesion point calculation unit for calculating the particle adhesion point, the particle adhesion point obtained by the particle adhesion point calculation unit, the relationship between the deposition efficiency and the spray angle read from the database 8, and the relationship between the deposition efficiency and the spray distance. The adherability determination unit for determining adherability by random numbers based on the data shown, whether the adhering number determined by the adherability determination unit is a necessary number, If not, the required number determination unit for generating virtual particles in the virtual particle generation unit, the determination result in the required number determination unit and the end time are used to determine whether the position of the spray gun has reached the final point. An end time determination unit that ends the simulation when the point is reached, and a calculation unit that obtains the film thickness distribution / layer structure by calculation and outputs them to the analysis data output unit 12 are configured.
[0034]
Next, the operation of the film thickness / film thickness prediction management system on the workpiece surface configured as described above will be described.
[0035]
First, the coordinate calculation unit obtains the coordinates of the gun at an arbitrary time using the data of the gun movement data input module 10 having the data of the coordinates and direction of the gun and the movement speed.
[0036]
Thereafter, the virtual particle generation unit virtually generates particles according to the probability of the actual particle flight path. In this case, as a method of obtaining the probability of the flight path of the actual particle, a method of actually measuring the flight particle path observed on the spot such as a laser strobe or a CCD camera and a preliminarily estimated construction condition are used on a flat plate. A method is conceivable in which data is obtained from spray pattern data consisting of the relationship between the distance from the center of spraying and the film thickness when spraying at right angles.
[0037]
Here, a method for calculating the probability of the flight path of particles from the measured spray pattern data will be described.
[0038]
As shown in FIG. 3, a plane 17 is assumed to be orthogonal to the gun direction 14 at the same distance 15 as the distance between the spray gun 13 and the flat specimen of the original experimental data.
[0039]
On the other hand, the pattern of the sprayed film thickness obtained from the experimental data is as shown in FIG. In FIG. 4, 23 is a spraying center, 24 is a distance from the center, 25 is attached particles, and 26 is a film thickness pattern.
[0040]
Now, assuming that the particles adhering to the substrate have a uniform particle size and the flatness ratio at the time of adhering is the same, the film thickness distribution obtained by the experiment and the deposition at an arbitrary position as shown in FIG. It can be considered that the number of attached particles is proportional. Further, the distribution of the adhered particles on the flat plate is considered to be equal to the distribution of the number of particles passing through an arbitrary position on the virtual plane 17 shown in FIG.
[0041]
Here, a function indicating the film thickness distribution of the spray pattern is considered as a frequency distribution of the number of adhered particles, and a cumulative frequency function of the frequency distribution is obtained, and then an inverse conversion function of the function is obtained. Then, a random number uniformly distributed in the interval [0, 1] is generated in the computer, and this random number is substituted into the inverse transformation function of the obtained cumulative distribution function of the number of particles. Has a random distribution according to the actual particle distribution.
[0042]
FIG. 5 compares the frequency distribution of the 5000 random numbers generated in this way with the actually measured film thickness measurement data, where 23 is the spray center, 26 is the film thickness pattern, and 27 is the frequency of the generated random number. Is shown. As can be seen from FIG. 5, it is possible to generate virtual particles according to the measured distribution using random numbers, and generate several thousand particles at one point, depending on the data discretization score. It can be seen that a sufficient film thickness pattern can be reproduced.
[0043]
Therefore, if the coordinates on the virtual plane are projected using the random numbers obtained from the above calculation, this point can be considered as a passing point of particles passing on the virtual plane shown in FIG.
[0044]
Next, approximate the equation representing the particle trajectory with a straight line or an appropriate polynomial such as a quadratic equation, and create a curve that connects the coordinates on the virtual plane obtained from the results of the calculation described above and the coordinates of the spray gun. Once determined, this represents the trajectory 20 of the individual flying particles.
[0045]
After that, using the equation indicating the trajectory of the flying particles, the coordinate data of the contacts constituting the surface shape of the workpiece, and the element data consisting of a set of a plurality of contact data, the particle trajectory and the workpiece If the intersection with the surface is obtained, this coordinate is considered as a candidate point 21 for particle adhesion.
[0046]
However, the probability of attachment or non-attachment of flying particles varies depending on the angle between the individual particles and the workpiece surface and the flight distance. Therefore, the relationship between the deposition efficiency and the spraying angle and the relationship between the deposition efficiency and the spraying distance are obtained from experiments assuming actual spraying conditions. Using this data, a random number (section [0, 1]) is generated again in the computer, and the adhesion efficiency (section [0, 1]) obtained from the angle and distance of each particle for which the random value is calculated. If it is determined that the particles are attached when the particle size is smaller than the particle size and not adhered when the particle size is larger than the particle size, the particle can be picked up with a probability equal to the adhesion efficiency.
[0047]
After the calculation of one particle virtually generated in the computer is completed, it is determined whether or not a sufficient number of particles have been generated to express the spray pattern. If the number of generations is too small, the actual spray pattern cannot be expressed and the error becomes large. On the other hand, if the number is too large, a large amount of calculation time is required. If the number is less than this number, a new particle is generated. If the number is sufficient, the position of the spray gun is moved slightly before the particle is calculated.
[0048]
Finally, it is determined whether or not the position of the spray gun has reached the final point, and the simulation is terminated when the position is reached.
[0049]
Here, a case where the gun angle is changed as shown in FIG.
[0050]
In FIG. 6, the spray gun 13 disposed at a spray distance 28 with respect to the flat plate base material 31 is changed in the range of the spray center angle 29 with the gun direction vector 14 around the spray center locus 30.
[0051]
FIG. 7 shows the change in film thickness distribution when spraying is performed on a flat base material by changing the gun angle.
[0052]
Thus, as the spray angle becomes shallower from 90 °, the film thickness gradually decreases, and when it becomes shallower than 45 ° (30 °), it can be clearly seen that a good pattern cannot be obtained.
[0053]
In addition, as shown in Fig. 8, the relationship between the gun angle and the adhesion efficiency shows a very good agreement between the calculated results and the measured values, confirming that this method is extremely effective in estimating the adhesion efficiency. It was.
[0054]
Next, FIG. 10 shows an example of the calculation result of the change in the laminated structure under the condition that the angle of the gun is a right angle and the overlap of the movement paths of the gun is changed as shown in FIG.
[0055]
In FIG. 9, the spray gun is moved along the gun trajectory 32 at a spray pitch 33 while keeping the gun direction vector 14 constant with respect to the flat base material 31.
[0056]
FIG. 10 shows the movement path of such a spray gun, and shows the state of the coating structure when spraying is performed with a small, medium and large spray pitch. 34 is a coating layer, and 35 is a substrate. .
[0057]
It is clear that when the path overlap is insufficient, large irregularities are generated on the surface, and regions with insufficient film thickness are periodically generated. Therefore, it can be seen that this method is convenient for examining the overlapping of thermal spraying paths and the structure of the layers.
[0058]
Finally, an example in which spraying is simulated by moving a flat spray gun to the actual turbine blade back side will be described.
[0059]
Recent gas turbine blades are twisted in the radial direction for the purpose of improving fluid performance. In the case of a blade having such a shape, it is known that a uniform film thickness cannot be obtained by simply moving a two-dimensional planar gun.
[0060]
From the simulation results using this method, as shown in FIG. 11, in the flat construction, the front edge portion 37 and the rear edge portion 38 of the wing are not attached at all, and the leading edge portion and the rear edge side on the front edge side are not adhered. It was found that the film thickness gradually decreased from the base of the film to about half the maximum film thickness.
[0061]
The thickness prediction system with the above configuration, the deposition number of virtual particles per unit area is finally obtained, in actual use, the calculating means for converting the value in the film thickness is required. Consider the simplest conversion example below. Assuming that the particle size of all the particles and the flatness at the time of collision are the same, the number of adhered particles per unit area and the film thickness are considered to correspond one-to-one. Therefore, to generate sufficient number of virtual particles to represent the film thickness distribution, by counting the number of particles adhering to the diagonal elements, thus to divided by the area of the corner element, particle deposition per unit area You can find the number. Therefore, by multiplying this value by the thickness of one particle, this can be realized by converting the number of adhered particles into a film thickness.
[0062]
Thus, it is clear that it is a very useful tool for predicting the film thickness distribution of complex shaped parts and for producing robot programs.
[0063]
In the above-described embodiment, by introducing the following means, it is possible to obtain information that is extremely useful for studying construction conditions for forming a highly reliable film and studying a robot moving method.
[0064]
(1) The calculation means for estimating the construction state of the execution process film from the laminated state of the virtual particles is incorporated.
[0065]
Considering elements that are sufficiently fine compared to the spray pattern and determining the change in film thickness distribution for each movement scan of the gun, the overlap for each scan existing in the stack can be reproduced. It is known that this overlapping portion is a portion where many defects exist. Therefore, it is possible to predict the distribution of the porosity in the film from the obtained laminated structure data. Therefore, it is possible to obtain extremely useful information in practice by incorporating a calculation means for estimating the laminated state in this simulation. Can do.
[0066]
(2) A calculation means for estimating the adhesion efficiency of the entire complex shaped part from the number of attached and non-attached virtual particles is incorporated.
[0067]
The data of the adhesion efficiency in the construction of the entire part is an extremely important value in estimating the construction cost and the construction time. However, it is impossible to estimate the deposition efficiency in the conventional simulation of projecting the spray pattern shape. On the other hand, in this method, since the number of non-adhering particles is also counted at the same time, it is possible to predict the adhesion efficiency easily and with sufficient accuracy.
[0068]
(3) Incorporate calculation means for optimizing the gun movement path and construction conditions based on the adhesion state of the virtual particles.
[0069]
It is also possible to consider optimization of the movement path of the gun by using the prediction of the film thickness and film structure obtained by the calculation means described in the above embodiment. Using an optimization method such as the steepest descent method, neural network method, genetic algorithm, etc. as an objective function that aims to optimize the film thickness, adhesion efficiency, laminated structure, etc. Optimization of gun movement route and construction conditions can be easily performed.
[0070]
(4) A numerically controlled film forming apparatus that controls the gun based on the calculation result of the calculation method of the present system is configured.
[0071]
If the gun movement path obtained from this system is used as CAM data for controlling the gun movement robot, an integrated machining system using this system can be constructed. Also, sequential processing can be realized by capturing particle distribution data in real time and controlling gun movement.
[0072]
(5) A program for predicting the film thickness and laminated structure by spraying or spray coating is recorded on a recording medium by the calculation method of this system.
[0073]
The above-described invention can be built not only directly into the construction apparatus but also as a software, so that a film thickness / film quality prediction management system can be constructed on a general-purpose computer. Therefore, if the software is recorded on a medium and distributed, the system can be provided easily and inexpensively.
[0074]
【The invention's effect】
As described above, according to the film thickness / film quality prediction management system of the workpiece surface according to the present invention, it is possible to predict the spray coating, the film thickness in the thermal spraying process, the adhesion efficiency, the structure structure, etc. with sufficient accuracy. Therefore, it is possible to obtain extremely useful information for studying construction conditions for forming a highly reliable film and studying a robot moving method.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram showing an outline of the entire film thickness / film thickness prediction management system of a workpiece surface according to the present invention.
FIG. 2 is a configuration diagram showing an example of an embodiment of a film thickness / film thickness prediction management system for a workpiece surface according to the present invention.
FIG. 3 is an explanatory diagram of a geometric relationship between a workpiece and a gun in thermal spraying in the same embodiment.
FIG. 4 is a conceptual diagram showing the relationship between a sprayed film thickness pattern and the number of attached particles in the same embodiment.
FIG. 5 is a comparison diagram between a frequency distribution of random numbers generated by a computer and a film thickness pattern in the embodiment.
FIG. 6 is a schematic diagram of construction on a flat substrate with a different spray angle in the embodiment.
FIG. 7 is a diagram showing a prediction result of a film thickness pattern when the spraying angle is changed in the embodiment.
FIG. 8 is a comparison diagram between a predicted value of adhesion efficiency and an actual measurement value when the spraying angle is changed in the embodiment.
FIG. 9 is an explanatory diagram of a moving path of the spray gun in the embodiment.
FIG. 10 is a view showing a change state of the film structure when the overlap of paths is changed in the embodiment.
FIG. 11 is a diagram showing a prediction result of a film thickness on the gas turbine blade back side.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Input means 2 ... 1st calculation means 3 ... 2nd calculation means 4 ... Surface shape model 5 ... Film thickness and layer structure prediction model 6 ... Output means 7 ... Input means 8 ... Database 9 ... Computer 10 ... Movement data Input means 11 ... shape data input means 12 ... analysis data output unit 13 ... spray gun

Claims (11)

ガンにより溶射や吹き付け塗装などの粒子を吹き付けて被加工物表面に成膜を形成する施工プロセスにおいて、実際の付着粒子の飛行軌跡の分布データを入力する入力手段と、この入力手段より入力される分布データに基づいて仮想的に発生させた粒子の軌跡を計算する第1の計算手段と、この第1の計算手段により求められた個々の仮想粒子の軌跡と被加工物表面との幾何学的関係に基づいて付着量を推定する第2の計算手段と、この第2の計算手段で求められた付着量をもとに膜厚・膜質を予測して出力する出力手段とを備えたことを特徴とする被加工物表面の膜厚・膜質予測管理システム。In the construction process of forming a film on the surface of the workpiece by spraying particles such as spraying or spraying with a gun, input means for inputting the distribution data of the flight trajectory of the actual adhered particles, and input from this input means First calculation means for calculating the trajectory of particles virtually generated based on the distribution data, and the geometrical relationship between the trajectory of each virtual particle obtained by the first calculation means and the workpiece surface A second calculation means for estimating the adhesion amount based on the relationship; and an output means for predicting and outputting the film thickness and film quality based on the adhesion amount obtained by the second calculation means. Characteristic workpiece surface thickness / film quality prediction management system. ガンにより溶射や吹き付け塗装などの粒子を吹き付けて被加工物表面に成膜を形成する施工プロセスにおいて、実際の付着粒子の飛行軌跡の分布データを記憶する手段と、この手段に記憶された分布データに基づいて仮想的に発生させた粒子の軌跡を計算する第1の計算手段と、この第1の計算手段により求められた個々の仮想粒子の軌跡と被加工物表面との幾何学的関係に基づいて付着量を推定する第2の計算手段と、この第2の計算手段で求められた付着量をもとに膜厚・膜質を予測して出力する出力手段とを備えたことを特徴とする被加工物表面の膜厚・膜質予測管理システム。In the construction process of forming a film on the workpiece surface by spraying particles such as spraying or spray coating with a gun, means for storing the distribution data of the actual flight trajectory of the adhered particles, and the distribution data stored in this means The first calculation means for calculating the locus of particles virtually generated based on the above, and the geometric relationship between the locus of the individual virtual particles obtained by the first calculation means and the workpiece surface And a second calculation means for estimating the adhesion amount based on the output and an output means for predicting and outputting the film thickness and film quality based on the adhesion amount obtained by the second calculation means. Film thickness / film quality prediction management system for workpiece surface. 請求項1又は請求項2記載の被加工物表面の膜厚・膜質予測管理システムにおいて、前記付着粒子の飛行軌跡の分布データは、粒子の飛行軌跡の分布をレーザストロボ又はCCDカメラによってその場で測定した飛行粒子の分布であることを特徴とする被加工物表面の膜厚・膜質予測管理システム。 3. The system for predicting and managing the film thickness / film quality of the workpiece surface according to claim 1 or 2 , wherein the distribution data of the flight trajectory of the adhered particles is obtained by measuring the flight trajectory distribution of the particles on the spot by a laser strobe or a CCD camera . A system for predicting and managing film thickness and film quality on the surface of a workpiece, characterized by the distribution of measured flying particles. 請求項1又は請求項2記載の被加工物表面の膜厚・膜質予測管理システムにおいて、前記付着粒子の飛行軌跡の分布データは、粒子の飛行軌跡の分布を試験により実測した膜厚パターンに基づくものであることを特徴とする被加工物表面の膜厚・膜質予測管理システム。 3. The system for predicting and managing the film thickness / film quality on the workpiece surface according to claim 1 or 2 , wherein the distribution data of the flight trajectory of the adhered particles is based on a film thickness pattern obtained by actual measurement of the flight trajectory distribution of the particles. film thickness and film quality prediction management system of the workpiece surface, characterized in that those rather Dzu. 請求項1又は請求項2記載の被加工物表面の膜厚・膜質予測管理システムにおいて、被加工物の形状を2次元CADデータ、又は3次元CADデータによって入力するインターフェースを有することを特徴とする被加工物表面の膜厚・膜質予測管理システム。 3. The workpiece thickness / film quality prediction management system according to claim 1 or 2 , further comprising an interface for inputting the shape of the workpiece by two-dimensional CAD data or three-dimensional CAD data. System for predicting and managing the film thickness and film quality on the workpiece surface. 請求項1乃至請求項5のいずれかに記載の被加工物表面の膜厚・膜質予測管理システムにおいて、第2の計算手段は、被加工物への飛行粒子の付着判断を実測したガン角度と付着効率との関係から確率的に算出する計算機能を有することを特徴とする被加工物表面の膜厚・膜質予測管理システム。6. The workpiece thickness / film quality prediction management system according to claim 1 , wherein the second calculation means includes a gun angle obtained by actually measuring the judgment of flying particles adhering to the workpiece. A system for predicting and managing film thickness / film quality on the surface of a workpiece, characterized in that it has a calculation function that calculates probabilistically from the relationship with the adhesion efficiency. 請求項1乃至請求項5のいずれかに記載の被加工物表面の膜厚・膜質予測管理システムにおいて、第2の計算手段は、被加工物への飛行粒子の付着判断をガン及び被加工物間距離と付着率との関係から確率的に算出する計算機能を有することを特徴とする被加工物表面の膜厚・膜質予測管理システム。6. The workpiece surface thickness / film quality prediction management system according to claim 1 , wherein the second calculation means determines whether the flying particles adhere to the workpiece by determining whether the flying particles adhere to the workpiece and the workpiece. A system for predicting and managing film thickness / film quality on the surface of a workpiece, characterized in that it has a calculation function that calculates probabilistically from the relationship between the inter-distance and the adhesion rate. 請求項1乃至請求項5のいずれかに記載の被加工物表面の膜厚・膜質予測管理システムにおいて、単位面積あたりの仮想粒子の付着個数から複雑形状部品の膜厚分布を推測する計算手段を設けたことを特徴とする被加工物表面の膜厚・膜質予測管理システム。In the film thickness / film quality prediction management system according to any one of claims 1 to 5, calculation means for estimating the film thickness distribution of a complex shaped part from the number of virtual particles attached per unit area A system for predicting and managing the film thickness and film quality on the surface of the workpiece, which is provided. 請求項1乃至請求項5のいずれかに記載の被加工物表面の膜厚・膜質予測管理システムにおいて、仮想粒子の積層状態から施工プロセス皮膜の積層状態を推測する計算手段を設けたことを特徴とする被加工物表面の膜厚・膜質予測管理システム。The film thickness / film quality prediction management system for a workpiece surface according to any one of claims 1 to 5, further comprising a calculation means for estimating a lamination state of a construction process film from a lamination state of virtual particles. The film thickness / film quality prediction management system for the workpiece surface. 請求項1乃至請求項5のいずれかに記載の被加工物表面の膜厚・膜質予測管理システムにおいて、仮想粒子の付着個数と非付着個数から複雑形状部品全体での付着効率を推測する計算手段を設けたことを特徴とする被加工物表面の膜厚・膜質予測管理システム。6. The calculation means for estimating the attachment efficiency of the entire complex shaped part from the number of virtual particles attached and the number of non-attached particles in the film thickness / film quality prediction management system of the workpiece surface according to claim 1. A system for predicting and managing the film thickness / film quality on the workpiece surface, 請求項1乃至請求項9のいずれかに記載の被加工物表面の膜厚・膜質予測管理システムにおいて、仮想粒子の付着状態に基づいて溶射や吹付け塗装用のガン移動経路や施工条件の最適化を行う計算手段を設けたことを特徴とする被加工物表面の膜厚・膜質予測管理システム。In the film thickness / film quality prediction management system of the workpiece surface according to any one of claims 1 to 9 , the gun movement route and construction conditions for spraying and spray coating are optimized based on the adhesion state of virtual particles. A system for predicting and managing the film thickness and film quality on the surface of a workpiece, characterized in that a calculation means is provided for performing the conversion.
JP2000108098A 2000-04-10 2000-04-10 Predictive management system for film thickness and film quality on the workpiece surface Expired - Fee Related JP4330759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000108098A JP4330759B2 (en) 2000-04-10 2000-04-10 Predictive management system for film thickness and film quality on the workpiece surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000108098A JP4330759B2 (en) 2000-04-10 2000-04-10 Predictive management system for film thickness and film quality on the workpiece surface

Publications (2)

Publication Number Publication Date
JP2001286798A JP2001286798A (en) 2001-10-16
JP4330759B2 true JP4330759B2 (en) 2009-09-16

Family

ID=18621002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000108098A Expired - Fee Related JP4330759B2 (en) 2000-04-10 2000-04-10 Predictive management system for film thickness and film quality on the workpiece surface

Country Status (1)

Country Link
JP (1) JP4330759B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104655073A (en) * 2015-01-12 2015-05-27 深圳市湘津石仪器有限公司 Method for quickly determining functional coating thickness parameters

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008017838A1 (en) 2008-04-08 2009-12-10 Dürr Systems GmbH Painting plant with a measuring cell for coating thickness measurement
JP5402250B2 (en) * 2009-05-28 2014-01-29 トヨタ自動車株式会社 Coating film thickness prediction method, apparatus and program thereof
JP7091161B2 (en) * 2018-06-16 2022-06-27 タクボエンジニアリング株式会社 Spray information creation method and painting simulation method for virtual painting

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104655073A (en) * 2015-01-12 2015-05-27 深圳市湘津石仪器有限公司 Method for quickly determining functional coating thickness parameters
CN104655073B (en) * 2015-01-12 2017-08-04 深圳市湘津石仪器有限公司 A kind of method of quick determination functional coating thickness parameter

Also Published As

Publication number Publication date
JP2001286798A (en) 2001-10-16

Similar Documents

Publication Publication Date Title
KR101385819B1 (en) Methods for controlling plasma spray coating porosity on an article and articles manufactured therefrom
CN112284290B (en) Autonomous measurement method and system for aero-engine blade robot
Wu et al. A new approach to simulate coating thickness in cold spray
CN104759379B (en) Intelligent full-process closed-loop spray painting robot based on spray painting target three-dimensional imaging technology
Elkott et al. Automatic sampling for CMM inspection planning of free-form surfaces
CN103678754B (en) Information processor and information processing method
EP1476797B1 (en) Method and system for visualizing surface errors
CN105571505B (en) The method for real-time measurement and device that drip molding deforms during a kind of increasing material manufacturing
Cho et al. A feature-based inspection planning system for coordinate measuring machines
JP2019070916A (en) Cutting simulation method and device
CN109579733B (en) Method for rapidly measuring and calculating laser 3D printing forming dimensional precision
CN112091964B (en) Method and system for generating a robot program for industrial coating
CN114417526B (en) Accurate prediction method suitable for different grinding surface morphologies
JP4330759B2 (en) Predictive management system for film thickness and film quality on the workpiece surface
CN111540001A (en) Method for detecting axial direction of air film hole of turbine blade of aero-engine
Budinoff et al. Prediction and visualization of achievable orientation tolerances for additive manufacturing
Vitolo et al. Controlling form errors in 3D printed models associated to size and position on the working plane
CN114488943B (en) Random multi-area efficient polishing path planning method oriented to matched working conditions
US20240181636A1 (en) System and method for autonomous application of a coating to a workpiece
Xia et al. Paint deposition pattern modeling and estimation for robotic air spray painting on free‐form surface using the curvature circle method
CN112395712A (en) Method, device and equipment for simulating shape of irregular particles
Zhao et al. Collision-free path planning for efficient inspection of free-form surface by using a trigger probe
JP2009074972A (en) Film forming process analyzer, its analysis method and memory medium
Van Hoof et al. Simulation of thermal spray coating on 3D objects: numerical scheme and aeronautic test case
CN1306460C (en) Measuring method of curved surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090617

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees