JP4328942B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP4328942B2
JP4328942B2 JP2003115496A JP2003115496A JP4328942B2 JP 4328942 B2 JP4328942 B2 JP 4328942B2 JP 2003115496 A JP2003115496 A JP 2003115496A JP 2003115496 A JP2003115496 A JP 2003115496A JP 4328942 B2 JP4328942 B2 JP 4328942B2
Authority
JP
Japan
Prior art keywords
opening
air
indoor
outdoor
room temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003115496A
Other languages
Japanese (ja)
Other versions
JP2004324896A (en
Inventor
隆志 内海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2003115496A priority Critical patent/JP4328942B2/en
Publication of JP2004324896A publication Critical patent/JP2004324896A/en
Application granted granted Critical
Publication of JP4328942B2 publication Critical patent/JP4328942B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Air-Flow Control Members (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、特に高気密性住宅などの空調に好適な換気機能を備えた空気調和機に関し、さらに詳しく言えば、単に外気−室内空気の給排気を行うだけでなく、外気や室内空気を積極的に空調に利用して空調効率を高める技術に関するものである。
【0002】
【従来の技術】
空気調和機は、冷凍サイクルに含まれる室内熱交換器および室外熱交換器を備え、外気温が高い夏場においては室内熱交換器を蒸発器,室外熱交換器を凝縮器とし、外気温が低い冬場においては室内熱交換器を凝縮器,室外熱交換器を蒸発器とすることにより、室温コントロールすなわち室内空調を行う。
【0003】
通常、室内空調は扉や窓などを閉めた状態で行われるが、特に高層共同住宅などの住居では室内の気密性が高いため、その換気機能が重要視されている。換気機能を有する空気調和機はすでに種々の提案がなされているが、その多くは、例えばダクトを用いて単に室内空気を屋外に排気したり、屋外の空気を室内に取り込むだけの機能しか有しておらず、その給排気を空調のアシストして本格的に利用するものでない。
【0004】
給排気を空調のアシストして利用するものとしては特許文献1がある。すなわち、特許文献1においては、屋外に室外チャンバーというものを設けてその中に室外機を配置し、暖房時には天井付近の暖まった空気を室外チャンバーに送って熱源として利用し、また、冷房時には床下付近の低温空気を室外チャンバーに送って室外機の凝縮効率を補助するようにしている。
【0005】
【特許文献1】
特開平11−201583号公報
【0006】
【発明が解決しようとする課題】
しかしながら、上記の従来装置にあっては、天井裏や床下などから室外チャンバーに至るダクトを敷設する必要があるため、簡単な工事では済まない。場合によっては、その工事費が空気調和機よりも高くなり、ユーザーにとってはかなりのコスト負担となる。
【0007】
したがって、本発明の課題は、換気の廃熱を空調に積極的に利用して効率向上を図るとともに、大掛かりなダクト敷設工事などを必要とせずに各住居に導入し得るようにした換気機能を有する空気調和機を提供することにある。
【0008】
【課題を解決するための手段】
上記課題を解決するために、本発明は、室内熱交換器を有する室内機および室外熱交換器を有する室外機と、上記各熱交換器に冷媒を供給する冷凍サイクルと、これらを制御して室内環境を所定の状態に維持する制御手段とを備えている空気調和機において、上記室外機には、室外ファンの外気吸い込み側(上流側)に配置された第1開口部と、上記室外ファンの外気吹き出し側(下流側)に配置された第2開口部と、所定の配管を介して室内側に接続される第3開口部とをダクトで連結してなるとともに、上記第3開口部と上記第1開口部とを通る第1空気通路もしくは上記第3開口部と上記第2開口部とを通る第2空気通路のいずれか一方の空気通路を選択する開閉可能なダンパーを含む給排気ユニットが設けられており、上記制御手段により上記ダンパーを制御して外気を室内に給気し、もしくは室内空気を室外機側に排気することを特徴としている。
【0009】
ダンパーは、第1開口部と第2開口部の各々に設けられてもよいし、ダクトがT字状の3つの分岐ダクトを有する場合には、その合流箇所に設けられてもよい。ダンパーが合流箇所に設けられる場合、半円柱形あるいは半円柱形の内部を空洞化してその半円の弦の中点で回転し、または板形状としてその端部もしくは中点で回転する回転式ダンパーが好ましく採用される。
【0010】
ダクトとしては、第3開口部と第1開口部とを結ぶ第1ダクトと、第3開口部と第2開口部とを結ぶ第2ダクトとを2系統として別々に設けてもよいが、構造的およびスペース的にも,また、組み立て作業性の点からしても、T字状に連結された3つの分岐ダクトを含むダクトが好ましい。
【0011】
本発明においては、各分岐ダクトの合流箇所から第3開口部に至る分岐ダクト内に、制御手段にて制御される双方向ファンが設けられる。ダクト内に除塵フィルタおよび吸湿手段を設ける場合、その位置は各分岐ダクトの合流箇所と双方向ファンとの間が好ましい。これによれば、双方向ファンを逆回転させて室内空気を外部に排気する際、除塵フィルタに付着している塵埃が外部に吹き飛ばされ、室内に入り込むことはない。
【0012】
また、室外機の外気吹き出しグリルに、その外気の吹き出し方向を第2開口部側とする風向板を設けることが好ましく、これによれば、室外熱交換器を通って室外機から吹き出される熱交換された空気が第2開口部からスムーズに吸い込まれて室内に送られるため、廃熱の有効利用が図れる。
【0013】
冷房運転時において外気温度が室温より高い場合には、第3開口部と第1開口部とを通る第1空気通路を選択するとともに、双方向ファンを逆回転して室内空気を上記室外機の吸い込み側の第1開口部から排気することにより、冷房運転で冷やされた室内空気が室外機に吸い込まれるため、室外熱交換器の凝縮性能が向上し、熱変換の効率向上に寄与して冷房能力をアップさせることができる。
【0014】
冷房運転時において外気温度が室温より低い場合には、第3開口部と第1開口部とを通る第1空気通路を選択するとともに、双方向ファンを正回転して、室外機の吸い込み側の外気を室内に給気することにより、室温より低い外気が室内に送られるため、室内の室温調節をアシストすることができる。
【0015】
冷房運転時において外気温度が室温より所定値以上低く、かつ、設定温度と室温との差が所定値以下である場合には、冷房運転を停止する。このような条件下では、冷房運転を行うまでもなく、冷えている外気を室内に給気するだけで、室温を設定温度に近づけることができ、また、省エネルギにもなる。
【0016】
暖房運転時において外気温度が室温より低い場合には、第3開口部と第1開口部とを通る第1空気通路を選択するとともに、双方向ファンを逆回転して室内空気を上記室外機の吸い込み側に排気することにより、暖房運転で暖められた室内空気が室外機に吸い込まれるため、室外熱交換器の蒸発性能が向上し、熱変換の効率向上に寄与して暖房能力をアップさせることができる。
【0017】
暖房運転時において外気温度が室温より高い場合には、第3開口部と第1開口部とを通る第1空気通路を選択するとともに、双方向ファンを正回転して室外機の吸い込み側の外気を室内に給気することにより、室温より高い外気が室内に送られるため、室内の室温調節をアシストすることができる。
【0018】
暖房運転時において外気温度が室温より所定値以上高く、かつ、設定温度と室温との差が所定値以上になった場合には、暖房運転を停止する。このような条件下では、暖房運転を行うまでもなく暖かい外気を室内に給気するだけで、室温を設定温度に近づけることができ、省エネルギが図れる。
【0019】
別の態様として、室内機側に除湿用開閉弁(減圧器)を有する冷媒配管を介して相互に接続される少なくとも2つの熱交換器を配置し、その除湿用開閉弁を絞り制御しての冷房除湿運転時に外気温度が室温より高い場合には、第3開口部と第1開口部とを通る第1空気通路を選択するとともに、双方向ファンを逆回転して、室内空気を室外機の吸い込み側の第1開口部から排気することにより、冷房運転で冷やされた室内空気が室外機に吸い込まれるため、室外熱交換器の凝縮性能が向上し、熱変換の効率向上に寄与して冷房能力をアップさせることができ、また、室内機の背面側の熱交換器が凝縮器となるため、室温が下がり過ぎることもない。
【0020】
また、上記冷房除湿運転時に外気温度が室温より低い場合には、第3開口部と第2開口部とを通る第2空気通路を選択するとともに、双方向ファンを正回転して、室外機の吹き出し側の外気を室内に給気することにより、室外熱交換器を通って室外機から吹き出される暖かい空気が第2開口部から吸い込まれて室内に送られるため、室温の低下が抑えられる。
【0021】
上記除湿用開閉弁を絞り制御しての暖房除湿運転時に外気温度が室温より低い場合には、第3開口部と第1開口部とを通る第1空気通路を選択するとともに、双方向ファンを逆回転して、室内空気を室外機の吸い込み側の第1開口部から排気することにより、暖房運転で暖められた室内空気が室外機に吸い込まれるため、室外熱交換器の蒸発性能が向上し、熱変換の効率向上に寄与して暖房能力をアップさせることができ、また、室内機の背面側の熱交換器が凝縮器となるため、室温が上がり過ぎることもない。
【0022】
また、上記暖房除湿運転時に外気温度が室温より高い場合には、第3開口部と第1開口部とを通る第1空気通路を選択するとともに、双方向ファンを正回転して、室外機の吸い込み側の外気を室内に給気することにより、室温より暖かい空気が室内に送られるため、暖房がアシストされる。
【0023】
除塵フィルタの目詰まりを防止するため、双方向ファンを正回転として外気を室内に給気する給気運転時間が所定時間以上となった場合、当該空気調和機の運転を停止した時点で、第3開口部と第2開口部とを通る第2空気通路を選択するとともに、双方向ファンを所定時間逆回転させることが好ましい。
【0024】
【発明の実施の形態】
次に、図1ないし図37を参照して、本発明の実施形態について説明するが、本発明はこれに限定されるものではない。
【0025】
図1は本発明の空気調和機が備える室外機の外観斜視図で、この室外機には図2に示す給排気ユニット10が設けられている。この給排気ユニット10は、室外機内の図示しない室外ファンにより外気が吸い込まれる上流側に配置される第1開口部10aと、図示しない室外熱交換器で熱交換された空気が吹き出される下流側に配置される第2開口部10bと、図示しない配管を介して室内側と連結される第3開口部10cとを有し、この例において、これらの各開口部10a,10b,10cはT字状に連結された3つの分岐ダクトを有するダクトによって接続されている。
【0026】
なお、変形例として、第3開口部10cと第1開口部10aとを図示しない第1ダクトで接続し、第3開口部10cと第2開口部10bとを図示しない第2ダクトで接続するようにしてもよい。また、この例では、給排気ユニット10を室外機の上部側に配置しているが、例えば室外機の側部に配置してもよい。
【0027】
この例において、第1および第2開口部10a,10bには、開閉可能なダンパー11,12がそれぞれ備えられている。ダンパー11を開,ダンパー12を閉とすることにより、第3開口部10cと第1開口部10aとが連通する第1空気通路が形成され、ダンパー11を閉,ダンパー12を開とすることにより、第3開口部10cと第2開口部10bとが連通する第2空気通路が形成される。
【0028】
なお、ダンパー11,12はそれぞれモータなどによって開閉する。また、第3開口部10cは例えばホース状のダクトを介して室内に導かれるが、冷媒配管に沿って容易に付設することができる。
【0029】
このように、2つの開口部10a,10bが室外機の吸い込み側(上流側)と吹き出し側(下流側)にあることから、それら開口部10a,10bにはそれぞれ異なる温度の室外空気を室内に給気することが可能となる。例えば、ダンパー12を閉状態にするとともに、ダンパー11を開状態にすれば、室外ファンによって室外機に吸い込まれる外気が第1開口部10aと第3開口部10cの間の第1空気通路を介して室内に送られる。
【0030】
室外機には、その筐体の対向する両面に空気吸い込みグリル(図示しない)と空気吹き出しグリル13とが設けられているが、図3に示すように、空気吹き出しグリル13には、室外機から吹き出される熱交換された空気がスムーズに第2開口部10bに取り込まれるようにするため、風向きを上向きとする風向板13aが複数枚設けられている。
【0031】
例えば、ダンパー11を閉状態にするとともに、ダンパー12を開状態にすれば、室外機から吹き出された空気が上向きであることから、その空気を含む外気が第2開口部10bに流入して室内に送られる。
【0032】
図4および図5に示すように、第3開口部10cの分岐ダクト内には、双方向ファン14が設けられている。この例において、双方向ファン14の正回転時には外気が室内に向けて送られ、双方向ファン14の逆回転時には室内の空気が屋外に排気される。
【0033】
また、第3開口部10cの分岐ダクト内には、除塵フィルタ15および吸湿剤16が設けられている。除塵フィルタ15および吸湿剤16は、双方向ファン14の逆回転時にその下流側となる位置に配置されることが好ましい。これによれば、除塵フィルタ15に付着した塵埃が室内に送り込まれることがないため、室内環境が悪化することもない。
【0034】
図6に室内機側の室内熱交換器を示す。この例において、室内機側の室内熱交換器として、室内機の空気吸い込み口と空気吹出口との間の空気通路内で筐体背面側から筐体前面側に渡ってラムダ型に配置された複数の熱交換器17a,17b,17cを備えている。熱交換器17a,17b,17cによって囲まれる内側には、クロスフローファンからなる室内ファン18が配置されている。
【0035】
室内熱交換器17a,17b,17cはそれぞれ冷媒配管で接続されているが、熱交換器17a,17b同士が除湿用開閉弁(減圧器)19を介してそれぞれ二股配管20,21で接続されており、熱交換器17bと熱交換器17cとが配管22で接続され、さらに熱交換器17bおよび熱交換器17cが二股配管23で冷凍サイクルの四方弁24に接続されている。
【0036】
また、四方弁24には圧縮機25と室外熱交換器26とが接続され、室外熱交換器26は電子膨張弁28を含む配管27に接続され、電子膨張弁28は二股配管29で熱交換器17aに接続され、このようにして冷凍サイクルが構成されている。除湿用開閉弁19は絞りだけなく、全閉,全開可能な電子膨張弁を用いるかあるいは絞り機能のキャリラリーチューブと開閉の電磁弁とを並列に接続したものを用いてもよい。
【0037】
なお、この例において、二股配管20,21,23,29を用いている理由は、図6に示すように、熱交換器17a,17bの容量を大きくし、その内部に通す冷媒配管を二経路構造(2パス構造)として、熱交換効率の向上を図るためである。
【0038】
室外機には、図6、図7および図8に示すように、室内熱交換器17a,17b,17cとともに冷凍サイクルを構成する四方弁24,圧縮機25,室外熱交換器26および電子膨張弁28の他に、室外ファン34を備えている。
【0039】
図8において、この空気調和機の制御装置は、室内機側の制御回路30および室外機側の制御回路31を備え、リモコン32からのリモコン信号に応じて必要な制御(冷房や暖房運転など)を行って室温コントロールを実行する。なお、各制御回路30,31にはマイクロコンピュータなどが用いられる。
【0040】
室内機の制御回路30は、リモコン32の設定操作に応じて室内ファン18などを制御し、室温センサ33による検出室温とリモコン設定温度の差に応じた圧縮機25の運転コードなどを室外機の制御回路31に送信するとともに、その制御回路31との間で室温コントロールに必要な信号(室温も含む)の授受を行い、また除湿用開閉弁19を制御する機能を備えている。
【0041】
室外機の制御回路31は、室内機側からの運転モードなどを判別し、四方弁24,圧縮機25,電子膨張弁28および室外ファン部34を制御するだけなく、給排気ユニット10を制御するために、ダンバー11,12を開閉駆動し、また、双方向ファン14を回転制御する機能を備えている。
【0042】
次に、この空気調和機の各運転モードについて説明する。リモコン32によって所定設定操作が行われると、その設定操作に応じて室内機制御回路30および室外機制御回路31は、設定温度と室温との差により室温コントロールに必要な制御を行い、あるいはその室温コントロールなどのための運転を停止する。
【0043】
リモコン32によって冷房運転が設定されている場合には、冷凍サイクルの四方弁24を図9に示すように切り替えて冷媒を循環させる(同図の実線矢印参照)。すなわち、電子膨張弁28を絞り制御するとともに、除湿用開閉弁19を全開として室外熱交換器26を凝縮器にし、室内機の熱交換器17a,17b,17cを蒸発器として、これら熱交換器17a,17b,17cによって熱交換した空気(冷風)を室内に吹き出す。
【0044】
このとき、図10に示すように、室外機制御回路31は、外気温度センサ35による検出外気温度と室内機側からの室温と比較して、外気温度が室温より高い場合には、双方向ファン14を逆回転とし、第2開口部10bのダンパ12を閉じ、第1開口部10aのダンパー11を開く。
【0045】
これにより、室内空気が第3開口部10cから給排気ユニット10に流入して第1開口部10aから室外に吹き出されて、室外機の室外熱交換器26の上流側に吸い込まれる(図9および図10の破線矢印参照)。この吸い込まれる室内空気が外気温度よりも低い温度であることから、室外熱交換器26の凝縮性能が向上し冷房能力が向上することになる。
【0046】
これに対して、外気温度が室温より低い場合には、図11に示すように、双方向ファン14を正回転とし、第2開口部10bのダンパー12を閉じ、第1開口部10aのダンパー11を開く。冷凍サイクルの四方弁24は、図12に示すように、図9と同じ切り替え状態とする。
【0047】
これにより、図11および図12の破線矢印に示すように、室温よりも低い温度の室外空気が第1開口部10aから給排気ユニット10に流入して第3開口部10cを介して室内に送られるため、室内の冷却(冷房運転)をアシストして室温の低下に寄与することになる。特に夏前後の夜間などにおいては、室内の温度が昼間の輻射熱などにより外気温より高めになりやすいため、このようなときこの運転モードが有効となる。
【0048】
外気温度が室温より所定値以上低く、かつ、設定温度と室温の差が所定値以下である場合には、冷房運転を停止する。このとき省エネルギを重視して、図13に示すように、室外熱交換器26および室内機の熱交換器17a,17b,17cを空として、室外空気を室内に給気する運転のみとする。すなわち、外気温度が室温よりかなり低く、室温が設定温度に近いときには冷房運転を行う必要性もなく、室温より低い外気を室内に給気するだけで、室温が低下して設定温度に近づくからである。
【0049】
リモコン32によって暖房運転が設定された場合には、冷凍サイクルの四方弁24を図14に示すように切り替えて冷媒を循環させる(同図の実線矢印参照)。すなわち、電子膨張弁28を絞り制御するとともに、除湿用開閉弁19を全開として室内機の熱交換器17a,17b,17cを凝縮器とし、室外熱交換器26を蒸発器として、室内熱交換器2617a,17b,17cによって熱交換した空気(温風)を室内に吹き出す。
【0050】
このとき、図15に示すように、室外機制御回路31は外気温度が室温より低い場合には、双方向ファン14を逆回転とし、第2開口部10bのダンパ12を閉じるとともに、第1開口部10aのダンパー11を開く。
【0051】
これにより、室内空気が、第3開口部10cから給排気ユニット10に流入して第1開口部10aをから室外に吹き出されて室外機の室外熱交換器26の上流側に吸い込まれる(図14および図15の破線矢印参照)。この吸い込まれる空気が外気温度よりも高い温度であることから、室外熱交換器26の蒸発性能が向上し暖房能力が向上することになる。
【0052】
これに対して、外気温度が室温より高い場合には、図16に示すように、双方向ファン14を正回転とし、第2開口部10bのダンパー12を閉じるとともに、第1開口部10aのダンパー11を開く。なお、冷凍サイクルは、図17に示す構成(図14と同じ)とする。
【0053】
これにより、室温より高い温度の室外空気が、図16および図17の破線矢印に示すように、第1開口部10aから給排気ユニット10に流入して第3開口部10cから室内に送られるため、室内の暖房(暖房運転)をアシストし、特に日当たりの悪い部屋の温度上昇に寄与することになる。この運転モードは、特に冬前後の時期(例えば小春日和の日)において、外気温度は比較的高くなるものの、例えば日当たりの悪い北向きの部屋などでは室温が上昇しにくい場合に有効である。
【0054】
外気温度が室温より所定値以上高く、かつ、設定温度と室温の差が所定値以上である場合には、暖房運転を停止する。すなわち、省エネルギを重視して、図18に示すように、室内熱交換器17a,17b,17cおよび室外熱交換器26を空にして、室外の空気を室内に給気する運転のみとする。このように、外気温度が室温よりかなり高く、室温が設定温度に近いときには暖房運転を行う必要性がなく、室温より十分暖かい外気を室内に給気するだけで、設定温度にまで室温を上昇させることができる。
【0055】
次に、上記した冷房運転や暖房運転以外の運転モードについて説明する。その一つとして、リモコン32によって冷房除湿度運転が設定された場合には、上述した冷房運転時と同様の運転を行うが、この場合には、図19に示すように、除湿用開閉弁(減圧器)19を絞り制御して、室外熱交換器26および室内熱交換器のうちの室内熱交換器17aを凝縮器にし、他の室内熱交換器17b,17cを蒸発器にして弱冷房運転を行う。
【0056】
この弱冷房運転時に、外気温度が室温より高い場合には、図20に示すように、双方向ファン14を逆回転とし、第2開口部10bのダンパ12を閉じるとともに、第1開口部10aのダンパー11を開く。
【0057】
これにより、室内空気が第1開口部10cから給排気ユニット10に流入して第1開口部10aより室外に吹き出され、室外機の室外熱交換器26の上流側に吸い込まれる(図19および図20の破線矢印参照)。この吸い込まれる空気が外気温度よりも低い温度であることから、室外熱交換器26の凝縮性能が向上し冷房(除湿)能力が向上することになる。
【0058】
これに対して、外気温度が室温より低い場合には、図21に示すように、双方向ファン14を正回転とし、第2開口部10bのダンパー12を開くとともに、第1開口部10aのダンパー11を閉じる。なお、冷凍サイクルは、図22に示す構成(図19と同じ)とする。
【0059】
これにより、室外熱交換器26によって熱交換された空気(温風)が、図21および図22の破線矢印に示すように、第2開口部10bから給排気ユニット10に流入して第3開口部10cから室内に送られるため、これが室温の低下抑制に寄与することになる。このように、外気温度が低いときに冷房除湿運転を行う場合、室内の除湿とともに室内の温度が低下するが、室外熱交換器26によって熱交換された暖かい空気を室内に給気することにより、室内の温度低下が抑えられる。
【0060】
リモコン32によって暖房除湿運転が設定された場合、図23に示すように、除湿用開閉弁(減圧器)19を絞り制御し、室内熱交換器のうちの室内熱交換器17b,17cを凝縮器とし、残りの室内熱交換器17aおよび室外熱交換器26を蒸発器として弱暖房運転を行う。
【0061】
この弱暖房運転時に、外気温度が室温より低い場合には、図24に示すように、双方向ファン14を逆回転とし、第2開口部10bのダンパ12を閉じるとともに、第1開口部10aのダンパー11を開く。
【0062】
これにより、室内空気が第3開口部10cから給排気ユニット10に流入して第1開口部10aより室外に吹き出され、室外機の室外熱交換器の上流側に吸い込まれる(図23および図24の破線矢印参照)。この吸い込まれる空気が外気温度よりも高い温度であることから、室外熱交換器26の蒸発性能が向上し弱暖房(除湿)能力が向上することになる。
【0063】
これに対して、外気温度が室温より高い場合には、図25に示すように、双方向ファン14を正回転とし、第2開口部10bのダンパー12を閉じるとともに、第1開口部10aのダンパー11を開く。なお、冷凍サイクルは、図26に示す構成(図23と同じ)とする。
【0064】
これにより、室温より高い温度の室外空気が、図25および図26の破線矢印に示すように、第1開口部10aから給排気ユニット10に流入して第3開口部10cから室内に送られ室内の弱暖房をアシストし、特に日当たりの悪い部屋の温度上昇に寄与することになる。
【0065】
ところで、双方向ファン14を正回転として外気を室内に給気する場合、その外気が集塵フィルタ15を通るために、双方向ファン14の正回転での運転積算が長いほど、また、外気の汚れが酷いほど集塵フィルタ15には大量のホコリが付着する。このような状態を放置すると、集塵フィルタ15が目詰まり状態となり、室内への給気だけなく換気にも支障を来すようになる。
【0066】
そこで、室内への給気を行っている時間(給気運転の積算時間)が所定値以上行われた場合、空気調和機の運転停止時点において、図27に示すように、第2開口部10bのダンパー12を開くとともに、第1開口部10aのダンパー11を閉じて双方向ファン14を逆回転させる。これにより、集塵フィルタ15に付着しているホコリが第2開口部10bから外部に吹き出されるため、集塵フィルタ15の目詰まりを解消することができる。
【0067】
図28は給排気ユニット10の変形例を示す概略的構成図である。なお、図中、図4と同一部分には同一符号を付して重複説明を省略する。この変形例では、上記ダンパー11,12に代えて、T字状に連結されている3つの分岐ダクトの合流箇所に、ほぼ半円柱形の回転式ダンパー40を用いる。
【0068】
この回転式ダンパー40は、ステッピングモータなどにより駆動され、例えば第1開口部10aを介して流入した空気を室内へ給気する場合や、室内の空気を第1開口部10aから排気する場合には、回転式ダンパー40を半時計方向に回転して図28に示す位置とする。
【0069】
また、第2開口部10bを介して流入した空気を室内に給気する場合や、室内の空気を開口第2部10bから排気する場合には、図29に示すように、回転式ダンパー40を時計方向に回転する。なお、回転式ダンパー40は半円柱形であるが、図29の破線に示すように、その内部を曲線的に空洞として空気がスムーズに流れるようにするとよい。
【0070】
図30に示すように、上記回転式ダンパー40に代えて、給排気ユニット10のダクトの断面に合わせた長方形の板形状ダンパー41を用いてもよい。その場合、板形状ダンパー41はその端部をモータの回転軸41aに連結されて、第3開口部10cを第1開口部10aもしくは第2開口部10bのいずれかに接続する。
【0071】
図31に示すように、上記板形状ダンパー41に代えて、同様の板形状ダンパー42を用い、この板形状ダンパー42の中央部分にモータの回転軸42aに連結するようにしてもよい。なお、板形状ダンパ42は曲線(ほぼ半円形状)であってもよい。これらの変形例によれば、2つのダンパー11,12を用いる場合に比べて、1つのダンパー,1つのモータで済ませられ低コスト化が図れる。
【0072】
【発明の効果】
以上説明したように、本発明によれば、室外機に、室外ファンの上流側に配置される第1開口部と、室外ファンの下流側に配置される第2開口部と、所定の配管を介して室内側に接続される第3開口部とをダクトで連結してなるとともに、第3開口部と第1開口部とを通る第1空気通路もしくは第3開口部と第2開口部とを通る第2空気通路のいずれか一方の空気通路を選択する開閉可能なダンパーを含む給排気ユニットを設け、ダンパーを制御して外気を室内に給気し、もしくは室内空気を室外機側に排気するようにしたことにより、換気時の廃熱を有効的に利用することができ、また、配管工事にしても例えばフレキシブルダクトを室内機と室外機との間の冷媒配管などに沿わせて配管すればよく、住宅などの改造や大掛かりな設備投資を必要とすることなく、換気機能を有する省エネルギタイプの空気調和機を一般家庭にも導入することができる。
【図面の簡単な説明】
【図1】本発明の空気調和機が備える室外機の外観を示す概略的斜視図。
【図2】上記室外機に搭載される給排気ユニットを示す概略的平面図。
【図3】上記室外機の空気吹き出しグリルに含まれる風向板を示す模式的断面図。
【図4】上記給排気ユニットの内部構造を説明する模式的な平面図。
【図5】図4に示す給排気ユニットを備えた室外機を示す概略的斜視図。
【図6】本発明の空気調和機の冷凍サイクルを示す模式図。
【図7】上記冷凍サイクルの冷媒回路図。
【図8】本発明の空気調和機が備える制御装置を示す概略的ブロック図。
【図9】冷房運転時の冷凍サイクル図。
【図10】外気温が室温よりも高い場合の冷房運転時の給排気ユニットの作用を説明する概略的斜視図。
【図11】外気温が室温よりも低い場合の冷房運転時における給排気ユニットの作用を説明する概略的斜視図。
【図12】図11における冷房運転時の冷凍サイクル図。
【図13】冷房運転停止時(送風運転時)の冷凍サイクル図。
【図14】暖房運転時の冷凍サイクル図。
【図15】外気温が室温よりも低い場合における暖房運転時の給排気ユニットの作用を説明する概略的斜視図。
【図16】外気温が室温よりも高い場合における暖房運転時の給排気ユニットの作用を説明する概略的斜視図。
【図17】図16における暖房運転時の冷凍サイクル図。
【図18】暖房運転停止時(送風運転時)の冷凍サイクル図。
【図19】冷房除湿運転時の冷凍サイクル図。
【図20】冷房除湿運転時で、外気温が室温よりも高い場合における給排気ユニットの作用を説明する概略的斜視図。
【図21】冷房除湿運転時で、外気温が室温よりも低い場合における給排気ユニットの作用を説明する概略的斜視図。
【図22】図21における冷房除湿運転時の冷凍サイクル図。
【図23】暖房除湿運転時の冷凍サイクル図。
【図24】暖房除湿運転時で、外気温が室温よりも低い場合における給排気ユニットの作用を説明する概略的斜視図。
【図25】暖房除湿運転で、外気温が室温よりも高い場合における給排気ユニットの作用を説明する概略的斜視図。
【図26】図25における暖房除湿運転時の冷凍サイクル図。
【図27】上記給排気ユニットの除塵フィルタ清掃時の動作を説明する概略的平面図。
【図28】上記給排気ユニットの変形例を説明する概略的平面図。
【図29】図28に示す給排気ユニットの動作を説明する概略的平面図。
【図30】上記給排気ユニットの他の変形実施例を説明する概略的平面図。
【図31】上記給排気ユニットのさらに別の変形実施例を説明する概略的平面図。
【符号の説明】
10 給排気ユニット
10a 第1開口部
10b 第2開口部
10c 第3開口部
11,12 ダンパー
13 空気吹き出しグリル
13a 風向板
14 双方向ファン
15 除塵フィルタ
16 吸湿剤
17a,17b,17c 室内熱交換器
19 除湿用開閉弁(減圧器)
24 四方弁
25 圧縮機
26 室外熱交換器
28 電子膨張弁
30 室内機制御回路
31 室外機制御回路
32 リモコン
33 室温センサ
34 室外ファン
35 外気温度センサ
40 回転式ダンパー
41,42 板形状ダンパー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air conditioner having a ventilation function particularly suitable for air conditioning in a highly airtight house. More specifically, the present invention not only simply supplies and exhausts outside air and room air, but also actively uses outside air and room air. In particular, the present invention relates to a technology for improving air conditioning efficiency by using it for air conditioning.
[0002]
[Prior art]
The air conditioner is equipped with an indoor heat exchanger and an outdoor heat exchanger included in the refrigeration cycle. In summer when the outdoor temperature is high, the indoor heat exchanger is an evaporator and the outdoor heat exchanger is a condenser, and the outdoor temperature is low. In winter, room temperature control, that is, room air conditioning is performed by using an indoor heat exchanger as a condenser and an outdoor heat exchanger as an evaporator.
[0003]
In general, indoor air conditioning is performed with the doors and windows closed, but the ventilation function is regarded as important because the airtightness of the room is high especially in a residence such as a high-rise apartment house. Various proposals have already been made for air conditioners having a ventilation function, but many of them have only a function of simply exhausting indoor air to the outside using, for example, a duct or taking outdoor air into the room. The air supply / exhaust is not used in earnest with the assistance of air conditioning.
[0004]
There exists patent document 1 as what uses air supply / exhaust by assisting an air conditioning. That is, in Patent Document 1, an outdoor chamber is provided outdoors, and an outdoor unit is disposed therein. Warm air near the ceiling is sent to the outdoor chamber for heating and used as a heat source during heating, and under the floor during cooling. Nearby low-temperature air is sent to the outdoor chamber to assist the condensation efficiency of the outdoor unit.
[0005]
[Patent Document 1]
JP-A-11-201583
[0006]
[Problems to be solved by the invention]
However, in the above-described conventional apparatus, since it is necessary to lay a duct from the back of the ceiling or under the floor to the outdoor chamber, simple work is not sufficient. In some cases, the construction cost is higher than that of the air conditioner, which is a considerable cost burden for the user.
[0007]
Therefore, an object of the present invention is to improve the efficiency by actively utilizing the waste heat of ventilation for air conditioning, and to provide a ventilation function that can be introduced into each residence without requiring a large duct laying work or the like. It is in providing the air conditioner which has.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides an indoor unit having an indoor heat exchanger and an outdoor unit having an outdoor heat exchanger, a refrigeration cycle for supplying a refrigerant to each of the heat exchangers, and controlling them. And an air conditioner having a control means for maintaining the indoor environment in a predetermined state. The outdoor unit includes a first opening disposed on an outdoor air suction side (upstream side) of the outdoor fan, and the outdoor fan. A second opening disposed on the outside air blowing side (downstream side) and a third opening connected to the indoor side via a predetermined pipe, and a duct connected to the third opening. An air supply / exhaust unit including an openable / closable damper that selects one of the first air passage passing through the first opening and the second air passage passing through the third opening and the second opening. And the control means It is characterized in that more then supply the outside air into the room by controlling the dampers, or to exhaust indoor air to the outdoor unit side.
[0009]
The damper may be provided in each of the first opening and the second opening, or may be provided at the junction where the duct has three T-shaped branch ducts. When a damper is provided at the junction, a rotary cylinder that hollows the inside of a semi-cylindrical or semi-cylindrical shape and rotates at the midpoint of the semicircular chord, or rotates at its end or midpoint as a plate shape Is preferably employed.
[0010]
As the duct, a first duct that connects the third opening and the first opening and a second duct that connects the third opening and the second opening may be provided separately as two systems. A duct including three branch ducts connected in a T-shape is preferable from the standpoint of space and space and from the viewpoint of assembly workability.
[0011]
In the present invention, a bidirectional fan controlled by the control means is provided in the branch duct extending from the junction of each branch duct to the third opening. When the dust removal filter and the moisture absorption means are provided in the duct, the position is preferably between the junction of each branch duct and the bidirectional fan. According to this, when exhausting indoor air to the outside by rotating the bidirectional fan in the reverse direction, the dust adhering to the dust removal filter is blown out and does not enter the room.
[0012]
In addition, it is preferable to provide a wind direction plate with the outside air blowing direction on the second opening side on the outside air blowing grill of the outdoor unit. According to this, heat blown from the outdoor unit through the outdoor heat exchanger is provided. Since the exchanged air is smoothly sucked from the second opening and sent into the room, the waste heat can be effectively used.
[0013]
When the outside air temperature is higher than the room temperature during the cooling operation, the first air passage that passes through the third opening and the first opening is selected, and the bidirectional fan is rotated in the reverse direction so that the room air is supplied to the outdoor unit. By exhausting air from the first opening on the suction side, the indoor air cooled in the cooling operation is sucked into the outdoor unit. Therefore, the condensation performance of the outdoor heat exchanger is improved, contributing to the improvement of the efficiency of heat conversion. You can improve your ability.
[0014]
When the outside air temperature is lower than the room temperature during the cooling operation, the first air passage that passes through the third opening and the first opening is selected, and the bidirectional fan is rotated forward so that the suction side of the outdoor unit is By supplying the outside air into the room, the outside air having a temperature lower than the room temperature is sent into the room, so that the room temperature adjustment in the room can be assisted.
[0015]
During the cooling operation, if the outside air temperature is lower than the room temperature by a predetermined value or more and the difference between the set temperature and the room temperature is not more than the predetermined value, the cooling operation is stopped. Under such conditions, the room temperature can be brought close to the set temperature only by supplying cool outdoor air into the room without performing the cooling operation, and energy is also saved.
[0016]
When the outside air temperature is lower than the room temperature during the heating operation, the first air passage that passes through the third opening and the first opening is selected, and the bidirectional fan is rotated in the reverse direction so that the room air is supplied to the outdoor unit. By exhausting to the suction side, the indoor air warmed by the heating operation is sucked into the outdoor unit, so the evaporation performance of the outdoor heat exchanger is improved and the heating capacity is increased by contributing to the efficiency of heat conversion Can do.
[0017]
When the outside air temperature is higher than the room temperature during the heating operation, the first air passage that passes through the third opening and the first opening is selected, and the two-way fan is rotated forward to rotate the outside air on the suction side of the outdoor unit. Since the outside air higher than the room temperature is sent into the room, the room temperature adjustment in the room can be assisted.
[0018]
During the heating operation, when the outside air temperature is higher than the room temperature by a predetermined value or more and the difference between the set temperature and the room temperature becomes a predetermined value or more, the heating operation is stopped. Under such conditions, the room temperature can be brought close to the set temperature simply by supplying warm outside air to the room without performing the heating operation, thereby saving energy.
[0019]
As another aspect, at least two heat exchangers connected to each other via a refrigerant pipe having a dehumidifying on-off valve (decompressor) are arranged on the indoor unit side, and the dehumidifying on-off valve is throttled and controlled. When the outside air temperature is higher than the room temperature during the cooling and dehumidifying operation, the first air passage that passes through the third opening and the first opening is selected, and the bidirectional fan is rotated in the reverse direction so that the room air is discharged from the outdoor unit. By exhausting air from the first opening on the suction side, the indoor air cooled in the cooling operation is sucked into the outdoor unit. Therefore, the condensation performance of the outdoor heat exchanger is improved, contributing to the improvement of the efficiency of heat conversion. The capacity can be increased, and since the heat exchanger on the back side of the indoor unit serves as a condenser, the room temperature does not drop too much.
[0020]
In addition, when the outside air temperature is lower than room temperature during the cooling and dehumidifying operation, the second air passage that passes through the third opening and the second opening is selected, and the bidirectional fan is rotated forward to rotate the outdoor unit. By supplying the outside air on the blowing side into the room, the warm air blown out from the outdoor unit through the outdoor heat exchanger is sucked from the second opening and sent to the room, so that a decrease in the room temperature is suppressed.
[0021]
When the outside air temperature is lower than room temperature during the heating and dehumidifying operation with the dehumidifying on-off valve being throttled, the first air passage passing through the third opening and the first opening is selected and the bidirectional fan is By rotating in reverse and exhausting the indoor air from the first opening on the suction side of the outdoor unit, the indoor air warmed by the heating operation is sucked into the outdoor unit, so the evaporation performance of the outdoor heat exchanger is improved. The heating capacity can be increased by contributing to the improvement of the efficiency of heat conversion, and since the heat exchanger on the back side of the indoor unit becomes a condenser, the room temperature does not rise too much.
[0022]
In addition, when the outside air temperature is higher than the room temperature during the heating and dehumidifying operation, the first air passage that passes through the third opening and the first opening is selected, and the bidirectional fan is rotated forward so that the outdoor unit By supplying the outside air on the suction side into the room, air warmer than room temperature is sent into the room, so that heating is assisted.
[0023]
In order to prevent clogging of the dust removal filter, when the air supply operation time for supplying the outside air to the room with the bidirectional fan rotating forward is longer than a predetermined time, when the operation of the air conditioner is stopped, It is preferable that the second air passage passing through the three openings and the second opening is selected and the bidirectional fan is reversely rotated for a predetermined time.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the present invention will be described with reference to FIGS. 1 to 37, but the present invention is not limited to this.
[0025]
FIG. 1 is an external perspective view of an outdoor unit provided in the air conditioner of the present invention, and this outdoor unit is provided with a supply / exhaust unit 10 shown in FIG. The air supply / exhaust unit 10 includes a first opening 10a arranged on the upstream side where outdoor air is sucked by an outdoor fan (not shown) in the outdoor unit, and a downstream side where air exchanged by an outdoor heat exchanger (not shown) is blown out. And a third opening 10c connected to the indoor side via a pipe (not shown). In this example, each of these openings 10a, 10b, 10c is T-shaped. They are connected by a duct having three branch ducts connected in a shape.
[0026]
As a modification, the third opening 10c and the first opening 10a are connected by a first duct (not shown), and the third opening 10c and the second opening 10b are connected by a second duct (not shown). It may be. Moreover, in this example, although the air supply / exhaust unit 10 is arrange | positioned at the upper part side of an outdoor unit, you may arrange | position in the side part of an outdoor unit, for example.
[0027]
In this example, the first and second openings 10a and 10b are provided with dampers 11 and 12 that can be opened and closed, respectively. By opening the damper 11 and closing the damper 12, a first air passage is formed in which the third opening 10 c communicates with the first opening 10 a, and the damper 11 is closed and the damper 12 is opened. A second air passage is formed in which the third opening 10c and the second opening 10b communicate with each other.
[0028]
The dampers 11 and 12 are each opened and closed by a motor or the like. Moreover, although the 3rd opening part 10c is guide | induced to a room | chamber interior via a hose-like duct, for example, it can be easily attached along refrigerant | coolant piping.
[0029]
As described above, since the two openings 10a and 10b are on the suction side (upstream side) and the blowout side (downstream side) of the outdoor unit, outdoor air having different temperatures are respectively input into the openings 10a and 10b. It becomes possible to supply air. For example, when the damper 12 is closed and the damper 11 is opened, the outside air sucked into the outdoor unit by the outdoor fan passes through the first air passage between the first opening 10a and the third opening 10c. Sent to the room.
[0030]
The outdoor unit is provided with an air suction grill (not shown) and an air blowing grill 13 on both sides of the casing facing each other. As shown in FIG. A plurality of wind direction plates 13a with the wind direction facing upward are provided so that the heat exchanged air that is blown out is smoothly taken into the second opening 10b.
[0031]
For example, when the damper 11 is closed and the damper 12 is opened, the air blown out from the outdoor unit is upward, so that the outside air containing the air flows into the second opening 10b and flows into the room. Sent to.
[0032]
As shown in FIGS. 4 and 5, a bidirectional fan 14 is provided in the branch duct of the third opening 10c. In this example, outside air is sent indoors when the bidirectional fan 14 rotates forward, and indoor air is exhausted outdoors when the bidirectional fan 14 rotates backward.
[0033]
A dust filter 15 and a hygroscopic agent 16 are provided in the branch duct of the third opening 10c. The dust removal filter 15 and the hygroscopic agent 16 are preferably arranged at a position on the downstream side of the bidirectional fan 14 when it rotates in the reverse direction. According to this, since the dust adhering to the dust removal filter 15 is not sent into the room, the indoor environment is not deteriorated.
[0034]
FIG. 6 shows an indoor heat exchanger on the indoor unit side. In this example, the indoor heat exchanger on the indoor unit side is arranged in a lambda shape from the back of the housing to the front of the housing in the air passage between the air inlet and the air outlet of the indoor unit. A plurality of heat exchangers 17a, 17b, and 17c are provided. On the inner side surrounded by the heat exchangers 17a, 17b, and 17c, an indoor fan 18 including a cross flow fan is disposed.
[0035]
The indoor heat exchangers 17a, 17b, and 17c are connected by refrigerant pipes. The heat exchangers 17a and 17b are connected to each other by bifurcated pipes 20 and 21 through a dehumidifying on-off valve (decompressor) 19, respectively. The heat exchanger 17b and the heat exchanger 17c are connected by a pipe 22, and the heat exchanger 17b and the heat exchanger 17c are connected by a bifurcated pipe 23 to the four-way valve 24 of the refrigeration cycle.
[0036]
A compressor 25 and an outdoor heat exchanger 26 are connected to the four-way valve 24, the outdoor heat exchanger 26 is connected to a pipe 27 including an electronic expansion valve 28, and the electronic expansion valve 28 exchanges heat through a bifurcated pipe 29. In this way, the refrigeration cycle is configured. The dehumidifying on-off valve 19 may be an electronic expansion valve that can be fully closed or fully opened, or a throttle-coupled carrier tube and an open / close electromagnetic valve connected in parallel, as well as the throttle.
[0037]
In this example, the reason why the bifurcated pipes 20, 21, 23, and 29 are used is that, as shown in FIG. 6, the capacity of the heat exchangers 17a and 17b is increased, and the refrigerant pipes that are passed through the two pipes This is because the heat exchange efficiency is improved as a structure (two-pass structure).
[0038]
As shown in FIGS. 6, 7, and 8, the outdoor unit includes a four-way valve 24, a compressor 25, an outdoor heat exchanger 26, and an electronic expansion valve that constitute a refrigeration cycle together with the indoor heat exchangers 17a, 17b, and 17c. In addition to 28, an outdoor fan 34 is provided.
[0039]
In FIG. 8, this air conditioner control device includes an indoor unit-side control circuit 30 and an outdoor unit-side control circuit 31, and necessary control (cooling, heating operation, etc.) according to a remote control signal from a remote controller 32. To perform room temperature control. A microcomputer or the like is used for each of the control circuits 30 and 31.
[0040]
The control circuit 30 of the indoor unit controls the indoor fan 18 and the like according to the setting operation of the remote controller 32, and the operation code of the compressor 25 according to the difference between the room temperature detected by the room temperature sensor 33 and the remote controller set temperature, etc. In addition to transmitting to the control circuit 31, a function (including room temperature) necessary for room temperature control is exchanged with the control circuit 31, and a function of controlling the dehumidifying on-off valve 19 is provided.
[0041]
The control circuit 31 of the outdoor unit discriminates the operation mode from the indoor unit side and controls not only the four-way valve 24, the compressor 25, the electronic expansion valve 28, and the outdoor fan unit 34, but also the supply / exhaust unit 10. For this purpose, the dampers 11 and 12 are driven to open and close, and the bidirectional fan 14 is controlled to rotate.
[0042]
Next, each operation mode of this air conditioner will be described. When a predetermined setting operation is performed by the remote controller 32, the indoor unit control circuit 30 and the outdoor unit control circuit 31 perform control necessary for room temperature control according to the difference between the set temperature and the room temperature, or the room temperature. Stop operation for control.
[0043]
When the cooling operation is set by the remote controller 32, the refrigerant is circulated by switching the four-way valve 24 of the refrigeration cycle as shown in FIG. 9 (see the solid line arrow in FIG. 9). That is, the electronic expansion valve 28 is controlled to be throttled, the dehumidifying on-off valve 19 is fully opened, the outdoor heat exchanger 26 is used as a condenser, and the heat exchangers 17a, 17b, and 17c of the indoor units are used as evaporators. Air (cold air) heat-exchanged by 17a, 17b, and 17c is blown into the room.
[0044]
At this time, as shown in FIG. 10, the outdoor unit control circuit 31 performs a bidirectional fan operation when the outside air temperature is higher than the room temperature compared to the outside air temperature detected by the outside air temperature sensor 35 and the room temperature from the indoor unit side. 14 is reversely rotated, the damper 12 of the second opening 10b is closed, and the damper 11 of the first opening 10a is opened.
[0045]
As a result, room air flows into the air supply / exhaust unit 10 from the third opening 10c, is blown out of the first opening 10a, and is sucked into the upstream side of the outdoor heat exchanger 26 of the outdoor unit (see FIG. 9 and FIG. 9). (See broken line arrow in FIG. 10). Since the sucked room air is at a temperature lower than the outside air temperature, the condensation performance of the outdoor heat exchanger 26 is improved, and the cooling capacity is improved.
[0046]
On the other hand, when the outside air temperature is lower than the room temperature, as shown in FIG. 11, the bidirectional fan 14 is rotated forward, the damper 12 of the second opening 10b is closed, and the damper 11 of the first opening 10a is closed. open. As shown in FIG. 12, the four-way valve 24 of the refrigeration cycle is in the same switching state as in FIG.
[0047]
As a result, as indicated by the dashed arrows in FIGS. 11 and 12, outdoor air having a temperature lower than room temperature flows into the air supply / exhaust unit 10 from the first opening 10a and is sent into the room through the third opening 10c. Therefore, the indoor cooling (cooling operation) is assisted and contributes to a decrease in the room temperature. In particular, at nighttime before and after summer, the room temperature tends to be higher than the outside temperature due to radiant heat during the daytime. Therefore, this operation mode is effective in such a case.
[0048]
When the outside air temperature is lower than the room temperature by a predetermined value and the difference between the set temperature and the room temperature is not more than the predetermined value, the cooling operation is stopped. At this time, with emphasis on energy saving, as shown in FIG. 13, the outdoor heat exchanger 26 and the heat exchangers 17a, 17b, and 17c of the indoor unit are emptied and only the operation of supplying outdoor air into the room is performed. That is, when the outside air temperature is considerably lower than the room temperature and the room temperature is close to the set temperature, there is no need to perform the cooling operation, and only the outside air lower than the room temperature is supplied into the room, and the room temperature decreases and approaches the set temperature. is there.
[0049]
When the heating operation is set by the remote controller 32, the refrigerant is circulated by switching the four-way valve 24 of the refrigeration cycle as shown in FIG. 14 (see the solid line arrow in the figure). That is, the electronic expansion valve 28 is controlled to be throttled, the dehumidifying on-off valve 19 is fully opened, the indoor unit heat exchangers 17a, 17b, and 17c are used as condensers, the outdoor heat exchanger 26 is used as an evaporator, and the indoor heat exchanger is used. Air (hot air) heat-exchanged by 2617a, 17b, and 17c is blown into the room.
[0050]
At this time, as shown in FIG. 15, when the outdoor air temperature is lower than the room temperature, the outdoor unit control circuit 31 rotates the bidirectional fan 14 in the reverse direction, closes the damper 12 of the second opening 10b, and opens the first opening. Open the damper 11 of the part 10a.
[0051]
As a result, room air flows into the air supply / exhaust unit 10 from the third opening 10c, is blown out of the first opening 10a, and is sucked into the upstream side of the outdoor heat exchanger 26 of the outdoor unit (FIG. 14). And the dashed arrows in FIG. 15). Since the sucked air is at a temperature higher than the outside air temperature, the evaporation performance of the outdoor heat exchanger 26 is improved and the heating capacity is improved.
[0052]
On the other hand, when the outside air temperature is higher than the room temperature, as shown in FIG. 16, the bidirectional fan 14 is rotated forward, the damper 12 of the second opening 10b is closed, and the damper of the first opening 10a is closed. 11 is opened. The refrigeration cycle has the configuration shown in FIG. 17 (same as FIG. 14).
[0053]
As a result, outdoor air having a temperature higher than room temperature flows into the air supply / exhaust unit 10 from the first opening 10a and is sent into the room through the third opening 10c, as indicated by the dashed arrows in FIGS. Assists indoor heating (heating operation), and contributes to an increase in the temperature of rooms with particularly poor sunlight. This operation mode is effective when the room temperature is difficult to rise in, for example, a north-facing room with poor sunlight, although the outside air temperature is relatively high, especially in the period before and after winter (for example, the days of Koharu spring).
[0054]
If the outside air temperature is higher than the room temperature by a predetermined value and the difference between the set temperature and the room temperature is a predetermined value or more, the heating operation is stopped. That is, with emphasis on energy saving, as shown in FIG. 18, the indoor heat exchangers 17a, 17b, 17c and the outdoor heat exchanger 26 are emptied and only the operation of supplying outdoor air into the room is performed. As described above, when the outside air temperature is considerably higher than the room temperature and the room temperature is close to the set temperature, there is no need to perform the heating operation, and the room temperature is raised to the set temperature only by supplying the outside air warm enough to the room temperature. be able to.
[0055]
Next, operation modes other than the above-described cooling operation and heating operation will be described. As one of them, when the cooling and dehumidifying operation is set by the remote controller 32, the same operation as the above-described cooling operation is performed. In this case, as shown in FIG. The decompressor 19 is controlled to be throttled, and the outdoor heat exchanger 26 and the indoor heat exchanger 17a among the indoor heat exchangers are used as condensers, and the other indoor heat exchangers 17b and 17c are used as evaporators to perform weak cooling operation. I do.
[0056]
When the outside air temperature is higher than the room temperature during the weak cooling operation, as shown in FIG. 20, the bidirectional fan 14 is rotated in the reverse direction, the damper 12 of the second opening 10b is closed, and the first opening 10a Open the damper 11.
[0057]
As a result, the room air flows into the air supply / exhaust unit 10 from the first opening 10c, is blown out of the first opening 10a, and is sucked into the upstream side of the outdoor heat exchanger 26 of the outdoor unit (FIG. 19 and FIG. 19). (See 20 dashed arrows). Since the sucked air is at a temperature lower than the outside air temperature, the condensation performance of the outdoor heat exchanger 26 is improved and the cooling (dehumidification) ability is improved.
[0058]
On the other hand, when the outside air temperature is lower than the room temperature, as shown in FIG. 21, the bidirectional fan 14 is rotated forward to open the damper 12 of the second opening 10b and the damper of the first opening 10a. 11 is closed. The refrigeration cycle has the configuration shown in FIG. 22 (same as FIG. 19).
[0059]
As a result, the air (hot air) heat-exchanged by the outdoor heat exchanger 26 flows into the air supply / exhaust unit 10 from the second opening 10b as shown by the broken-line arrows in FIGS. Since it is sent from the part 10c to the room, this contributes to the suppression of the decrease in the room temperature. As described above, when the cooling and dehumidifying operation is performed when the outside air temperature is low, the room temperature decreases with the room dehumidification, but by supplying the warm air heat-exchanged by the outdoor heat exchanger 26 into the room, The temperature drop in the room can be suppressed.
[0060]
When the heating and dehumidifying operation is set by the remote controller 32, as shown in FIG. 23, the dehumidifying on-off valve (decompressor) 19 is throttled and the indoor heat exchangers 17b and 17c among the indoor heat exchangers are condensers. Then, the weak heating operation is performed using the remaining indoor heat exchanger 17a and the outdoor heat exchanger 26 as an evaporator.
[0061]
When the outside air temperature is lower than the room temperature during the weak heating operation, as shown in FIG. 24, the bidirectional fan 14 is rotated in the reverse direction, the damper 12 of the second opening 10b is closed, and the first opening 10a Open the damper 11.
[0062]
As a result, room air flows into the air supply / exhaust unit 10 from the third opening 10c, is blown out of the first opening 10a, and is sucked into the upstream side of the outdoor heat exchanger of the outdoor unit (FIGS. 23 and 24). (See the dashed arrow). Since the sucked air is at a temperature higher than the outside air temperature, the evaporation performance of the outdoor heat exchanger 26 is improved, and the weak heating (dehumidification) capability is improved.
[0063]
On the other hand, when the outside air temperature is higher than room temperature, as shown in FIG. 25, the bidirectional fan 14 is rotated forward, the damper 12 of the second opening 10b is closed, and the damper of the first opening 10a is closed. 11 is opened. The refrigeration cycle has the configuration shown in FIG. 26 (same as FIG. 23).
[0064]
As a result, the outdoor air having a temperature higher than room temperature flows into the air supply / exhaust unit 10 from the first opening 10a and is sent into the room through the third opening 10c, as indicated by the broken line arrows in FIGS. Assists in the low heating of the room, and contributes to the temperature rise in rooms with poor sunlight.
[0065]
By the way, when supplying the outside air to the room with the bidirectional fan 14 rotating in the forward direction, the outside air passes through the dust collecting filter 15. The more dirt is, the more dust is deposited on the dust collection filter 15. If such a state is left as it is, the dust collection filter 15 becomes clogged, which causes troubles not only to supply air into the room but also to ventilation.
[0066]
Therefore, when the time during which the air is supplied to the room (the integrated time of the air supply operation) is more than a predetermined value, as shown in FIG. The damper 12 of the first opening 10a is opened and the damper 11 of the first opening 10a is closed to rotate the bidirectional fan 14 in the reverse direction. Thereby, the dust adhering to the dust collection filter 15 is blown out from the second opening 10b, so that the clogging of the dust collection filter 15 can be eliminated.
[0067]
FIG. 28 is a schematic configuration diagram showing a modification of the air supply / exhaust unit 10. In the figure, the same parts as those in FIG. In this modification, instead of the dampers 11 and 12, a substantially semi-cylindrical rotary damper 40 is used at the junction of three branch ducts connected in a T-shape.
[0068]
The rotary damper 40 is driven by a stepping motor or the like. For example, when supplying air flowing into the room through the first opening 10a or exhausting indoor air from the first opening 10a, the rotary damper 40 is driven. Then, the rotary damper 40 is rotated counterclockwise to the position shown in FIG.
[0069]
In addition, when the air flowing in through the second opening 10b is supplied into the room or when the indoor air is exhausted from the opening second part 10b, as shown in FIG. Rotate clockwise. Although the rotary damper 40 has a semi-cylindrical shape, as shown by a broken line in FIG. 29, it is preferable that the inside of the rotary damper 40 has a curved cavity so that air flows smoothly.
[0070]
As shown in FIG. 30, instead of the rotary damper 40, a rectangular plate-shaped damper 41 that matches the cross section of the duct of the air supply / exhaust unit 10 may be used. In that case, the end of the plate-shaped damper 41 is connected to the rotating shaft 41a of the motor, and the third opening 10c is connected to either the first opening 10a or the second opening 10b.
[0071]
As shown in FIG. 31, a similar plate-shaped damper 42 may be used in place of the plate-shaped damper 41, and the central portion of the plate-shaped damper 42 may be connected to the rotating shaft 42 a of the motor. The plate-shaped damper 42 may be a curved line (substantially semicircular shape). According to these modified examples, compared with the case where two dampers 11 and 12 are used, one damper and one motor can be used, and the cost can be reduced.
[0072]
【The invention's effect】
As described above, according to the present invention, the outdoor unit is provided with the first opening disposed on the upstream side of the outdoor fan, the second opening disposed on the downstream side of the outdoor fan, and the predetermined pipe. And a third opening connected to the indoor side via a duct, and a first air passage or a third opening and a second opening passing through the third opening and the first opening. An air supply / exhaust unit including an openable / closable damper that selects either one of the second air passages that pass through is provided, and the damper is controlled to supply outside air into the room or exhaust indoor air to the outdoor unit side. By doing so, waste heat during ventilation can be used effectively, and even in piping work, for example, the flexible duct is routed along the refrigerant piping between the indoor unit and the outdoor unit. Just remodeling houses and making large capital investments Without the need, it can also be introduced into the household air conditioner energy saving Rugitaipu with ventilation function.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view showing an external appearance of an outdoor unit provided in an air conditioner of the present invention.
FIG. 2 is a schematic plan view showing an air supply / exhaust unit mounted on the outdoor unit.
FIG. 3 is a schematic cross-sectional view showing a wind direction plate included in an air blowing grill of the outdoor unit.
FIG. 4 is a schematic plan view for explaining the internal structure of the air supply / exhaust unit.
5 is a schematic perspective view showing an outdoor unit including the air supply / exhaust unit shown in FIG.
FIG. 6 is a schematic diagram showing a refrigeration cycle of the air conditioner of the present invention.
FIG. 7 is a refrigerant circuit diagram of the refrigeration cycle.
FIG. 8 is a schematic block diagram showing a control device provided in the air conditioner of the present invention.
FIG. 9 is a refrigeration cycle diagram during cooling operation.
FIG. 10 is a schematic perspective view illustrating the operation of the air supply / exhaust unit during cooling operation when the outside air temperature is higher than room temperature.
FIG. 11 is a schematic perspective view for explaining the operation of the air supply / exhaust unit during cooling operation when the outside air temperature is lower than room temperature.
12 is a refrigeration cycle diagram during the cooling operation in FIG.
FIG. 13 is a refrigeration cycle diagram at the time of cooling operation stop (at the time of air blowing operation).
FIG. 14 is a refrigeration cycle diagram during heating operation.
FIG. 15 is a schematic perspective view for explaining the operation of the air supply / exhaust unit during heating operation when the outside air temperature is lower than room temperature.
FIG. 16 is a schematic perspective view for explaining the operation of the air supply / exhaust unit during heating operation when the outside air temperature is higher than room temperature.
FIG. 17 is a refrigeration cycle diagram during heating operation in FIG.
FIG. 18 is a refrigeration cycle diagram when heating operation is stopped (air blowing operation).
FIG. 19 is a refrigeration cycle diagram during cooling and dehumidifying operation.
FIG. 20 is a schematic perspective view for explaining the operation of the air supply / exhaust unit when the outside air temperature is higher than room temperature during the cooling and dehumidifying operation.
FIG. 21 is a schematic perspective view for explaining the operation of the air supply / exhaust unit when the outside air temperature is lower than room temperature during the cooling and dehumidifying operation.
22 is a refrigeration cycle diagram during the cooling and dehumidifying operation in FIG.
FIG. 23 is a refrigeration cycle diagram during heating and dehumidifying operation.
FIG. 24 is a schematic perspective view for explaining the operation of the air supply / exhaust unit when the outside air temperature is lower than room temperature during the heating and dehumidifying operation.
FIG. 25 is a schematic perspective view for explaining the operation of the air supply / exhaust unit when the outside air temperature is higher than room temperature in the heating and dehumidifying operation.
26 is a refrigeration cycle diagram at the time of heating and dehumidifying operation in FIG. 25. FIG.
FIG. 27 is a schematic plan view for explaining the operation of the air supply / exhaust unit during cleaning of the dust removal filter.
FIG. 28 is a schematic plan view illustrating a modification of the air supply / exhaust unit.
29 is a schematic plan view for explaining the operation of the air supply / exhaust unit shown in FIG. 28. FIG.
FIG. 30 is a schematic plan view for explaining another modified embodiment of the air supply / exhaust unit.
FIG. 31 is a schematic plan view illustrating still another modified example of the air supply / exhaust unit.
[Explanation of symbols]
10 Air supply / exhaust unit
10a First opening
10b Second opening
10c Third opening
11,12 damper
13 Air blow grill
13a Wind direction board
14 Two-way fan
15 Dust removal filter
16 Hygroscopic agent
17a, 17b, 17c Indoor heat exchanger
19 Dehumidifying on-off valve (pressure reducer)
24 Four way valve
25 Compressor
26 Outdoor heat exchanger
28 Electronic expansion valve
30 Indoor unit control circuit
31 Outdoor unit control circuit
32 remote control
33 Room temperature sensor
34 Outdoor fan
35 Outside temperature sensor
40 Rotary damper
41, 42 Plate-shaped damper

Claims (18)

室内熱交換器を有する室内機および室外熱交換器を有する室外機と、上記各熱交換器に冷媒を供給する冷凍サイクルと、これらを制御して室内環境を所定の状態に維持する制御手段とを備えている空気調和機において、
上記室外機には、室外ファンの外気吸い込み側(上流側)に配置された第1開口部と、上記室外ファンの外気吹き出し側(下流側)に配置された第2開口部と、所定の配管を介して室内側に接続される第3開口部とをダクトで連結してなるとともに、上記第3開口部と上記第1開口部とを通る第1空気通路もしくは上記第3開口部と上記第2開口部とを通る第2空気通路のいずれか一方の空気通路を選択する開閉可能なダンパーを含む給排気ユニットが設けられており、上記制御手段により上記ダンパーを制御して外気を室内に給気し、もしくは室内空気を室外機側に排気することを特徴とする空気調和機。
An indoor unit having an indoor heat exchanger, an outdoor unit having an outdoor heat exchanger, a refrigeration cycle for supplying a refrigerant to each of the heat exchangers, and a control means for controlling these to maintain the indoor environment in a predetermined state; In an air conditioner equipped with
The outdoor unit includes a first opening disposed on the outdoor air suction side (upstream side) of the outdoor fan, a second opening disposed on the outdoor air blowing side (downstream side) of the outdoor fan, and predetermined piping. And a third opening connected to the indoor side via a duct, and a first air passage passing through the third opening and the first opening or the third opening and the third opening. An air supply / exhaust unit including an openable / closable damper for selecting one of the second air passages passing through the two openings is provided, and the control means controls the damper to supply outside air into the room. An air conditioner characterized by exhausting indoor air to the outdoor unit side.
上記ダンパーが、上記第1開口部と上記第2開口部の各々に設けられている請求項1に記載の空気調和機。The air conditioner according to claim 1, wherein the damper is provided in each of the first opening and the second opening. 上記ダクトにはT字状の3つの分岐ダクトが含まれており、上記ダンパーが上記分岐ダクトの合流箇所に設けられている請求項1に記載の空気調和機。The air conditioner according to claim 1, wherein the duct includes three T-shaped branch ducts, and the damper is provided at a junction of the branch ducts. 上記ダンパーが、半円柱形あるいは半円柱形の内部を空洞化してその半円の弦の中点で回転し、または板形状としてその端部もしくは中点で回転する回転式ダンパーからなる請求項3に記載の空気調和機。4. The damper is a semi-cylindrical or semi-cylindrical hollow, and is composed of a rotary damper that rotates at the midpoint of the semicircular chord or rotates at the end or midpoint as a plate shape. Air conditioner as described in. 上記ダクトにはT字状の3つの分岐ダクトが含まれており、その合流箇所から上記第3開口部に至る上記分岐ダクト内に、上記制御手段にて制御される双方向ファンが設けられている請求項1ないし4のいずれか1項に記載の空気調和機。The duct includes three T-shaped branch ducts, and a bi-directional fan controlled by the control means is provided in the branch duct from the junction to the third opening. The air conditioner according to any one of claims 1 to 4. 上記第3開口部を含む分岐ダクト内の上記合流箇所と上記双方向ファンとの間に、除塵フィルタおよび吸湿手段が設けられている請求項5項に記載の空気調和機。The air conditioner according to claim 5, wherein a dust filter and a moisture absorbing means are provided between the junction point in the branch duct including the third opening and the bidirectional fan. 上記室外機の外気吹き出しグリルには、その外気の吹き出し方向を上記第2開口部側とする風向板が含まれている請求項1ないし6のいずれか1項に記載の空気調和機。The air conditioner according to any one of claims 1 to 6, wherein the outdoor air blowing grill of the outdoor unit includes a wind direction plate whose outside air blowing direction is the second opening side. 上記制御手段は、冷房運転時において外気温度が室温より高い場合には、上記第3開口部と上記第1開口部とを通る第1空気通路を選択するとともに、上記双方向ファンを逆回転して室内空気を上記室外機の吸い込み側の上記第1開口部から排気する請求項1ないし7のいずれか1項に記載の空気調和機。When the outside air temperature is higher than room temperature during the cooling operation, the control means selects the first air passage that passes through the third opening and the first opening and reversely rotates the bidirectional fan. The air conditioner according to any one of claims 1 to 7, wherein indoor air is exhausted from the first opening on the suction side of the outdoor unit. 上記制御手段は、冷房運転時において外気温度が室温より低い場合には、上記第3開口部と上記第1開口部とを通る第1空気通路を選択するとともに、上記双方向ファンを正回転して、上記室外機の吸い込み側の外気を室内に給気する請求項1ないし7のいずれか1項に記載の空気調和機。When the outside air temperature is lower than room temperature during the cooling operation, the control means selects the first air passage that passes through the third opening and the first opening, and rotates the bidirectional fan in the forward direction. The air conditioner according to any one of claims 1 to 7, wherein outside air on the suction side of the outdoor unit is supplied into the room. 上記制御手段は、冷房運転時において外気温度が室温より所定値以上低く、かつ、設定温度と室温との差が所定値以下である場合には、冷房運転を停止する請求項9に記載の空気調和機。10. The air according to claim 9, wherein the control means stops the cooling operation when the outside air temperature is lower than the predetermined value by a predetermined value or less than the room temperature during the cooling operation and the difference between the set temperature and the room temperature is a predetermined value or less. Harmony machine. 上記制御手段は、暖房運転時において外気温度が室温より低い場合には、上記第3開口部と上記第1開口部とを通る第1空気通路を選択するとともに、上記双方向ファンを逆回転して室内空気を上記室外機の吸い込み側に排気する請求項1ないし7のいずれか1項に記載の空気調和機。When the outside air temperature is lower than room temperature during the heating operation, the control means selects the first air passage that passes through the third opening and the first opening and reversely rotates the bidirectional fan. The air conditioner according to any one of claims 1 to 7, wherein indoor air is exhausted to a suction side of the outdoor unit. 上記制御手段は、暖房運転時において外気温度が室温より高い場合には、上記第3開口部と上記第1開口部とを通る第1空気通路を選択するとともに、上記双方向ファンを正回転して上記室外機の吸い込み側の外気を室内に給気する請求項1ないし7のいずれか1項に記載の空気調和機。When the outside air temperature is higher than room temperature during the heating operation, the control means selects the first air passage that passes through the third opening and the first opening, and rotates the bidirectional fan in the forward direction. The air conditioner according to any one of claims 1 to 7, wherein outside air on the suction side of the outdoor unit is supplied into the room. 上記制御手段は、暖房運転時において外気温度が室温より所定値以上高く、かつ、設定温度と室温との差が所定値以上になった場合には、暖房運転を停止する請求項12に記載の空気調和機。13. The control unit according to claim 12, wherein the control unit stops the heating operation when the outside air temperature is higher than the room temperature by a predetermined value or more during heating operation and the difference between the set temperature and the room temperature becomes a predetermined value or more. Air conditioner. 上記室内機の室内熱交換器には、除湿用開閉弁(減圧器)を有する冷媒配管を介して相互に接続される少なくとも2つの熱交換器が含まれており、上記制御手段は、上記除湿用開閉弁を絞り制御しての冷房除湿運転時に外気温度が室温より高い場合には、上記第3開口部と上記第1開口部とを通る第1空気通路を選択するとともに、上記双方向ファンを逆回転して、室内空気を上記室外機の吸い込み側の上記第1開口部から排気する請求項1ないし7に記載の空気調和機。The indoor heat exchanger of the indoor unit includes at least two heat exchangers connected to each other through a refrigerant pipe having a dehumidifying on-off valve (decompressor), and the control means includes the dehumidifier If the outside air temperature is higher than room temperature during the cooling and dehumidifying operation with the throttle valve being throttled, the first air passage passing through the third opening and the first opening is selected and the bidirectional fan is selected. The air conditioner according to any one of claims 1 to 7, wherein the indoor air is exhausted from the first opening on the suction side of the outdoor unit by rotating in reverse. 上記室内機の室内熱交換器には、除湿用開閉弁(減圧器)を有する冷媒配管を介して相互に接続される少なくとも2つの熱交換器が含まれており、上記制御手段は、上記除湿用開閉弁を絞り制御しての冷房除湿運転時に外気温度が室温より低い場合には、上記第3開口部と上記第2開口部とを通る第2空気通路を選択するとともに、上記双方向ファンを正回転して、上記室外機の吹き出し側の外気を室内に給気する請求項1ないし7に記載の空気調和機。The indoor heat exchanger of the indoor unit includes at least two heat exchangers connected to each other through a refrigerant pipe having a dehumidifying on-off valve (decompressor), and the control means includes the dehumidifier When the outside air temperature is lower than room temperature during the cooling and dehumidifying operation with the throttle valve being throttled, the second air passage passing through the third opening and the second opening is selected and the bidirectional fan The air conditioner according to any one of claims 1 to 7, wherein the outdoor air on the blow-out side of the outdoor unit is supplied into the room by rotating in a normal direction. 上記室内機の室内熱交換器には、除湿用開閉弁(減圧器)を有する冷媒配管を介して相互に接続される少なくとも2つの熱交換器が含まれており、上記制御手段は、上記除湿用開閉弁を絞り制御しての暖房除湿運転時に外気温度が室温より低い場合には、上記第3開口部と上記第1開口部とを通る第1空気通路を選択するとともに、上記双方向ファンを逆回転して、室内空気を上記室外機の吸い込み側の上記第1開口部から排気する請求項1ないし7に記載の空気調和機。The indoor heat exchanger of the indoor unit includes at least two heat exchangers connected to each other through a refrigerant pipe having a dehumidifying on-off valve (decompressor), and the control means includes the dehumidifier When the outside air temperature is lower than room temperature during the heating and dehumidifying operation by controlling the throttle valve for opening and closing, the first air passage passing through the third opening and the first opening is selected and the bidirectional fan The air conditioner according to any one of claims 1 to 7, wherein the indoor air is exhausted from the first opening on the suction side of the outdoor unit by rotating in reverse. 上記室内機の室内熱交換器には、除湿用開閉弁(減圧器)を有する冷媒配管を介して相互に接続される少なくとも2つの熱交換器が含まれており、上記制御手段は、上記除湿用開閉弁を絞り制御しての暖房除湿運転時に外気温度が室温より高い場合には、上記第3開口部と上記第1開口部とを通る第1空気通路を選択するとともに、上記双方向ファンを正回転して、上記室外機の吸い込み側の外気を室内に給気する請求項1ないし7に記載の空気調和機。The indoor heat exchanger of the indoor unit includes at least two heat exchangers connected to each other through a refrigerant pipe having a dehumidifying on-off valve (decompressor), and the control means includes the dehumidifier When the outside air temperature is higher than room temperature during heating and dehumidifying operation with the throttle valve being throttled, the first air passage passing through the third opening and the first opening is selected and the bidirectional fan The air conditioner according to any one of claims 1 to 7, wherein the outside air on the suction side of the outdoor unit is supplied into the room by rotating the air forward. 上記制御手段は、上記双方向ファンを正回転として外気を室内に給気する給気運転時間が所定時間以上となった場合、当該空気調和機の運転を停止した時点で、上記第3開口部と上記第2開口部とを通る第2空気通路を選択するとともに、上記双方向ファンを所定時間逆回転させる請求項6に記載の空気調和機。When the air supply operation time for supplying the outside air into the room with the bidirectional fan rotating forward is equal to or longer than a predetermined time, the control means stops the operation of the air conditioner and stops the third opening. The air conditioner according to claim 6, wherein a second air passage that passes through the second opening is selected, and the bidirectional fan is reversely rotated for a predetermined time.
JP2003115496A 2003-04-21 2003-04-21 Air conditioner Expired - Fee Related JP4328942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003115496A JP4328942B2 (en) 2003-04-21 2003-04-21 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003115496A JP4328942B2 (en) 2003-04-21 2003-04-21 Air conditioner

Publications (2)

Publication Number Publication Date
JP2004324896A JP2004324896A (en) 2004-11-18
JP4328942B2 true JP4328942B2 (en) 2009-09-09

Family

ID=33496027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003115496A Expired - Fee Related JP4328942B2 (en) 2003-04-21 2003-04-21 Air conditioner

Country Status (1)

Country Link
JP (1) JP4328942B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4632919B2 (en) * 2005-10-14 2011-02-16 三機工業株式会社 Exhaust hood for outdoor unit
JP2007147190A (en) * 2005-11-29 2007-06-14 E-Plat Co Ltd Air-conditioning control method for shop
JP4843553B2 (en) * 2007-05-09 2011-12-21 株式会社コロナ Integrated air conditioner
JP2010014313A (en) * 2008-07-02 2010-01-21 Mitsubishi Electric Building Techno Service Co Ltd Outdoor unit condenser fin cleaning apparatus
KR101488342B1 (en) * 2013-11-11 2015-01-30 미륭이씨오 주식회사 Independent type apparatus for purifying air pollutant
JP6550211B2 (en) * 2014-03-31 2019-07-24 株式会社竹中工務店 Building ventilation system
JP2020200985A (en) * 2019-06-10 2020-12-17 ダイキン工業株式会社 Humidity control unit and humidity control system

Also Published As

Publication number Publication date
JP2004324896A (en) 2004-11-18

Similar Documents

Publication Publication Date Title
US6038879A (en) Combined air exchange and air conditioning unit
KR20100128812A (en) Ventilating device and controlling method of the same
CA2155628A1 (en) Combined air exchange and air conditioning unit
JP2007064513A (en) Heat pump type air conditioning method and device
JP2002162067A (en) Air conditioner
JP4328942B2 (en) Air conditioner
KR100430278B1 (en) Air Conditioner Applying Heatpipes
JPH0228774B2 (en)
JP5423790B2 (en) Bathroom ventilation air conditioner
KR20070087724A (en) Air-conditioner
JP2005114274A (en) Air conditioner
JP2004301375A (en) Ventilation system
JPS62237231A (en) Air conditioner
JPH0221487B2 (en)
KR102712715B1 (en) Heating, Ventilation and Air conditioning system using air type solar collector
JPH04353327A (en) Air-conditioning device with ventilating function
JP2568697B2 (en) Air conditioning ventilation hot water supply system
CN216844904U (en) Heat exchange fresh air machine
JP3726796B2 (en) Integrated air conditioner for wall installation
JPH06123444A (en) Dehumidifying device having air conditioning and ventilation functions
JP2007139337A (en) Ventilation air conditioner, air-conditioning system and building
JPH0692831B2 (en) Multi heat pump air conditioner
JPH0217343A (en) Air conditioner
JPH035787Y2 (en)
KR20240105592A (en) Air Conditioner and Ventilation Controlling Method for It

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees