JP4328873B2 - Radiosensitizer - Google Patents

Radiosensitizer Download PDF

Info

Publication number
JP4328873B2
JP4328873B2 JP2002234760A JP2002234760A JP4328873B2 JP 4328873 B2 JP4328873 B2 JP 4328873B2 JP 2002234760 A JP2002234760 A JP 2002234760A JP 2002234760 A JP2002234760 A JP 2002234760A JP 4328873 B2 JP4328873 B2 JP 4328873B2
Authority
JP
Japan
Prior art keywords
nitroxanthine
compound
dimethyl
mmol
methyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002234760A
Other languages
Japanese (ja)
Other versions
JP2004075563A (en
Inventor
利光 鈴木
隆之 並木
東 西尾
将志 玉井
兼一 岸井
茂樹 増居
信雄 久保田
進 冨山
寛充 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pola Pharma Inc
Original Assignee
Pola Pharma Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pola Pharma Inc filed Critical Pola Pharma Inc
Priority to JP2002234760A priority Critical patent/JP4328873B2/en
Publication of JP2004075563A publication Critical patent/JP2004075563A/en
Application granted granted Critical
Publication of JP4328873B2 publication Critical patent/JP4328873B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、癌の放射線治療において、放射線増感剤として有用な8−ニトロキサンチン誘導体及びこれを有効成分とする医薬に関する。
【0002】
【従来の技術】
放射線療法における標的分子はDNAであり、これらは放射線照射を受けることにより様々な傷害を受けると共に、ラジカルを発生する。好気的条件下では、更に酸素分子が傷害部位に固定されることによりDNA修復が不可能となり、結果として細胞に損傷を与える。つまり放射線治療には酸素が必要である。しかしながら、悪性腫瘍には低酸素状態の細胞(低酸素性細胞)が存在していることが知られており、嫌気的条件下では、このような酸素効果が期待できず、放射線治療の妨げとなっている。
【0003】
このような低酸素性細胞の処置には、ミソニダゾールに代表されるニトロイミダゾール系の化合物が、かかる低酸素性細胞を再酸素化しうる性質を有していることから、これを用いた放射線増感によって対処する試みがなされてきた。しかしながら、ニトロイミダゾール系化合物の増感効果は、比較的低く、毒性の非発現域では治療に有用でない場合があった。このような状況を背景にして、ニトロイミダゾールとは母核を異にする、次世代の放射線増感剤の開発が望まれている。
【0004】
一方、後記一般式(1)で表される8−ニトロキサンチン誘導体は、何れも文献未記載の新規化合物であり、従って、これらの化合物が低酸素性細胞の再酸素化に有用であることも全く知られていないし、これらの化合物を有効成分とする医薬も知られていない。
【0005】
【発明が解決しようとする課題】
従って、本発明は、放射線増感効果が高く、安全性の高い、優れた低酸素性細胞放射線増感剤を提供することを課題とする。
【0006】
【課題を解決するための手段】
かかる状況に鑑みて、本発明者らは、カフェインが弱い放射線増感効果を有することを参考に、キサンチン誘導体に様々な側鎖を付加させることにより、数多くのキサンチン誘導体を合成し、低酸素性細胞放射線増感作用を指標としてスクリーニングを行った結果、後記一般式(1)で表される8−ニトロキサンチン誘導体が、優れた低酸素性細胞放射線増感作用を有することを見出し、本発明を完成するに至った。
【0007】
すなわち、本発明は、次の一般式(1)で表される8−ニトロキサンチン誘導体を提供するものである。
【0008】
【化2】

Figure 0004328873
【0009】
(式中、R1及びR2はそれぞれ独立に水素原子又は置換基を有しても良い炭素数1〜6のアルキル基、アルケニル基若しくはアルキニル基を示し、R1及びR2の少なくとも一方は、置換基を有する炭素数1〜6のアルキル基、又は置換基を有しても良い炭素数1〜6のアルケニル基若しくはアルキニル基である)
【0010】
また、本発明は、当該8−ニトロキサンチン誘導体(1)を有効成分とする医薬を提供するものである。
【0011】
【発明の実施の形態】
本発明の8−ニトロキサンチン誘導体は、上記一般式(1)で表され、式中、R1及びR2で表される置換基を有しても良い炭素数1〜6のアルキル基、アルケニル基又はアルキニル基は、基幹炭化水素基が直鎖、分岐又は環状構造を有していても良く、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、イソブチル基、エテニル基、アリル基、プレニル基、プロパルギル基等が挙げられる。特に炭素数1〜4のアルキル基、アルケニル基、アルキニル基が好ましい。
【0012】
また、これらの基幹炭化水素基の水素原子と置換される置換基としては、ヒドロキシ基、ハロゲン原子、シアノ基、アシル基、アルコシキ基、ホルミル基、アルキルスルホニルオキシ基、アシルオキシ基、1,3−ジオキソリル基、テトラヒドロピラニルオキシ基、下記(A)に示す置換基から選択される置換基を有しても良いアミド基、置換基を有しても良いアミノ基、下記(A)に示す置換基から選択される置換基を有しても良いピリジル基、置換基を有しても良いベンゾイル基、アルケニル基、アルキニル基等が例示できる。かかる置換基は1基幹炭素水素基あたり、1〜3個置換しているが好ましい。
【0013】
(A)モルホリノ基、ピペラジニル基、ピラゾイル基、イソインドリル基、インドリル基、インドリニル基、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、イソブチル基、n−ペンチル基、イソペンチル基、tert−アミル基、2−ペンチル基、3−ペンチル基、ベンジル基、ブトキシカルボニル基、ブロモメチル基、エトキシカルボニル基、ハロゲン原子
【0014】
一般式(1)中のR1及びR2としては、いずれか一方が炭素数1〜6のアルキル基(特にメチル基)で、他方が置換基を有する炭素数1〜6のアルキル基、置換基を有しても良い炭素数1〜6のアルケニル基もしくはアルキニル基であるのが好ましい。
【0015】
本発明の8−ニトロキサンチン誘導体(1)の好ましい具体例としては、1−シアノメチル−3,7−ジメチル−8−ニトロキサンチン(化合物1)、3−シアノメチル−1,7−ジメチル−8−ニトロキサンチン(化合物2)、3−アリル−1,7−ジメチル−8−ニトロキサンチン(化合物3)、3−アセトニル−1,7−ジメチル−8−ニトロキサンチン(化合物4)、1,7−ジメチル−3−メトキシメチル−8−ニトロキサンチン(化合物5)、1,7−ジメチル−8−ニトロ−3−プロパルギルキサンチン(化合物6)、1−アリル−3,7−ジメチル−8−ニトロキサンチン(化合物7)、3,7−ジメチル−8−ニトロ−1−プロパルギルキサンチン(化合物8)、1−アセトニル−3,7−ジメチル−8−ニトロキサンチン(化合物9)、3,7−ジメチル−8−ニトロ−1−[3−[(テトラヒドロピラン−2−イル)オキシ]プロピル]キサンチン(化合物10)、1,7−ジメチル−3−(モルホリノカルボニルメチル)−8−ニトロキサンチン(化合物11)、1,7−ジメチル−8−ニトロ−3−[2−[(テトラヒドロピラン−2−イル)オキシ]エチル]キサンチン(化合物12)、1−(2−クロロエチル)−3,7−ジメチル−8−ニトロキサンチン(化合物13)、1,7−ジメチル−3−[2−(1,3−ジオキソラン−2−イル)エチル]−8−ニトロキサンチン(化合物14)、3−(3,3−ジメトキシプロピル)−1,7−ジメチル−8−ニトロキサンチン(化合物15)、3−[2−(t−ブトキシカルボニルアミノ)エチル]−1,7−ジメチル−8−ニトロキサンチン(化合物16)、1,7−ジメチル−8−ニトロ−3−[3−[(テトラヒドロピラン−2−イル)オキシ]プロピル]キサンチン(化合物17)、3−(2−クロロエチル)−1,7−ジメチル−8−ニトロキサンチン(化合物18)、3−(アミノカルボニルメチル)−1,7−ジメチル−8−ニトロキサンチン(化合物19)、3,7−ジメチル−1−(3−ヒドロキシプロピル)−8−ニトロキサンチン(化合物20)、1−(3−アセトキシプロピル)−3,7−ジメチル−8−ニトロキサンチン(化合物21)、1,7−ジメチル−3−(2−ヒドロキシエチル)−8−ニトロキサンチン(化合物22)、1,7−ジメチル−3−(3−ヒドロキシプロピル)−8−ニトロキサンチン(化合物23)、1,7−ジメチル−3−(2−ホルミルエチル)−8−ニトロキサンチン(化合物24)、3−[2−(N,N−ジエチルアミノ)エチル]−1,7−ジメチル−8−ニトロキサンチン(化合物25)、1,3−ジ−ヒドロキシプロピル−7−メチル−8−ニトロキサンチン(化合物26)、1,3−ジ−(N−エチル,N−ベンジルアミノエチル)−7−メチル−8−ニトロキサンチン(化合物27)、1,3−ジアリル−7−メチル−8−ニトロキサンチン(化合物28)、1,3−ジ−プレニル−7−メチル−8−ニトロキサンチン(化合物29)、1,3−ジ−プロパルギル−7−メチル−8−ニトロキサンチン(化合物30)、1,3−ジ−クロロエチル−7−メチル−8−ニトロキサンチン(化合物31)、1,3−ジ−アセトニル−7−メチル−8−ニトロキサンチン(化合物32)、1,3−ジ−シアノメチル−7−メチル−8−ニトロキサンチン(化合物33)、1,3−ジ−(p−ブロモフェナシル)−7−メチル−トロキサンチン(化合物34)、3−(3−ピリジルメチル)−7−メチル−8−ニトロキサンチン(化合物35)、1,3−ジ−(2−ヒドロキシ−3−メトキシプロピル)−7−メチル−8−ニトロキサンチン(化合物36)、3−(2−ヒドロキシ−3−メトキシプロピル)−7−メチル−8−ニトロキサンチン(化合物37)が挙げられる。
【0016】
本発明の8−ニトロキサンチン誘導体(1)の塩としては、生理的に許容されるものであれば特に限定されないが、例えば塩酸、硫酸、硝酸、リン酸、臭化水素酸等の無機酸や、マレイン酸、フマール酸、リンゴ酸、酒石酸、クエン酸、メタンスルホン酸、パラ−トルエンスルホン酸、トリフルオロメタンスルホン酸等の有機酸の酸付加塩;アルカリの塩として、ナトリウム、カリウム等のアルカリ金属塩;カルシウム、マグネシウム等のアルカリ土類金属塩などが挙げられる。
【0017】
また、本発明の8−ニトロキサンチン誘導体(1)又はその塩には、水和物のほか、硫酸、アセトン、THF、DMF、DMSO等の溶媒和物などのいずれもが包含される。
【0018】
本発明の8−ニトロキサンチン誘導体(1)は、例えば、アルカリ存在下、7−メチル−8−ニトロキサンチンを原料とし、対応するハロゲン化物と反応させることにより製造することができる。
【0019】
例えば、一般式(1)におけるR1又はR2の何れかが水素原子のものは、置換基を有する炭化水素基の水素をハロゲン原子に置換した化合物(以下、ハロゲン化物)を、7−メチル−8−ニトロキサンチンに対して当量程度で、アルカリ存在下にて反応させることにより、1位置換体と3位置換体を得ることができる。これらを分離することにより、それぞれの化合物が単離できる。単離方法としては、通常知られている方法を用いれば良く、例えばシリカゲル、アルミナ等を担体としたカラムクロマトグラフィーなどが例示できる。また、置換基を有する炭化水素基を2つ有する化合物についても、2当量以上のハロゲン化物を用い、同様に製造することができる。R1又はR2の何れかがメチル基であって、他方に置換基を有する炭化水素基のものは、3,7−ジメチル−8−ニトロキサンチン、1,7−ジメチル−8−ニトロキサンチン又は7−メチル−8−ニトロキサンチンを合成した後に、対応するハロゲン化物を反応させれば良い。
【0020】
このようにして得られる本発明の8−ニトロキサンチン誘導体(1)は、放射線療法において、低酸素性細胞に対して優れた放射線増感効果を発揮するため、癌放射線療法における、低酸素性細胞放射線増感剤等の医薬として大変有用である。
【0021】
本発明の医薬は、8−ニトロキサンチン誘導体(1)を有効成分とするものである。本発明の医薬の投与量は、患者の年令、体重、性別、投与方法、体調、症状等により異なるが、低酸素性細胞放射線増感剤とする場合、8−ニトロキサンチン誘導体(1)として、成人1人1日あたり、経口投与の場合10〜10000mg、非経口投与の場合3〜6000mgを、1回又は数回に分けて投与するのが好ましい。
【0022】
この時、本発明の8−ニトロキサンチン誘導体(1)は、通常知られている医薬製剤に加工して投与することができる。経口投与のほか、非経口の投与経路としては、坐剤等による経直腸投与、動脈内投与、静脈内投与、門脈内投与、腹空内投与、皮下投与、病巣内直接投与等の注射又は点滴による投与が好ましい。
【0023】
本発明の医薬は、本発明の8−ニトロキサンチン誘導体(1)以外に、通常医薬組成物に使用される任意成分を含有することができ、常法に従って製造することができる。かかる任意成分としては、例えば、結合剤、崩壊剤、賦形剤、増量剤、乳化剤、分散剤、滑沢剤、被覆剤、pH調整剤、等張剤、結晶化剤、嬌味嬌臭剤、着色剤、安定化剤などが好ましく例示できる。また、他の抗ガン剤等を含有させたり、癌化学治療で良く用いられる、制吐剤や血球増殖因子などを含有させることもでき、より効果を高めるために有利である。
本発明の医薬は、ガンの治療、ガンの進行或いは転移の予防等に好適に用いられる。
【0024】
本発明の医薬は、通常の方法で錠剤、顆粒剤、散剤、カプセル剤、懸濁剤、注射剤、坐剤等の種々の剤形とすることができる。
固形製剤を製造するには、8−ニトロキサンチン誘導体(1)に賦形剤、更に必要に応じて結合剤、崩壊剤、滑沢剤、着色剤、矯味矯臭剤、増量剤、被覆剤、糖衣剤などを加えた後、常法により、錠剤、顆粒剤、散剤、カプセル剤、坐剤等とするのが好ましい。また、注射剤を製造する場合は、8−ニトロキサンチン誘導体(1)を注射用生理食塩水などの水性担体にあらかじめ溶解分散、乳化等するか、又は、注射用の粉末にして用時に溶解等すれば良い。
【0025】
【実施例】
以下に、実施例を挙げて本発明について更に詳細に説明を加えるが、本発明が、かかる実施例にのみ限定されないことは言うまでもない。
【0026】
参考例1
(3,7−ジメチル−8−ニトロキサンチンの製造)
ニトロニウム テトラフルオロボレート0.94g(7.08mmol)を酢酸50mLに溶解し、これにテオブロミン1.33g(7.38mmol)を固体のまま一度に加え、続いて窒素雰囲気下、油浴温120℃付近(内温100〜105℃)で3時間撹拌した。但し、TLCでモニターしながら、ニトロニウム テトラフルオロボレートを50分、1時間20分、1時間45分、2時間10分、2時間40分目に固体のまま加えた。一晩室温放置後、減圧濃縮し、残渣に氷50gを加え、析出してきた固体を濾取し、少量の水で洗い、風乾した。標記化合物を、黄色固体として0.43g(収率25.9%)得た。
m.p.:>280℃
IR(cm-1)(KBr錠剤):3164,3043,1700,1683,1541,1326,852,577
1H−NMR(DMSO−d6)δ:3.36(3H,s),4.24(3H,s),11.7(1H,s)
【0027】
参考例2
(3−メチル−8−ニトロキサンチンの製造)
3−メチルキサンチン6.64g(40.0mmol)を酢酸120mLに懸濁し、これに内温100℃付近で撹拌しながら、65%硝酸を滴下し、続いて同条件下で30分間撹拌、更に20分間撹拌しながら加熱還流した。その後室温まで冷却し、不溶固体を濾取、これを水で数回洗い、風乾した。黄色固体を4.05g(収率48.0%)得た。
濾液及び洗液を合わせて減圧濃縮し、残渣に少量の水を加え、析出してきた固体を濾取し、少量の水で洗い、風乾した。標記化合物を、黄色固体として0.51g(収率6.0%)得た。
1H−NMR(DMSO−d6)δ:3.37(3H,s),11.4(1H,s)
【0028】
参考例3
(3,7−ジメチル−8−ニトロキサンチンの製造)
3−メチル−8−ニトロキサンチン5.8g(27.5mmol)に乾燥ジメチルホルムアミド290mLを加え、これに室温で撹拌しながら、トリエチルアミン4.3mL(30.9mmol)を一度に加え、同条件下で15分撹拌した後、ヨードメタン2.7mL(43.4mmol)を同条件下で一度に加え、続いて同条件下で39時間撹拌した。その後、反応液を減圧濃縮し、残渣に水435mLを加え、不溶固体を濾取、これを水で数回洗い、風乾した。標記化合物を、黄色固体として4.90g(収率79.2%)得た。
m.p.:>280℃
IR(cm-1)(KBr錠剤):3164,3043,1700,1683,1541,1326,852,577
1H−NMR(DMSO−d6)δ:0.36(3H,s),4.24(3H,s),11.7(1H,s)
【0029】
参考例4
(1−メチル−8−ニトロキサンチンの製造)
1−メチルキサンチン0.75g(4.51mmol)を酢酸15mLに懸濁し、100℃にて撹拌した。その中に65%硝酸0.7mLを加え、同条件下にて30分間撹拌し、続いて15分間加熱還流を行った。放冷後、生じた黄色結晶を濾取し、これをメタノールにて洗浄した。濾液は減圧下にて濃縮し、析出した結晶を濾取した。標記化合物を0.6g(収率63%)得た。
m.p.:>280℃
IR(cm-1)(KBr錠剤):1723,1670,1560,1359,852,1329
1H−NMR(DMSO−d6)δ:2.50(3H,s),3.20(3H,s),12.0(1H,s)
【0030】
参考例5
(1,7−ジメチル−8ニトロキサンチンの製造)
1−メチル−8−ニトロキサンチン0.2g(0.95mmol)をDMF10mLに懸濁し、更にトリエチルアミン0.1g(0.99mmol)を加え、氷冷下にてヨードメタン0.09mL(1.45mmol)を加えた。室温に戻し、16時間撹拌を行った。その後、反応液を減圧下にて濃縮し、残渣に水を加え、黄色固体を濾取した。これを水洗した後に乾燥を行った(収率80%)。
1,7−ジメチル−8ニトロキサンチン0.46gをエタノール/水=1/1(約140mL)より再結晶させ、黄色結晶である純粋な1,7−ジメチル−8ニトロキサンチンを1次晶として0.21g(収率46%)得た。また、同様にして、2次晶0.14g(収率30%)を得た。
m.p.:251.5〜253.6℃(分解)
IR(cm-1)(KBr錠剤):1319,1547
1H−NMR(DMSO−d6)δ:3.22(s,3H)、4.24(s,3H)、12.3(s,1H)
【0031】
参考例6
(8−ニトロキサンチンの製造)
キサンチン10.0g(65.7mmol)に酢酸80mLを加え、加熱還流した。硝酸13mLを少量ずつ滴下し、2時間15分後に反応を止め、生じた結晶を濾取した。これをメタノールで洗浄し、標記化合物を7.87g(収率60.7%)得た。
m.p.:>280℃
IR(KBr錠剤)(cm-1):1748,1587,1551,1363,1320
1H−NMR(DMSO−d6)δ:11.2(1H,s)、11.9(1H,s)
【0032】
参考例7
(7−メチル−8−ニトロキサンチンの製造)
8−ニトロキサンチン0.20g(1.0mmol)、トリエチルアミン0.15g(1.5mmol)及び乾燥ジメチルホルムアミド10mLを混合し、溶解した。この反応液にヨードメタン0.08mL(1.3mmol)を滴下し、5時間35分後、反応液を濃縮した。水5mLを加え、結晶を濾取した。標記化合物を0.09g(収率42.0%)得た。
m.p.:>280℃
IR(KBr錠剤)(cm-1):1731、1670、1544、1311
1H−NMR(DMSO−d6)δ:4.20(3H,s)、11.4(1H,s)、12.0(1H,s)
【0033】
参考例8
(4−(ブロモアセチル)モルホリンの製造)
モルホリン2.18g(25.0mmol)及びトリエチルアミン(49.8mmol)のジクロロメタン溶液(50mL)中に、ジクロロメタン10mLに溶解したブロモアセチルクロリド3.97g(25.2mmol)溶液を、氷冷下にて25分要して滴下した。同条件下にて1時間攪拌後、反応液を減圧下にて濃縮した。少量のジクロロメタンを加え、残渣を濾去した。濾液を減圧下にて濃縮し、残渣をシリカゲルカラムクロマトグラフィー(n−ヘキサン:酢酸エチル=1:1→1:2)に付し、目的フラクションを濃縮し、標記化合物を0.68g(収率13.1%)得た。
1H−NMR(CDCl3)δ:3.52〜3.78(8H,m)、4.07(2H,s)
【0034】
【化3】
Figure 0004328873
【0035】
参考例9
(1−ブロモ−2−[(テトラヒドロピラン−2−イル)オキシ]エタンの製造)
2−ブロモエタノール2.75g(22.0mmol)及び触媒量のp−トルエンスルホン酸・一水和物をジクロロメタン10mLに溶解し、氷冷下にて3,4−ジヒドロ−α−ピラン2.60g(30.9mmol)を滴下した。40分間撹拌後、酢酸エチル(40mL)を加え、飽和炭酸水素ナトリウム水溶液(30mL)で洗浄した。有機層を無水硫酸ナトリウムで乾燥し、濾過後、濾液を減圧下にて濃縮した。残渣をシリカゲルカラムクロマトグラフィー(n−ヘキサン:酢酸エチル=6:1)に付し、目的フラクションを濃縮し、標記化合物を3.91g(収率85.0%)得た。
1H−NMR(CDCl3)δ:1.52〜1.90(6H,m),3.45〜3.57(3H,m),3.73〜3.82(1H,m),3.85〜3.92(1H,m),3.96〜4.06(3H,m),4.68(1H,t,J=3.0Hz)
【0036】
【化4】
Figure 0004328873
【0037】
参考例10
(1−ブロモ−3−[(テトラヒドロピラン−2−イル)オキシ]プロパンの製造)
参考例9と同様にして、3−ブロモ−1−プロパノール3.10g(22.3mmol)及び3,4−ジヒドロ−α−ピラン2.82g(33.5mmol)を用い、標記化合物を3.87g(収率77.8%)得た。
1H−NMR(CDCl3)δ:1.45〜1.91(6H,m),2.05〜2.20(2H,m),3.44〜3.60(4H,m),3.83〜3.99(2H,m),4.61(1H,t,J=3.8Hz)
【0038】
【化5】
Figure 0004328873
【0039】
参考例11
(N−ベンジル−N−(2−ブロモエチル)−N−[2−[(テトラヒドロピラン−2−イル)オキシ]エチル]アミンの製造)
2,2’−イミノジエタノール1.05g(9.99mmol)にジメチルホルムアミド3mLを加え、その中にベンジルブロミド2.65g(15.5mmol)及び炭酸カリウム1.07g(7.74mmol)を加え、加熱攪拌した。4時間後、反応液を濾過し、濾液を減圧下にて濃縮した。
この残渣(N,N−ビス[2−(ヒドロキシ)エチル]−N−ベンジルアミン)を、参考例9と同様にして、3,4−ジヒドロ−α−ピラン1.00g(11.9mmol)を用い、N−ベンジル−N−(2−ヒドロキシエチル)−N−[2−[(テトラヒドロピラン−2−イル)オキシ]エチル]アミンを1.12g(収率40.1%)得た。
1H−NMR(CDCl3)δ:1.51〜1.87(6H,m),2.71〜2.85(4H,m),3.41〜3.58(4H,m),3.46(2H,s),3.69〜3.88(2H,m),4.58(1H,t,J=4.1Hz),7.21〜7.33(5H,m)
【0040】
N−ベンジル−N−(2−ヒドロキシエチル)−N−[2−[(テトラヒドロピラン−2−イル)オキシ]エチル]アミン0.50g(1.8mmol)にジクロロメタン10mLを加え、氷冷下にて攪拌した。同条件下にて、トリフェニルフォスフィン0.53g(2.0mmol)及び四臭化炭素0.76g(2.3mmol)を加え、その後室温に戻して18時間撹拌した。反応液を酢酸エチル:ベンゼン(4:1)100mLで希釈し、飽和炭酸水素ナトリウム水溶液(30mL)及び飽和食塩水(30mL)で洗浄した。有機層を無水硫酸ナトリウムで乾燥し、減圧下にて濃縮した。残渣をシリカゲルカラムクロマトグラフィー(n−ヘキサン:酢酸エチル=9:1→4:1)に付し、目的フラクションを濃縮して、標記化合物を0.29g(収率47.3%)得た。
1H−NMR(CDCl3)δ:1.49〜1.83(6H,m),2.80(2H,t,J=5.9Hz),2.99(2H,t,J=7.3Hz),3.37(2H,t,J=7.0Hz),3.45〜3.54(2H,m),3.74(2H,s),3.80〜3.90(2H,m),4.59(1H,t,J=4.1Hz)
【0041】
【化6】
Figure 0004328873
【0042】
参考例12
(2−(t−ブトキシカルボニルアミノ)エチルブロミドの製造)
2−アミノエタノール3mL(49.7mmol)及び炭酸カリウム19.56g(141.5mmol)を水60mLに溶解し、氷冷下にてテトラヒドロフラン30mLに溶解したニ炭酸ジ−t−ブチルを10分かけて滴下した。その後、室温に戻し、1時間30分間撹拌した。酢酸エチル(150mL)で反応液を希釈し、飽和食塩水(50mL)で洗浄した。水層より酢酸エチル(50mL)にて抽出した。有機層を合わせて無水硫酸ナトリウムで乾燥し、濾過後濾液を減圧下にて濃縮した。残渣をシリカゲルカラムクロマトグラフィー(n−ヘキサン:酢酸エチル=1:1→1:2)に付し、目的フラクションを濃縮し、2−(t−ブトキシカルボニルアミノ)エタノールを7.48g(収率93.4%)得た。
1H−NMR(CDCl3)δ:1.45(9H,s),3.29(2H,dd,J=5.4Hz,J=10.3Hz),3.70(2H,dd),4.98(1H,bs)
【0043】
参考例11で用いたブロモ化と同様にして、2−(t−ブトキシカルボニルアミノ)エタノール0.82g(5.09mmol)、四臭化炭素2.53g(7.63mmol)及びトリフェニルフォスフィン1.62g(6.18mmol)を用い、標記化合物を0.80g(収率70.2%)得た。
1H−NMR(CDCl3)δ:1.46(9H,s),3.44〜3.60(4H,m),2.99(2H,t,J=7.3Hz),4.94(1H,bs)
【0044】
【化7】
Figure 0004328873
【0045】
実施例1
(1−シアノメチル−3,7−ジメチル−8−ニトロキサンチン(化合物1)の製造)
3,7−ジメチル−8−ニトロキサンチン0.20g(0.89mmol)及びブロモアセトニトリル0.12g(1.00mmol)を乾燥ジメチルホルムアミド15mLに溶解した。これに、窒素雰囲気下、室温で攪拌しながら、炭酸カリウム0.13g(0.94mmol)を固体のまま加え、続いて同条件下で1時間攪拌した。その後氷冷攪拌下、酢酸エチル20mL、飽和食塩水20mL、1N−塩酸2mLの系に反応液を注ぎ、有機層を分離し、水層は更に酢酸エチルで抽出した(10mL×2)。全有機層を合わせて飽和食塩水で洗浄し(15mL×3)、無水硫酸ナトリウムで乾燥後、溶媒留去した。残渣をシリカゲルカラムクロマトグラフィー(溶出液;クロロホルム)に付し、目的フラクションを濃縮した。残渣をクロロホルム−ジイソプロピルエーテル系で固化させ、固体を濾取し、標記化合物を0.20g(収率87.0%)得た。
m.p.:166.5〜168.5℃
IR(KBr錠剤)(cm-1):1723,1675,1598,1542,1489,1352,1329
1H−NMR(CDCl3)δ:3.65(3H,s),4.44(3H,s),4.92(2H,s)
【0046】
実施例2
(3−シアノメチル−1,7−ジメチル−8−ニトロキサンチン(化合物2)の製造)
実施例1と同様にして、1,7−ジメチル−8−ニトロキサンチン0.26g(1.15mmol)及びブロモアセトニトリル0.30g(2.50mmol)を用い、標記化合物を0.21g(収率68.8%)得た。
m.p.:71〜75℃
IR(KBr錠剤)(cm-1):1716,1676,1323
1H−NMR(CDCl3)δ:3.47(3H,s),4.46(3H,s),5.01(2H,s)
【0047】
実施例3
(3−アリル−1,7−ジメチル−8−ニトロキサンチン(化合物3)の製造)実施例1と同様にして、1,7−ジメチル−8−ニトロキサンチン0.21g(0.93mmol)及びアリルブロミド160μL(1.85mmol)を用い、標記化合物を0.15g(収率60.6%)得た。
m.p.:95〜96℃
IR(KBr錠剤)(cm-1):1710,1666,1321
1H−NMR(CDCl3)δ:3.44(3H,s),4.44(3H,s),4.73(2H,d=5.9Hz),5.26(1H,d,J=10.5Hz),5.33(1H,d,J=17.3Hz),5.86〜6.02(1H,m)
【0048】
実施例4
(3−アセトニル−1,7−ジメチル−8−ニトロキサンチン(化合物4)の製造)
実施例1と同様にして、1,7−ジメチル−8−ニトロキサンチン0.29g(1.29mmol)及びブロモアセトン0.39g(2.56mmol)を用い、標記化合物を0.24g(収率66.3%)得た。
m.p.:124〜128℃
IR(KBr錠剤)(cm-1):1735,1716,1685,1542,1340
1H−NMR(CDCl3)δ:2.32(3H,s),3.43(3H,s),4.20(2H,q,J=7.2Hz),4.44(3H,s)、4.93(2H,s)
【0049】
実施例5
(1,7−ジメチル−3−メトキシメチル−8−ニトロキサンチン(化合物5)の製造)
実施例1と同様にして、1,7−ジメチル−8−ニトロキサンチン0.23g(1.02mmol)及びクロロメチルメチルエーテル0.16g(1.99mmol)を用い、標記化合物を0.16g(収率58.2%)得た。
m.p.:119〜122℃
IR(KBr錠剤)(cm-1):1717,1673,1322
1H−NMR(CDCl3)δ:3.45(3H,s),3.49(3H,s),4.44(3H,s),5.54(2H,s)
【0050】
実施例6
(1,7−ジメチル−8−ニトロ−3−プロパルギルキサンチン(化合物6)の製造)
実施例1と同様にして、1,7−ジメチル−8−ニトロキサンチン0.23g(1.02mmol)及びプロパルギルブロミド1.0mL(11.2mmol)を用い、標記化合物を0.16g(収率59.5%)得た。
m.p.:141〜142℃
IR(KBr錠剤)(cm-1):3269,1716,1673
1H−NMR(CDCl3)δ:2.28(1H,t,J=2.4Hz),3.46(3H,s),4.45(3H,s),4.89(2H,d,J=2.4Hz)
【0051】
実施例7
(1−アリル−3,7−ジメチル−8−ニトロキサンチン(化合物7)の製造)実施例1と同様にして、3,7−ジメチル−8−ニトロキサンチン0.20g(0.89mmol)及びアリルブロミド0.12g(0.99mmol)を用い、標記化合物を0.21g(収率87.5%)得た。
m.p.:134〜135℃
IR(KBr錠剤)(cm-1):1710,1675,1594,1541,1330
1H−NMR(CDCl3)δ:3.61(3H,s),4.44(3H,s),4.61〜4.68(2H,m),5.20〜5.36(2H,m),5.82〜5.99(1H,m)
【0052】
実施例8
(3,7−ジメチル−8−ニトロ−1−プロパルギルキサンチン(化合物8)の製造)
実施例1と同様にして、3,7−ジメチル−8−ニトロキサンチン0.20g(0.89mmol)及びプロパルギルブロミド0.12g(1.01mmol)を用い、標記化合物を0.19g(収率82.6%)得た。
m.p.:171〜172℃
IR(KBr錠剤)(cm-1):3281,1699,1666,1606,1530,1322
1H−NMR(CDCl3)δ:2.22(1H,t,J=2.4Hz),3.63(3H,s),4.45(3H,s),4.81(2H,d,J=2.4Hz)
【0053】
実施例9
(1−アセトニル−3,7−ジメチル−8−ニトロキサンチン(化合物9)の製造)
実施例1と同様にして、3,7−ジメチル−8−ニトロキサンチン0.20g(0.89mmol)及びブロモアセトン0.13g(0.95mmol)を用い、標記化合物を0.18g(収率72.0%)得た。
m.p.:166.5〜167.5℃
IR(KBr錠剤)(cm-1):1737,1710,1669,1589,1541,1500,1343,1330
1H−NMR(CDCl3)δ:2.30(3H,s),3.60(3H,s),4.41(3H,s),4.86(2H,s)
【0054】
実施例10
(3,7−ジメチル−8−ニトロ−1−[3−[(テトラヒドロピラン−2−イル)オキシ]プロピル]キサンチン(化合物10)の製造)
実施例1と同様にして、3,7−ジメチル−8−ニトロキサンチン0.29g(1.3mmol)及び1−ブロモ−3−[(テトラヒドロピラン−2−イル)オキシ]プロパン(参考例10)0.65g(2.9mmol)を用い、標記化合物を0.43g(収率90.9%)得た。
1H−NMR(CDCl3)δ:1.45〜1.83(6H,m),1.90〜2.04(2H,m),3.45〜3.53(2H,m),3.60(3H,s),3.80〜3.88(2H,m),4.14〜4.21(2H,m),4.44(3H,s),4.58(1H,t,J=4.1Hz)
【0055】
実施例11
(1,7−ジメチル−3−(モルホリノカルボニルメチル)−8−ニトロキサンチン(化合物11)の製造)
実施例1と同様にして、1,7−ジメチル−8−ニトロキサンチン0.30g(1.33mmol)及び4−(ブロモアセチル)モルホリン(参考例8)0.57g(2.74mmol)を用い、標記化合物を0.14g(収率29.8%)得た。m.p.:239〜242℃
IR(KBr錠剤)(cm-1):1714,1680,1539,1330
1H−NMR(CDCl3)δ:3.44(3H,s),3.51〜3.68(4H,m),3.70〜3.85(4H,m),4.43(3H,s),4.93(2H,s)
【0056】
実施例12
(1,7−ジメチル−8−ニトロ−3−[2−[(テトラヒドロピラン−2−イル)オキシ]エチル]キサンチン(化合物12)の製造)
実施例1と同様にして、1,7−ジメチル−8−ニトロキサンチン0.44g(1.95mmol)及び1−ブロモ−2−[(テトラヒドロピラン−2−イル)オキシ]エタン(参考例9)0.86g(4.11mmol)を用い、標記化合物を0.24g(収率34.8%)得た。
【0057】
実施例13
(1−(2−クロロエチル)−3,7−ジメチル−8−ニトロキサンチン(化合物13)の製造)
実施例1と同様にして、3,7−ジメチル−8−ニトロキサンチン0.32g(1.42mmol)及び1−ブロモ−2−クロロエタン0.64g(4.46mmol)を用い、標記化合物を0.32g(収率31.4%)得た。
m.p.:124.5〜125.5℃
IR(KBr錠剤)(cm-1):1709,1660,1560,1541,1321
1H−NMR(CDCl3)δ:3.61(3H,s),3.79(2H,t,J=6.5Hz),4.16(2H,t,J=7.0Hz),4.44(3H,s)
【0058】
実施例14
(1,7−ジメチル−3−[2−(1,3−ジオキソラン−2−イル)エチル]−8−ニトロキサンチン(化合物14)の製造)
実施例1と同様にして、1,7−ジメチル−8−ニトロキサンチン0.26g(1.15mmol)及び2−(2−ブロモエチル)−1,3−ジオキソラン0.44g(2.43mmol)を用い、標記化合物を0.21g(収率55.9%)得た。
m.p.:145〜146℃
IR(KBr錠剤)(cm-1):1713,1675,1538,1320
1H−NMR(CDCl3)δ:2.15〜2.22(2H,m),3.43(3H,s),3.78〜3.98(4H,m),4.30(3H,t,J=7.0Hz),4.44(3H,s),5.01(1H,t)
【0059】
実施例15
(3−(3,3−ジメトキシプロピル)−1,7−ジメチル−8−ニトロキサンチン(化合物15)の製造)
実施例1と同様にして、1,7−ジメチル−8−ニトロキサンチン0.29g(1.29mmol)及び1−ブロモ−3,3−ジメトキシプロパン0.54g(2.95mmol)を用い、標記化合物を0.17g(収率40.3%)得た。
1H−NMR(CDCl3)δ:2.07(2H,dd,J=6.8Hz,J=13.6Hz),3.31(6H,s),3.44(3H,s),4.23(3H,t,J=6.5Hz),4.44(3H,s),4.56(1H,t,J=5.9Hz)
【0060】
実施例16
(3−[2−(t−ブトキシカルボニルアミノ)エチル]−1,7−ジメチル−8−ニトロキサンチン(化合物16)の製造)
実施例1と同様にして、1,7−ジメチル−8−ニトロキサンチン0.55g(2.44mmol)及び2−(t−ブトキシカルボニルアミノ)エチルブロミド1.13g(5.04mmol)を用い、標記化合物を0.46g(収率51.1%)得た。
m.p.:141〜144℃
IR(KBr錠剤)(cm-1):3320,1714,1678,1553,1537,1319
1H−NMR(CDCl3)δ:1.32(9H,s),3.44(3H,s),3.45〜3.58(2H,m),4.28(2H,t),4.43(3H,s),5.82(1H,bs)
【0061】
実施例17
(1,7−ジメチル−8−ニトロ−3−[3−[(テトラヒドロピラン−2−イル)オキシ]プロピル]キサンチン(化合物17)の製造)
実施例1と同様にして、1,7−ジメチル−8−ニトロキサンチン0.40g(1.78mmol)及び1−ブロモ−3−[(テトラヒドロピラン−2−イル)オキシ]プロパン(参考例10)0.83g(3.72mmol)を用い、標記化合物を0.52g(収率79.7%)得た。
【0062】
実施例18
(3−(2−クロロエチル)−1,7−ジメチル−8−ニトロキサンチン(化合物18)の製造)
実施例1と同様にして、1,7−ジメチル−8−ニトロキサンチン0.23g(1.02mmol)及び1−ブロモ−2−クロロエタン0.31g(2.16mmol)を用い、標記化合物を0.05g(収率17.0%)得た。
m.p.:164〜168℃
1H−NMR(CDCl3)δ:1.95〜2.15(2H,m),2.92(1H,t,J=7.0Hz),3.45(3H,s),3.56〜3.63(2H,m),4.30(2H,t,J=6.2Hz),4.45(3H,s)
【0063】
実施例19
(3−(アミノカルボニルメチル)−1,7−ジメチル−8−ニトロキサンチン(化合物19)の製造)
実施例1と同様にして、1,7−ジメチル−8−ニトロキサンチン0.25g(1.11mmol)及び2−ブロモアセトアミド0.31g(2.25mmol)を用い、標記化合物を0.14g(収率44.7%)得た。
m.p.:203〜205℃
IR(KBr錠剤)(cm-1):3382,1714,1673,1540,1342,1321
1H−NMR(CDCl3)δ:3.45(3H,s),4.44(3H,s),4.81(2H,s)
【0064】
実施例20
(3,7−ジメチル−1−(3−ヒドロキシプロピル)−8−ニトロキサンチン(化合物20)の製造)
3,7−ジメチル−8−ニトロ−1−[3−[(テトラヒドロピラン−2−イル)オキシ]プロピル]キサンチン(化合物10)0.56g(1.5mmol)をテトラヒドロフラン5mL/メタノール15mLに溶解し、その中にp−トルエンスルホン酸・一水和物0.11gを加え、室温にて撹拌した。2時間45分後、反応液を減圧下にて濃縮した。残渣をシリカゲルカラムクロマトグラフィー(n−ヘキサン:酢酸エチル=2:3→1:2)に付し、副生成物として、1−(3−アセトキシプロピル)−3,7−ジメチル−8−ニトロキサンチン(化合物21)のフラクションを濃縮し、エタノールより再結晶を行った(収量0.15g、収率30.3%)。別フラクションを濃縮後、再度、シリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=50:1)に付し、目的のフラクションを濃縮した。エタノールを加え、結晶を濾取し、標記化合物(化合物20)を0.10g(収率23.2%)得た。
【0065】
・3,7−ジメチル−1−(3−ヒドロキシプロピル)−8−ニトロキサンチン(化合物20)
m.p.:91.9〜93.0℃
IR(KBr錠剤)(cm-1):3437,1719,1678,1540,1329
1H−NMR(CDCl3)δ:1.90〜1.96(2H,m),2.94(1H,s),3.58〜3.61(2H,s),3.62(3H,s),4.20(2H,t,J=5.9Hz),4.45(3H,s)
【0066】
・1−(3−アセトキシプロピル)−3,7−ジメチル−8−ニトロキサンチン(化合物21)
m.p.:103.0〜105.5℃
IR(KBr錠剤)(cm-1):1733,1709,1671,1541,1335
1H−NMR(CDCl3)δ:2.00〜2.06(2H,m),2.07(3H,s),3.60(3H,s),4.12〜4.18(4H,m),4.44(3H,s)
【0067】
実施例21
(1,7−ジメチル−3−(2−ヒドロキシエチル)−8−ニトロキサンチン(化合物22)の製造)
1,7−ジメチル−8−ニトロ−3−[2−[(テトラヒドロピラン−2−イル)オキシ]エチル]キサンチン(化合物12)0.28g(0.79mmol)及びp−トルエンスルホン酸・一水和物を用い、実施例20と同様にして、標記化合物を0.15g(収率70.3%)得た。
m.p.:115〜116℃
IR(KBr錠剤)(cm-1):1713,1661,1540,1320
1H−NMR(CDCl3)δ:2.16(1H,t,J=6.5Hz),3.45(3H,s),3.62(3H,s),3.97〜4.03(2H,m),4.36(2H,t,J=5.4Hz),4.45(3H,s)
【0068】
実施例22
(1,7−ジメチル−3−(3−ヒドロキシプロピル)−8−ニトロキサンチン(化合物23)の製造)
1,7−ジメチル−8−ニトロ−3−[3−[(テトラヒドロピラン−2−イル)オキシ]プロピル]キサンチン(化合物17)0.52g(1.42mmol)及びp−トルエンスルホン酸・一水和物を用い、実施例20と同様にして、標記化合物を0.33g(収率82.3%)得た。
m.p.:114〜116℃
IR(KBr錠剤)(cm-1):3467,1711,1666,1595,1540,1319
1H−NMR(CDCl3)δ:3.45(3H,s),3.90(2H,t,J=5.9Hz),4.45(3H,s),4.49(2H,t,J=5.9Hz)
【0069】
実施例23
(1,7−ジメチル−3−(2−ホルミルエチル)−8−ニトロキサンチン(化合物24)の製造)
3−(3,3−ジメトキシプロピル)−1,7−ジメチル−8−ニトロキサンチン(化合物15)0.17g(0.52mmol)を80%酢酸水溶液10mLに溶解し、室温にて撹拌した。40時間後、反応液にトルエンを加え、減圧下にて濃縮した。残渣をシリカゲルカラムクロマトグラフィー(n−ヘキサン:酢酸エチル=1:1)に付し、目的フラクションを濃縮して、標記化合物を0.11g(収率74.8%)得た。
m.p.:油状物質
IR(KBr錠剤)(cm-1):1712,1668,1598,1557,1541,1323
1H−NMR(CDCl3)δ:3.96(3H,t),4.42(3H,s),4.44(3H,s),4.48(2H,t,J=6.8Hz),9.84(1H,s)
【0070】
実施例24
(3−[2−(N,N−ジエチルアミノ)エチル]−1,7−ジメチル−8−ニトロキサンチン(化合物25)の製造)
3−[2−(t−ブトキシカルボニルアミノ)エチル]−1,7−ジメチル−8−ニトロキサンチン(化合物16)0.21g(0.57mmol)をジクロロメタン10mLに溶解し、室温にてトリフルオロ酢酸2.5mLを加え、撹拌した。15分後、反応液を減圧下にて濃縮し、3−(2−アミノエチル)−1,7−ジメチル−8−ニトロキサンチンのトリフルオロ酢酸塩を得た。残渣に炭酸カリウム0.24g(1.74mmol)を加え、乾燥ジメチルホルムアミド10mL及びヨードエタン0.34g(2.18mmol)を添加後、油浴を80℃で加熱撹拌した。38分後にヨードエタン100μLを加え、更に10分間撹拌した。反応液を酢酸エチル(60mL)で希釈し、飽和炭酸水素ナトリウム水(30mL)、飽和食塩水(30mL×5)にて洗浄した。有機層を無水硫酸ナトリウムで乾燥後、濾過し、濾液を減圧下濃縮した。残渣をシリカゲルカラムクロマトグラフィー(n−ヘキサン:酢酸エチル:1:2)に付し、目的フラクションを濃縮して、標記化合物を0.09g(収率48.7%)得た。
m.p.:86〜89℃
IR(KBr錠剤)(cm-1):1711,1671,1596,1555,1539,1342,1318
1H−NMR(CDCl3)δ:0.97(6H,t,J=6.8Hz),2.57(4H,q,J=6.5Hz),2.79(2H,t,J=7.0Hz),3.43(3H,s),4.20(2H,t,J=7.0Hz),4.43(3H,s)
【0071】
実施例25
(1,3−ジ−ヒドロキシプロピル−7−メチル−8−ニトロキサンチン(化合物26)の製造)
1−ブロモ−3−[(テトラヒドロピラン−2−イル)オキシ]プロパン(参考例10)1.32g(5.92mmol)、8−ニトロキサンチン0.50g(2.37mmol)及び炭酸カリウム0.82g(5.93mmol)にDMF50mLを加え、室温下撹拌反応させた。24時間後、原料の消失が認められたので反応を止め、赤褐色不溶物を吸引濾別した。濾液をエバポレートし、残渣をシリカゲルカラムクラマトグラフィー(溶出液;n−ヘキサン:酢酸エチル=10:1)で精製し、黄色油状物0.44g(37.5%)を得た。生成した油状物0.44g(0.89mmol)をメタノール100mLに溶解し、触媒量のp−トルエンスルホン酸・一水和物を添加し、室温下撹拌反応させた。一夜反応後、原料の消失を認めたのでエバポレートした。残渣をシリカゲルカラムクラマトグラフィー(溶出液;クロロホルム:メタノール=25:1)で精製し、標記化合物を黄色固体として0.18g(収率61.9%)得た。
m.p.:92〜94℃
IR(KBr錠剤)(cm-1):1701,1670,1595,1319,1271
1H−NMR(CDCl3)δ:1.88(2H,t),2.01(2H,t),3.54〜3.64(2H,m),4.18(2H,t),4.25(2H,t),4.51(3H,s)
【0072】
実施例26
(1,3−ジ−(N−エチル−N−ベンジルアミノエチル)−7−メチル−8−ニトロキサンチン(化合物27)の製造)
N−エチルベンジルアミン13.52g(0.10mol)、2−ブロモエタノール12.50g(0.10mol)及び炭酸カリウム13.82g(0.10mol)にDMF100mLを加え、室温下撹拌反応させた。結晶部を吸引濾別し、濾液をエバポレートしてDMFを留去した。残渣に酢酸エチル400mLを加えて抽出し、イオン交換水で洗浄した。無水硫酸ナトリウムで乾燥後、有機層をエバポレートして、黄褐色油状物17.11g(95.5%)を得た。このもの17.11g(0.095mol)をジクロロエタン200mLに溶解し、トリフェニルフォスフィン27.54g(0.105mol)を加え、加熱して溶解させた。氷冷下、四臭化炭素34.82g(0.105mol)を少量づづ加えて反応させた。3昼夜反応後、析出した結晶を吸引濾過した。結晶をクロロホルムで洗浄し、濾液と洗液を合わせイオン交換水で洗浄した。無水硫酸ナトリウムで乾燥後、エバポレートして残渣をシリカゲルカラムクラマトグラフィー(溶出液;クロロホルム:メタノール=19:1)で精製し、褐色油状物としてN−エチル−N−ベンジルアミノエチルブロミド4.89g(21.2%)を得た。
N−エチル−N−ベンジルアミノエチルブロミド1.15g(4.75mmol)、7−メチル−8−ニトロキサンチン0.5g(2.37mmol)及び炭酸カリウム0.65g(4.70mmol)をDMF100mLに分散し、室温下撹拌反応させた。5日間反応させた後、不溶物を濾別し、酢酸エチル500mLを加えて希釈した。水洗後、有機層を無水硫酸ナトリウムで乾燥し、エバポレートした。残渣をシリカゲルカラムクラマトグラフィー(溶出液;クロロホルム)で分離した。不純物の混入が認められたので、プレパラティブTLC(展開溶媒;クロロホルム:メタノール=19:1)で精製し、標記化合物を黄褐色油状物として0.15g(収率11.9%)得た。
IR(KBr錠剤)(cm-1):2968,1670,1600,1319,734
1H−NMR(CDCl3)δ:0.98〜1.12(6H,m),2.58〜2.66(4H,m),2.69〜2.76(4H,m),3.44(2H,s),3.60(2H,s),4.11〜4.06(4H,m),4.30(3H,s),6.97〜7.38(10H,m)
【0073】
実施例27
(1,3−ジアリル−7−メチル−8−ニトロキサンチン(化合物28)の製造)
7−メチル−8−ニトロキサンチン0.300g(1.42mmol)、アリルブロミド0.516g(4.27mmol)及び炭酸カリウム0.393g(2.84mmol)にDMF20mLを加え、室温下一夜撹拌反応させた。不溶物を濾別し、DMFをエバポレートで留去した。残渣をシリカゲルカラムクラマトグラフィー(溶出液;n−ヘキサン:酢酸エチル=9:1→1:1)で分離精製し、標記化合物を黄色結晶として0.36g(収率87.0%)得た。
m.p.:87〜89℃
IR(KBr錠剤)(cm-1):1715,1676,1322,845,7681H−NMR(CDCl3)δ:4.35(3H,s),4.62(2H,d),4.62(2H,d),5.10〜5.25(4H,m),5.73〜5.93(2H,m)
【0074】
実施例28
(1,3−ジプレニル−7−メチル−8−ニトロキサンチン(化合物29)の製造)
7−メチル−8−ニトロキサンチン0.30g(1.42mmol)、プレニルブロミド0.85g(5.70mmol)及び炭酸カリウム0.39g(2.84mmol)にDMF20mLを加え、3時間室温下、撹拌反応させた。不溶物を濾別し、DMFをエバポレートで留去した。残渣に酢酸エチル300mLを加えて希釈し、水洗した。有機層を分離し、無水硫酸ナトリウムで乾燥後、エバポレートし、残渣に2−プロパノールを加え、冷却して結晶化させた。標記化合物を淡黄色結晶として0.45g(収率92.3%)得た。
m.p.:98〜101℃
IR(KBr錠剤)(cm-1):2973,1662,1592,1314,765
1H−NMR(CDCl3)δ:1.72(6H,s),1.84(3H,s),1.87(3H,s),4.42(3H,s),4.62(2H,d),4.69(2H,d),5.25(1H,t),5.30(1H,t)
【0075】
実施例29
(1,3−ジ−プロパルギル−7−メチル−8−ニトロキサンチン(化合物30)の製造)
7−メチル−8−ニトロキサンチン0.300g(1.42mmol)、プロパルギルブロミド0.507g(4.26mmol)及び炭酸カリウム0.393g(2.84mmol)にDMF20mLを加え、室温下撹拌反応させた。一夜反応後、不溶物を濾別し、DMFをエバポレートした。残渣をシリカゲルカラムクラマトグラフィー(溶出液;n−ヘキサン:酢酸エチル=9:1→1:1)で分離精製し、標記化合物を黄色結晶として0.26g(収率47.3%)得た。
m.p.:59〜60.5℃
IR(KBr錠剤)(cm-1):3283,1718,1676,1596,767
1H−NMR(CDCl3)δ:2.23(1H,t),2.30(1H,t),4.45(3H,s),4.80(2H,d),4.90(2H,d)
【0076】
実施例30
(1,3−ジ−クロロエチル−7−メチル−8−ニトロキサンチン(化合物31)の製造)
7−メチル−8−ニトロキサンチン1.00g(4.74mmol)、1−ブロモ−2−クロロエタン2.72g(18.97mmol)及び炭酸カリウム1.31g(9.48mmol)にDMF40mLを加え、室温下4日間、撹拌反応させた。不溶物を吸引濾別し、濾液をエバポレートし、DMFを留去した。酢酸エチル500mLを加えて希釈し、水洗した。有機層を分離し、無水硫酸ナトリウムで乾燥後、エバポレートした。残渣をシリカゲルカラムクラマトグラフィー(溶出液;酢酸エチル:n−ヘキサン=4:1)で精製して、標記化合物を褐色油状物として0.18g(収率11.3%)得た。
IR(KBr錠剤)(cm-1):1674,1599,1490,1322,759
1H−NMR(CDCl3)δ:3.80(2H,t),3.90(2H,t),4.45(2H,t),4.45(2H,t),4.48(3H,s),4.51(2H,t)
【0077】
実施例31
(1,3−ジアセトニル−7−メチル−8−ニトロキサンチン(化合物32)の製造)
7−メチル−8−ニトロキサンチン0.50g(2.37mmol)、ブロモアセトン1.62g(11.83mmol)及び炭酸カリウム0.65g(4.70mmol)にDMF30mLを加え、一夜室温下、撹拌反応させた。反応を止め、エバポレートしてDMFを留去した。残渣を酢酸エチル300mLで希釈し、水洗した。有機層を分離し、無水硫酸ナトリウムで乾燥後、エバポレートした。残渣をシリカゲルカラムクラマトグラフィー(溶出液;酢酸エチル:n−ヘキサン=1:1)で精製し、標記化合物を黄色結晶として0.64g(収率82.3%)得た。
m.p.:180〜182℃
IR(KBr錠剤)(cm-1):1733,1716,1685,1538,1177
1H−NMR(CDCl3)δ:2.28(3H,s),2.30(3H,s),4.44(3H,s),4.84(2H,s),4.91(2H,s)
【0078】
実施例32
(1,3−ジ−シアノメチル−7−メチル−8−ニトロキサンチン(化合物33)の製造)
7−メチル−8−ニトロキサンチン0.50g(2.37mmol)、ブロモアセトニトリル1.14g(9.50mmol)及び炭酸カリウム0.65g(4.70mmol)にDMF100mLを加え、一夜室温下、撹拌反応させた。不溶物を吸引炉別し、エバポレーターでDMFを留去した。残渣をシリカゲルカラムクラマトグラフィー(溶出液;クロロホルム)で精製し、標記化合物を淡黄色結晶として0.46g(収率67.2%)得た。
m.p.:95〜97℃
IR(KBr錠剤)(cm-1):1727,1686,1542,1325,847
1H−NMR(CDCl3)δ:4.46(3H,s),4.93(2H,s),5.04(2H,s)
【0079】
実施例33
(1,3−ジ(p−ブロモフェナシル)−7−メチルーニトロキサンチン(化合物34)の製造)
7−メチル−8−ニトロキサンチン0.30g(1.42mmol)、4−ブロモフェナシルブロミド1.81g(6.51mmol)及び炭酸カリウム0.39g(2.82mmol)にDMF20mLを加え、室温下10分撹拌反応させた。酢酸エチル500mLを加えて希釈し、水洗した。有機層を分離し、無水硫酸ナトリウムで乾燥後、エバポレートした。残渣をシリカゲルカラムクラマトグラフィー(溶出液;n−ヘキサン:酢酸エチル=10:0→8:2)で精製し、標記化合物を淡黄色結晶として0.60g(収率69.7%)得た。
m.p.:223〜225℃
IR(KBr錠剤)(cm-1):1666,1585,1327,813,5231H−NMR(CDCl3)δ:4.43(3H,s),5.44(2H,s),5.52(2H,s),7.67(4H,d),7.86(4H,d)
【0080】
実施例34
(3−(3−ピリジルメチル)−7−メチル−8−ニトロキサンチン(化合物35)の製造)
7−メチル−8−ニトロキサンチン0.50g(2.37mmol)、3−ブロモメチルピリジン・臭化水素塩1.50g(5.93mmol)及び炭酸カリウム1.47g(10.69mmol)にDMF20mLを加え、室温下一夜撹拌反応させた。酢酸エチル300mLを加え、飽和重曹水、イオン交換水で洗浄した。有機層を分離し、無水硫酸ナトリウムで乾燥後、エバポレートした。残渣にメタノール20mLを加えて加熱溶解し、不溶物を濾別し、放冷した。析出した結晶を風乾し、標記化合物を淡黄色結晶として0.13g(収率18.2%)得た。
m.p.:219〜221℃
IR(KBr錠剤)(cm-1):1698,1540,1320,1194,849
1H−NMR(DMSO−d6)δ:4.23(3H,s),5.14(2H,s),7.34〜7.39(1H,m),7.74(1H,t),8.49(1H,dd),8.60(1H,d),11.8(1H,s)
【0081】
実施例35
(1,3−ジ(2−ヒドロキシ−3−メトキシプロピル)−7−メチル−8−ニトロキサンチン(化合物36)の製造)
7−メチル−8−ニトロキサンチン1.00g(4.74mmol)を2,3−エポキシプロピルエチルエーテル100mLに分散させ、加熱撹拌して加熱還流した。15時間で黄褐色透明溶液になった。室温に冷却後、エバポレートした。クロロホルムを加え、不溶物を濾別した。濾液をエバポレートし、残渣をメタノールに溶解し、プレパラティブTLC(展開溶媒;クロロホルム:メタノール=19:1)で分取した。366nmの吸収を有するスポットのうち、Rf値の高い成分が目的物質で、黄褐色油状物として0.12g(収率6.5%)得た。
IR(KBr錠剤)(cm-1):3392,1669,1323,1121,846
1H−NMR(CDCl3)δ:3.40〜3.67(4H,m),3.42(6H,s),4.04〜4.16(4H,m),4.28〜4.36(1H,m),4.42(3H,s)
【0082】
実施例36
(3−(2−ヒドロキシ−3−メトキシプロピル)−7−メチル−8−ニトロキサンチン(化合物37)の製造)
実施例35の反応生成物のプレパラティブTLCで、Rf値の低い成分を、淡黄色結晶として0.36g(収率25.4%)得、3位モノ置換体であることを機器分析より確認した。
m.p.:150〜152℃
IR(KBr錠剤)(cm-1):3505,1692,1323,1099,851
1H−NMR(CDCl3)δ:3.36〜3.74(2H,m),3.40(3H,s),4.03〜4.33(3H,m),4.37(3H,s)
【0083】
試験例1(低酸素性細胞放射線増感効果(in vitro))
実施例で得られた本発明化合物について、マウス偏平上皮癌細胞SCCVIIを腫瘍細胞として用い、放射線増感効果を検討した。すなわち、最終濃度が0.005〜0.1mMになるように本発明化合物を加えた、5×105個/mL濃度のSCCVII細胞のMEM懸濁液を、5%CO2含有のN2ガス通気して、低酸素性細胞懸濁液を得た。これに対してX線照射を行ない、コロニー形成法により、放射線増感率を算出した。コロニー法では放射線量−生存率曲線を求め、この曲線より本発明化合物無添加時の低酸素性細胞の生存率を1%下げさせる放射線量を、本発明化合物添加時の低酸素性細胞の生存率を1%下げさせる放射線量で除した値を求め、放射線増感率とした。
その結果、表1に示すように、本発明化合物は著しく高い増感率を示した。N.D.は、効果が強すぎたため、コロニーがカウントできず、具体的なER値を示すことができない、すなわち、放射線増感効果が強力であることを示している。この結果より、本発明の8−ニトロキサンチン誘導体(1)は、低酸素状態における放射線の効果を増強することがわかる。
【0084】
【表1】
Figure 0004328873
【0085】
試験例2
低酸素性細胞放射線増感効果(in vivo):
実施例で得られた本発明化合物について、マウス偏平上皮癌細胞SCCVIIを移植したC3Hマウスを用い、腫瘍増殖抑制効果を検討した。本発明化合物を0.1N塩酸又は界面活性剤で懸濁し、静脈内投与により10〜50mg/kgの投与量を投与し、投与後20分でX線を30Gy照射した。その後、定期的に腫瘍径を測定して腫瘍増殖抑制効果を観察した。溶媒対照群として生理食塩液又は0.1N塩酸を投与した群を用いた。その結果を表2に示す。
本発明化合物は、溶媒対照群と比較して、放射線を照射したときに有意に腫瘍増殖抑制効果が認められた。表2より化合物25、31は溶媒対照群と比較し、放射線を照射すると腫瘍体積が初期値の2倍を超える日が延長し、腫瘍増殖を抑制することが明らかである。
【0086】
【表2】
Figure 0004328873
【0087】
試験例3(急性毒性)
雌性C3Hマウスを用いて急性毒性試験を行なった。被験化合物は界面活性剤に溶解又は分散させ、3−[2−(N,N−ジエチルアミノ)エチル]−1,7−ジメチル−8−ニトロキサンチン(化合物25)、1,3−ジ−クロロエチル−7−メチル−8−ニトロキサンチン(化合物31)を10〜100mg/kgの濃度で静脈内投与し、一般症状を観察した。
その結果、これらの化合物を投与したマウスは、行動学的に全く変化が無く、また一般症状においても変化なく、死亡例も認められなかった。よって、一般式(1)で表される8−ニトロキサンチンは、安全性の高い化合物であることが確認された。
【0088】
【発明の効果】
本発明の8−ニトロキサンチン誘導体(1)は、優れた低酸素性細胞放射線増感効果を有し、しかも安全性が高いものであり、低酸素性細胞放射線増感剤等の医薬として有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an 8-nitroxanthine derivative useful as a radiosensitizer in cancer radiotherapy and a pharmaceutical comprising the same as an active ingredient.
[0002]
[Prior art]
The target molecule in radiation therapy is DNA, and these undergo various injuries upon irradiation and generate radicals. Under aerobic conditions, further oxygen molecules are fixed at the site of injury, making DNA repair impossible, resulting in cell damage. In other words, oxygen is necessary for radiation therapy. However, it is known that hypoxic cells (hypoxic cells) are present in malignant tumors. Under anaerobic conditions, such an oxygen effect cannot be expected, which hinders radiotherapy. It has become.
[0003]
For the treatment of such hypoxic cells, nitroimidazole compounds represented by misonidazole have the property of reoxygenating such hypoxic cells. Attempts have been made to deal with. However, the sensitizing effect of the nitroimidazole compound is relatively low, and it may not be useful for treatment in a non-toxic range. Against this background, the development of next-generation radiosensitizers that have a different mother nucleus from nitroimidazole is desired.
[0004]
On the other hand, the 8-nitroxanthine derivatives represented by the general formula (1) to be described later are all novel compounds not described in the literature, and therefore these compounds may be useful for reoxygenation of hypoxic cells. Neither is known at all, nor are pharmaceuticals containing these compounds as active ingredients.
[0005]
[Problems to be solved by the invention]
Therefore, an object of the present invention is to provide an excellent hypoxic cell radiosensitizer having a high radiosensitizing effect and high safety.
[0006]
[Means for Solving the Problems]
In view of such a situation, the present inventors synthesized a large number of xanthine derivatives by adding various side chains to xanthine derivatives with reference to the fact that caffeine has a weak radiosensitization effect, and reduced hypoxia. As a result of screening using the sensitizing cell radiosensitization effect as an index, it was found that the 8-nitroxanthine derivative represented by the following general formula (1) has an excellent hypoxic cell radiosensitization effect. It came to complete.
[0007]
That is, the present invention provides an 8-nitroxanthine derivative represented by the following general formula (1).
[0008]
[Chemical formula 2]
Figure 0004328873
[0009]
(Wherein R 1 And R 2 Each independently represents a hydrogen atom or an optionally substituted alkyl group, alkenyl group or alkynyl group having 1 to 6 carbon atoms, R 1 And R 2 At least one of them is an alkyl group having 1 to 6 carbon atoms having a substituent, or an alkenyl group or alkynyl group having 1 to 6 carbon atoms which may have a substituent)
[0010]
Moreover, this invention provides the pharmaceutical which uses the said 8-nitroxanthine derivative (1) as an active ingredient.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The 8-nitroxanthine derivative of the present invention is represented by the above general formula (1), wherein R 1 And R 2 In the alkyl group, alkenyl group or alkynyl group having 1 to 6 carbon atoms which may have a substituent represented by the above formula, the basic hydrocarbon group may have a linear, branched or cyclic structure, for example, methyl Group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, isobutyl group, ethenyl group, allyl group, prenyl group, propargyl group and the like. In particular, an alkyl group having 1 to 4 carbon atoms, an alkenyl group, and an alkynyl group are preferable.
[0012]
In addition, examples of substituents that can be substituted with hydrogen atoms of these basic hydrocarbon groups include hydroxy groups, halogen atoms, cyano groups, acyl groups, alkoxy groups, formyl groups, alkylsulfonyloxy groups, acyloxy groups, 1,3- Dioxolyl group, tetrahydropyranyloxy group, amide group which may have a substituent selected from the substituents shown in the following (A), amino group which may have a substituent, substitution shown in the following (A) Examples thereof include a pyridyl group which may have a substituent selected from a group, a benzoyl group, an alkenyl group and an alkynyl group which may have a substituent. It is preferable that 1 to 3 substituents are substituted per basic carbon hydrogen group.
[0013]
(A) Morpholino group, piperazinyl group, pyrazoyl group, isoindolyl group, indolyl group, indolinyl group, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, Isobutyl group, n-pentyl group, isopentyl group, tert-amyl group, 2-pentyl group, 3-pentyl group, benzyl group, butoxycarbonyl group, bromomethyl group, ethoxycarbonyl group, halogen atom
[0014]
R in general formula (1) 1 And R 2 As for, any one is a C1-C6 alkyl group (especially methyl group), the other C1-C6 alkyl group which has a substituent, and C1-C6 which may have a substituent Of these, an alkenyl group or an alkynyl group is preferred.
[0015]
Preferable specific examples of the 8-nitroxanthine derivative (1) of the present invention include 1-cyanomethyl-3,7-dimethyl-8-nitroxanthine (compound 1), 3-cyanomethyl-1,7-dimethyl-8-nitro. Xanthine (compound 2), 3-allyl-1,7-dimethyl-8-nitroxanthine (compound 3), 3-acetonyl-1,7-dimethyl-8-nitroxanthine (compound 4), 1,7-dimethyl- 3-methoxymethyl-8-nitroxanthine (compound 5), 1,7-dimethyl-8-nitro-3-propargylxanthine (compound 6), 1-allyl-3,7-dimethyl-8-nitroxanthine (compound 7) ), 3,7-dimethyl-8-nitro-1-propargylxanthine (compound 8), 1-acetonyl-3,7-dimethyl-8-nitroxanthine (Compound 9), 3,7-dimethyl-8-nitro-1- [3-[(tetrahydropyran-2-yl) oxy] propyl] xanthine (Compound 10), 1,7-dimethyl-3- (morpholinocarbonyl) Methyl) -8-nitroxanthine (compound 11), 1,7-dimethyl-8-nitro-3- [2-[(tetrahydropyran-2-yl) oxy] ethyl] xanthine (compound 12), 1- (2 -Chloroethyl) -3,7-dimethyl-8-nitroxanthine (compound 13), 1,7-dimethyl-3- [2- (1,3-dioxolan-2-yl) ethyl] -8-nitroxanthine (compound 14), 3- (3,3-dimethoxypropyl) -1,7-dimethyl-8-nitroxanthine (compound 15), 3- [2- (t-butoxycarbonylamino) ethyl -1,7-dimethyl-8-nitroxanthine (compound 16), 1,7-dimethyl-8-nitro-3- [3-[(tetrahydropyran-2-yl) oxy] propyl] xanthine (compound 17), 3- (2-chloroethyl) -1,7-dimethyl-8-nitroxanthine (compound 18), 3- (aminocarbonylmethyl) -1,7-dimethyl-8-nitroxanthine (compound 19), 3,7- Dimethyl-1- (3-hydroxypropyl) -8-nitroxanthine (compound 20), 1- (3-acetoxypropyl) -3,7-dimethyl-8-nitroxanthine (compound 21), 1,7-dimethyl- 3- (2-hydroxyethyl) -8-nitroxanthine (compound 22), 1,7-dimethyl-3- (3-hydroxypropyl) -8-nitroxanthine (Compound 23), 1,7-dimethyl-3- (2-formylethyl) -8-nitroxanthine (Compound 24), 3- [2- (N, N-diethylamino) ethyl] -1,7-dimethyl- 8-nitroxanthine (compound 25), 1,3-di-hydroxypropyl-7-methyl-8-nitroxanthine (compound 26), 1,3-di- (N-ethyl, N-benzylaminoethyl) -7 -Methyl-8-nitroxanthine (compound 27), 1,3-diallyl-7-methyl-8-nitroxanthine (compound 28), 1,3-di-prenyl-7-methyl-8-nitroxanthine (compound 29) ), 1,3-di-propargyl-7-methyl-8-nitroxanthine (compound 30), 1,3-di-chloroethyl-7-methyl-8-nitroxanthine (compound 31), 1 3-di-acetonyl-7-methyl-8-nitroxanthine (compound 32), 1,3-di-cyanomethyl-7-methyl-8-nitroxanthine (compound 33), 1,3-di- (p-bromophenacyl) ) -7-methyl-troxanthine (compound 34), 3- (3-pyridylmethyl) -7-methyl-8-nitroxanthine (compound 35), 1,3-di- (2-hydroxy-3-methoxypropyl) ) -7-methyl-8-nitroxanthine (compound 36), 3- (2-hydroxy-3-methoxypropyl) -7-methyl-8-nitroxanthine (compound 37).
[0016]
The salt of the 8-nitroxanthine derivative (1) of the present invention is not particularly limited as long as it is physiologically acceptable. For example, inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, hydrobromic acid, Acid addition salts of organic acids such as maleic acid, fumaric acid, malic acid, tartaric acid, citric acid, methanesulfonic acid, para-toluenesulfonic acid, trifluoromethanesulfonic acid; alkali metals such as sodium and potassium Salts: Alkaline earth metal salts such as calcium and magnesium.
[0017]
Further, the 8-nitroxanthine derivative (1) or a salt thereof of the present invention includes not only hydrates but also solvates such as sulfuric acid, acetone, THF, DMF and DMSO.
[0018]
The 8-nitroxanthine derivative (1) of the present invention can be produced, for example, by reacting 7-methyl-8-nitroxanthine with a corresponding halide in the presence of an alkali.
[0019]
For example, R in the general formula (1) 1 Or R 2 Any of which is a hydrogen atom, a compound obtained by substituting a hydrogen atom of a hydrocarbon group having a substituent with a halogen atom (hereinafter referred to as a halide) in an equivalent amount to 7-methyl-8-nitroxanthine and an alkali By reacting in the presence, a 1-position substitution product and a 3-position substitution product can be obtained. By separating these, each compound can be isolated. As an isolation method, a generally known method may be used, and examples thereof include column chromatography using silica gel, alumina or the like as a carrier. Also, a compound having two hydrocarbon groups having a substituent can be produced in the same manner using a halide equivalent to 2 equivalents or more. R 1 Or R 2 Is a methyl group and the other hydrocarbon group having a substituent is 3,7-dimethyl-8-nitroxanthine, 1,7-dimethyl-8-nitroxanthine or 7-methyl-8. -After synthesizing nitroxanthine, the corresponding halide may be reacted.
[0020]
Since the 8-nitroxanthine derivative (1) of the present invention thus obtained exhibits an excellent radiosensitization effect on hypoxic cells in radiotherapy, hypoxic cells in cancer radiotherapy It is very useful as a medicine such as a radiosensitizer.
[0021]
The medicament of the present invention comprises the 8-nitroxanthine derivative (1) as an active ingredient. The dose of the medicament of the present invention varies depending on the patient's age, body weight, sex, administration method, physical condition, symptoms, etc., but when it is used as a hypoxic cell radiosensitizer, as 8-nitroxanthine derivative (1) It is preferable to administer 10 to 10000 mg in the case of oral administration and 3 to 6000 mg in the case of parenteral administration once or several times per day per adult.
[0022]
At this time, the 8-nitroxanthine derivative (1) of the present invention can be processed into a commonly known pharmaceutical preparation for administration. In addition to oral administration, parenteral administration routes include rectal administration via suppositories, intraarterial administration, intravenous administration, intraportal administration, intraperitoneal administration, subcutaneous administration, direct intralesion administration, etc. Administration by infusion is preferred.
[0023]
In addition to the 8-nitroxanthine derivative (1) of the present invention, the medicament of the present invention can contain any components usually used in pharmaceutical compositions, and can be produced according to a conventional method. Examples of such optional components include binders, disintegrants, excipients, extenders, emulsifiers, dispersants, lubricants, coating agents, pH adjusters, isotonic agents, crystallization agents, and miso odorants. Preferred examples include colorants and stabilizers. In addition, other anticancer agents and the like, and antiemetics and blood cell growth factors that are often used in cancer chemotherapy can also be contained, which is advantageous for enhancing the effect.
The medicament of the present invention is suitably used for cancer treatment, prevention of cancer progression or metastasis.
[0024]
The medicament of the present invention can be made into various dosage forms such as tablets, granules, powders, capsules, suspensions, injections, suppositories and the like by conventional methods.
To produce a solid preparation, 8-nitroxanthine derivative (1) is mixed with an excipient, and if necessary, a binder, a disintegrant, a lubricant, a coloring agent, a flavoring agent, a bulking agent, a coating agent, and a sugar coating. It is preferable to add tablets and granules, powders, capsules, suppositories and the like by conventional methods after adding the agent. In the case of producing an injection, the 8-nitroxanthine derivative (1) is previously dissolved and dispersed, emulsified, etc. in an aqueous carrier such as physiological saline for injection, or dissolved at the time of use as a powder for injection. Just do it.
[0025]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but it is needless to say that the present invention is not limited to such examples.
[0026]
Reference example 1
(Production of 3,7-dimethyl-8-nitroxanthine)
Nitronium tetrafluoroborate (0.94 g, 7.08 mmol) was dissolved in 50 mL of acetic acid, and 1.33 g (7.38 mmol) of theobromine was added as a solid all at once, followed by a nitrogen atmosphere and an oil bath temperature of around 120 ° C. (Internal temperature 100-105 degreeC) It stirred for 3 hours. However, while monitoring by TLC, nitronium tetrafluoroborate was added as a solid at 50 minutes, 1 hour 20 minutes, 1 hour 45 minutes, 2 hours 10 minutes, 2 hours 40 minutes. After standing at room temperature overnight, the mixture was concentrated under reduced pressure, 50 g of ice was added to the residue, the precipitated solid was collected by filtration, washed with a small amount of water, and air-dried. 0.43 g (yield 25.9%) of the title compound was obtained as a yellow solid.
m. p. :> 280 ° C
IR (cm -1 ) (KBr tablet): 3164, 3043, 1700, 1683, 1541, 1326, 852, 577
1 H-NMR (DMSO-d 6 ) Δ: 3.36 (3H, s), 4.24 (3H, s), 11.7 (1H, s)
[0027]
Reference example 2
(Production of 3-methyl-8-nitroxanthine)
6.64 g (40.0 mmol) of 3-methylxanthine was suspended in 120 mL of acetic acid, and 65% nitric acid was added dropwise thereto while stirring at an internal temperature of about 100 ° C., followed by stirring for 30 minutes under the same conditions, and further 20 Heated to reflux with stirring for minutes. Thereafter, the mixture was cooled to room temperature, the insoluble solid was collected by filtration, washed several times with water, and air-dried. 4.05 g (yield 48.0%) of a yellow solid was obtained.
The filtrate and washings were combined and concentrated under reduced pressure, a small amount of water was added to the residue, the precipitated solid was collected by filtration, washed with a small amount of water, and air-dried. 0.51 g (yield 6.0%) of the title compound was obtained as a yellow solid.
1 H-NMR (DMSO-d 6 ) Δ: 3.37 (3H, s), 11.4 (1H, s)
[0028]
Reference example 3
(Production of 3,7-dimethyl-8-nitroxanthine)
To 5.8 g (27.5 mmol) of 3-methyl-8-nitroxanthine was added 290 mL of dry dimethylformamide, and with stirring at room temperature, 4.3 mL (30.9 mmol) of triethylamine was added all at once. After stirring for 15 minutes, 2.7 mL (43.4 mmol) of iodomethane was added all at once under the same conditions, followed by stirring for 39 hours under the same conditions. Thereafter, the reaction solution was concentrated under reduced pressure, 435 mL of water was added to the residue, the insoluble solid was collected by filtration, washed with water several times, and air-dried. 4.90 g (yield 79.2%) of the title compound was obtained as a yellow solid.
m. p. :> 280 ° C
IR (cm -1 ) (KBr tablet): 3164, 3043, 1700, 1683, 1541, 1326, 852, 577
1 H-NMR (DMSO-d 6 ) Δ: 0.36 (3H, s), 4.24 (3H, s), 11.7 (1H, s)
[0029]
Reference example 4
(Production of 1-methyl-8-nitroxanthine)
0.75 g (4.51 mmol) of 1-methylxanthine was suspended in 15 mL of acetic acid and stirred at 100 ° C. Thereto was added 0.7 mL of 65% nitric acid, followed by stirring for 30 minutes under the same conditions, followed by heating under reflux for 15 minutes. After allowing to cool, the resulting yellow crystals were collected by filtration and washed with methanol. The filtrate was concentrated under reduced pressure, and the precipitated crystals were collected by filtration. 0.6 g (yield 63%) of the title compound was obtained.
m. p. :> 280 ° C
IR (cm -1 ) (KBr tablet): 1723, 1670, 1560, 1359, 852, 1329
1 H-NMR (DMSO-d 6 ) Δ: 2.50 (3H, s), 3.20 (3H, s), 12.0 (1H, s)
[0030]
Reference Example 5
(Production of 1,7-dimethyl-8 nitroxanthine)
0.2 g (0.95 mmol) of 1-methyl-8-nitroxanthine is suspended in 10 mL of DMF, 0.1 g (0.99 mmol) of triethylamine is further added, and 0.09 mL (1.45 mmol) of iodomethane is added under ice cooling. added. It returned to room temperature and stirred for 16 hours. Thereafter, the reaction solution was concentrated under reduced pressure, water was added to the residue, and a yellow solid was collected by filtration. This was washed with water and dried (yield 80%).
0.46 g of 1,7-dimethyl-8 nitroxanthine was recrystallized from ethanol / water = 1/1 (about 140 mL), and pure 1,7-dimethyl-8 nitroxanthine as yellow crystals was converted to 0 as primary crystals. .21 g (yield 46%) was obtained. Similarly, 0.14 g of secondary crystals (yield 30%) was obtained.
m. p. : 251.5-253.6 ° C. (decomposition)
IR (cm -1 ) (KBr tablet): 1319, 1547
1 H-NMR (DMSO-d 6 ) Δ: 3.22 (s, 3H), 4.24 (s, 3H), 12.3 (s, 1H)
[0031]
Reference Example 6
(Production of 8-nitroxanthine)
80 mL of acetic acid was added to 10.0 g (65.7 mmol) of xanthine and heated to reflux. Nitric acid (13 mL) was added dropwise little by little, the reaction was stopped after 2 hours and 15 minutes, and the resulting crystals were collected by filtration. This was washed with methanol to obtain 7.87 g (yield 60.7%) of the title compound.
m. p. :> 280 ° C
IR (KBr tablet) (cm -1 ): 1748, 1587, 1551, 1363, 1320
1 H-NMR (DMSO-d 6 ) Δ: 11.2 (1H, s), 11.9 (1H, s)
[0032]
Reference Example 7
(Production of 7-methyl-8-nitroxanthine)
0.20 g (1.0 mmol) of 8-nitroxanthine, 0.15 g (1.5 mmol) of triethylamine and 10 mL of dry dimethylformamide were mixed and dissolved. To this reaction solution, 0.08 mL (1.3 mmol) of iodomethane was added dropwise, and after 5 hours and 35 minutes, the reaction solution was concentrated. 5 mL of water was added and the crystals were collected by filtration. 0.09 g (yield 42.0%) of the title compound was obtained.
m. p. :> 280 ° C
IR (KBr tablet) (cm -1 ): 1731, 1670, 1544, 1311
1 H-NMR (DMSO-d 6 ) Δ: 4.20 (3H, s), 11.4 (1H, s), 12.0 (1H, s)
[0033]
Reference Example 8
(Production of 4- (bromoacetyl) morpholine)
A solution of 3.97 g (25.2 mmol) of bromoacetyl chloride dissolved in 10 mL of dichloromethane in 2.18 g (25.0 mmol) of morpholine and triethylamine (49.8 mmol) in dichloromethane (50 mL) It was dripped in portions. After stirring for 1 hour under the same conditions, the reaction solution was concentrated under reduced pressure. A small amount of dichloromethane was added and the residue was filtered off. The filtrate was concentrated under reduced pressure, the residue was subjected to silica gel column chromatography (n-hexane: ethyl acetate = 1: 1 → 1: 2), the target fraction was concentrated, and 0.68 g (yield) of the title compound was obtained. 13.1%).
1 H-NMR (CDCl Three ) Δ: 3.52 to 3.78 (8H, m), 4.07 (2H, s)
[0034]
[Chemical 3]
Figure 0004328873
[0035]
Reference Example 9
(Production of 1-bromo-2-[(tetrahydropyran-2-yl) oxy] ethane)
2.75 g (22.0 mmol) of 2-bromoethanol and a catalytic amount of p-toluenesulfonic acid monohydrate were dissolved in 10 mL of dichloromethane, and 2.60 g of 3,4-dihydro-α-pyran was cooled with ice. (30.9 mmol) was added dropwise. After stirring for 40 minutes, ethyl acetate (40 mL) was added, and the mixture was washed with a saturated aqueous sodium hydrogen carbonate solution (30 mL). The organic layer was dried over anhydrous sodium sulfate and filtered, and then the filtrate was concentrated under reduced pressure. The residue was subjected to silica gel column chromatography (n-hexane: ethyl acetate = 6: 1), and the target fraction was concentrated to obtain 3.91 g (yield: 85.0%) of the title compound.
1 H-NMR (CDCl Three ): 1.52 to 1.90 (6H, m), 3.45 to 3.57 (3H, m), 3.73 to 3.82 (1H, m), 3.85 to 3.92 ( 1H, m), 3.96 to 4.06 (3H, m), 4.68 (1H, t, J = 3.0 Hz)
[0036]
[Formula 4]
Figure 0004328873
[0037]
Reference Example 10
(Production of 1-bromo-3-[(tetrahydropyran-2-yl) oxy] propane)
In the same manner as in Reference Example 9, using 3.10 g (22.3 mmol) of 3-bromo-1-propanol and 2.82 g (33.5 mmol) of 3,4-dihydro-α-pyran, 3.87 g of the title compound was used. (Yield 77.8%).
1 H-NMR (CDCl Three ) Δ: 1.45 to 1.91 (6H, m), 2.05 to 2.20 (2H, m), 3.44 to 3.60 (4H, m), 3.83 to 3.99 ( 2H, m), 4.61 (1H, t, J = 3.8 Hz)
[0038]
[Chemical formula 5]
Figure 0004328873
[0039]
Reference Example 11
(Production of N-benzyl-N- (2-bromoethyl) -N- [2-[(tetrahydropyran-2-yl) oxy] ethyl] amine)
Add dimethylformamide (3 mL) to 2,2′-iminodiethanol (1.05 g, 9.99 mmol), add benzyl bromide (2.65 g, 15.5 mmol) and potassium carbonate (1.07 g, 7.74 mmol), and heat. Stir. After 4 hours, the reaction solution was filtered, and the filtrate was concentrated under reduced pressure.
This residue (N, N-bis [2- (hydroxy) ethyl] -N-benzylamine) was treated in the same manner as in Reference Example 9 to obtain 1.00 g (11.9 mmol) of 3,4-dihydro-α-pyran. Used, 1.12 g (yield 40.1%) of N-benzyl-N- (2-hydroxyethyl) -N- [2-[(tetrahydropyran-2-yl) oxy] ethyl] amine was obtained.
1 H-NMR (CDCl Three ) Δ: 1.51-1.87 (6H, m), 2.71-2.85 (4H, m), 3.41-3.58 (4H, m), 3.46 (2H, s) , 3.69-3.88 (2H, m), 4.58 (1H, t, J = 4.1 Hz), 7.21-7.33 (5H, m)
[0040]
To 0.50 g (1.8 mmol) of N-benzyl-N- (2-hydroxyethyl) -N- [2-[(tetrahydropyran-2-yl) oxy] ethyl] amine was added 10 mL of dichloromethane, and the mixture was cooled with ice. And stirred. Under the same conditions, 0.53 g (2.0 mmol) of triphenylphosphine and 0.76 g (2.3 mmol) of carbon tetrabromide were added, and then the mixture was returned to room temperature and stirred for 18 hours. The reaction mixture was diluted with 100 mL of ethyl acetate: benzene (4: 1) and washed with saturated aqueous sodium hydrogen carbonate solution (30 mL) and saturated brine (30 mL). The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was subjected to silica gel column chromatography (n-hexane: ethyl acetate = 9: 1 → 4: 1), and the objective fraction was concentrated to obtain 0.29 g (yield 47.3%) of the title compound.
1 H-NMR (CDCl Three ) Δ: 1.49-1.83 (6H, m), 2.80 (2H, t, J = 5.9 Hz), 2.99 (2H, t, J = 7.3 Hz), 3.37 ( 2H, t, J = 7.0 Hz), 3.45 to 3.54 (2H, m), 3.74 (2H, s), 3.80 to 3.90 (2H, m), 4.59 ( 1H, t, J = 4.1Hz)
[0041]
[Chemical 6]
Figure 0004328873
[0042]
Reference Example 12
(Production of 2- (t-butoxycarbonylamino) ethyl bromide)
2-aminoethanol 3 mL (49.7 mmol) and potassium carbonate 19.56 g (141.5 mmol) were dissolved in water 60 mL, and di-t-butyl dicarbonate dissolved in tetrahydrofuran 30 mL under ice-cooling over 10 minutes. It was dripped. Then, it returned to room temperature and stirred for 1 hour and 30 minutes. The reaction mixture was diluted with ethyl acetate (150 mL) and washed with saturated brine (50 mL). The aqueous layer was extracted with ethyl acetate (50 mL). The organic layers were combined and dried over anhydrous sodium sulfate. After filtration, the filtrate was concentrated under reduced pressure. The residue was subjected to silica gel column chromatography (n-hexane: ethyl acetate = 1: 1 → 1: 2), the objective fraction was concentrated, and 7.48 g of 2- (t-butoxycarbonylamino) ethanol was obtained (yield 93 4%).
1 H-NMR (CDCl Three ) Δ: 1.45 (9H, s), 3.29 (2H, dd, J = 5.4 Hz, J = 10.3 Hz), 3.70 (2H, dd), 4.98 (1H, bs)
[0043]
In the same manner as in the bromination used in Reference Example 11, 2- (t-butoxycarbonylamino) ethanol 0.82 g (5.09 mmol), carbon tetrabromide 2.53 g (7.63 mmol) and triphenylphosphine 1 Using 0.82 g (6.18 mmol), 0.80 g (yield: 70.2%) of the title compound was obtained.
1 H-NMR (CDCl Three ) Δ: 1.46 (9H, s), 3.44 to 3.60 (4H, m), 2.99 (2H, t, J = 7.3 Hz), 4.94 (1H, bs)
[0044]
[Chemical 7]
Figure 0004328873
[0045]
Example 1
(Production of 1-cyanomethyl-3,7-dimethyl-8-nitroxanthine (compound 1))
0.27 g (0.89 mmol) of 3,7-dimethyl-8-nitroxanthine and 0.12 g (1.00 mmol) of bromoacetonitrile were dissolved in 15 mL of dry dimethylformamide. To this, 0.13 g (0.94 mmol) of potassium carbonate was added as a solid while stirring at room temperature under a nitrogen atmosphere, followed by stirring for 1 hour under the same conditions. Thereafter, the reaction solution was poured into a system of 20 mL of ethyl acetate, 20 mL of saturated brine, and 2 mL of 1N hydrochloric acid with stirring under ice cooling, the organic layer was separated, and the aqueous layer was further extracted with ethyl acetate (10 mL × 2). All organic layers were combined, washed with saturated brine (15 mL × 3), dried over anhydrous sodium sulfate, and the solvent was distilled off. The residue was subjected to silica gel column chromatography (eluent: chloroform), and the target fraction was concentrated. The residue was solidified with a chloroform-diisopropyl ether system, and the solid was collected by filtration to obtain 0.20 g (yield: 87.0%) of the title compound.
m. p. : 166.5-168.5 ° C
IR (KBr tablet) (cm -1 ): 1723, 1675, 1598, 1542, 1489, 1352, 1329
1 H-NMR (CDCl Three ) Δ: 3.65 (3H, s), 4.44 (3H, s), 4.92 (2H, s)
[0046]
Example 2
(Production of 3-cyanomethyl-1,7-dimethyl-8-nitroxanthine (compound 2))
In the same manner as in Example 1, 0.26 g (1.15 mmol) of 1,7-dimethyl-8-nitroxanthine and 0.30 g (2.50 mmol) of bromoacetonitrile were used. 8%).
m. p. : 71-75 ° C
IR (KBr tablet) (cm -1 ): 1716, 1676, 1323
1 H-NMR (CDCl Three ) Δ: 3.47 (3H, s), 4.46 (3H, s), 5.01 (2H, s)
[0047]
Example 3
(Production of 3-allyl-1,7-dimethyl-8-nitroxanthine (compound 3)) In the same manner as in Example 1, 0.21 g (0.93 mmol) of 1,7-dimethyl-8-nitroxanthine and allyl Using 160 μL (1.85 mmol) of bromide, 0.15 g (yield 60.6%) of the title compound was obtained.
m. p. : 95-96 ° C
IR (KBr tablet) (cm -1 ): 1710, 1666, 1321
1 H-NMR (CDCl Three ) Δ: 3.44 (3H, s), 4.44 (3H, s), 4.73 (2H, d = 5.9 Hz), 5.26 (1H, d, J = 10.5 Hz), 5 .33 (1H, d, J = 17.3 Hz), 5.86 to 6.02 (1H, m)
[0048]
Example 4
(Production of 3-acetonyl-1,7-dimethyl-8-nitroxanthine (compound 4))
In the same manner as in Example 1, 0.29 g (1.29 mmol) of 1,7-dimethyl-8-nitroxanthine and 0.39 g (2.56 mmol) of bromoacetone were used. .3%).
m. p. : 124-128 ° C
IR (KBr tablet) (cm -1 ): 1735, 1716, 1685, 1542, 1340
1 H-NMR (CDCl Three ) Δ: 2.32 (3H, s), 3.43 (3H, s), 4.20 (2H, q, J = 7.2 Hz), 4.44 (3H, s), 4.93 (2H) , S)
[0049]
Example 5
(Production of 1,7-dimethyl-3-methoxymethyl-8-nitroxanthine (compound 5))
In the same manner as in Example 1, 0.23 g (1.02 mmol) of 1,7-dimethyl-8-nitroxanthine and 0.16 g (1.99 mmol) of chloromethyl methyl ether were used. Rate 58.2%).
m. p. 119-122 ° C
IR (KBr tablet) (cm -1 ): 1717, 1673, 1322
1 H-NMR (CDCl Three ) Δ: 3.45 (3H, s), 3.49 (3H, s), 4.44 (3H, s), 5.54 (2H, s)
[0050]
Example 6
(Production of 1,7-dimethyl-8-nitro-3-propargylxanthine (compound 6))
In the same manner as in Example 1, 0.23 g (1.02 mmol) of 1,7-dimethyl-8-nitroxanthine and 1.0 mL (11.2 mmol) of propargyl bromide were used and 0.16 g (yield 59) .5%).
m. p. : 141-142 ° C
IR (KBr tablet) (cm -1 ): 3269, 1716, 1673
1 H-NMR (CDCl Three ): 2.28 (1H, t, J = 2.4 Hz), 3.46 (3H, s), 4.45 (3H, s), 4.89 (2H, d, J = 2.4 Hz)
[0051]
Example 7
(Production of 1-allyl-3,7-dimethyl-8-nitroxanthine (compound 7)) In the same manner as in Example 1, 0.20 g (0.89 mmol) of 3,7-dimethyl-8-nitroxanthine and allyl Using 0.12 g (0.99 mmol) of bromide, 0.21 g (yield: 87.5%) of the title compound was obtained.
m. p. : 134-135 ° C
IR (KBr tablet) (cm -1 ): 1710, 1675, 1594, 1541, 1330
1 H-NMR (CDCl Three ) Δ: 3.61 (3H, s), 4.44 (3H, s), 4.61 to 4.68 (2H, m), 5.20 to 5.36 (2H, m), 5.82 ~ 5.99 (1H, m)
[0052]
Example 8
(Production of 3,7-dimethyl-8-nitro-1-propargylxanthine (compound 8))
In the same manner as in Example 1, 0.20 g (0.89 mmol) of 3,7-dimethyl-8-nitroxanthine and 0.12 g (1.01 mmol) of propargyl bromide were used and 0.19 g (yield 82) of the title compound. .6%).
m. p. : 171 to 172 ° C
IR (KBr tablet) (cm -1 ): 3281, 1699, 1666, 1606, 1530, 1322
1 H-NMR (CDCl Three ): 2.22 (1H, t, J = 2.4 Hz), 3.63 (3H, s), 4.45 (3H, s), 4.81 (2H, d, J = 2.4 Hz)
[0053]
Example 9
(Production of 1-acetonyl-3,7-dimethyl-8-nitroxanthine (compound 9))
In the same manner as in Example 1, 0.20 g (0.89 mmol) of 3,7-dimethyl-8-nitroxanthine and 0.13 g (0.95 mmol) of bromoacetone were used. 0.0%).
m. p. : 166.5-167.5 ° C
IR (KBr tablet) (cm -1 ): 1737, 1710, 1669, 1589, 1541, 1500, 1343, 1330
1 H-NMR (CDCl Three ) Δ: 2.30 (3H, s), 3.60 (3H, s), 4.41 (3H, s), 4.86 (2H, s)
[0054]
Example 10
(Production of 3,7-dimethyl-8-nitro-1- [3-[(tetrahydropyran-2-yl) oxy] propyl] xanthine (Compound 10))
In the same manner as in Example 1, 0.29 g (1.3 mmol) of 3,7-dimethyl-8-nitroxanthine and 1-bromo-3-[(tetrahydropyran-2-yl) oxy] propane (Reference Example 10) Using 0.65 g (2.9 mmol), 0.43 g (yield 90.9%) of the title compound was obtained.
1 H-NMR (CDCl Three ) Δ: 1.45 to 1.83 (6H, m), 1.90 to 2.04 (2H, m), 3.45 to 3.53 (2H, m), 3.60 (3H, s) , 3.80 to 3.88 (2H, m), 4.14 to 4.21 (2H, m), 4.44 (3H, s), 4.58 (1H, t, J = 4.1 Hz)
[0055]
Example 11
(Production of 1,7-dimethyl-3- (morpholinocarbonylmethyl) -8-nitroxanthine (Compound 11))
In the same manner as in Example 1, 0.30 g (1.33 mmol) of 1,7-dimethyl-8-nitroxanthine and 0.57 g (2.74 mmol) of 4- (bromoacetyl) morpholine (Reference Example 8) were used. 0.14 g (yield 29.8%) of the title compound was obtained. m. p. : 239-242 ° C
IR (KBr tablet) (cm -1 ): 1714, 1680, 1539, 1330
1 H-NMR (CDCl Three ) Δ: 3.44 (3H, s), 3.51 to 3.68 (4H, m), 3.70 to 3.85 (4H, m), 4.43 (3H, s), 4.93 (2H, s)
[0056]
Example 12
(Production of 1,7-dimethyl-8-nitro-3- [2-[(tetrahydropyran-2-yl) oxy] ethyl] xanthine (Compound 12))
In the same manner as in Example 1, 0.44 g (1.95 mmol) of 1,7-dimethyl-8-nitroxanthine and 1-bromo-2-[(tetrahydropyran-2-yl) oxy] ethane (Reference Example 9) Using 0.86 g (4.11 mmol), 0.24 g (yield 34.8%) of the title compound was obtained.
[0057]
Example 13
(Production of 1- (2-chloroethyl) -3,7-dimethyl-8-nitroxanthine (compound 13))
In the same manner as in Example 1, using 0.32 g (1.42 mmol) of 3,7-dimethyl-8-nitroxanthine and 0.64 g (4.46 mmol) of 1-bromo-2-chloroethane, 32 g (yield 31.4%) was obtained.
m. p. : 124.5-125.5 ° C
IR (KBr tablet) (cm -1 ): 1709, 1660, 1560, 1541, 1321
1 H-NMR (CDCl Three ) Δ: 3.61 (3H, s), 3.79 (2H, t, J = 6.5 Hz), 4.16 (2H, t, J = 7.0 Hz), 4.44 (3H, s)
[0058]
Example 14
(Production of 1,7-dimethyl-3- [2- (1,3-dioxolan-2-yl) ethyl] -8-nitroxanthine (compound 14))
In the same manner as in Example 1, 0.26 g (1.15 mmol) of 1,7-dimethyl-8-nitroxanthine and 0.44 g (2.43 mmol) of 2- (2-bromoethyl) -1,3-dioxolane were used. 0.21 g (yield 55.9%) of the title compound was obtained.
m. p. : 145-146 ° C
IR (KBr tablet) (cm -1 ): 1713, 1675, 1538, 1320
1 H-NMR (CDCl Three ) Δ: 2.15 to 2.22 (2H, m), 3.43 (3H, s), 3.78 to 3.98 (4H, m), 4.30 (3H, t, J = 7. 0Hz), 4.44 (3H, s), 5.01 (1H, t)
[0059]
Example 15
(Production of 3- (3,3-dimethoxypropyl) -1,7-dimethyl-8-nitroxanthine (compound 15))
In the same manner as in Example 1, using 0.29 g (1.29 mmol) of 1,7-dimethyl-8-nitroxanthine and 0.54 g (2.95 mmol) of 1-bromo-3,3-dimethoxypropane, the title compound 0.17 g (yield 40.3%) was obtained.
1 H-NMR (CDCl Three ) Δ: 2.07 (2H, dd, J = 6.8 Hz, J = 13.6 Hz), 3.31 (6H, s), 3.44 (3H, s), 4.23 (3H, t, J = 6.5 Hz), 4.44 (3H, s), 4.56 (1 H, t, J = 5.9 Hz)
[0060]
Example 16
(Production of 3- [2- (t-butoxycarbonylamino) ethyl] -1,7-dimethyl-8-nitroxanthine (Compound 16))
In the same manner as in Example 1, 0.55 g (2.44 mmol) of 1,7-dimethyl-8-nitroxanthine and 1.13 g (5.04 mmol) of 2- (t-butoxycarbonylamino) ethyl bromide were used. 0.46 g (yield 51.1%) of the compound was obtained.
m. p. : 141-144 ° C
IR (KBr tablet) (cm -1 ): 3320, 1714, 1678, 1553, 1537, 1319
1 H-NMR (CDCl Three ) Δ: 1.32 (9H, s), 3.44 (3H, s), 3.45 to 3.58 (2H, m), 4.28 (2H, t), 4.43 (3H, s) ), 5.82 (1H, bs)
[0061]
Example 17
(Production of 1,7-dimethyl-8-nitro-3- [3-[(tetrahydropyran-2-yl) oxy] propyl] xanthine (Compound 17))
In the same manner as in Example 1, 0.40 g (1.78 mmol) of 1,7-dimethyl-8-nitroxanthine and 1-bromo-3-[(tetrahydropyran-2-yl) oxy] propane (Reference Example 10) Using 0.83 g (3.72 mmol), 0.52 g (yield 79.7%) of the title compound was obtained.
[0062]
Example 18
(Production of 3- (2-chloroethyl) -1,7-dimethyl-8-nitroxanthine (compound 18))
In the same manner as in Example 1, 0.23 g (1.02 mmol) of 1,7-dimethyl-8-nitroxanthine and 0.31 g (2.16 mmol) of 1-bromo-2-chloroethane were used. 05 g (yield 17.0%) was obtained.
m. p. 164 to 168 ° C
1 H-NMR (CDCl Three ) Δ: 1.95 to 2.15 (2H, m), 2.92 (1H, t, J = 7.0 Hz), 3.45 (3H, s), 3.56 to 3.63 (2H, m), 4.30 (2H, t, J = 6.2 Hz), 4.45 (3H, s)
[0063]
Example 19
(Production of 3- (aminocarbonylmethyl) -1,7-dimethyl-8-nitroxanthine (compound 19))
In the same manner as in Example 1, 0.25 g (1.11 mmol) of 1,7-dimethyl-8-nitroxanthine and 0.31 g (2.25 mmol) of 2-bromoacetamide were used. Rate 44.7%).
m. p. : 203-205 ° C
IR (KBr tablet) (cm -1 ): 3382, 1714, 1673, 1540, 1342, 1321
1 H-NMR (CDCl Three ) Δ: 3.45 (3H, s), 4.44 (3H, s), 4.81 (2H, s)
[0064]
Example 20
(Production of 3,7-dimethyl-1- (3-hydroxypropyl) -8-nitroxanthine (compound 20))
0.57 g (1.5 mmol) of 3,7-dimethyl-8-nitro-1- [3-[(tetrahydropyran-2-yl) oxy] propyl] xanthine (Compound 10) was dissolved in 5 mL of tetrahydrofuran / 15 mL of methanol. Into this, 0.11 g of p-toluenesulfonic acid monohydrate was added and stirred at room temperature. After 2 hours and 45 minutes, the reaction solution was concentrated under reduced pressure. The residue was subjected to silica gel column chromatography (n-hexane: ethyl acetate = 2: 3 → 1: 2), and 1- (3-acetoxypropyl) -3,7-dimethyl-8-nitroxanthine was used as a by-product. The fraction of (Compound 21) was concentrated and recrystallized from ethanol (yield 0.15 g, yield 30.3%). After concentrating another fraction, it was again subjected to silica gel column chromatography (chloroform: methanol = 50: 1) to concentrate the desired fraction. Ethanol was added and the crystals were collected by filtration to obtain 0.10 g (yield 23.2%) of the title compound (Compound 20).
[0065]
3,7-dimethyl-1- (3-hydroxypropyl) -8-nitroxanthine (compound 20)
m. p. : 91.9-93.0 degreeC
IR (KBr tablet) (cm -1 ): 3437, 1719, 1678, 1540, 1329
1 H-NMR (CDCl Three ) Δ: 1.90 to 1.96 (2H, m), 2.94 (1H, s), 3.58 to 3.61 (2H, s), 3.62 (3H, s), 4.20 (2H, t, J = 5.9 Hz), 4.45 (3H, s)
[0066]
1- (3-acetoxypropyl) -3,7-dimethyl-8-nitroxanthine (Compound 21)
m. p. : 103.0-105.5 ° C
IR (KBr tablet) (cm -1 ): 1733, 1709, 1671, 1541, 1335
1 H-NMR (CDCl Three ) Δ: 2.00 to 2.06 (2H, m), 2.07 (3H, s), 3.60 (3H, s), 4.12 to 4.18 (4H, m), 4.44 (3H, s)
[0067]
Example 21
(Production of 1,7-dimethyl-3- (2-hydroxyethyl) -8-nitroxanthine (Compound 22))
1,7-dimethyl-8-nitro-3- [2-[(tetrahydropyran-2-yl) oxy] ethyl] xanthine (Compound 12) 0.28 g (0.79 mmol) and p-toluenesulfonic acid / monohydric acid 0.15 g (yield 70.3%) of the title compound was obtained in the same manner as in Example 20 using the Japanese product.
m. p. : 115-116 ° C
IR (KBr tablet) (cm -1 ): 1713, 1661, 1540, 1320
1 H-NMR (CDCl Three ) Δ: 2.16 (1H, t, J = 6.5 Hz), 3.45 (3H, s), 3.62 (3H, s), 3.97 to 4.03 (2H, m), 4 .36 (2H, t, J = 5.4 Hz), 4.45 (3H, s)
[0068]
Example 22
(Production of 1,7-dimethyl-3- (3-hydroxypropyl) -8-nitroxanthine (Compound 23))
1,7-dimethyl-8-nitro-3- [3-[(tetrahydropyran-2-yl) oxy] propyl] xanthine (compound 17) 0.52 g (1.42 mmol) and p-toluenesulfonic acid / monohydric acid 0.33 g (yield 82.3%) of the title compound was obtained in the same manner as in Example 20 using the Japanese product.
m. p. : 114-116 ° C
IR (KBr tablet) (cm -1 ): 3467, 1711, 1666, 1595, 1540, 1319
1 H-NMR (CDCl Three ) Δ: 3.45 (3H, s), 3.90 (2H, t, J = 5.9 Hz), 4.45 (3H, s), 4.49 (2H, t, J = 5.9 Hz)
[0069]
Example 23
(Production of 1,7-dimethyl-3- (2-formylethyl) -8-nitroxanthine (Compound 24))
0.17 g (0.52 mmol) of 3- (3,3-dimethoxypropyl) -1,7-dimethyl-8-nitroxanthine (Compound 15) was dissolved in 10 mL of an 80% aqueous acetic acid solution and stirred at room temperature. After 40 hours, toluene was added to the reaction solution, and the mixture was concentrated under reduced pressure. The residue was subjected to silica gel column chromatography (n-hexane: ethyl acetate = 1: 1), and the target fraction was concentrated to obtain 0.11 g (yield 74.8%) of the title compound.
m. p. : Oily substance
IR (KBr tablet) (cm -1 ): 1712, 1668, 1598, 1557, 1541, 1323
1 H-NMR (CDCl Three ) Δ: 3.96 (3H, t), 4.42 (3H, s), 4.44 (3H, s), 4.48 (2H, t, J = 6.8 Hz), 9.84 (1H) , S)
[0070]
Example 24
(Production of 3- [2- (N, N-diethylamino) ethyl] -1,7-dimethyl-8-nitroxanthine (Compound 25))
3- [2- (t-Butoxycarbonylamino) ethyl] -1,7-dimethyl-8-nitroxanthine (Compound 16) 0.21 g (0.57 mmol) is dissolved in 10 mL of dichloromethane, and trifluoroacetic acid is obtained at room temperature. 2.5 mL was added and stirred. After 15 minutes, the reaction solution was concentrated under reduced pressure to obtain 3- (2-aminoethyl) -1,7-dimethyl-8-nitroxanthine trifluoroacetate. To the residue was added 0.24 g (1.74 mmol) of potassium carbonate, 10 mL of dry dimethylformamide and 0.34 g (2.18 mmol) of iodoethane were added, and the oil bath was heated and stirred at 80 ° C. After 38 minutes, 100 μL of iodoethane was added, and the mixture was further stirred for 10 minutes. The reaction mixture was diluted with ethyl acetate (60 mL) and washed with saturated aqueous sodium hydrogen carbonate (30 mL) and saturated brine (30 mL × 5). The organic layer was dried over anhydrous sodium sulfate and filtered, and the filtrate was concentrated under reduced pressure. The residue was subjected to silica gel column chromatography (n-hexane: ethyl acetate: 1: 2), and the target fraction was concentrated to obtain 0.09 g (yield 48.7%) of the title compound.
m. p. : 86-89 ° C
IR (KBr tablet) (cm -1 ): 1711, 1671, 1596, 1555, 1539, 1342, 1318
1 H-NMR (CDCl Three ) Δ: 0.97 (6H, t, J = 6.8 Hz), 2.57 (4H, q, J = 6.5 Hz), 2.79 (2H, t, J = 7.0 Hz), 3. 43 (3H, s), 4.20 (2H, t, J = 7.0 Hz), 4.43 (3H, s)
[0071]
Example 25
(Production of 1,3-di-hydroxypropyl-7-methyl-8-nitroxanthine (compound 26))
1-Bromo-3-[(tetrahydropyran-2-yl) oxy] propane (Reference Example 10) 1.32 g (5.92 mmol), 8-nitroxanthine 0.50 g (2.37 mmol) and potassium carbonate 0.82 g (5.93 mmol) was added with 50 mL of DMF and stirred at room temperature. After 24 hours, the disappearance of the starting material was observed, so the reaction was stopped and the reddish brown insoluble matter was filtered off with suction. The filtrate was evaporated and the residue was purified by silica gel column chromatography (eluent; n-hexane: ethyl acetate = 10: 1) to obtain 0.44 g (37.5%) of a yellow oil. 0.44 g (0.89 mmol) of the produced oil was dissolved in 100 mL of methanol, a catalytic amount of p-toluenesulfonic acid monohydrate was added, and the reaction was stirred at room temperature. After the reaction overnight, the disappearance of the raw materials was observed, and therefore evaporation was performed. The residue was purified by silica gel column chromatography (eluent; chloroform: methanol = 25: 1) to obtain 0.18 g (yield 61.9%) of the title compound as a yellow solid.
m. p. : 92-94 ° C
IR (KBr tablet) (cm -1 ): 1701, 1670, 1595, 1319, 1271
1 H-NMR (CDCl Three ) Δ: 1.88 (2H, t), 2.01 (2H, t), 3.54 to 3.64 (2H, m), 4.18 (2H, t), 4.25 (2H, t) ), 4.51 (3H, s)
[0072]
Example 26
(Production of 1,3-di- (N-ethyl-N-benzylaminoethyl) -7-methyl-8-nitroxanthine (Compound 27))
100 mL of DMF was added to 13.52 g (0.10 mol) of N-ethylbenzylamine, 12.50 g (0.10 mol) of 2-bromoethanol and 13.82 g (0.10 mol) of potassium carbonate, and the mixture was stirred at room temperature. The crystal part was filtered off with suction, the filtrate was evaporated and DMF was distilled off. The residue was extracted by adding 400 mL of ethyl acetate, and washed with ion-exchanged water. After drying over anhydrous sodium sulfate, the organic layer was evaporated to give 17.11 g (95.5%) of a tan oil. 17.11 g (0.095 mol) of this product was dissolved in 200 mL of dichloroethane, and 27.54 g (0.105 mol) of triphenylphosphine was added and dissolved by heating. Under ice-cooling, 34.82 g (0.105 mol) of carbon tetrabromide was added in small portions to react. After reacting for 3 days and nights, the precipitated crystals were filtered off with suction. The crystals were washed with chloroform, and the filtrate and washings were combined and washed with ion exchange water. After drying over anhydrous sodium sulfate and evaporation, the residue was purified by silica gel column chromatography (eluent; chloroform: methanol = 19: 1), and 4.89 g of N-ethyl-N-benzylaminoethyl bromide as a brown oil ( 21.2%).
Disperse 1.15 g (4.75 mmol) of N-ethyl-N-benzylaminoethyl bromide, 0.5 g (2.37 mmol) of 7-methyl-8-nitroxanthine and 0.65 g (4.70 mmol) of potassium carbonate in 100 mL of DMF. The reaction was stirred at room temperature. After reacting for 5 days, insolubles were filtered off and diluted by adding 500 mL of ethyl acetate. After washing with water, the organic layer was dried over anhydrous sodium sulfate and evaporated. The residue was separated by silica gel column chromatography (eluent: chloroform). Since contamination with impurities was observed, the product was purified by preparative TLC (developing solvent; chloroform: methanol = 19: 1) to obtain 0.15 g (yield 11.9%) of the title compound as a tan oil.
IR (KBr tablet) (cm -1 ): 2968, 1670, 1600, 1319, 734
1 H-NMR (CDCl Three ) Δ: 0.98 to 1.12 (6H, m), 2.58 to 2.66 (4H, m), 2.69 to 2.76 (4H, m), 3.44 (2H, s) 3.60 (2H, s), 4.11 to 4.06 (4H, m), 4.30 (3H, s), 6.97 to 7.38 (10H, m).
[0073]
Example 27
(Production of 1,3-diallyl-7-methyl-8-nitroxanthine (compound 28))
20 mL of DMF was added to 0.300 g (1.42 mmol) of 7-methyl-8-nitroxanthine, 0.516 g (4.27 mmol) of allyl bromide and 0.393 g (2.84 mmol) of potassium carbonate, and the mixture was stirred at room temperature overnight. . Insoluble matter was filtered off, and DMF was distilled off by evaporation. The residue was separated and purified by silica gel column chromatography (eluent: n-hexane: ethyl acetate = 9: 1 → 1: 1) to obtain 0.36 g (yield 87.0%) of the title compound as yellow crystals.
m. p. : 87-89 ° C
IR (KBr tablet) (cm -1 ): 1715, 1676, 1322, 845, 768 1 H-NMR (CDCl Three ) Δ: 4.35 (3H, s), 4.62 (2H, d), 4.62 (2H, d), 5.10 to 5.25 (4H, m), 5.73 to 5.93 (2H, m)
[0074]
Example 28
(Production of 1,3-diprenyl-7-methyl-8-nitroxanthine (Compound 29))
20 mL of DMF was added to 0.30 g (1.42 mmol) of 7-methyl-8-nitroxanthine, 0.85 g (5.70 mmol) of prenyl bromide and 0.39 g (2.84 mmol) of potassium carbonate, and the mixture was stirred at room temperature for 3 hours. I let you. Insoluble matter was filtered off, and DMF was distilled off by evaporation. The residue was diluted with 300 mL of ethyl acetate and washed with water. The organic layer was separated, dried over anhydrous sodium sulfate and evaporated, 2-propanol was added to the residue, and the mixture was cooled and crystallized. 0.45 g (yield 92.3%) of the title compound was obtained as pale yellow crystals.
m. p. : 98 to 101 ° C
IR (KBr tablet) (cm -1 ): 2973, 1662, 1592, 1314, 765
1 H-NMR (CDCl Three ) Δ: 1.72 (6H, s), 1.84 (3H, s), 1.87 (3H, s), 4.42 (3H, s), 4.62 (2H, d), 4. 69 (2H, d), 5.25 (1 H, t), 5.30 (1 H, t)
[0075]
Example 29
(Production of 1,3-di-propargyl-7-methyl-8-nitroxanthine (compound 30))
20 mL of DMF was added to 0.300 g (1.42 mmol) of 7-methyl-8-nitroxanthine, 0.507 g (4.26 mmol) of propargyl bromide and 0.393 g (2.84 mmol) of potassium carbonate, and the mixture was stirred at room temperature. After reacting overnight, insoluble material was filtered off and DMF was evaporated. The residue was separated and purified by silica gel column chromatography (eluent: n-hexane: ethyl acetate = 9: 1 → 1: 1) to obtain 0.26 g (yield 47.3%) of the title compound as yellow crystals.
m. p. : 59-60.5 ° C
IR (KBr tablet) (cm -1 ): 3283, 1718, 1676, 1596, 767
1 H-NMR (CDCl Three ) Δ: 2.23 (1H, t), 2.30 (1H, t), 4.45 (3H, s), 4.80 (2H, d), 4.90 (2H, d)
[0076]
Example 30
(Production of 1,3-di-chloroethyl-7-methyl-8-nitroxanthine (compound 31))
40 mL of DMF was added to 1.00 g (4.74 mmol) of 7-methyl-8-nitroxanthine, 2.72 g (18.97 mmol) of 1-bromo-2-chloroethane and 1.31 g (9.48 mmol) of potassium carbonate at room temperature. The reaction was stirred for 4 days. Insoluble matter was filtered off with suction, the filtrate was evaporated, and DMF was distilled off. The reaction mixture was diluted with 500 mL of ethyl acetate and washed with water. The organic layer was separated, dried over anhydrous sodium sulfate and evaporated. The residue was purified by silica gel column chromatography (eluent; ethyl acetate: n-hexane = 4: 1) to obtain 0.18 g (yield 11.3%) of the title compound as a brown oil.
IR (KBr tablet) (cm -1 ): 1674, 1599, 1490, 1322, 759
1 H-NMR (CDCl Three ) Δ: 3.80 (2H, t), 3.90 (2H, t), 4.45 (2H, t), 4.45 (2H, t), 4.48 (3H, s), 4. 51 (2H, t)
[0077]
Example 31
(Production of 1,3-diacetonyl-7-methyl-8-nitroxanthine (compound 32))
30 mL of DMF is added to 0.50 g (2.37 mmol) of 7-methyl-8-nitroxanthine, 1.62 g (11.83 mmol) of bromoacetone and 0.65 g (4.70 mmol) of potassium carbonate, and the mixture is stirred overnight at room temperature. It was. The reaction was stopped and evaporated to remove DMF. The residue was diluted with 300 mL of ethyl acetate and washed with water. The organic layer was separated, dried over anhydrous sodium sulfate and evaporated. The residue was purified by silica gel column chromatography (eluent; ethyl acetate: n-hexane = 1: 1) to obtain 0.64 g (yield 82.3%) of the title compound as yellow crystals.
m. p. : 180-182 ° C
IR (KBr tablet) (cm -1 ): 1733, 1716, 1685, 1538, 1177
1 H-NMR (CDCl Three ) Δ: 2.28 (3H, s), 2.30 (3H, s), 4.44 (3H, s), 4.84 (2H, s), 4.91 (2H, s)
[0078]
Example 32
(Production of 1,3-di-cyanomethyl-7-methyl-8-nitroxanthine (compound 33))
100 mL of DMF was added to 0.50 g (2.37 mmol) of 7-methyl-8-nitroxanthine, 1.14 g (9.50 mmol) of bromoacetonitrile and 0.65 g (4.70 mmol) of potassium carbonate, and the mixture was allowed to stir at room temperature overnight. It was. Insoluble matter was separated in a suction furnace, and DMF was distilled off with an evaporator. The residue was purified by silica gel column chromatography (eluent: chloroform) to obtain 0.46 g (yield 67.2%) of the title compound as pale yellow crystals.
m. p. : 95-97 ° C
IR (KBr tablet) (cm -1 ): 1727, 1686, 1542, 1325, 847
1 H-NMR (CDCl Three ) Δ: 4.46 (3H, s), 4.93 (2H, s), 5.04 (2H, s)
[0079]
Example 33
(Production of 1,3-di (p-bromophenacyl) -7-methyl-nitroxanthine (compound 34))
20 mL of DMF was added to 0.30 g (1.42 mmol) of 7-methyl-8-nitroxanthine, 1.81 g (6.51 mmol) of 4-bromophenacyl bromide, and 0.39 g (2.82 mmol) of potassium carbonate. The reaction was allowed to stir for minutes. The reaction mixture was diluted with 500 mL of ethyl acetate and washed with water. The organic layer was separated, dried over anhydrous sodium sulfate and evaporated. The residue was purified by silica gel column chromatography (eluent; n-hexane: ethyl acetate = 10: 0 → 8: 2) to obtain 0.60 g (yield 69.7%) of the title compound as pale yellow crystals.
m. p. : 223-225 ° C
IR (KBr tablet) (cm -1 ): 1666, 1585, 1327, 813, 523 1 H-NMR (CDCl Three ) Δ: 4.43 (3H, s), 5.44 (2H, s), 5.52 (2H, s), 7.67 (4H, d), 7.86 (4H, d)
[0080]
Example 34
(Production of 3- (3-pyridylmethyl) -7-methyl-8-nitroxanthine (Compound 35))
20 mL of DMF was added to 0.50 g (2.37 mmol) of 7-methyl-8-nitroxanthine, 1.50 g (5.93 mmol) of 3-bromomethylpyridine hydrobromide and 1.47 g (10.69 mmol) of potassium carbonate. The mixture was stirred overnight at room temperature. Ethyl acetate (300 mL) was added, and the mixture was washed with saturated aqueous sodium hydrogen carbonate and ion-exchanged water. The organic layer was separated, dried over anhydrous sodium sulfate and evaporated. 20 mL of methanol was added to the residue and dissolved by heating. Insoluble matters were filtered off and allowed to cool. The precipitated crystals were air-dried to obtain 0.13 g (yield 18.2%) of the title compound as pale yellow crystals.
m. p. : 219-221 ° C
IR (KBr tablet) (cm -1 ): 1698, 1540, 1320, 1194, 849
1 H-NMR (DMSO-d 6 ) Δ: 4.23 (3H, s), 5.14 (2H, s), 7.34-7.39 (1H, m), 7.74 (1H, t), 8.49 (1H, dd) ), 8.60 (1H, d), 11.8 (1H, s)
[0081]
Example 35
(Production of 1,3-di (2-hydroxy-3-methoxypropyl) -7-methyl-8-nitroxanthine (Compound 36))
1.00 g (4.74 mmol) of 7-methyl-8-nitroxanthine was dispersed in 100 mL of 2,3-epoxypropyl ethyl ether, heated and stirred, and heated to reflux. It became a tan transparent solution in 15 hours. After cooling to room temperature, it was evaporated. Chloroform was added and insolubles were filtered off. The filtrate was evaporated, the residue was dissolved in methanol, and fractionated by preparative TLC (developing solvent; chloroform: methanol = 19: 1). Among the spots having an absorption of 366 nm, the component having a high Rf value was the target substance, and 0.12 g (yield 6.5%) was obtained as a tan oil.
IR (KBr tablet) (cm -1 ): 3392, 1669, 1323, 1121, 846
1 H-NMR (CDCl Three ): 3.40 to 3.67 (4H, m), 3.42 (6H, s), 4.04 to 4.16 (4H, m), 4.28 to 4.36 (1H, m) 4.42 (3H, s)
[0082]
Example 36
(Production of 3- (2-hydroxy-3-methoxypropyl) -7-methyl-8-nitroxanthine (Compound 37))
Preparative TLC of the reaction product of Example 35 gave 0.36 g (yield 25.4%) of a component having a low Rf value as pale yellow crystals, which was confirmed by instrumental analysis to be a mono-substituted 3-position. did.
m. p. : 150-152 ° C
IR (KBr tablet) (cm -1 ): 3505, 1692, 1323, 1099, 851
1 H-NMR (CDCl Three ) Δ: 3.36 to 3.74 (2H, m), 3.40 (3H, s), 4.03 to 4.33 (3H, m), 4.37 (3H, s)
[0083]
Test Example 1 (Hypoxic cell radiosensitization effect (in vitro))
With respect to the compounds of the present invention obtained in the Examples, the radiosensitizing effect was examined using mouse squamous cell carcinoma cell SCCVII as tumor cells. That is, the compound of the present invention was added so that the final concentration was 0.005 to 0.1 mM. Five MEM suspension of SCCVII cells at a concentration of 5 cells / mL 2 Contains N 2 A hypoxic cell suspension was obtained by bubbling gas. X-ray irradiation was performed on this, and the radiation sensitization rate was calculated by the colony formation method. In the colony method, a radiation dose-survival rate curve is obtained, and from this curve, the radiation dose that decreases the survival rate of hypoxic cells without addition of the compound of the present invention by 1% is determined. The value obtained by dividing the rate by the radiation dose that decreases the rate by 1% was determined and used as the radiation sensitization rate.
As a result, as shown in Table 1, the compound of the present invention showed a remarkably high sensitization rate. N. D. Since the effect was too strong, colonies could not be counted and a specific ER value could not be shown, that is, the radiosensitization effect was strong. From this result, it can be seen that the 8-nitroxanthine derivative (1) of the present invention enhances the effect of radiation in a hypoxic state.
[0084]
[Table 1]
Figure 0004328873
[0085]
Test example 2
Hypoxic cell radiosensitization effect (in vivo):
Regarding the compounds of the present invention obtained in the Examples, the tumor growth inhibitory effect was examined using C3H mice transplanted with mouse squamous cell carcinoma cell SCCVII. The compound of the present invention was suspended in 0.1N hydrochloric acid or a surfactant, and a dose of 10 to 50 mg / kg was administered by intravenous administration, and X-rays were irradiated with 30 Gy 20 minutes after the administration. Thereafter, the tumor diameter was periodically measured to observe the tumor growth inhibitory effect. A group administered with physiological saline or 0.1N hydrochloric acid was used as a solvent control group. The results are shown in Table 2.
The compound of the present invention showed a significant tumor growth inhibitory effect when irradiated with radiation compared to the solvent control group. From Table 2, it is clear that the compounds 25 and 31 are compared with the solvent control group, and when the radiation is irradiated, the day when the tumor volume exceeds twice the initial value is prolonged and the tumor growth is suppressed.
[0086]
[Table 2]
Figure 0004328873
[0087]
Test Example 3 (Acute toxicity)
Acute toxicity tests were conducted using female C3H mice. The test compound is dissolved or dispersed in a surfactant, and 3- [2- (N, N-diethylamino) ethyl] -1,7-dimethyl-8-nitroxanthine (compound 25), 1,3-di-chloroethyl- 7-methyl-8-nitroxanthine (Compound 31) was intravenously administered at a concentration of 10-100 mg / kg and general symptoms were observed.
As a result, the mice to which these compounds were administered had no behavioral changes at all, no changes in general symptoms, and no deaths were observed. Therefore, it was confirmed that 8-nitroxanthine represented by the general formula (1) is a highly safe compound.
[0088]
【The invention's effect】
The 8-nitroxanthine derivative (1) of the present invention has an excellent hypoxic cell radiosensitization effect and has high safety, and is useful as a pharmaceutical agent such as a hypoxic cell radiosensitizer. is there.

Claims (2)

1−シアノメチル−3,7−ジメチル−8−ニトロキサンチン(化合物1)、3−シアノメチル−1,7−ジメチル−8−ニトロキサンチン(化合物2)、3−アリル−1,7−ジメチル−8−ニトロキサンチン(化合物3)、3−アセトニル−1,7−ジメチル−8−ニトロキサンチン(化合物4)、1,7−ジメチル−3−メトキシメチル−8−ニトロキサンチン(化合物5)、1,7−ジメチル−8−ニトロ−3−プロパルギルキサンチン(化合物6)、1−アリル−3,7−ジメチル−8−ニトロキサンチン(化合物7)、3,7−ジメチル−8−ニトロ−1−プロパルギルキサンチン(化合物8)、1−アセトニル−3,7−ジメチル−8−ニトロキサンチン(化合物9)、3,7−ジメチル−8−ニトロ−1−[3−[(テトラヒドロピラン−2−イル)オキシ]プロピル]キサンチン(化合物10)、1,7−ジメチル−3−(モルホリノカルボニルメチル)−8−ニトロキサンチン(化合物11)、1,7−ジメチル−8−ニトロ−3−[2−[(テトラヒドロピラン−2−イル)オキシ]エチル]キサンチン(化合物12)、1−(2−クロロエチル)−3,7−ジメチル−8−ニトロキサンチン(化合物13)、1,7−ジメチル−3−[2−(1,3−ジオキソラン−2−イル)エチル]−8−ニトロキサンチン(化合物14)、3−(3,3−ジメトキシプロピル)−1,7−ジメチル−8−ニトロキサンチン(化合物15)、3−[2−(t−ブトキシカルボニルアミノ)エチル]−1,7−ジメチル−8−ニトロキサンチン(化合物16)、1,7−ジメチル−8−ニトロ−3−[3−[(テトラヒドロピラン−2−イル)オキシ]プロピル]キサンチン(化合物17)、3−(2−クロロエチル)−1,7−ジメチル−8−ニトロキサンチン(化合物18)、3−(アミノカルボニルメチル)−1,7−ジメチル−8−ニトロキサンチン(化合物19)、3,7−ジメチル−1−(3−ヒドロキシプロピル)−8−ニトロキサンチン(化合物20)、1−(3−アセトキシプロピル)−3,7−ジメチル−8−ニトロキサンチン(化合物21)、1,7−ジメチル−3−(2−ヒドロキシエチル)−8−ニトロキサンチン(化合物22)、1,7−ジメチル−3−(3−ヒドロキシプロピル)−8−ニトロキサンチン(化合物23)、1,7−ジメチル−3−(2−ホルミルエチル)−8−ニトロキサンチン(化合物24)、3−[2−(N,N−ジエチルアミノ)エチル]−1,7−ジメチル−8−ニトロキサンチン(化合物25)、1,3−ジ−ヒドロキシプロピル−7−メチル−8−ニトロキサンチン(化合物26)、1,3−ジ−(N−エチル−N−ベンジルアミノエチル)−7−メチル−8−ニトロキサンチン(化合物27)、1,3−ジアリル−7−メチル−8−ニトロキサンチン(化合物28)、1,3−ジ−プレニル−7−メチル−8−ニトロキサンチン(化合物29)、1,3−ジ−プロパルギル−7−メチル−8−ニトロキサンチン(化合物30)、1,3−ジ−クロロエチル−7−メチル−8−ニトロキサンチン(化合物31)、1,3−ジ−アセトニル−7−メチル−8−ニトロキサンチン(化合物32)、1,3−ジ−シアノメチル−7−メチル−8−ニトロキサンチン(化合物33)、1,3−ジ−(p−ブロモフェナシル)−7−メチル−トロキサンチン(化合物34)、3−(3−ピリジルメチル)−7−メチル−8−ニトロキサンチン(化合物35)、1,3−ジ−(2−ヒドロキシ−3−メトキシプロピル)−7−メチル−8−ニトロキサンチン(化合物36)又は3−(2−ヒドロキシ−3−メトキシプロピル)−7−メチル−8−ニトロキサンチン(化合物37)である、8−ニトロキサンチン誘導体。 1-cyanomethyl-3,7-dimethyl-8-nitroxanthine (compound 1), 3-cyanomethyl-1,7-dimethyl-8-nitroxanthine (compound 2), 3-allyl-1,7-dimethyl-8- Nitroxanthine (Compound 3), 3-acetonyl-1,7-dimethyl-8-nitroxanthine (Compound 4), 1,7-dimethyl-3-methoxymethyl-8-nitroxanthine (Compound 5), 1,7- Dimethyl-8-nitro-3-propargylxanthine (compound 6), 1-allyl-3,7-dimethyl-8-nitroxanthine (compound 7), 3,7-dimethyl-8-nitro-1-propargylxanthine (compound 8), 1-acetonyl-3,7-dimethyl-8-nitroxanthine (compound 9), 3,7-dimethyl-8-nitro-1- [3-[(tetra Dropyran-2-yl) oxy] propyl] xanthine (compound 10), 1,7-dimethyl-3- (morpholinocarbonylmethyl) -8-nitroxanthine (compound 11), 1,7-dimethyl-8-nitro-3 -[2-[(tetrahydropyran-2-yl) oxy] ethyl] xanthine (compound 12), 1- (2-chloroethyl) -3,7-dimethyl-8-nitroxanthine (compound 13), 1,7- Dimethyl-3- [2- (1,3-dioxolan-2-yl) ethyl] -8-nitroxanthine (compound 14), 3- (3,3-dimethoxypropyl) -1,7-dimethyl-8-nitro Xanthine (compound 15), 3- [2- (t-butoxycarbonylamino) ethyl] -1,7-dimethyl-8-nitroxanthine (compound 16), 1,7- Methyl-8-nitro-3- [3-[(tetrahydropyran-2-yl) oxy] propyl] xanthine (compound 17), 3- (2-chloroethyl) -1,7-dimethyl-8-nitroxanthine (compound 18), 3- (aminocarbonylmethyl) -1,7-dimethyl-8-nitroxanthine (compound 19), 3,7-dimethyl-1- (3-hydroxypropyl) -8-nitroxanthine (compound 20), 1- (3-acetoxypropyl) -3,7-dimethyl-8-nitroxanthine (compound 21), 1,7-dimethyl-3- (2-hydroxyethyl) -8-nitroxanthine (compound 22), 1, 7-dimethyl-3- (3-hydroxypropyl) -8-nitroxanthine (compound 23), 1,7-dimethyl-3- (2-formylethyl) -8- Nitroxanthine (compound 24), 3- [2- (N, N-diethylamino) ethyl] -1,7-dimethyl-8-nitroxanthine (compound 25), 1,3-di-hydroxypropyl-7-methyl- 8-nitroxanthine (compound 26), 1,3-di- (N-ethyl-N-benzylaminoethyl) -7-methyl-8-nitroxanthine (compound 27), 1,3-diallyl-7-methyl- 8-nitroxanthine (compound 28), 1,3-di-prenyl-7-methyl-8-nitroxanthine (compound 29), 1,3-di-propargyl-7-methyl-8-nitroxanthine (compound 30) 1,3-di-chloroethyl-7-methyl-8-nitroxanthine (compound 31), 1,3-di-acetonyl-7-methyl-8-nitroxanthine (compound 32) 1,3-di-cyanomethyl-7-methyl-8-nitroxanthine (compound 33), 1,3-di- (p-bromophenacyl) -7-methyl-troxanthine (compound 34), 3- (3- Pyridylmethyl) -7-methyl-8-nitroxanthine (compound 35), 1,3-di- (2-hydroxy-3-methoxypropyl) -7-methyl-8-nitroxanthine (compound 36) or 3- ( An 8-nitroxanthine derivative which is 2-hydroxy-3-methoxypropyl) -7-methyl-8-nitroxanthine (compound 37) . 請求項1に記載の8−ニトロキサンチン誘導体を有効成分とする、低酸素性細胞放射線増感剤。A hypoxic cell radiosensitizer comprising the 8-nitroxanthine derivative according to claim 1 as an active ingredient.
JP2002234760A 2002-08-12 2002-08-12 Radiosensitizer Expired - Fee Related JP4328873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002234760A JP4328873B2 (en) 2002-08-12 2002-08-12 Radiosensitizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002234760A JP4328873B2 (en) 2002-08-12 2002-08-12 Radiosensitizer

Publications (2)

Publication Number Publication Date
JP2004075563A JP2004075563A (en) 2004-03-11
JP4328873B2 true JP4328873B2 (en) 2009-09-09

Family

ID=32019473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002234760A Expired - Fee Related JP4328873B2 (en) 2002-08-12 2002-08-12 Radiosensitizer

Country Status (1)

Country Link
JP (1) JP4328873B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8598659B2 (en) 2005-10-26 2013-12-03 Hewlett-Packard Development Company, L.P. Single finger gate transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8598659B2 (en) 2005-10-26 2013-12-03 Hewlett-Packard Development Company, L.P. Single finger gate transistor

Also Published As

Publication number Publication date
JP2004075563A (en) 2004-03-11

Similar Documents

Publication Publication Date Title
CN114901661B (en) Novel K-Ras G12C inhibitors
JP3836436B2 (en) Heterocyclic compounds and antitumor agents containing the same as active ingredients
JP4276376B2 (en) Heterocyclic compounds and antitumor agents containing the same as active ingredients
JP4493503B2 (en) Heterocyclic compounds and antitumor agents containing the same as active ingredients
BRPI0912878A2 (en) derivatives of indazoles replaced by phenyl and benzodioxynyl
TWI840423B (en) Thyroid hormone receptor beta agonist compounds
CN114286818A (en) Heterocyclic compounds as BET inhibitors
JP2009503060A (en) N-phenyl-2-pyrimidin-amine derivative and process for its preparation
JP7187575B2 (en) Benzopyrazole compounds as RHO kinase inhibitors
JP6894917B2 (en) Crystal form of mesylate of pyridinylaminopyrimidine derivative, its production method and its use
WO2021213317A1 (en) Hpk1 inhibitor, preparation method therefor and use thereof
JPS61155358A (en) Diallylbutyric acid derivative and production thereof
JPS6225670B2 (en)
KR20220007111A (en) Compounds used as kinase inhibitors and their applications
CN115215847A (en) KRAS-SOS1 inhibitor, preparation method and application thereof
WO2019091277A1 (en) 2-(1h-pyrazol-3-yl) phenol compound and use thereof
CN113045559B (en) Diaryl urea PI3K alpha/mTOR double-target inhibitor and pharmaceutical composition and application thereof
JP2006503079A (en) Anticancer compounds
WO2021164793A1 (en) Compound used as kinase inhibitor and use thereof
JP2008523155A (en) Pyridyl-substituted spiro-hydantoin compounds and uses thereof
CN113880804A (en) Novel benzimidazole compounds
WO2023057371A1 (en) 1,2,4-oxadiazol-5-one derivatives for the treatment of cancer
JP4328873B2 (en) Radiosensitizer
CN116354988A (en) Tetracyclic compound and medical application thereof
CN111269215B (en) Nitrogen-containing heterocyclic organic compound and preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090525

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees