JP4327675B2 - Induction melting furnace heating and stirring method - Google Patents

Induction melting furnace heating and stirring method Download PDF

Info

Publication number
JP4327675B2
JP4327675B2 JP2004219555A JP2004219555A JP4327675B2 JP 4327675 B2 JP4327675 B2 JP 4327675B2 JP 2004219555 A JP2004219555 A JP 2004219555A JP 2004219555 A JP2004219555 A JP 2004219555A JP 4327675 B2 JP4327675 B2 JP 4327675B2
Authority
JP
Japan
Prior art keywords
switch
stirring
melting furnace
molten metal
induction melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004219555A
Other languages
Japanese (ja)
Other versions
JP2006038351A (en
Inventor
長隆 関
伸一 宮島
学 園部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitashiba Electric Co Ltd
Original Assignee
Kitashiba Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitashiba Electric Co Ltd filed Critical Kitashiba Electric Co Ltd
Priority to JP2004219555A priority Critical patent/JP4327675B2/en
Publication of JP2006038351A publication Critical patent/JP2006038351A/en
Application granted granted Critical
Publication of JP4327675B2 publication Critical patent/JP4327675B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、溶湯の攪拌を行なうことができる誘導溶解炉の溶湯加熱攪拌方法に関するものである。 The present invention relates to a method for heating and stirring molten metal in an induction melting furnace capable of stirring molten metal .

一般に誘導溶解炉で合金を製造する場合、溶解した金属溶湯を撹拌して均一な組成にする必要がある。従来の攪拌を制御した誘導溶解炉としては、例えば図10に示すように溶解室1の外周に、上下2個のコイル2A、2Bを分割して設け、これを単相交流電源3に接続し、それぞれのコイル2A、2Bに2組のコンデンサ4、4を並列に接続して、一方のコンデンサ4には力率を調整するスイッチ5が設けられ、上下コイル2A、2Bの結線6には上部のコイル2Bへの通電を遮断するスイッチ7を設けたものがある(例えば特許文献1)。   In general, when an alloy is produced in an induction melting furnace, it is necessary to stir the molten metal to obtain a uniform composition. As a conventional induction melting furnace with controlled stirring, for example, as shown in FIG. 10, two upper and lower coils 2 </ b> A and 2 </ b> B are provided separately on the outer periphery of the melting chamber 1 and connected to a single-phase AC power source 3. Two capacitors 4 and 4 are connected in parallel to each coil 2A and 2B, one capacitor 4 is provided with a switch 5 for adjusting the power factor, and the connection 6 of the upper and lower coils 2A and 2B has an upper portion. There is a switch provided with a switch 7 for cutting off the current to the coil 2B (for example, Patent Document 1).

この誘導溶解炉では、通常溶解時には上下2個のコイル2A、2Bに通電して同電圧V =V を印加すると、矢印で示すように上下が逆方向で同じ力の攪拌力が生じる。攪拌時には、スイッチ7をオフして図11に示すように上部のコイル2Bへの通電を遮断し、下部コイル2Aに通電すると、上部のコイル2Bは相互誘導共振回路となり、下部のコイル2Aから発生した磁束により図12に示すように位相差をもった電圧V が誘起される。この結果、溶解室1内の溶湯8の上部には、図11に示すように攪拌力が働いて溶湯8が攪拌される。 In this induction melting furnace, during normal melting, if the same voltage V 1 = V 2 is applied to the upper and lower coils 2A and 2B and the same voltage V 1 = V 2 is applied, as shown by the arrows, the same stirring force is generated in the opposite direction. At the time of agitation, the switch 7 is turned off to cut off the energization of the upper coil 2B as shown in FIG. 11, and when the lower coil 2A is energized, the upper coil 2B becomes a mutual induction resonance circuit and is generated from the lower coil 2A. As shown in FIG. 12, a voltage V 2 having a phase difference is induced by the magnetic flux. As a result, as shown in FIG. 11, the stirring force acts on the upper part of the molten metal 8 in the melting chamber 1 to stir the molten metal 8.

しかしながら従来の誘導溶解炉では、攪拌時には上部コイル2Bは、通電を遮断して相互誘導共振回路となるので、図12に示すように位相はずれるが、電圧V は、下部コイル2Aの電圧V に比べてV >V となる。この結果、上部の溶湯8を加熱する能力が低くなると共に、攪拌力が小さくなる。このため溶湯金属より比重の軽い合金成分を添加した場合に、上部の攪拌力が弱いので全体を均一に攪拌できない問題がある。また下部コイル2Aに印加する電圧V を上げると、上部コイル2Bの電圧V との位相差が少なくなって、上下の攪拌に時間差がなくなり攪拌作用が低下し、逆に位相差を広げると電圧比が拡大して保持加熱温度や攪拌力が上下で不均一になる欠点があった。
特公昭49ー305号公報
However, in the conventional induction furnace, upper coil 2B is during agitation, since the mutual induction resonant circuit deenergized, the phase deviates as shown in FIG. 12, the voltage V 2, the voltage of the lower coil 2A V 1 V 1 > V 2 . As a result, the ability to heat the upper molten metal 8 is lowered and the stirring force is reduced. For this reason, when an alloy component having a specific gravity lighter than that of the molten metal is added, there is a problem that the whole cannot be uniformly stirred because the stirring force at the top is weak. Further increasing the voltage V 1 applied to the lower coil 2A, it becomes smaller the phase difference between the voltage V 2 of the upper coil 2B, and decreased stirring action eliminates the time difference above and below the stirring and spread the phase difference in the opposite There was a drawback that the voltage ratio was increased and the holding heating temperature and stirring force were not uniform in the vertical direction.
Japanese Patent Publication No.49-305

本発明は上記問題を改善し、攪拌時に上下のコイルに位相のずれたほぼ同一の電力を印加して炉全体を均一の温度で効率よく攪拌することができる誘導溶解炉の溶湯加熱攪拌方法を提供するものである。 The present invention improves the above-mentioned problem, and applies a melt heating and stirring method for an induction melting furnace that can efficiently stir the entire furnace at a uniform temperature by applying substantially the same electric power that is out of phase to the upper and lower coils during stirring . It is to provide.

本発明の請求項1記載の誘導溶解炉の溶湯加熱攪拌方法は、溶解室の上下に巻回した2個のコイルを直列に接続し、この両端を、直列に接続した2組のコンデンサの両端にそれぞれ接続し、その一方の接続点はインバータ電源の第1の端子に接続し、他方の接続点は第1のスイッチを介してインバータ電源の第2の端子に接続し、前記2個のコイルの中間点と、前記2組のコンデンサの中間点との間に第2のスイッチを設けると共に、インバータ電源の第2の端子と、前記2組のコンデンサの中間点との間に第3のスイッチを接続して、通常溶解時には前記第3のスイッチをオンし、第1のスイッチと第2のスイッチをオフして倍電圧方式により加熱し、攪拌時には第1のスイッチと第2のスイッチをオンし、第3のスイッチをオフして、上下コイルの位相差と電圧を調整して加熱するようにしたことを特徴とするものであるAccording to a first aspect of the present invention, there is provided a method for heating and stirring a molten metal in an induction melting furnace in which two coils wound up and down in a melting chamber are connected in series, and both ends thereof are connected to both ends of two capacitors connected in series. Are connected to the first terminal of the inverter power supply, and the other connection point is connected to the second terminal of the inverter power supply through the first switch. A second switch is provided between the intermediate point of the two sets of capacitors and a third switch between the second terminal of the inverter power supply and the intermediate point of the two sets of capacitors. The third switch is turned on during normal melting, the first switch and the second switch are turned off to heat by the double voltage method, and the first switch and the second switch are turned on during stirring. Turn off the third switch It is characterized in that it has to be heated to adjust the phase difference between the voltage of the coil.

本発明の請求項2記載の誘導溶解炉の溶湯加熱攪拌方法は、請求項1において、22組のコンデンサの少なくとも一方が、容量の可変できるコンデンサで形成されていることを特徴とするものである。 The method for heating and stirring molten metal in an induction melting furnace according to claim 2 of the present invention is characterized in that in claim 1, at least one of the 22 sets of capacitors is formed by a capacitor whose capacity can be varied. .

本発明の請求項3記載の誘導溶解炉の溶湯加熱攪拌方法は、請求項1において、第1のスイッチと第3のスイッチを、1個の単極双投スイッチで形成したことを特徴とするものである。 The method for heating and stirring molten metal in an induction melting furnace according to claim 3 of the present invention is characterized in that, in claim 1, the first switch and the third switch are formed by one single-pole double-throw switch. Is.

本発明に係る請求項1記載の誘導溶解炉の溶湯加熱攪拌方法によれば、スイッチの切換えにより高い電力を必要とする通常溶解時にはコンデンサによる倍電圧方式により加熱し、低い電力で保持しながら攪拌する時には、上下コイルの位相差と電圧を調整して加熱するので、上下のコイルにはほぼ等しい電圧で、位相を約90度ずらせて通電することができる。 According to the molten metal heating and stirring method of the induction melting furnace according to claim 1 of the present invention, heating is performed by a voltage doubler method using a condenser during normal melting that requires high power by switching a switch, and stirring is performed while maintaining low power. When this is done, the phase difference and voltage of the upper and lower coils are adjusted and heated, so that the upper and lower coils can be energized with a substantially equal voltage and a phase shift of about 90 degrees.

このように上下のコイルに位相差を設けて通電することにより時間の経過に伴って攪拌力が生ずる位置が上下に順次移動していくので、溶湯金属より比重の軽い合金成分や重い合金成分を添加しても均一に攪拌されて成分が均一な合金を製造することができる。またインバータ電源の発振周波数を可変することで、攪拌力の調整も容易である。また上下のコイルの電圧分担比率を変えて攪拌力に差をつけることもできる。また回路構成も簡素化されると共に、スイッチも比較的小容量のものが使用可能となる。 In this way, by providing a phase difference between the upper and lower coils and energizing, the position where the stirring force is generated moves up and down sequentially as time elapses. Even if it is added, it can be uniformly stirred to produce an alloy having a uniform component. Moreover, the stirring force can be easily adjusted by changing the oscillation frequency of the inverter power supply. It is also possible to vary the stirring force by changing the voltage sharing ratio between the upper and lower coils. Further, the circuit configuration is simplified, and a switch having a relatively small capacity can be used.

また請求項2記載の誘導溶解炉の溶湯加熱攪拌方法によれば、2組のコンデンサの少なくとも一方を、容量の可変できるコンデンサで形成することにより、溶解する合金の種類や溶解量に応じて最適の条件で攪拌を制御することができる。 Further, according to the molten metal heating and stirring method of the induction melting furnace according to claim 2, by forming at least one of the two sets of capacitors with a capacitor whose capacity can be varied, it is optimal according to the type and melting amount of the alloy to be melted. Stirring can be controlled under the following conditions.

また請求項3記載の誘導溶解炉の溶湯加熱攪拌方法によれば、第1のスイッチと第3のスイッチを1個の単極双投スイッチに置き換えたので、更に構造を簡素化することができる。 According to the molten metal heating and stirring method of the induction melting furnace according to claim 3, since the first switch and the third switch are replaced with one single-pole double-throw switch, the structure can be further simplified. .

上下コイルの電圧をほぼ等しくして、位相差を約90度ずらせて通電して、時間の経過に伴って攪拌力が生ずる位置を上下に順次移動させることができる誘導溶解炉の溶湯加熱攪拌方法を実現した。 Method for heating and stirring molten metal in an induction melting furnace in which the voltage of the upper and lower coils is made substantially equal, the phase difference is deviated by about 90 degrees and energized, and the position where the stirring force is generated as time elapses can be sequentially moved up and down Realized.

以下本発明の実施例を図1ないし図8を参照して詳細に説明する。図1は誘導溶解炉の基本構成を示すもので、溶解室1の上下に巻回した2個のコイル2A、2Bを直列に接続し、この両端が、直列に接続した2組のコンデンサ12A、12Bにそれぞれ接続されている。この一方の接続点15はインバータ電源10の第1の端子11Aに接続し、他方の接続点16は第1のスイッチSW を介してインバータ電源10の第2の端子11Bに接続されている。 Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. FIG. 1 shows a basic configuration of an induction melting furnace, in which two coils 2A, 2B wound up and down of a melting chamber 1 are connected in series, and two sets of capacitors 12A, both ends of which are connected in series, 12B is connected to each. The one connection point 15 is connected to a first terminal 11A of the inverter power supply 10, the other connection point 16 is connected to the second terminal 11B of the inverter power source 10 via a first switch SW 1.

更に前記2個のコイル2A、2Bの中間点13と、前記2組のコンデンサ12A、12Bの中間点14との間に第2のスイッチSW を設けると共に、インバータ電源10の第2の端子11Bと、前記2組のコンデンサ12A、12Bの中間点14との間に第3のスイッチSW が設けられている。 Further, the two coils 2A, the midpoint 13 of 2B, the two sets of capacitors 12A, a second switch SW 2 is provided between the midpoint 14 of the 12B, the second terminal 11B of the inverter power source 10 When the third switch SW 3 is provided between the midpoint 14 of the two pairs of capacitors 12A, 12B.

上記構成の誘導溶解炉で通常溶解する場合は、図1に示すように第3のスイッチSW をオンし、第1のスイッチSW と第2のスイッチSW をオフすると、等価回路は図2に示すようになる。これは倍電圧回路で、インバータ電源10の出力電圧をVとすると、両コイル2A、2Bには約2×Vの電圧が印加され、溶解時に必要な高い電圧が得られて効率よく短時間で金属を溶解することができる。 In the case of normal melting in the induction melting furnace having the above configuration, when the third switch SW 3 is turned on and the first switch SW 1 and the second switch SW 2 are turned off as shown in FIG. As shown in 2. This is a voltage doubler circuit. When the output voltage of the inverter power supply 10 is V, a voltage of about 2 × V is applied to both the coils 2A and 2B, and a high voltage necessary for melting can be obtained and efficiently and in a short time. Metal can be dissolved.

また溶湯8が形成されて、ここに合金成分を添加して攪拌する場合には、図3に示すように第1のスイッチSW と第2のスイッチSW をオンし、第3のスイッチSW をオフすると、等価回路は図4に示すようになる。この状態でインバータ電源10から電圧Vを印加すると下部コイル2AにはV 、上部コイル2BにはV の電圧が印加される。ここでV=V +V である。 When the molten metal 8 is formed and the alloy component is added and stirred here, the first switch SW 1 and the second switch SW 2 are turned on as shown in FIG. 3, and the third switch SW 2 is turned on. When 3 is turned off, the equivalent circuit is as shown in FIG. V 1 was in the lower coil 2A is applied from the inverter power source 10 a voltage V in this state, the voltage of V 2 is applied to the upper coil 2B. Here, V = V 1 + V 2 .

もし下部コイル2Aと上部コイル2Bのインダクタンスが等しくこれをLとし, コンデンサ12Aと12Bの容量が等しくこれをCとしたとき、V =V =V/2となり二つのコイル電圧の間には位相のずれは生じない。しかし、コンデンサ12Aと12Bの容量をそれぞれC/k とk Cとすると、下部コイル2Aとコンデンサ12Aの共振角周波数ω と上部コイル2Bとコンデンサ12Bの共振角周波数ω の間に差が生ずる。ここでk は1よりやや大きな定数で、ω =(1/LC/k1/2 =kω 、ω =(1/Lk C)1/2 =ω /k、ω =(1/LC)1/2 である。インバータ電源10の周波数fをω /2πとすると、ω >ω 、ω <ω から、下部コイル2Aとコンデンサ12AのLC回路は誘導性、上部コイル2Bとコンデンサ12BのLC回路は容量性となり、二つのLC回路の電圧には位相差が出てくる。この様子を示したものが図5である。 If the inductances of the lower coil 2A and the upper coil 2B are equal to L, and the capacitances of the capacitors 12A and 12B are equal to C, then V 1 = V 2 = V / 2, and there is a difference between the two coil voltages. There is no phase shift. However, when the capacitance of the capacitor 12A and 12B respectively C / k 2 and k 2 C, the difference between the resonance angular frequency omega B of the lower coil 2A and the resonance angular frequency omega A and upper coil 2B and a capacitor 12B of the capacitor 12A Will occur. Here, k 2 is a constant slightly larger than 1, and ω A = (1 / LC / k 2 ) 1/2 = kω 0 , ω B = (1 / Lk 2 C) 1/2 = ω 0 / k, ω 0 = (1 / LC) 1/2 . When the frequency f of the inverter power supply 10 is ω 0 / 2π, from ω A > ω 0 , ω B0 , the LC circuit of the lower coil 2A and the capacitor 12A is inductive, and the LC circuit of the upper coil 2B and the capacitor 12B is It becomes capacitive and a phase difference appears between the voltages of the two LC circuits. This is shown in FIG.

図5において、下部コイル2Aの電圧V と、上部コイル2Bの電圧V は、電源電圧Vよりも低くなり、これは保持温度を維持する目的には好都合である。位相差と振幅差はコンデンサ12Aと12Bの容量の平均に対する比率k とインバータ電源周波数fによって変わり、図5に示すように位相差を約90度にすることが可能である。時刻t1では下部コイル2Aがピークの+き電で、上部コイル2Bはゼロクロスで、き電のない状態となる。また時刻t2では下部コイル2Aと上部コイル2Bがクロスして同電圧の、き電状態となる。更に時刻t3では下部コイル2Aがゼロクロスで、き電のない状態となり、上部コイル2Bはピークの+き電状態となる。 5, the voltage V 1 of the lower coil 2A, the voltage V 2 of the upper coil 2B is lower than the power supply voltage V, which is convenient for the purpose of maintaining the holding temperature. Phase difference and amplitude difference will vary depending on the ratio k 2 and the inverter power supply frequency f of the mean capacitance of the capacitor 12A and 12B, it is possible to approximately 90 degrees phase difference as shown in FIG. At the time t1, the lower coil 2A is in a peak + feed, and the upper coil 2B is in a zero cross state and is not fed. Further, at time t2, the lower coil 2A and the upper coil 2B cross to be in a feeding state with the same voltage. Further, at time t3, the lower coil 2A is zero-crossed and no power is fed, and the upper coil 2B is in a peak + feeding state.

このように上下のコイル2A、2Bに位相差を設けて通電することにより溶湯8を攪拌することができる。つまり時刻t1では、図6に示すように下部コイル2Aにだけ通電され、溶湯8ではコイル電流と反対方向の電流が流れ、電磁力は反発力となって下部溶湯の中心部方向に働くので、上下に向かって矢印で示す攪拌力が生じる。次に時刻t2では、図7に示すように上下のコイル2A、2Bに同時に通電され、溶湯8の上部と下部で、それぞれ矢印で示す攪拌力が生じる。時刻t3になると、図8に示すように上部コイル2Bにだけ通電され、上部溶湯の中心部方向に矢印で示す攪拌力が生じる。またマイナス側の電流が流れる時は、電流方向が逆になるが攪拌力は同じである。 In this way, the molten metal 8 can be agitated by energizing the upper and lower coils 2A, 2B with a phase difference. That is, at the time t1, only the lower coil 2A is energized as shown in FIG. Stirring force indicated by arrows is generated upward and downward. Next, at time t2, as shown in FIG. 7, the upper and lower coils 2A and 2B are energized at the same time, and the stirring force indicated by the arrows is generated at the upper and lower portions of the molten metal 8, respectively. At time t3, as shown in FIG. 8, only the upper coil 2B is energized, and a stirring force indicated by an arrow is generated in the direction of the center of the upper molten metal. When a negative current flows, the current direction is reversed, but the stirring force is the same.

従って時間の経過に伴って攪拌力が生ずる位置が上下に順次移動していくので、溶湯金属より比重の軽い合金成分や、重い合金成分を添加しても均一に攪拌されて成分が均一な合金を製造することができる。また上下のコイル2A、2Bの電圧をほぼ等しくできるので、溶湯全体を均一に加熱することができる。また周波数を低くして強く攪拌することができ、逆に周波数を高くすると攪拌力が弱くなるので、攪拌力の調整も容易である。なお上下のコイル2A、2Bの電圧分担比率を変えて攪拌力に差をつけることもでき、溶湯金属より比重の軽い合金成分を添加した場合に、上部側だけ強く攪拌することもできる。 Therefore, the position where the stirring force is generated moves sequentially up and down over time, so even if an alloy component having a lighter specific gravity than the molten metal or a heavy alloy component is added, the alloy is uniformly stirred and the component is uniform. Can be manufactured. Further, since the voltages of the upper and lower coils 2A and 2B can be made substantially equal, the entire molten metal can be heated uniformly. Moreover, since the frequency can be lowered and the stirring can be carried out strongly, on the contrary, when the frequency is increased, the stirring force becomes weak, so that the stirring force can be easily adjusted. Note that the stirring force can be made different by changing the voltage sharing ratio between the upper and lower coils 2A, 2B. When an alloy component having a specific gravity lower than that of the molten metal is added, only the upper side can be stirred strongly.

また第2のスイッチSW は、両中間点13、14の間に設けられ電圧の向きが逆向きであり、ここに流れる電流はその差分だけとなるので小型のスイッチでよい。また第1のスイッチSW と第3のスイッチSW は、コンデンサ12A、12Bの電源側にあり、流れる電流が少ないので小型化することができる。 The second switch SW 2 is opposite the direction of provided voltage between both midpoint 13 and 14, the current flowing here may be a small switch since only the difference. Further, the first switch SW 1 and the third switch SW 3 are on the power source side of the capacitors 12A and 12B, and can be reduced in size because the flowing current is small.

図9は本発明の他の実施例を示すもので、インバータ電源10の第2の端子11Bと、コンデンサ12B側の接続点16と、両コンデンサ12A、12Bの中間点14との間に単極双投スイッチSW を設けて、切換えるようにしたものである。つまり図1に示す第1のスイッチSW と第3のスイッチSW を1個の単極双投スイッチSW に置き換えたもので、構造を簡素化することができる。 FIG. 9 shows another embodiment of the present invention. A single pole is provided between the second terminal 11B of the inverter power supply 10, the connection point 16 on the capacitor 12B side, and the intermediate point 14 between the capacitors 12A and 12B. A double-throw switch SW 4 is provided for switching. That replaced with a first switch SW 1 and the third switch SW 3 one single pole double throw switch SW 4 shown in FIG. 1, can simplify the structure.

なお上記実施例では、コンデンサ12A、12Bとして固定容量のものを用いた場合について示したが、何れか少なくとも一方の容量が可変できるように構成することにより、溶解する合金の種類や溶解量に応じて最適の条件で攪拌を制御することができる。 In the above embodiment, the capacitors 12A and 12B are shown as having fixed capacities. However, by configuring such that at least one of the capacities can be varied, depending on the type and melting amount of the alloy to be melted. Therefore, stirring can be controlled under optimum conditions.

上記説明では大気中で溶解する誘導溶解炉の場合について説明したが、真空や不活性ガスなどの大気条件以外の溶解炉にも適用することができる。 In the above description, an induction melting furnace that melts in the atmosphere has been described. However, the present invention can also be applied to melting furnaces other than atmospheric conditions such as vacuum and inert gas.

本発明の実施例による通常溶解時における誘導溶解炉の回路構成図である。It is a circuit block diagram of the induction melting furnace at the time of the normal melt | dissolution by the Example of this invention. 図1の等価回路図である。FIG. 2 is an equivalent circuit diagram of FIG. 1. 攪拌時における誘導溶解炉の回路構成図である。It is a circuit block diagram of the induction melting furnace at the time of stirring. 図3の等価回路図である。FIG. 4 is an equivalent circuit diagram of FIG. 3. 攪拌時における上下コイルの電圧波形図である。It is a voltage waveform diagram of the upper and lower coils during stirring. 時刻t1における溶湯内に作用する攪拌力を示す説明図である。It is explanatory drawing which shows the stirring force which acts in the molten metal in the time t1. 時刻t2における溶湯内に作用する攪拌力を示す説明図である。It is explanatory drawing which shows the stirring force which acts in the molten metal in the time t2. 時刻t3における溶湯内に作用する攪拌力を示す説明図である。It is explanatory drawing which shows the stirring force which acts in the molten metal in the time t3. 本発明の他の実施例による誘導溶解炉の回路構成図である。It is a circuit block diagram of the induction melting furnace by the other Example of this invention. 従来の通常溶解時における誘導溶解炉の回路構成図である。It is a circuit block diagram of the induction melting furnace at the time of the conventional normal melt | dissolution. 図10の攪拌時における誘導溶解炉の回路構成図である。It is a circuit block diagram of the induction melting furnace at the time of stirring of FIG. 従来の攪拌時における上下コイルの電圧波形図である。It is a voltage waveform diagram of the upper and lower coils during the conventional stirring.

1 溶解室
2A 下部コイル
2B 上部コイル
3 単相交流電源
4 コンデンサ
5 スイッチ
6 結線
7 スイッチ
8 溶湯
10 インバータ電源
11A 第1の端子
11B 第2の端子
12A、12B コンデンサ
13 中間点
14 中間点
15 接続点
16 接続点
SW 第1のスイッチ
SW 第2のスイッチ
SW 第3のスイッチ
SW 単極双投スイッチ
1 Dissolution chamber
2A Lower coil
2B Upper coil
3 Single-phase AC power supply
4 capacitors
5 switch
6 Connection
7 switch
8 Molten metal
10 Inverter power supply
11A First terminal 11B Second terminal 12A, 12B Capacitor
13 Midpoint
14 Midpoint
15 connection points
16 connection points
SW 1 first switch
SW 2 second switch
SW 3 3rd switch
SW 4 single pole double throw switch

Claims (3)

溶解室の上下に巻回した2個のコイルを直列に接続し、この両端を、直列に接続した2組のコンデンサの両端にそれぞれ接続し、その一方の接続点はインバータ電源の第1の端子に接続し、他方の接続点は第1のスイッチを介してインバータ電源の第2の端子に接続し、前記2個のコイルの中間点と、前記2組のコンデンサの中間点との間に第2のスイッチを設けると共に、インバータ電源の第2の端子と、前記2組のコンデンサの中間点との間に第3のスイッチを接続して、通常溶解時には前記第3のスイッチをオンし、第1のスイッチと第2のスイッチをオフして倍電圧方式により加熱し、攪拌時には第1のスイッチと第2のスイッチをオンし、第3のスイッチをオフして、上下コイルの位相差と電圧を調整して加熱するようにしたことを特徴とする誘導溶解炉の溶湯加熱攪拌方法。 Two coils wound up and down the melting chamber are connected in series, and both ends are connected to both ends of two series-connected capacitors, respectively, one of which is the first terminal of the inverter power supply The other connection point is connected to the second terminal of the inverter power supply through the first switch, and the second connection point is connected between the intermediate point of the two coils and the intermediate point of the two sets of capacitors. In addition, a third switch is connected between the second terminal of the inverter power supply and the intermediate point of the two sets of capacitors, and the third switch is turned on during normal melting, 1 switch and 2 switch are turned off and heated by voltage doubler system, and at the time of stirring, 1st switch and 2nd switch are turned on, 3rd switch is turned off, phase difference and voltage of upper and lower coils Adjusting the heating Molten metal heating method of stirring induction melting furnace, characterized. 2組のコンデンサの少なくとも一方が、容量の可変できるコンデンサで形成されていることを特徴とする請求項1記載の誘導溶解炉の溶湯加熱攪拌方法The method for heating and stirring molten metal in an induction melting furnace according to claim 1, wherein at least one of the two sets of capacitors is formed of a capacitor having a variable capacity. 第1のスイッチと第3のスイッチを、1個の単極双投スイッチで形成したことを特徴とする請求項1記載の誘導溶解炉の溶湯加熱攪拌方法The method for heating and stirring molten metal in an induction melting furnace according to claim 1, wherein the first switch and the third switch are formed by one single pole double throw switch.
JP2004219555A 2004-07-28 2004-07-28 Induction melting furnace heating and stirring method Expired - Fee Related JP4327675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004219555A JP4327675B2 (en) 2004-07-28 2004-07-28 Induction melting furnace heating and stirring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004219555A JP4327675B2 (en) 2004-07-28 2004-07-28 Induction melting furnace heating and stirring method

Publications (2)

Publication Number Publication Date
JP2006038351A JP2006038351A (en) 2006-02-09
JP4327675B2 true JP4327675B2 (en) 2009-09-09

Family

ID=35903522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004219555A Expired - Fee Related JP4327675B2 (en) 2004-07-28 2004-07-28 Induction melting furnace heating and stirring method

Country Status (1)

Country Link
JP (1) JP4327675B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241197A (en) * 2007-03-28 2008-10-09 Fuji Electric Systems Co Ltd Electric heating device
JP5490707B2 (en) * 2007-11-03 2014-05-14 インダクトサーム・コーポレイション Power system for dielectric heating and melting of materials in susceptor containers
CN113890404B (en) * 2021-11-03 2024-04-12 河南熔克电气制造有限公司 Three-phase intermediate frequency power supply circuit with adjustable phase shift angle

Also Published As

Publication number Publication date
JP2006038351A (en) 2006-02-09

Similar Documents

Publication Publication Date Title
JP5429391B2 (en) High frequency power supply
KR101021560B1 (en) Power supply for induction heating or melting
EP1374640B1 (en) Simultaneous induction heating and stirring of a molten metal
HU188204B (en) Electronic supply-unit for discharge lams, method for applying thereof and filter therefor
US20130334213A1 (en) Induction heating cooker
JP2007026728A (en) Induction heating method and hardening method
JP4327675B2 (en) Induction melting furnace heating and stirring method
AU2002255551A1 (en) Simultaneous induction heating and stirring of a molten metal
US6798822B2 (en) Simultaneous induction heating and stirring of a molten metal
US20120024842A1 (en) Circuit arrangement for an induction cooker, method for operating the circuit arrangement and induction cooker
JP2722738B2 (en) Induction heating device
US6618426B1 (en) Electromagnetic stirring of a melting metal
US4979182A (en) Device for positioning and melting electrically conductive materials without a receptacle
JP6140371B2 (en) Method of operating an electric arc furnace and electric arc furnace
RU2317657C2 (en) Induction plant
KR810000566B1 (en) Stabilizer for electronic fluorescnet lamp
JP5513249B2 (en) Capacitor resistance welding machine
US8437150B1 (en) Dual frequency heating, melting and stirring with electric induction power
JP2004304998A (en) High q impedance matching inverter circuit equipped with automatic line regulation
JP4761593B2 (en) Induction melting furnace and induction melting method
JPS61230290A (en) Induction heating cooker
RU2778339C1 (en) Installation of induction melting of metals
JPH08261656A (en) Floating melting apparatus
JP3780894B2 (en) Microwave generator
JP2022175759A (en) Electromagnetic induction heating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4327675

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees