JP4327388B2 - Heat treatment method for hydrogen storage alloy - Google Patents

Heat treatment method for hydrogen storage alloy Download PDF

Info

Publication number
JP4327388B2
JP4327388B2 JP2001284915A JP2001284915A JP4327388B2 JP 4327388 B2 JP4327388 B2 JP 4327388B2 JP 2001284915 A JP2001284915 A JP 2001284915A JP 2001284915 A JP2001284915 A JP 2001284915A JP 4327388 B2 JP4327388 B2 JP 4327388B2
Authority
JP
Japan
Prior art keywords
alloy
heat treatment
hydrogen storage
hydrogen
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001284915A
Other languages
Japanese (ja)
Other versions
JP2003089862A (en
Inventor
史生 高橋
孝 海老沢
秀明 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2001284915A priority Critical patent/JP4327388B2/en
Publication of JP2003089862A publication Critical patent/JP2003089862A/en
Application granted granted Critical
Publication of JP4327388B2 publication Critical patent/JP4327388B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水素貯蔵・供給用材料、熱変換用材料等に用いられるジルコニウムを含有したTi−Mn系ラーベス相水素吸蔵合金の熱処理方法に関するものである。
【0002】
【従来の技術】
水素吸蔵合金は、水素と可逆的に反応して、反応熱の出入りを伴う水素吸放出特性を有している。この現象を利用して、近年、水素貯蔵用材料やヒートポンプ・冷凍システム用などの熱変換用材料としての実用化が積極的に進められている。代表的な水素吸蔵合金としてはLaNi、TiFe、TiMn1.5等がよく知られている。
その中でも、主相がラーベス相構造を有するTi−Mn系合金は単位重量当たりの水素吸放出量が大きく、比較的水素移動量も大きいことから水素貯蔵材料や冷凍システムへの利用に期待が集まっており、特開平7−97654号公報や特開平10−245653号公報などにおいて該合金の提案がなされている。
【0003】
しかし、上記のシステムに組み込む合金に望まれる特性は、適当な温度且つ狭い圧力範囲で水素を吸放出することであり、この要望に応えるためには、水素吸蔵合金の合金特性において、平衡水素圧力−水素吸収量−等温曲線のプラトー領域の傾斜を減少させ、且つプラトー領域の平衡水素圧力値をシステムで許容される圧力範囲内に制御し、その圧力範囲内における有効水素移動量を増大させる必要がある。
このような合金特性の改善には合金の構成成分比の変更や一部他元素置換などの方法の他に、従来より熱処理方法(特公昭61−33901号公報、特公昭63−27423号公報)や急冷凝固法等の製造方法の開発が進められている。
【0004】
プラトー領域の傾斜は、合金内に存在する結晶粒界や凝固偏析などの組織的不均質性と転位や積層欠陥等の結晶学的不均質性に由来し、特に、合金をアーク溶解炉や高周波誘導溶解炉等の溶解炉で溶製した際に形成される凝固偏析を抑制又は解消することで、プラトー領域の平坦化等の合金特性改善を大幅に達成できる。
通常、Ti−Mn系合金の合金特性改善の目的で実施される熱処理方法は、不活性ガス気中または水素ガスなどの還元ガス気中900℃〜1100℃に昇温し、最大24時間保持して室温に冷却する。この結果、合金に加えられた熱量によって合金内構成元素の拡散移動が促進し、凝固偏析が解消され成分均一な合金が得られる。
また、Ti−Mn系合金の合金特性改善の目的で実施される急冷凝固法は、ガスアトマイズ法、遠心法、回転液中噴出法、ロール急冷法等を採用して、合金溶湯を10℃/秒以上の冷却速度で高速冷却し合金を凝固させる。この場合、合金内では構成元素の拡散移動が遅延され凝固偏析が形成されにくくなる。
【0005】
【発明が解決しようとする課題】
ところで、Ti−Mn系合金は、Zrの含有により有効水素移動量を増大させることができる。しかし、従来の加熱熱処理方法を用いた合金特性改善では、ジルコニウムを含有したTi−Mn系ラーベス相水素吸蔵合金においては、熱処理による効果が充分に得られず、熱処理時の保持温度を1100℃として24時間保持することによっても満足する結果が得られない。加熱保持時間をさらに長時間とすることにより効果を増大させる方法も考えられるが、製造コストが増す上に、長時間にわたって合金を高温雰囲気に曝すことによって合金表層部のMnが蒸発し合金表層部の組成が変化する。加えて、Mnの蒸発量増加が熱処理炉の汚染を増大させるなど多くの不都合が生じる。
【0006】
また従来の急冷凝固法を用いた合金特性改善では、本発明の対象となっているジルコニウムを含有したTi−Mn系ラーベス相水素吸蔵合金において、許容される冷却速度の範囲が狭く厳密な制御が要求される。この結果、合金生産の歩留まりが不安定で計画的な生産に支障をきたす。また、急冷凝固法は、急冷凝固装置の整備・補修に労力を要し生産量も熱処理方法より少ない為、現時点において、水素吸蔵合金製造を安定操業する際に問題となる合金製造コスト及び生産所要日数の点において最善とは言えない。
【0007】
本発明者らは、Zrを含有するTi−Mn系合金において上記の加熱熱処理において充分な効果が得られない点について鋭意研究した。その結果、ジルコニウムを含有したTi−Mn系ラーベス相水素吸蔵合金の構成元素において、ジルコニウムが最も拡散速度が遅く、凝固偏析形成の主要原因となっている為であり、この傾向は合金構成元素中のジルコニウムの占める割合が多いほど顕著となることを見出した。この現象のため、ジルコニウムに限らず合金を構成する全元素の拡散移動が遅延され、凝固偏析の解消に要する時間が延長されることとなる。
【0008】
本発明は、上記のような従来の課題を解決するものであり、不活性ガス気中または水素ガスなどの還元ガス気中1200℃〜融点直下の極めて高温の熱処理を行うことにより、ジルコニウムの拡散移動が促進されて凝固偏析が短時間で解消でき、熱処理炉の汚染を抑え生産量の増加及び生産所要日数の短縮を実現し、かつ合金製造コストを抑えた水素吸蔵合金の熱処理方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記課題を解決するため本発明の水素吸蔵合金の熱処理方法のうち、請求項1記載の発明は、式:Ti1−aZrMne−b−c−dFeで表され、主相の結晶構造がラーベス相構造を有する水素吸蔵合金の熱処理方法において、合金溶解後、1200℃〜融点直下の不活性ガス気中又は還元ガス気中で加熱することを特徴とする。
ただし、0<a≦0.5、0<b≦0.6、0≦c≦0.2、0≦d≦0.2、1.8≦e≦2.2の範囲に設定され、MはAl、Mo、Nbの一種又は二種以上である。
【0010】
請求項2記載の水素吸蔵合金の熱処理方法の発明は、請求項1記載の発明において、合金の原材料としてフェロバナジウムを使用したことを特徴とする。
【0011】
請求項3水素吸蔵合金の熱処理方法は、請求項1または2に記載の発明において、前記加熱での保持時間が3〜24時間の範囲であることを特徴とする。
【0012】
以下に本発明における成分及び熱処理条件の限定理由について説明する。
ラーベス相結晶構造においてAサイトを占めると考えられる元素であるTi及びZrと、Bサイトを占めると考えられる元素であるMn及びV、Fe、M群の成分比の関係(特に1.8≦e≦2.2)は、ラーベス相構造のTi−Mn系水素吸蔵合金を得るための基本的な比であり、上記範囲内での量比が必須である。なおラーベス相が主相になっているものとしては、体積率でラーベス相が85体積%以上であるものはラーベス相が主相であるといえる。
【0013】
Zr:0<a≦0.5
Zrは、有効水素移動量を増大させるために添加する。その一方で、Zrを添加すると、合金の平衡水素圧低下及びプラトー領域の傾斜が促進される。但し、本発明の熱処理方法によって製造されるため、Zrによる上記の弊害を大幅に低下させることができ、従来材以上にZrを多く添加することができる。しかし、合金への過剰Zrの添加は、本発明の熱処理方法を採用しても上記弊害が顕著になるため、その上限を0.5とする。なお、Zrの有効水素移動量の増大効果を確実に得るためには、0.01以上添加することが望ましく、また、上記と同様の理由で上限を0.45とするのが望ましい。
【0014】
V:0<b≦0.6
Vは水素化初期のいわゆるα相領域を減少させ有効水素移動量を増加させるために添加する。この効果を確実に得るためには、0.2以上添加することが望ましい。一方、合金への過剰Vの添加は、プラトー領域の幅を狭くしてしまうことから、上限を0.6とする。
【0015】
Fe:0≦c≦0.2
Feは、平衡水素圧上昇の効果があり、合金を利用する各種システムが所望する圧力範囲に制御する平衡水素圧調整元素として所望により添加する。但し、合金への過剰Feの添加は最大水素吸蔵量の著しい低下、α相領域の増加による著しい有効水素移動量の低下、プラトー領域の傾斜増大等、合金特性に悪影響を及ぼすことから、上限を0.2とする。
【0016】
M群(Al、Mo、Nbの一種又は二種以上):0≦d≦0.2
Al、Mo、Nbは、合金の格子定数を増加させる元素であることから、微量添加によりヒステリシスを低減させる、又は最大水素吸蔵量を増加させる元素として所望により添加する。但し、Al、Mo、Nbの過剰添加は、上記のFeと同様に合金特性に悪影響を及ぼすことから、上限を0.2とする。
【0017】
熱処理温度:(1200℃〜融点直下)
合金溶解の時点においてジルコニウム偏析によって合金内に導入される凝固偏析を解消するには、合金中の構成元素が拡散移動可能な温度域への昇温が必要であり、一般に金属融点の1/2以上の温度で移動が可能となる。
但し、合金塊の形状や大きさに関わらず、合金全体に構成元素が短時間で移動可能にするためには、極めて高温が必要であり、本発明者の研究によれば、1200℃以上の温度が必要であることが判明している。なお、ジルコニウム添加量によって合金融点に違いが生じるが、熱処理による均質化効果を確実に得るためには、熱処理温度は合金の融点直下(詳しくは合金融点より20〜50℃低い温度域)であることが望ましい。
【0018】
原材料フェロバナジウム
上記の組成範囲を厳守する形で採用の場合、合金製造コストの低減効果が極めて大きい。但し、溶解時の脱酸剤等からによる意図しない不純物元素の微量混入があるため、最大水素吸蔵量の変動等の不都合が発生する。しかし、組成範囲を厳守する形でフェロバナジウムを採用する場合は、最大水素吸蔵量の変動は少なく抑えられ、本発明の熱処理方法の適用によって、同様の合金特性改善が得られる。
【0019】
【作用】
すなわち本発明によれば、Zrを含む元素の拡散移動が促進され、短時間での凝固偏析の解消が可能になり、プラトー領域を平坦化して合金特性を大幅に改善することができる。短時間での処理が可能になることから長時間処理に伴う製造コストの増大や合金表層部の組成変化、炉の汚染の増大という問題を解消することが可能になる。
【0020】
【発明の実施の形態】
本発明において、水素吸蔵合金の製造方法は特に限定されるものではなく、所定の量比になるように各元素を調整して製造する。なお、原材料としてフェロバナジウムの使用が可能である。
また、合金の溶解法については特別な制限は無く、アーク溶解法、高周波誘導溶解法等、種々の溶解法が適用できる。ただし、本発明の水素吸蔵合金の熱処理方法を採用して確実に合金特性改善の効果を得るには、酸素混入による合金特性の悪化を防ぐ為、溶解は不活性ガス気中又は1×10−1〜1×10−5Torrの真空下で行われることが望ましい。なおかつ、溶解凝固過程で形成される結晶粒等の合金組織の違いによって凝固偏析の幅や濃度変動値が変化するため、合金重量に対する鋳型との接触面積等、合金に対する充分な凝固面積を確保して、充分な冷却速度を獲得することが望ましい。
【0021】
本発明の水素吸蔵合金の熱処理方法は、従来のTi−Mn系合金に比べて原材料に酸素含有量の多いVが含有されることから合金内酸素含有量が無視できない。また、原材料にフェロバナジウムを使用した場合でも合金内酸素含有量は多くなる。熱処理炉内に酸素が混入していたり、合金内酸素含有量が多いと合金内には主相ラーベス相とともに酸化物相が形成され、最大水素吸蔵量や有効水素移動量が減少し合金特性に悪影響を及ぼす。また、本発明の対象となる水素吸蔵合金は、酸素親和力の大きいジルコニウムを含有している為ジルコニウム酸化物を形成しやすく、形成されると合金主相中のジルコニウム含有量が減少し最大水素吸蔵量や有効水素移動量が減少する。
【0022】
本発明の熱処理方法は、熱処理炉内を不活性ガス雰囲気又は水素などの還元ガス雰囲気に制御するた為、炉内の酸素混入量を抑えることが可能になる。
また、1200℃〜合金融点直下の極めて高温で熱処理することにより、ジルコニウムの拡散移動が促進されるので、ジルコニウム偏析が主要原因である凝固偏析を3〜24時間程度の短時間で解消することができる。さらに、短時間で熱処理が終了するために上記の酸化物の形成・粗大化を抑制することができる。
【0023】
本発明の熱処理方法は、昇温過程及び降温過程について特別な制限は無いが、熱処理炉の負担を軽減する為に昇温速度は300℃/時間以下で昇温することが望ましい。また、不活性ガス雰囲気又は還元ガス雰囲気を維持した状態であるならば、降温過程は炉冷、ガス急冷等、種々の冷却方法や冷却速度を採用しても合金特性を改善することができる。
【0024】
本発明の熱処理がなされた水素吸蔵合金は、プラトー領域の傾斜が小さく、合金特性に優れており、水素の吸放出がなされる種々の用途に使用することができ、本発明としては特定の用途に限定されるものではない。
【0025】
【実施例】
以下に、本発明の実施例について図表を交えて説明する。
表1の組成になるように原料を配合し、アルゴン雰囲気中アーク溶解炉で溶解し合金100gを作製した。次いで、アルゴン雰囲気熱処理炉を使用して昇温速度250℃/時間で昇温し、1250℃で6時間熱処理し炉冷にて冷却したものを本発明の実施例としての測定試料とした。また、比較の為、同じく表1に示す組成で原料を配合しアーク溶製した合金100gに、アルゴン雰囲気熱処理炉を使用して昇温速度250℃/時間で昇温し、1100℃で24時間熱処理し炉冷したものを比較例としての測定試料とした。なお、これら試料の融点は1276℃であった。
【0026】
【表1】

Figure 0004327388
【0027】
この測定試料の一部は、約200メッシュ以下に粉砕したものは、X線回析法による合金分析に使用し、約50〜200メッシュの範囲に粉砕したものは、水素ガス雰囲気での水素吸放出測定(P(水素圧力)−C(組成)−T(温度)測定)に使用した。残りの合金塊は電子プローブ微小部分析(EPMA分析)に使用した。
【0028】
熱処理前と熱処理後の測定試料を、実施例及び比較例についてそれぞれX線回析法により結晶構造を調べた。このときのX線はCuKα線を用いた。図1に実施例の熱処理前と熱処理後の測定結果を、図2に比較例の熱処理前と熱処理後の測定結果を示す。図1及び図2の両者で観察されたX線回析ピークはC14ラーベス相のものであり、半価幅の比較は(112)面からのX線回析ピークを用いた。
【0029】
実施例の熱処理後は、図1に示すように熱処理により凝固偏析が解消された為、主相ラーベス相の結晶均質化が起こり、熱処理前よりも回析強度が増加し、半価幅は熱処理前の約68%まで減少した。一方、比較例の熱処理後は、図2に示すように熱処理前とほぼ同様な回析強度と半価幅で、熱処理の効果は認められなかった。
【0030】
次に、実施例及び比較例について、熱処理前と熱処理後の測定試料の平衡水素圧力−水素吸収量−等温曲線を求めた。図3に実施例の熱処理前と熱処理後の曲線を、図4に比較例の熱処理前と熱処理後の曲線を示す。
実施例の熱処理後は、図3に示すように熱処理による合金特性改善により熱処理前よりもプラトー領域の傾斜が低減化されて、狭い圧力範囲における水素移動量が大幅に確保されている。一方、比較例の熱処理後は、図4に示すように長時間保持によっても熱処理の効果は認められず熱処理前とほぼ同様なプラトー領域の傾斜を示している。
【0031】
さらに、プラトー領域の傾斜の主要原因と考えられる凝固偏析を形成させるジルコニウムの合金組織内における存在状態を、実施例と比較例において、電子プローブ微小部分析法を利用して、電子ビームを二次元走査してジルコニウム元素濃度分布のマッピング像を得て調べた。図5に実施例の像を、図6に比較例の像を示す。
実施例では、図5に示すように局所的な濃淡部が存在せず、熱処理によってジルコニウムの拡散移動が促進され、合金組織内に均一に存在していることが判明した。一方、比較例では、図6に示すように局所的な濃淡部が鮮明に観察され、熱処理を行ってもジルコニウムの偏析が残存していることが判明した。
【0032】
以上実施例で説明したように、ジルコニウムを含有したTi−Mn系ラーベス相水素吸蔵合金において、本発明の熱処理方法を実施することにより、ジルコニウムの拡散移動を促進させて合金組織内のジルコニウムを均一に存在させ、合金組織内の凝固偏析を解消し主相ラーベス相の結晶均質化を達成することにより、プラトー領域の平坦な実用性に優れた水素吸蔵合金を得ることができることが明らかとなった。
なお、合金の原材料としてフェロバナジウムを使用した場合においても同様の結果が得られた。
また、合金成分として、Al、Mo、Nbの1種以上を含有する合金においても同様の効果が得られており、これら元素の添加によりヒステリシスの低減又は最大水素吸蔵量の増加が確認された。
【0033】
【発明の効果】
以上説明したように本発明によれば、従来の方法では達成が困難であったジルコニウムを含有したTi−Mn系ラーベス相水素吸蔵合金のプラトー領域の平坦化や水素移動量の増大といった合金特性改善が、合金製造コストの増大且つ生産所要日数の延長を伴うことなく達成される。この結果、本発明の熱処理方法を採用して製造された水素吸蔵合金は、実用的な特性を有しつつ安価且つ生産量増大を図ることが可能となり、特に可逆的な水素吸放出を利用する水素貯蔵システムや冷凍システムなどの熱変換システムへの高性能化・低コスト化への寄与は多分に大きい。
【図面の簡単な説明】
【図1】 本発明の実施例における熱処理前と熱処理後の粉末X線回析パターンを示す比較図。
【図2】 比較例における熱処理前と熱処理後の粉末X線回析パターンを示す比較図。
【図3】 本発明の実施例における熱処理前と熱処理後の平衡水素圧力−水素吸収量−等温曲線の特性比較図。
【図4】 比較例における熱処理前と熱処理後の平衡水素圧力−水素吸収量−等温曲線の特性比較図。
【図5】 本発明の実施例(熱処理後)におけるジルコニウム成分分布状態を示すEPMAマッピング像。
【図6】 比較例(熱処理後)におけるジルコニウム成分分布状態を示すEPMAマッピング像。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat treatment method for a Ti—Mn Laves phase hydrogen storage alloy containing zirconium used as a hydrogen storage / supply material, a heat conversion material, or the like.
[0002]
[Prior art]
The hydrogen storage alloy reacts reversibly with hydrogen and has a hydrogen absorption / release characteristic that involves the entry and exit of reaction heat. In recent years, utilization of this phenomenon as a material for heat conversion such as a hydrogen storage material or a heat pump / refrigeration system has been actively promoted. As typical hydrogen storage alloys, LaNi 5 , TiFe, TiMn 1.5 and the like are well known.
Among them, Ti-Mn alloys whose main phase has a Laves phase structure have a large amount of hydrogen absorption / desorption per unit weight and a relatively large amount of hydrogen transfer, which is expected to be used for hydrogen storage materials and refrigeration systems. Such alloys have been proposed in JP-A-7-97654 and JP-A-10-245653.
[0003]
However, the desired property of the alloy incorporated in the above system is to absorb and release hydrogen at an appropriate temperature and a narrow pressure range. To meet this demand, in the alloy properties of the hydrogen storage alloy, the equilibrium hydrogen pressure -Hydrogen absorption amount-It is necessary to reduce the slope of the plateau region of the isothermal curve, and to control the equilibrium hydrogen pressure value in the plateau region within the pressure range allowed by the system, and to increase the effective hydrogen transfer amount within that pressure range. There is.
In order to improve such alloy properties, in addition to methods such as changing the constituent component ratio of the alloy and substituting some other elements, conventional heat treatment methods (Japanese Examined Patent Publication Nos. 61-33901 and 63-27423) Development of manufacturing methods such as the rapid solidification method and the like is underway.
[0004]
The inclination of the plateau region is derived from the structural inhomogeneities such as grain boundaries and solidification segregation existing in the alloy and crystallographic inhomogeneities such as dislocations and stacking faults. By suppressing or eliminating the solidification segregation formed when melting in a melting furnace such as an induction melting furnace, it is possible to greatly improve alloy characteristics such as flattening of the plateau region.
Usually, the heat treatment method carried out for the purpose of improving the alloy properties of Ti—Mn alloy is to raise the temperature to 900 ° C. to 1100 ° C. in a reducing gas such as an inert gas or hydrogen gas and hold it for a maximum of 24 hours. Cool to room temperature. As a result, the amount of heat applied to the alloy promotes the diffusion movement of the constituent elements in the alloy, so that solidification segregation is eliminated and an alloy having a uniform component is obtained.
Further, Ti-Mn-based rapid solidification carried out for the purpose of alloy properties improvement of the alloy, gas atomization, centrifugal method, rotating liquid ejection method, it employs a roll quenching method or the like, the molten alloy 10 3 ° C. / The alloy is solidified by high-speed cooling at a cooling rate of more than 1 second. In this case, the diffusion movement of the constituent elements is delayed in the alloy and solidification segregation is hardly formed.
[0005]
[Problems to be solved by the invention]
By the way, the Ti-Mn alloy can increase the effective hydrogen transfer amount by containing Zr. However, in the improvement of the alloy characteristics using the conventional heat treatment method, in the Ti-Mn Laves phase hydrogen storage alloy containing zirconium, the effect of the heat treatment cannot be sufficiently obtained, and the holding temperature during the heat treatment is set to 1100 ° C. Satisfactory results cannot be obtained by holding for 24 hours. Although a method of increasing the effect by further increasing the heating and holding time can be considered, the manufacturing cost increases, and in addition to exposing the alloy to a high temperature atmosphere for a long time, the Mn of the alloy surface layer portion evaporates and the alloy surface layer portion The composition changes. In addition, many disadvantages such as an increase in the amount of evaporated Mn increase the contamination of the heat treatment furnace.
[0006]
Moreover, in the improvement of the alloy characteristics using the conventional rapid solidification method, in the Ti-Mn Laves phase hydrogen storage alloy containing zirconium which is the object of the present invention, the allowable cooling rate range is narrow and strict control is performed. Required. As a result, the yield of alloy production is unstable, which hinders planned production. In addition, the rapid solidification method requires labor for maintenance and repair of the rapid solidification equipment, and the production volume is less than that of the heat treatment method. It's not the best in terms of days.
[0007]
The present inventors diligently studied that a sufficient effect cannot be obtained in the above-described heat treatment in a Ti—Mn alloy containing Zr. As a result, zirconium is the slowest diffusion rate among the constituent elements of Ti-Mn Laves phase hydrogen storage alloys containing zirconium, and this is the main cause of solidification segregation formation. It was found that the greater the proportion of zirconium, the more pronounced it becomes. Because of this phenomenon, not only zirconium but the diffusion movement of all elements constituting the alloy is delayed, and the time required for eliminating solidification segregation is extended.
[0008]
The present invention solves the conventional problems as described above, and performs diffusion of zirconium by performing an extremely high temperature heat treatment in a reducing gas atmosphere such as an inert gas or hydrogen gas at 1200 ° C. to a temperature just below the melting point. Providing a heat treatment method for hydrogen storage alloys that can eliminate solidification segregation in a short period of time by promoting movement, reduce contamination of the heat treatment furnace, increase production volume, shorten production days, and reduce alloy production costs For the purpose.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, among the heat treatment methods for hydrogen storage alloys of the present invention, the invention according to claim 1 is represented by the formula: Ti 1-a Zr a Mn e-b-c-d V b Fe c M d In the heat treatment method for a hydrogen storage alloy having a main phase crystal structure having a Laves phase structure, the alloy is heated in an inert gas atmosphere or a reducing gas atmosphere immediately below the melting point of 1200 ° C. after melting the alloy.
However, 0 <a ≦ 0.5, 0 <b ≦ 0.6, 0 ≦ c ≦ 0.2, 0 ≦ d ≦ 0.2, 1.8 ≦ e ≦ 2.2 are set, and M Is one or more of Al, Mo and Nb.
[0010]
According to a second aspect of the present invention, there is provided a method for heat-treating a hydrogen storage alloy according to the first aspect, wherein ferrovanadium is used as a raw material of the alloy.
[0011]
According to a third aspect of the present invention, there is provided the method for heat-treating a hydrogen storage alloy according to the first or second aspect, wherein the holding time in the heating is in the range of 3 to 24 hours.
[0012]
The reasons for limiting the components and heat treatment conditions in the present invention will be described below.
Relationship between component ratios of Ti and Zr, which are elements considered to occupy the A site in the Laves phase crystal structure, and Mn, V, Fe, and M groups, which are elements considered to occupy the B site (particularly 1.8 ≦ e ≦ 2.2) is a basic ratio for obtaining a Ti—Mn-based hydrogen storage alloy having a Laves phase structure, and a quantitative ratio within the above range is essential. In addition, it can be said that the Laves phase is the main phase if the Laves phase is 85% by volume or more in terms of volume ratio.
[0013]
Zr: 0 <a ≦ 0.5
Zr is added to increase the effective hydrogen transfer amount. On the other hand, when Zr is added, the equilibrium hydrogen pressure drop of the alloy and the inclination of the plateau region are promoted. However, since it is manufactured by the heat treatment method of the present invention, the above-mentioned adverse effects due to Zr can be greatly reduced, and more Zr can be added than the conventional material. However, the addition of excess Zr to the alloy causes the above-mentioned adverse effect even if the heat treatment method of the present invention is adopted, so the upper limit is made 0.5. In order to reliably obtain the effect of increasing the effective hydrogen transfer amount of Zr, it is desirable to add 0.01 or more, and it is desirable to set the upper limit to 0.45 for the same reason as described above.
[0014]
V: 0 <b ≦ 0.6
V is added to reduce the so-called α-phase region in the initial stage of hydrogenation and increase the effective hydrogen transfer amount. In order to reliably obtain this effect, it is desirable to add 0.2 or more. On the other hand, addition of excess V to the alloy reduces the width of the plateau region, so the upper limit is set to 0.6.
[0015]
Fe: 0 ≦ c ≦ 0.2
Fe has the effect of increasing the equilibrium hydrogen pressure, and is added as desired as an equilibrium hydrogen pressure adjusting element that is controlled in a pressure range desired by various systems using an alloy. However, addition of excess Fe to the alloy adversely affects the alloy properties such as a significant decrease in the maximum hydrogen storage amount, a significant decrease in effective hydrogen transfer due to an increase in the α phase region, and an increase in the gradient of the plateau region. 0.2.
[0016]
Group M (one or more of Al, Mo, Nb): 0 ≦ d ≦ 0.2
Al, Mo, and Nb are elements that increase the lattice constant of the alloy. Therefore, Al, Mo, and Nb are added as desired as elements that reduce hysteresis or increase the maximum hydrogen storage amount by adding a small amount. However, excessive addition of Al, Mo, and Nb adversely affects the alloy characteristics as in the case of the above Fe, so the upper limit is set to 0.2.
[0017]
Heat treatment temperature: (1200 ° C to just below the melting point)
In order to eliminate the solidification segregation introduced into the alloy due to zirconium segregation at the time of melting the alloy, it is necessary to raise the temperature to a temperature range in which the constituent elements in the alloy can diffusely move, and in general, the metal melting point is ½. Movement is possible at the above temperature.
However, regardless of the shape and size of the alloy lump, extremely high temperatures are required in order to allow the constituent elements to move throughout the alloy in a short time. It turns out that temperature is needed. Although the alloy melting point varies depending on the amount of zirconium added, the heat treatment temperature is directly below the melting point of the alloy (specifically, a temperature range 20 to 50 ° C. lower than the alloy melting point) in order to obtain a homogenization effect by heat treatment. It is desirable that
[0018]
Raw material ferrovanadium When employed in a form that strictly observes the above composition range, the effect of reducing the alloy manufacturing cost is extremely large. However, since there is a trace amount of unintentional impurity elements due to a deoxidizer or the like at the time of dissolution, inconveniences such as fluctuations in the maximum hydrogen storage amount occur. However, when ferrovanadium is employed in a form that strictly observes the composition range, the fluctuation of the maximum hydrogen storage amount is suppressed to a small extent, and the same improvement in alloy characteristics can be obtained by applying the heat treatment method of the present invention.
[0019]
[Action]
That is, according to the present invention, diffusion movement of an element containing Zr is promoted, solidification segregation can be eliminated in a short time, and the plateau region can be flattened to greatly improve the alloy characteristics. Since the processing can be performed in a short time, it is possible to solve problems such as an increase in manufacturing cost, a change in composition of the alloy surface layer portion, and an increase in furnace contamination.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the method for producing the hydrogen-absorbing alloy is not particularly limited, and is produced by adjusting each element so that a predetermined quantitative ratio is obtained. Ferrovanadium can be used as a raw material.
Moreover, there is no special restriction | limiting about the melting method of an alloy, Various melting methods, such as an arc melting method and a high frequency induction melting method, are applicable. However, in order to reliably obtain the effect of improving the alloy characteristics by adopting the heat treatment method of the hydrogen storage alloy of the present invention, the dissolution is performed in an inert gas atmosphere or 1 × 10 in order to prevent deterioration of the alloy characteristics due to oxygen mixing. It is desirable to carry out under a vacuum of 1 to 1 × 10 −5 Torr. In addition, since the solidification segregation width and concentration fluctuation value change depending on the alloy structure such as crystal grains formed in the melting and solidification process, a sufficient solidification area for the alloy, such as the contact area with the mold against the alloy weight, is ensured. It is desirable to obtain a sufficient cooling rate.
[0021]
In the heat treatment method for the hydrogen storage alloy of the present invention, the oxygen content in the alloy cannot be ignored because V, which has a higher oxygen content, is contained in the raw material than in the conventional Ti—Mn alloy. Even when ferrovanadium is used as a raw material, the oxygen content in the alloy increases. If oxygen is mixed in the heat treatment furnace or if the oxygen content in the alloy is high, an oxide phase is formed in the alloy together with the main phase Laves phase, and the maximum hydrogen storage capacity and effective hydrogen transfer amount are reduced. Adversely affect. In addition, since the hydrogen storage alloy which is the subject of the present invention contains zirconium having a high oxygen affinity, it is easy to form a zirconium oxide, and when formed, the zirconium content in the alloy main phase is reduced and the maximum hydrogen storage alloy is formed. The amount and the effective hydrogen transfer amount are reduced.
[0022]
Since the heat treatment method of the present invention controls the inside of the heat treatment furnace to an inert gas atmosphere or a reducing gas atmosphere such as hydrogen, it is possible to suppress the amount of oxygen mixed in the furnace.
Moreover, since the diffusion and migration of zirconium is promoted by heat treatment at an extremely high temperature from 1200 ° C. to just below the melting point of the alloy, solidification segregation, which is mainly caused by zirconium segregation, can be eliminated in a short time of about 3 to 24 hours. Can do. Furthermore, since the heat treatment is completed in a short time, the formation and coarsening of the oxide can be suppressed.
[0023]
In the heat treatment method of the present invention, there are no particular restrictions on the temperature raising process and the temperature lowering process, but it is desirable to raise the temperature rise rate at 300 ° C./hour or less in order to reduce the burden on the heat treatment furnace. Further, if the inert gas atmosphere or reducing gas atmosphere is maintained, the alloy characteristics can be improved even if various cooling methods and cooling rates such as furnace cooling and gas quenching are employed in the temperature lowering process.
[0024]
The heat-treated hydrogen storage alloy of the present invention has a small inclination of the plateau region, has excellent alloy characteristics, and can be used for various applications in which hydrogen is absorbed and released. It is not limited to.
[0025]
【Example】
Examples of the present invention will be described below with reference to the drawings.
The raw materials were blended so as to have the composition shown in Table 1 and melted in an arc melting furnace in an argon atmosphere to prepare 100 g of an alloy. Next, the sample was heated at a heating rate of 250 ° C./hour using an argon atmosphere heat treatment furnace, heat-treated at 1250 ° C. for 6 hours, and cooled by furnace cooling to obtain a measurement sample as an example of the present invention. Also, for comparison, 100 g of an alloy prepared by mixing raw materials with the composition shown in Table 1 and arc-melted was heated at a heating rate of 250 ° C./hour using an argon atmosphere heat treatment furnace, and heated at 1100 ° C. for 24 hours. A heat-treated and furnace-cooled sample was used as a measurement sample as a comparative example. The melting point of these samples was 1276 ° C.
[0026]
[Table 1]
Figure 0004327388
[0027]
A part of this measurement sample is pulverized to about 200 mesh or less and used for alloy analysis by X-ray diffraction, and pulverized to a range of about 50 to 200 mesh is used to absorb hydrogen in a hydrogen gas atmosphere. It was used for release measurement (P (hydrogen pressure) -C (composition) -T (temperature) measurement). The remaining alloy mass was used for electron probe microanalysis (EPMA analysis).
[0028]
The crystal structures of the measurement samples before and after heat treatment were examined for each of the examples and comparative examples by X-ray diffraction. At this time, CuKα rays were used as the X-rays. FIG. 1 shows the measurement results before and after the heat treatment of the example, and FIG. 2 shows the measurement results before and after the heat treatment of the comparative example. The X-ray diffraction peaks observed in both FIG. 1 and FIG. 2 are those of the C14 Laves phase, and the X-ray diffraction peaks from the (112) plane were used for comparison of the half width.
[0029]
After the heat treatment of the example, solidification segregation was eliminated by the heat treatment as shown in FIG. 1, so the main phase Laves phase was homogenized, the diffraction strength increased than before the heat treatment, and the half width was It decreased to about 68% of the previous level. On the other hand, after the heat treatment of the comparative example, as shown in FIG. 2, the effect of the heat treatment was not recognized with the diffraction strength and the half value width almost the same as those before the heat treatment.
[0030]
Next, for the examples and comparative examples, the equilibrium hydrogen pressure-hydrogen absorption amount-isothermal curves of the measurement samples before and after heat treatment were obtained. FIG. 3 shows curves before and after the heat treatment of the example, and FIG. 4 shows curves before and after the heat treatment of the comparative example.
After the heat treatment of the example, as shown in FIG. 3, the inclination of the plateau region is reduced more than before the heat treatment by improving the alloy characteristics by the heat treatment, and the amount of hydrogen transfer in a narrow pressure range is greatly ensured. On the other hand, after the heat treatment of the comparative example, as shown in FIG. 4, the effect of the heat treatment is not recognized even by holding for a long time, and the inclination of the plateau region is almost the same as that before the heat treatment.
[0031]
Furthermore, in the examples and comparative examples, the existence state of zirconium in the alloy structure that forms solidification segregation, which is considered to be the main cause of the inclination of the plateau region, is analyzed in two dimensions using an electron probe microanalysis method. Scanning was performed to obtain a mapping image of zirconium element concentration distribution. FIG. 5 shows an image of the example, and FIG. 6 shows an image of the comparative example.
In the example, as shown in FIG. 5, it was found that there was no local shading portion, the diffusion movement of zirconium was promoted by the heat treatment, and it was uniformly present in the alloy structure. On the other hand, in the comparative example, as shown in FIG. 6, local shading portions were clearly observed, and it was found that the segregation of zirconium remained even after heat treatment.
[0032]
As described in the above examples, in the Ti-Mn Laves phase hydrogen storage alloy containing zirconium, by implementing the heat treatment method of the present invention, the diffusion movement of zirconium is promoted to make the zirconium in the alloy structure uniform. It was clarified that a hydrogen storage alloy with a flat plateau region with excellent practical utility can be obtained by eliminating solidification segregation in the alloy structure and achieving crystal homogenization of the main phase Laves phase. .
Similar results were obtained when ferrovanadium was used as a raw material for the alloy.
Moreover, the same effect was acquired also in the alloy containing 1 or more types of Al, Mo, and Nb as an alloy component, and the reduction | decrease of hysteresis or the increase in the maximum hydrogen occlusion amount was confirmed by addition of these elements.
[0033]
【The invention's effect】
As described above, according to the present invention, improvement of alloy characteristics such as flattening of the plateau region and increase of hydrogen transfer amount of Ti-Mn Laves phase hydrogen storage alloy containing zirconium, which has been difficult to achieve by conventional methods. Is achieved without increasing the alloy manufacturing cost and extending the number of days required for production. As a result, the hydrogen storage alloy manufactured by adopting the heat treatment method of the present invention can be inexpensive and increase the production amount while having practical characteristics, and particularly utilizes reversible hydrogen absorption / release. The contribution to higher performance and lower costs for heat conversion systems such as hydrogen storage systems and refrigeration systems is quite significant.
[Brief description of the drawings]
FIG. 1 is a comparative view showing powder X-ray diffraction patterns before and after heat treatment in an example of the present invention.
FIG. 2 is a comparative view showing powder X-ray diffraction patterns before and after heat treatment in a comparative example.
FIG. 3 is a characteristic comparison diagram of equilibrium hydrogen pressure-hydrogen absorption-isothermal curves before and after heat treatment in an example of the present invention.
FIG. 4 is a characteristic comparison diagram of equilibrium hydrogen pressure-hydrogen absorption-isothermal curves before and after heat treatment in a comparative example.
FIG. 5 is an EPMA mapping image showing a zirconium component distribution state in an example of the present invention (after heat treatment).
FIG. 6 is an EPMA mapping image showing a zirconium component distribution state in a comparative example (after heat treatment).

Claims (3)

式:Ti1−aZrMne−b−c−dFeで表され、主相の結晶構造がラーベス相構造を有する水素吸蔵合金の熱処理方法において、合金溶解後、1200℃〜融点直下の不活性ガス気中又は還元ガス気中で加熱することを特徴とする水素吸蔵合金の熱処理方法。
ただし、0<a≦0.5、0<b≦0.6、0≦c≦0.2、0≦d≦0.2、1.8≦e≦2.2の範囲に設定され、MはAl、Mo、Nbの一種又は二種以上である。
In a heat treatment method for a hydrogen storage alloy represented by the formula: Ti 1-a Zr a Mn e-b-c-d V b Fe c M d , and the main phase crystal structure has a Laves phase structure, after melting the alloy, 1200 A heat treatment method for a hydrogen storage alloy, characterized by heating in an inert gas atmosphere or a reducing gas atmosphere immediately below the melting point.
However, 0 <a ≦ 0.5, 0 <b ≦ 0.6, 0 ≦ c ≦ 0.2, 0 ≦ d ≦ 0.2, 1.8 ≦ e ≦ 2.2 are set, and M Is one or more of Al, Mo and Nb.
合金の原材料としてフェロバナジウムを使用したことを特徴とする請求項1に記載の水素吸蔵合金の熱処理方法。The method for heat-treating a hydrogen storage alloy according to claim 1, wherein ferrovanadium is used as a raw material of the alloy. 前記加熱での保持時間が3〜24時間の範囲であることを特徴とする請求項1または2に記載の水素吸蔵合金の熱処理方法。3. The method for heat-treating a hydrogen storage alloy according to claim 1, wherein the holding time in the heating is in the range of 3 to 24 hours.
JP2001284915A 2001-09-19 2001-09-19 Heat treatment method for hydrogen storage alloy Expired - Fee Related JP4327388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001284915A JP4327388B2 (en) 2001-09-19 2001-09-19 Heat treatment method for hydrogen storage alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001284915A JP4327388B2 (en) 2001-09-19 2001-09-19 Heat treatment method for hydrogen storage alloy

Publications (2)

Publication Number Publication Date
JP2003089862A JP2003089862A (en) 2003-03-28
JP4327388B2 true JP4327388B2 (en) 2009-09-09

Family

ID=19108156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001284915A Expired - Fee Related JP4327388B2 (en) 2001-09-19 2001-09-19 Heat treatment method for hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JP4327388B2 (en)

Also Published As

Publication number Publication date
JP2003089862A (en) 2003-03-28

Similar Documents

Publication Publication Date Title
US7838465B2 (en) Method of synthesis of a superconducting material
WO2004024968A1 (en) Method for producing dispersed oxide reinforced ferritic steel having coarse grain structure and being excellent in high temperature creep strength
KR20200006906A (en) Medium-entropy alloys with spinodal decomposition-induced extended solubility
JP4025632B2 (en) Copper alloy
US7413589B2 (en) Method of producing hydrogen storage alloy
CN1172862A (en) Method for manufacturing iron-base soft magnetic alloy
US20100230299A1 (en) Hydrogen storage alloy, preparation process thereof, and hydrogen storage device
TW200535254A (en) High melting point metallic alloy material of high strength and high re-crystallization temperature and its manufacturing method
JP2944211B2 (en) Tantalum or niobium based alloy
JP4327388B2 (en) Heat treatment method for hydrogen storage alloy
JP3845057B2 (en) Hydrogen storage alloy and heat treatment method of hydrogen storage alloy
CN116607049A (en) Light titanium-based high-entropy alloy and performance optimization method thereof
KR20220087349A (en) High-strength medium entropy alloy and manufacturing method for the same
CN113528923B (en) Doped multi-principal-element hydrogen storage alloy and preparation method thereof
CN114672740B (en) Yttrium-iron-based hydrogen storage alloy, battery and preparation method
JP2000282101A (en) Manufacture of oxide dispersion-strengthened ferritic steel
CN112226641B (en) Molybdenum niobium silicon aluminum carbon intermediate alloy and preparation method thereof
CN114457260B (en) MgCu 4 Sn type hydrogen storage alloy and preparation method thereof
CN114686772B (en) Rare earth-iron-based alloy material, and preparation method and application thereof
JP7175372B1 (en) Low Co hydrogen storage alloy
CN117265359A (en) Ti-V-Fe-Cr-Nb high-entropy hydrogen storage alloy and preparation method thereof
JP4062819B2 (en) Hydrogen storage alloy and method for producing the same
CN117026006A (en) Magnesium-antimony-bismuth ternary alloy with low thermal conductivity and amplitude modulation decomposition method thereof
CN118002777A (en) Heterostructure high-strength and high-toughness tungsten alloy and preparation method thereof
JP2001234261A (en) Producing method for hydrogen storage alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4327388

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees