JP4325213B2 - Portable solar panel - Google Patents

Portable solar panel Download PDF

Info

Publication number
JP4325213B2
JP4325213B2 JP2003040071A JP2003040071A JP4325213B2 JP 4325213 B2 JP4325213 B2 JP 4325213B2 JP 2003040071 A JP2003040071 A JP 2003040071A JP 2003040071 A JP2003040071 A JP 2003040071A JP 4325213 B2 JP4325213 B2 JP 4325213B2
Authority
JP
Japan
Prior art keywords
solar cell
cell module
panel according
portable
guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003040071A
Other languages
Japanese (ja)
Other versions
JP2004253471A (en
Inventor
泰仁 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2003040071A priority Critical patent/JP4325213B2/en
Publication of JP2004253471A publication Critical patent/JP2004253471A/en
Application granted granted Critical
Publication of JP4325213B2 publication Critical patent/JP4325213B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S30/00Structural details of PV modules other than those related to light conversion
    • H02S30/20Collapsible or foldable PV modules
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/50Rollable or foldable solar heat collector modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/36Electrical components characterised by special electrical interconnection means between two or more PV modules, e.g. electrical module-to-module connection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【0001】
【発明の属する技術分野】
本発明は、平板状の太陽電池モジュールを複数連結し、展開と収納が容易な可搬型太陽電池パネルに関する。
【0002】
【従来の技術】
現在、エネルギー資源の確保と環境保護の立場からクリーンなエネルギーの研究開発が進められており、中でも太陽電池はその資源(太陽光)が無限であること、無公害であることから注目を浴びている。太陽電池の中でも、ひとつの基板上にプラズマCVD装置などで形成される薄膜太陽電池は、薄型で軽量、製造コストの安さ、大面積化が容易であることなどから今後の太陽電池の主流になると考えられる。
近年、この薄膜太陽電池を使用した平板状の太陽電池モジュールとして、薄膜太陽電池をガラス板、接着封止材、バックシートで積層封止して一体的に封止形成したスーパーストレート型太陽電池モジュール、および、薄膜太陽電池の表面(受光面)および裏面(受光面の反対側面)を保護材と接着封止材で封止し、裏面側に補強板を取り付けたサブストレート型太陽電池モジュールが作られており、一般住宅をはじめ、工場などの産業用、公共施設への適用展開が図られているのと同時に、災害時の緊急用小型電源として応用することなどが考えられている。
【0003】
図9は平板状の太陽電池モジュールの1例の概要を示す断面図である。
太陽電池101は、その受光面である表面およびその反対側の裏面の両面を保護材と接着封止材を兼ねる保護層102で封止されており、太陽電池101の裏面の両側縁には電力を端子部30まで導く内部リード線104(105)が設けられている。また、太陽電池101の非発電面側(裏側)には、補強板106が取り付けられている。太陽電池モジュールの構造はこれに限られるものではなく、保護層と接着封止材とが別である場合もある。
このような平板状の太陽電池モジュールが複数連結されてなる太陽電池パネルを展開収納する方式としては、折り畳む方式あるいはスライド方式の2つの方式があり、例えば、特許文献1や特許文献2に開示されている。
【0004】
折り畳む方式は、太陽電池モジュール端部に櫛歯状のヒンジナックルを設けて隣接する太陽電池モジュールの櫛歯状のヒンジナックルと噛み合わせ、ヒンジナックルを貫通する可撓性ピントルで蝶番を形成して折り畳む方式である。折り畳んだ収納状態のとき、太陽電池モジュールは互いに同じ面が向かい合う。
スライド方式は太陽電池モジュールを互いにスライドさせて展開収納する方式である。収納状態のとき、太陽電池モジュールは互いに同じ面が向かい合う。
図10は従来の折り畳む方式の太陽電池パネルの例を示す平面図であり、図11は図10におけるAA断面図である。図12は従来の太陽電池パネル(図10、11)を折り畳みかけた時の概略斜視図である。
【0005】
太陽電池401は、表裏面を保護材と接着封止材である保護層402で封止されており、太陽電池401の両側面には電力を端子ボックス403まで導く内部リード線404、405が設けられている。また一点鎖線で示した折り曲げ位置406を避けて太陽電池401の非発電面側(裏側)には、金属板などから構成される補強板407が設けられている。各太陽電池モジュールは展開時あるいは収納時にはレール408に沿って移動される。
【0006】
【特許文献1】
特開平10−125925号広報(第2−3頁、第1、4図)
【特許文献2】
特開2002−26357号広報(第4−5頁、第10、14、15図)
【0007】
【発明が解決しようとする課題】
上記のようなパネルは元来建造物や広い場所に恒久的に設置されることを目的としているため、パネル自体にレールや枠が組み込まれており、可搬型に必要な取り扱いの容易さや軽量性などは考慮されていなかった。
本発明の目的は、展開や収納が容易で、また収納状態での搬送も容易な可搬型の太陽電池パネルを提供することである。
【0008】
【課題を解決するための手段】
前述の目的を達成するために、太陽電池を挟んで表面(受光面)には保護層が裏面には補強板が一体化され、また電力を外部に取り出す端子部を有し、端子部間には端子部間配線がされた平板状の太陽電池モジュール(以下、太陽電池モジュール)が複数連結されてなり、太陽電池モジュールは展開時には平面状並列配置され、収納時には重ね合わされる可搬型太陽電池パネルにおいて、前記太陽電池モジュールの同じ側の両角部(下両角部という)に太陽電池モジュールのスライドを補助するガイドを設け、そのガイド隙間に他の太陽電池モジュールの板厚方向側面を挟み込む構造であり、展開時には複数枚の太陽電池モジュールが連結されほぼ平面状になり、収納時には全ての太陽電池モジュールは重ねあわされた形態であることとする。
【0009】
前記太陽電池モジュールのスライドを補助するガイドの材質は滑り性の良い4フッ化エチレン樹脂、ポリテトラフルオロエチレン樹脂、またはこれらの樹脂を表面にコ−ティングした金属材料であると良い。
前記太陽電池モジュールの前記ガイドの反対側の辺の両角部(上両角部という)には前記ガイドに引っ掛かる大きさの突起を設けると良い。
前記端子部を、太陽電池モジュール受光側の下両角部に配置すると良い。
前記端子部間配線は太陽電池モジュールの側面方向外部空所に各々配置されると良い。
【0010】
前記端子部間配線の形状を、コイル状とし収納時にコンパクトにまとめられると良い。
収納時に外側となる太陽電池モジュールの裏面に固定バンドを取り付けてあると良い。連結させた複数枚の太陽電池モジュールの先頭にあたる太陽電池モジュールの上側中央部と最後尾にあたる太陽電池モジュールの下側中央部に、太陽電池モジュール同士の伸縮を容易にするための取っ手を設けると良い。
【0011】
【発明の実施の形態】
以下、実施例に従い本発明を詳細に説明する。
実施例1
このような太陽電池モジュールを複数枚連結した可搬型太陽電池パネルを展開し、受光しての発電している状態を以下にいくつか示す。
図1は本発明に係る可搬型太陽電池パネルを展開している状態の斜視図である。図2は本発明に係る可搬型太陽電池パネルを構成する1枚の太陽電池モジュールの斜視図である。図3は本発明に係る可搬型太陽電池パネルを展開している状態のガイド部の斜視図である。図4はガイド部を太陽電池モジュール板厚方向から見た側面図である。図5は本発明に係る折畳まれた状態の可搬型太陽電池パネルの斜視図である。図6は折畳まれた状態の可搬型太陽電池パネルの端子やガイドのある付近を示す斜視図である。
【0012】
ガイド20は太陽電池モジュール10の下両角部14に位置し、コの字型の形状をしており、太陽電池モジュール10の受光面16の下両角部14にガイド20の接続面21を接触させながら、太陽電池モジュール10の横端面17とガイド20の内側面23との間にわずかなガイド隙間24をあけ接着またはネジなどにより装着される。更にガイド20には太陽電池モジュール10の板厚よりわずかに大きいスライド隙間22を設け、連結される他の太陽電池モジュール10を挟み込む機能を有する。更にガイド20の伸縮方向幅は後述される端子部30の伸縮方向幅と同じかそれ以下の幅とする。更にガイド20は他の太陽電池モジュール10をスライドし易くさせるため滑り性の良い四フッ化エチレン樹脂、ポリテトラフルオロエチレン樹脂、または前述樹脂を表面にコーティングした金属材料を使用するのが望ましい。このようなガイドと突出の組み合わせにより、複数枚の重ね合わせた太陽電池モジュールが連結され展開する際に抜け落ち単独となることはない。
【0013】
突出片15は、太陽電池モジュール10の上両角部13に位置し太陽電池モジュール10の横端面17から太陽電池モジュール10を発電使用時方向にスライドさせた時に重なり合う他の太陽電池モジュール10上に装着したガイド20に引っ掛かる程度の突出長さで横方向に突出しており太陽電池モジュール10に加工形成される。
これらのガイド20と突出片15を設けることにより、複数枚の太陽電池モジュール10各々を端子部30から突出片15の間でスライドさせることが可能となる。また、収縮時(収納時)には各々の太陽電池モジュール10に設けられたガイド20どうしがストッパとなり太陽電池モジュール10が抜け落ち単独となることを防止でき、発電使用時には各々の太陽電池モジュール10に設けられたガイド20と突出片15がストッパとなり太陽電池モジュール10が抜け落ち単独となることを防止できる。
【0014】
端子部30は、複数枚の連結された太陽電池モジュール10が収縮方向(収納方向)にスライドし重ね合わされた時に重ね合わせを阻害しない、受光面16側の下辺18と太陽電池下辺19の間上で下両角部14付近に設けられ接着またはネジなどにより装着される。この端子部30を設けることにより、太陽電池モジュール10で発電された電力を外部に導くことが可能となる。
端子部間配線40は、各々の太陽電池モジュール10に設けられた端子部30間を電気的に接続するものであり、展開時には、端子部30から太陽電池モジュール10の横端面17方向に向かってから、太陽電池モジュール10の横端面17付近に沿ってから次の端子部30に逆の形状で接続され、浅いUの字型の形状となり、端子部間配線40の長さは複数枚の太陽電池モジュール10が発電使用時方向にスライドした展開時には引っ張らない程度の長さとする。そのため複数枚の連結した太陽電池モジュールがスライドし収縮した時に各々の太陽電池モジュールの重ね合わせを阻害することはない。
【0015】
この端子部30と端子部間配線40を設けることにより各々の太陽電池モジュール10で発電した電力を図示しないインバータに導くことが可能となる。
取っ手50は、複数枚の連結された太陽電池モジュール10の先頭に位置する先頭太陽電池モジュール11と最後尾に位置する最後尾太陽電池モジュール12のスライド方向中央に配置しネジなどの機械的な接続により取り付けられる。
この取っ手50を設けることにより、複数枚の連結された太陽電池モジュール10のスライドを容易に行うことができるようになる。
実施例2
図7は本発明に係る他の太陽電池パネルの展開している状態の斜視図である。図8は本発明に係る他の太陽電池パネルの収縮方向に重ね合わせた時のガイド部斜視図である。
【0016】
この例では既に、図1、3、5、6に示した端子部間配線40の変形例として配線の端末部以外がコイル状に形成された端子部間コイル状配線41を用いた。端子部間コイル状配線41は、各々の太陽電池モジュール10に設けられた端子部30間を電気的に接続するものであり、展開時には、端子部30から太陽電池モジュール10の下辺18に沿って、横端面17に向かう直線状の端末部に続いて太陽電池モジュール10の横端面17付近に沿ってから次の端子部30に逆の形状で接続される。端子部間コイル状配線41の形状は配線の端末部以外がコイル状に形成されており、複数枚の太陽電池モジュール10が発電使用のためにスライド展開した時に滑らかに追従して伸びるものである。
【0017】
端子部間コイル状配線41は、端子部30から太陽電池モジュール10の横端面17方向に向かって接続され形状は配線の端末部以外がコイル状に形成されているため、収縮方向(収納方向)にスライドされ重ね合わされた時でもコイル状部が収縮し無駄な収納スペースが不要となる。複数枚の連結した太陽電池モジュールがスライド収縮した時に各々の太陽電池モジュールの重ね合わせを阻害しない。
この端子部30と端子部間コイル状配線41を用いた場合においても、各々の太陽電池モジュール10で発電した電力を図示しないインバータに導くことが可能となる。
【0018】
取っ手50は、複数枚の連結された太陽電池モジュール10の先頭に位置する先頭太陽電池モジュール11と最後尾に位置する最後尾太陽電池モジュール12のスライド方向中央に配置しネジなどの機械的な接続により取り付けられる。
この取っ手50を設けることにより、複数枚の連結された太陽電池モジュール10のスライドが伸縮時に容易にできるようになると同時に、複数枚の太陽電池モジュールを重ね合わせ収納し搬送するときの搬送用取っ手にも使用される。
固定バンド51は、複数枚の連結された太陽電池モジュール10の先頭に位置する先頭太陽電池モジュール11のスライド方向に配置しネジやリベットなどの機械的な接続により複数個取り付けられる。
【0019】
この固定バンド51を設けることにより、図6に示すような複数枚の太陽電池モジュールを重ね合せた収納時に重ね合わせた収納形態が保持でき、太陽電池モジュールの搬送が容易になる。
【0020】
【発明の効果】
本発明によれば、太陽電池を挟んで表面(受光面)には保護層が裏面には補強板が一体化され、また電力を外部に取り出す端子部を有し、端子部間には端子部間配線がされた平板状の太陽電池モジュールが複数連結されてなり、太陽電池モジュールは展開時には平面状並列配置され、収納時には重ね合わされる可搬型太陽電池パネルにおいて、前記太陽電池モジュールの同じ側の両角部(下両角部という)に太陽電池モジュールのスライドを補助するガイドを設け、そのガイド隙間に他の太陽電池モジュールの板厚方向側面を挟み込む構造であり、展開時には複数枚の太陽電池モジュールが連結されほぼ平面状になり、収納時には全ての太陽電池モジュールは重ねあわされた形態としたため、レールがなくとも、太陽電池パネルの展開収納は容易にできるようになる。
【0021】
叉、複数枚の太陽電池モジュールを各々ガイドで連結し伸縮可能にしたことにより、例えば、災害時などの緊急用小型電源などとして使用する場合、搬送時においては太陽電池モジュールをスライドさせ収縮し重ね合わせ搬送時形態を小さくすることが可能であり、限られた車両等の収納スペースに対し太陽電池モジュールを多数積載でき効率的であり搬送に掛かる費用も安価となる。また、現地において太陽電池モジュールを発電使用する時には、発電使用方向にスライドさせ太陽電池モジュールを伸ばすことで発電を行うことが可能となる。また、太陽電池モジュールの端子部を繋ぐ端子間配線が常設されているため、現地での配線接続作業が少なく容易に設置でき太陽電池モジュール設置作業費用も安価となる。
【図面の簡単な説明】
【図1】本発明に係る可搬型太陽電池パネルを展開している状態の斜視図である。
【図2】本発明に係る可搬型太陽電池パネルを構成する1枚の太陽電池モジュールの斜視図である。
【図3】本発明に係る可搬型太陽電池パネルを展開している状態のガイド部の斜視図である。
【図4】ガイド部を太陽電池モジュール板厚方向から見た側面図である。
【図5】本発明に係る折畳まれた状態の可搬型太陽電池パネルの斜視図である。
【図6】折畳まれた状態の可搬型太陽電池パネルの端子やガイドのある付近を示す斜視図である。
【図7】本発明に係る他の太陽電池パネルの展開している状態の斜視図である。
【図8】発明に係る他の太陽電池パネルの収縮方向に重ね合わせた時のガイド部斜視図である。
【図9】平板状の太陽電池モジュールの1例の概要を示す断面図である。
【図10】従来の折り畳む方式の太陽電池パネルの例を示す平面図である。
【図11】図11におけるAA断面図である。
【図12】従来の太陽電池パネル(図10、11)を折り畳みかけた時の概略斜視図である。
【符号の説明】
10 太陽電池モジュール
11 先頭太陽電池モジュール
10 最後尾太陽電池モジュール
13 上両角部
14 上両角部
17 横端面
18 下辺
20 ガイド
30 端子部
40 端子部間配線
41 端子部間コイル状配線
50 取っ手
51 固定バンド
101 太陽電池
102 保護層
104 内部リード線
105 内部リード線
106 補強板
401 太陽電池
403 端子ボックス
404 内部リード線
405 内部リード線
406 折り曲げ位置
407 補強板
408 レール
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a portable solar cell panel in which a plurality of flat plate solar cell modules are connected and can be easily developed and stored.
[0002]
[Prior art]
Currently, research and development of clean energy is being promoted from the standpoint of securing energy resources and protecting the environment. Above all, solar cells are attracting attention because of their infinite resources (sunlight) and no pollution. Yes. Among solar cells, thin-film solar cells formed on a single substrate using a plasma CVD device, etc. will become the mainstream of future solar cells because they are thin and lightweight, inexpensive to manufacture, and easy to increase in area. Conceivable.
In recent years, as a flat plate solar cell module using this thin film solar cell, a super straight type solar cell module in which a thin film solar cell is laminated and sealed with a glass plate, an adhesive sealing material, and a back sheet is integrally formed. And, the substrate type solar cell module in which the surface (light-receiving surface) and back surface (opposite side of the light-receiving surface) of the thin-film solar cell is sealed with a protective material and an adhesive sealing material, and a reinforcing plate is attached to the back surface side. It is being developed for use in general housing, industrial facilities such as factories, and public facilities, and at the same time, it is considered to be applied as a compact emergency power source in the event of a disaster.
[0003]
FIG. 9 is a cross-sectional view showing an outline of an example of a flat plate solar cell module.
In the solar cell 101, both the front surface that is the light receiving surface and the opposite back surface are sealed with a protective layer 102 that also serves as a protective material and an adhesive sealing material. An internal lead wire 104 (105) that guides the lead wire to the terminal portion 30 is provided. In addition, a reinforcing plate 106 is attached to the non-power generation surface side (back side) of the solar cell 101. The structure of the solar cell module is not limited to this, and the protective layer and the adhesive sealing material may be different.
As a method of deploying and storing a solar cell panel in which a plurality of such flat plate solar cell modules are connected, there are two methods, a folding method and a slide method, which are disclosed in, for example, Patent Document 1 and Patent Document 2. ing.
[0004]
In the folding method, a comb-like hinge knuckle is provided at the end of the solar cell module, meshed with a comb-like hinge knuckle of an adjacent solar cell module, and a hinge is formed with a flexible pintle that penetrates the hinge knuckle. It is a folding method. In the folded storage state, the solar cell modules face each other on the same surface.
The slide method is a method in which the solar cell modules are slid to each other and deployed and stored. When in the stored state, the solar cell modules face each other on the same surface.
FIG. 10 is a plan view showing an example of a conventional folding solar cell panel, and FIG. 11 is a cross-sectional view taken along line AA in FIG. FIG. 12 is a schematic perspective view when a conventional solar cell panel (FIGS. 10 and 11) is folded.
[0005]
The solar cell 401 has its front and back surfaces sealed with a protective layer 402 that is a protective material and an adhesive sealing material, and internal lead wires 404 and 405 that guide power to the terminal box 403 are provided on both side surfaces of the solar cell 401. It has been. Further, a reinforcing plate 407 made of a metal plate or the like is provided on the non-power generation surface side (back side) of the solar cell 401 while avoiding the bending position 406 indicated by the one-dot chain line. Each solar cell module is moved along the rail 408 during deployment or storage.
[0006]
[Patent Document 1]
Japanese Laid-Open Patent Publication No. 10-125925 (page 2-3, FIGS. 1, 4)
[Patent Document 2]
Japanese Laid-Open Patent Publication No. 2002-26357 (pages 4-5, 10, 14, 15)
[0007]
[Problems to be solved by the invention]
The above panels are originally intended to be permanently installed in buildings and large areas, so rails and frames are built into the panels themselves, making them easy to handle and light in weight. Etc. were not considered.
An object of the present invention is to provide a portable solar cell panel that can be easily deployed and stored and can be easily transported in a stored state.
[0008]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, a protective layer is integrated on the front surface (light-receiving surface) with a solar cell in between, and a reinforcing plate is integrated on the back surface. Is composed of a plurality of planar solar cell modules (hereinafter referred to as solar cell modules) with wiring between terminals, and the solar cell modules are arranged in parallel in a planar shape when deployed, and are stacked when stored. In the solar cell module, a guide for assisting the slide of the solar cell module is provided at both corners (referred to as lower corners) on the same side of the solar cell module, and the thickness direction side surfaces of the other solar cell modules are sandwiched between the guide gaps When deployed, a plurality of solar cell modules are connected to form a substantially flat shape, and all the solar cell modules are stacked when stored.
[0009]
The material of the guide for assisting the sliding of the solar cell module is preferably a slidable tetrafluoroethylene resin, a polytetrafluoroethylene resin, or a metal material coated with these resins on the surface.
Protrusions having a size that can be caught by the guides may be provided at both corners (referred to as upper corners) on the opposite side of the guide of the solar cell module.
The terminal portions may be arranged at the lower corners on the light receiving side of the solar cell module.
It is preferable that the inter-terminal wirings are respectively disposed in external space in the lateral direction of the solar cell module.
[0010]
It is preferable that the shape of the wiring between the terminal portions is a coil shape and is compactly packed when stored.
It is preferable that a fixing band is attached to the back surface of the solar cell module that is on the outside during storage. It is preferable to provide a handle for facilitating expansion and contraction between the solar cell modules at the upper central portion of the solar cell module corresponding to the top of the connected solar cell modules and the lower central portion of the solar cell module corresponding to the rearmost. .
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail according to examples.
Example 1
Several states in which a portable solar cell panel in which a plurality of such solar cell modules are connected to each other are developed and receiving light to generate power are shown below.
FIG. 1 is a perspective view showing a state in which a portable solar cell panel according to the present invention is developed. FIG. 2 is a perspective view of one solar cell module constituting the portable solar cell panel according to the present invention. FIG. 3 is a perspective view of the guide portion in a state where the portable solar cell panel according to the present invention is developed. FIG. 4 is a side view of the guide portion viewed from the thickness direction of the solar cell module. FIG. 5 is a perspective view of the portable solar cell panel in a folded state according to the present invention. FIG. 6 is a perspective view showing the vicinity of the terminals and guides of the portable solar cell panel in a folded state.
[0012]
The guides 20 are located at the lower corners 14 of the solar cell module 10 and have a U-shape, and the connection surfaces 21 of the guides 20 are brought into contact with the lower corners 14 of the light receiving surface 16 of the solar cell module 10. However, a slight guide gap 24 is provided between the lateral end surface 17 of the solar cell module 10 and the inner side surface 23 of the guide 20 and is attached by bonding or screws. Further, the guide 20 has a slide gap 22 slightly larger than the plate thickness of the solar cell module 10 and has a function of sandwiching another solar cell module 10 to be connected. Further, the width of the guide 20 in the expansion / contraction direction is the same as or smaller than the width of the terminal portion 30 described below in the expansion / contraction direction. Further, the guide 20 is preferably made of a tetrafluoroethylene resin, a polytetrafluoroethylene resin, or a metal material whose surface is coated with the above-described resin so that the other solar cell modules 10 can be easily slid. By such a combination of guides and protrusions, a plurality of superposed solar cell modules are not dropped off when they are connected and deployed.
[0013]
The projecting pieces 15 are mounted on the other solar cell modules 10 that overlap with each other when the solar cell module 10 is slid from the lateral end surface 17 of the solar cell module 10 in the direction of power generation use. Thus, the solar cell module 10 is processed and formed so as to protrude in the lateral direction with a protruding length enough to be caught by the guide 20.
By providing the guide 20 and the protruding piece 15, each of the plurality of solar cell modules 10 can be slid between the protruding portion 15 from the terminal portion 30. Further, when contracted (stored), the guides 20 provided in each solar cell module 10 can serve as a stopper to prevent the solar cell module 10 from falling off and becoming independent. The provided guide 20 and the projecting piece 15 serve as a stopper, and the solar cell module 10 can be prevented from falling off and becoming alone.
[0014]
The terminal portion 30 is located between the lower side 18 on the light receiving surface 16 side and the lower side 19 of the solar cell, which does not disturb the overlapping when the plurality of connected solar cell modules 10 are slid and overlapped in the contraction direction (storage direction). And provided in the vicinity of the lower both corners 14 and attached by bonding or screws. By providing this terminal part 30, it becomes possible to guide the electric power generated by the solar cell module 10 to the outside.
The inter-terminal portion wiring 40 electrically connects between the terminal portions 30 provided in each solar cell module 10, and extends from the terminal portion 30 toward the lateral end surface 17 of the solar cell module 10 when deployed. Then, along the vicinity of the lateral end face 17 of the solar cell module 10, it is connected to the next terminal portion 30 in the opposite shape, forming a shallow U shape, and the length of the inter-terminal portion wiring 40 is a plurality of solar cells. The battery module 10 has a length that does not pull when the battery module 10 is slid in the direction of power generation use. Therefore, when a plurality of connected solar cell modules slide and contract, overlapping of the solar cell modules is not hindered.
[0015]
By providing the terminal part 30 and the inter-terminal part wiring 40, it is possible to guide the power generated by each solar cell module 10 to an inverter (not shown).
The handle 50 is arranged at the center in the sliding direction of the leading solar cell module 11 located at the top of the plurality of connected solar cell modules 10 and the last solar cell module 12 located at the tail, and is mechanically connected such as a screw. It is attached by.
By providing this handle 50, a plurality of connected solar cell modules 10 can be easily slid.
Example 2
FIG. 7 is a perspective view of another solar cell panel according to the present invention in a developed state. FIG. 8 is a perspective view of the guide portion when superimposed in the shrinking direction of another solar cell panel according to the present invention.
[0016]
In this example, as a modification of the inter-terminal wiring 40 shown in FIGS. 1, 3, 5, and 6, the inter-terminal coil wiring 41 formed in a coil shape other than the terminal portion of the wiring is used. The inter-terminal coiled wiring 41 electrically connects the terminal portions 30 provided in each solar cell module 10, and extends from the terminal portion 30 along the lower side 18 of the solar cell module 10 when deployed. Then, following the linear terminal portion toward the lateral end surface 17, the solar cell module 10 is connected to the next terminal portion 30 in the opposite shape after being along the vicinity of the lateral end surface 17 of the solar cell module 10. The terminal-to-terminal coiled wiring 41 is formed in a coil shape except for the terminal part of the wiring, and smoothly follows and extends when a plurality of solar cell modules 10 are slid and deployed for power generation use. .
[0017]
The inter-terminal coiled wiring 41 is connected from the terminal 30 toward the lateral end surface 17 of the solar cell module 10 and the shape is formed in a coil shape except for the terminal portion of the wiring. Even when they are slid and overlapped, the coil-shaped portion contracts, so that useless storage space becomes unnecessary. When a plurality of connected solar cell modules are slid and contracted, the overlapping of the solar cell modules is not hindered.
Even when this terminal portion 30 and the coil wiring 41 between the terminal portions are used, it is possible to guide the power generated by each solar cell module 10 to an inverter (not shown).
[0018]
The handle 50 is arranged at the center in the sliding direction of the leading solar cell module 11 located at the top of the plurality of connected solar cell modules 10 and the last solar cell module 12 located at the tail, and is mechanically connected such as a screw. It is attached by.
By providing this handle 50, the slide of the plurality of connected solar cell modules 10 can be easily performed at the time of expansion and contraction, and at the same time, it can be used as a transport handle when storing and transporting a plurality of solar cell modules in a stacked manner. Also used.
A plurality of fixed bands 51 are arranged in the sliding direction of the leading solar cell module 11 located at the leading end of the plurality of connected solar cell modules 10, and a plurality of fixed bands 51 are attached by mechanical connection such as screws and rivets.
[0019]
By providing the fixed band 51, a storage form in which a plurality of solar cell modules are stacked as shown in FIG. 6 can be held, and the solar cell module can be easily transported.
[0020]
【The invention's effect】
According to the present invention, a protective layer is integrated on the front surface (light-receiving surface) across the solar cell, and a reinforcing plate is integrated on the back surface, and there is a terminal portion for taking out power to the outside. A plurality of planar solar cell modules interconnected with each other are connected, and the solar cell modules are arranged in parallel in a planar manner when deployed, and are stacked on the same side of the solar cell module when stacked. Guides that assist the sliding of the solar cell module are provided at both corners (referred to as the lower corners), and the thickness direction side surface of the other solar cell module is sandwiched between the guide gaps. Since it is connected and becomes almost flat, all the solar cell modules are overlapped at the time of storage, so even if there is no rail, the solar cell panel can be deployed and stored It will be able to easily.
[0021]
In addition, by connecting multiple solar cell modules with guides and making them extendable, for example, when used as a small emergency power source in the event of a disaster, the solar cell modules are slid and shrunk and stacked during transportation. It is possible to reduce the mode of the combined conveyance, and a large number of solar cell modules can be loaded in a limited storage space of a vehicle or the like, which is efficient and the cost for conveyance is low. In addition, when the solar cell module is used for power generation locally, it is possible to generate power by sliding the solar cell module in the power generation use direction and extending the solar cell module. In addition, since the inter-terminal wiring connecting the terminal portions of the solar cell module is permanently installed, it can be easily installed with less wiring connection work on site, and the solar cell module installation work cost is also low.
[Brief description of the drawings]
FIG. 1 is a perspective view of a state in which a portable solar cell panel according to the present invention is developed.
FIG. 2 is a perspective view of one solar cell module constituting the portable solar cell panel according to the present invention.
FIG. 3 is a perspective view of a guide portion in a state where a portable solar cell panel according to the present invention is developed.
FIG. 4 is a side view of the guide portion viewed from the solar cell module plate thickness direction.
FIG. 5 is a perspective view of a portable solar cell panel in a folded state according to the present invention.
FIG. 6 is a perspective view showing the vicinity of the terminals and guides of the portable solar cell panel in a folded state.
FIG. 7 is a perspective view of a state where another solar cell panel according to the present invention is unfolded.
FIG. 8 is a perspective view of a guide portion when stacked in the contraction direction of another solar cell panel according to the invention.
FIG. 9 is a cross-sectional view showing an outline of an example of a flat plate solar cell module.
FIG. 10 is a plan view showing an example of a conventional folding solar cell panel.
11 is a cross-sectional view taken along AA in FIG.
FIG. 12 is a schematic perspective view when a conventional solar cell panel (FIGS. 10 and 11) is folded.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Solar cell module 11 Lead solar cell module 10 Last tail solar cell module 13 Upper both corners 14 Upper both corners 17 Horizontal end face 18 Lower side 20 Guide 30 Terminal part 40 Terminal part wiring 41 Terminal part coiled wiring 50 Handle 51 Fixed band 101 Solar cell 102 Protective layer 104 Internal lead wire 105 Internal lead wire 106 Reinforcement plate 401 Solar cell 403 Terminal box 404 Internal lead wire 405 Internal lead wire 406 Bending position 407 Reinforcement plate 408 Rail

Claims (8)

太陽電池を挟んで表面(受光面)には保護層が裏面には補強板が一体化され、また電力を外部に取り出す端子部を有し、端子部間には端子部間配線がされた平板状の太陽電池モジュールが複数連結されてなり、太陽電池モジュールは展開時には平面状並列配置され、収納時には重ね合わされる可搬型太陽電池パネルにおいて、前記太陽電池モジュールの同じ側の両角部(下両角部という)に太陽電池モジュールのスライドを補助するガイドを設け、そのガイド隙間に他の太陽電池モジュールの板厚方向側面を挟み込む構造であり、展開時には複数枚の太陽電池モジュールが連結されほぼ平面状になり、収納時には全ての太陽電池モジュールは重ねあわされた形態であることを特徴とする可搬型太陽電池パネル。A flat plate with a protective layer on the front surface (light-receiving surface) and a reinforcing plate on the back surface, and a terminal part for extracting power to the outside, and wiring between the terminal parts between the terminals. In the portable solar cell panel, which is formed by connecting a plurality of solar cell modules in a planar manner and arranged in parallel in a planar manner when deployed and stacked when stored, both corners (lower corners) on the same side of the solar cell module Is provided with a guide for assisting the slide of the solar cell module, and the thickness direction side surface of the other solar cell module is sandwiched between the guide gaps. The portable solar cell panel is characterized in that all the solar cell modules are stacked when stored. 前記太陽電池モジュールのスライドを補助するガイドの材質は滑り性の良い4フッ化エチレン樹脂、ポリテトラフルオロエチレン樹脂、またはこれらの樹脂を表面にコ−ティングした金属材料であることを特徴とする請求項1に記載の可搬型太陽電池パネル。The material of the guide for assisting the sliding of the solar cell module is a slidable tetrafluoroethylene resin, polytetrafluoroethylene resin, or a metal material coated with these resins on the surface. Item 2. The portable solar cell panel according to Item 1. 前記太陽電池モジュールの前記ガイドの反対側の辺の両角部(上両角部という)には前記ガイドに引っ掛かる大きさの突起を設けたことを特徴とする請求項2に記載の可搬型太陽電池パネル。3. The portable solar cell panel according to claim 2, wherein protrusions having a size to be caught by the guide are provided at both corners (referred to as upper corners) on the opposite side of the guide of the solar cell module. . 前記端子部を、太陽電池モジュール受光側の下両角部に配置したことを特徴とする請求項1ないし3に記載の可搬型太陽電池パネル。The portable solar cell panel according to any one of claims 1 to 3, wherein the terminal portions are arranged at both lower corners of the solar cell module light receiving side. 前記端子部間配線は太陽電池モジュールの側面方向外部空所に各々配置されたことを特徴とする請求項1ないし4に記載の可搬型太陽電池パネル。5. The portable solar cell panel according to claim 1, wherein the inter-terminal wiring is disposed in a space in the lateral direction of the solar cell module. 前記端子部間配線の形状を、コイル状とし収納時にコンパクトにまとめられることを特徴とする請求項5に記載の可搬型太陽電池パネル。The portable solar cell panel according to claim 5, wherein a shape of the wiring between the terminal portions is a coil shape and is compactly gathered when stored. 収納時に外側となる前記太陽電池モジュールの裏面に固定バンドを取り付けたことを特徴とする請求項1ないし6に記載の可搬型太陽電池パネル。The portable solar cell panel according to claim 1, wherein a fixing band is attached to the back surface of the solar cell module which is outside when stored. 連結させた複数枚の太陽電池モジュールの先頭にあたる太陽電池モジュールの上側中央部と最後尾にあたる太陽電池モジュールの下側中央部に、太陽電池モジュール同士の伸縮を容易にするための取っ手を設けたことを特徴とする請求項1ないし7に記載の可搬型太陽電池パネル。Provided a handle to facilitate expansion and contraction of the solar cell modules at the upper central part of the solar cell module corresponding to the top of the connected solar cell modules and the lower central part of the solar cell module corresponding to the rearmost The portable solar cell panel according to claim 1, wherein:
JP2003040071A 2003-02-18 2003-02-18 Portable solar panel Expired - Fee Related JP4325213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003040071A JP4325213B2 (en) 2003-02-18 2003-02-18 Portable solar panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003040071A JP4325213B2 (en) 2003-02-18 2003-02-18 Portable solar panel

Publications (2)

Publication Number Publication Date
JP2004253471A JP2004253471A (en) 2004-09-09
JP4325213B2 true JP4325213B2 (en) 2009-09-02

Family

ID=33024065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003040071A Expired - Fee Related JP4325213B2 (en) 2003-02-18 2003-02-18 Portable solar panel

Country Status (1)

Country Link
JP (1) JP4325213B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110429903A (en) * 2019-09-06 2019-11-08 合肥阳光新能源科技有限公司 A kind of electric folding stacked photovoltaic generating system

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332353A (en) * 2005-05-26 2006-12-07 Fuji Electric Holdings Co Ltd Solar cell module
JP5782608B2 (en) * 2011-07-04 2015-09-24 テクノナレッジ・システム有限会社 Frame material for solar cell module
KR101326798B1 (en) 2012-07-24 2013-11-11 (주)제이에이치에너지 Solar photovoltatic power generation
JP6693889B2 (en) 2014-05-14 2020-05-13 カリフォルニア インスティチュート オブ テクノロジー Large Space Photovoltaic Power Station: Power Transmission Using Guided Beam
JP6640116B2 (en) * 2014-06-02 2020-02-05 カリフォルニア インスティチュート オブ テクノロジー Large Space Solar Power Plants: Efficient Power Generation Tiles
KR101634877B1 (en) * 2014-12-08 2016-06-30 한국항공우주연구원 Solar power pannel apparatus having wing of plane, wing of plane and plane
JP6715317B2 (en) 2015-07-22 2020-07-01 カリフォルニア インスティチュート オブ テクノロジー Large area structure for compact packaging
CN104953933A (en) * 2015-07-23 2015-09-30 柳州市蓝光电源科技有限责任公司 Solar emergency power supply
US10992253B2 (en) 2015-08-10 2021-04-27 California Institute Of Technology Compactable power generation arrays
WO2017027633A1 (en) 2015-08-10 2017-02-16 California Institute Of Technology Systems and methods for controlling supply voltages of stacked power amplifiers
CN113716019B (en) * 2015-10-19 2023-06-06 北京航空航天大学 Battery array capable of being quickly assembled and disassembled, aircraft wing structure and manufacturing method thereof
CN108652116B (en) * 2018-04-26 2024-04-16 中铁武汉电气化局集团科工装备有限公司 Wearable intelligent safety helmet of electric power
US11634240B2 (en) 2018-07-17 2023-04-25 California Institute Of Technology Coilable thin-walled longerons and coilable structures implementing longerons and methods for their manufacture and coiling
US11772826B2 (en) 2018-10-31 2023-10-03 California Institute Of Technology Actively controlled spacecraft deployment mechanism
KR102493780B1 (en) 2020-09-16 2023-02-02 이민형 System and method for monitoring the ground using hybrid unmanned airship

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110429903A (en) * 2019-09-06 2019-11-08 合肥阳光新能源科技有限公司 A kind of electric folding stacked photovoltaic generating system
CN110429903B (en) * 2019-09-06 2022-02-15 阳光新能源开发股份有限公司 Electric folding type photovoltaic power generation system

Also Published As

Publication number Publication date
JP2004253471A (en) 2004-09-09

Similar Documents

Publication Publication Date Title
JP4325213B2 (en) Portable solar panel
US10056521B2 (en) Wire network for interconnecting photovoltaic cells
US20040016454A1 (en) Solar cell array
US6437232B1 (en) D-wing deployable solar array
US20180331652A1 (en) Folding photovoltaic panel
JPH0746733B2 (en) Solar cell module
JP2003318430A (en) Solar battery module and method of installation thereof
US11450879B2 (en) Electrode assembly
US20220345075A1 (en) Angled polymer solar modules
EP3605660A1 (en) Battery module and battery module assembly
US11611006B2 (en) Automated reel processes for producing solar modules and solar module reels
JP4412087B2 (en) Waterproof sheet solar panel set, construction method and construction structure
US20170338359A1 (en) Subtractive hinge and associated methods
KR101959304B1 (en) Portable Charger
WO2018139489A1 (en) Interconnected panel body, interconnected power generation module body, and power generation device
US11271126B2 (en) Photovoltaic panels with folded panel edges and methods of forming the same
RU2127470C1 (en) Photoelectric battery
JP2016158363A (en) Intermediate layer material for solar battery module
US20140083485A1 (en) Photovoltaic Assembly And Associated Methods
JP2020167282A (en) Solar cell module
JP2006049488A (en) Photovoltaic element
WO2017150372A1 (en) Solar battery module and method for manufacturing solar battery module
JP2002368248A (en) Optically rechargeable secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060210

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081016

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees