JP4324040B2 - Development method - Google Patents

Development method Download PDF

Info

Publication number
JP4324040B2
JP4324040B2 JP2004207198A JP2004207198A JP4324040B2 JP 4324040 B2 JP4324040 B2 JP 4324040B2 JP 2004207198 A JP2004207198 A JP 2004207198A JP 2004207198 A JP2004207198 A JP 2004207198A JP 4324040 B2 JP4324040 B2 JP 4324040B2
Authority
JP
Japan
Prior art keywords
particles
toner
developer
coating layer
graphitized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004207198A
Other languages
Japanese (ja)
Other versions
JP2006030455A (en
JP2006030455A5 (en
Inventor
健司 藤島
正良 嶋村
康秀 後関
恭尚 明石
智 大竹
一紀 齊木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004207198A priority Critical patent/JP4324040B2/en
Publication of JP2006030455A publication Critical patent/JP2006030455A/en
Publication of JP2006030455A5 publication Critical patent/JP2006030455A5/ja
Application granted granted Critical
Publication of JP4324040B2 publication Critical patent/JP4324040B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電子写真法において、電子写真感光体又は静電記録誘電体等の像担持体上に形成された潜像を現像して顕像化するために用いられる現像剤担持体及び電子写真現像方法に関するものである。   The present invention relates to a developer carrier used for developing and developing a latent image formed on an image carrier such as an electrophotographic photosensitive member or an electrostatic recording dielectric in electrophotography and an electrophotographic method. The present invention relates to a developing method.

従来、電子写真法としては多数の方法が知られているが、一般には光導電性物質を利用し、種々の手段により静電潜像保持体(感光ドラム)上に電気的潜像を形成し、次いで現像領域に現像バイアスを作用させ、該静電潜像を現像剤(トナー)にて現像を行うことで可視像化し、必要に応じて紙等の転写材にトナー像を転写した後、熱・圧力等により転写材上にトナー画像を定着して複写物を得るものである。
これらの電子写真法による画像形成は、文書複写としては一応満足できるレベルに達しているものの、コンピュータの発達、高解像度デジタルカメラの普及等により求められるフルカラー画像の出力画像に対しては、今後も更なる高画質化、高品位化が望まれている。
Conventionally, a number of methods are known as electrophotographic methods. Generally, a photoconductive material is used to form an electric latent image on an electrostatic latent image holding member (photosensitive drum) by various means. Then, a development bias is applied to the development area, and the electrostatic latent image is developed with a developer (toner) to be visualized, and if necessary, the toner image is transferred to a transfer material such as paper. The toner image is fixed on the transfer material by heat, pressure or the like to obtain a copy.
Although image formation by these electrophotographic methods has reached a satisfactory level for document copying, it will continue to be used for output images of full-color images required by the development of computers and the spread of high-resolution digital cameras. Further improvement in image quality and quality is desired.

電子写真法における現像方式は主として一成分系現像方式と二成分系現像方式に分けられる。従来、これらのフルカラー画像を出力するには、二成分系現像剤が用いられている。二成分系現像方法においてキャリアは、摩擦帯電により電荷をトナーに付与し、またこの電荷による静電引力によりその表面にトナーを担持する。トナーとキャリアを有する二成分系現像剤は、現像剤担持体として磁石を内包する現像スリーブ上に、現像剤層厚規制部材により所定の層厚にコートされ、磁気力及び現像スリーブ表面の摩擦抵抗を利用することによって静電潜像担持体(感光体)と現像スリーブとの間に形成される現像領域に搬送され、現像される。しかし近年では、電子写真装置の軽量・小型化等を目的として、一成分系現像方式を用いた現像装置を使用する場合も多くなってきている。   Development methods in electrophotography are mainly divided into a one-component development method and a two-component development method. Conventionally, two-component developers are used to output these full-color images. In the two-component development method, the carrier imparts electric charge to the toner by triboelectric charging, and carries the toner on its surface by electrostatic attraction due to this electric charge. A two-component developer having a toner and a carrier is coated on a developing sleeve containing a magnet as a developer carrier to a predetermined layer thickness by a developer layer thickness regulating member, so that magnetic force and friction resistance of the developing sleeve surface are coated. Is conveyed to a developing area formed between the electrostatic latent image carrier (photoconductor) and the developing sleeve and developed. However, in recent years, a developing device using a one-component developing system is often used for the purpose of reducing the weight and size of the electrophotographic apparatus.

一成分系現像方式は、二成分系現像方式のようにガラスビーズや鉄粉等のキャリア粒子が不要なため、現像装置自体を小型化・軽量化できる。さらには、二成分系現像方式は二成分系現像剤中のトナー濃度を一定に保つ必要があるため、トナー濃度を検知し必要量のトナーを補給する装置が必要である。よって、このことからも現像装置が大きく重くなる傾向がある。一成分系現像方式では、補給装置は必要とならないため、現像装置を小さく軽く出来るため好ましい。   The one-component development method does not require carrier particles such as glass beads or iron powder unlike the two-component development method, and thus the development device itself can be reduced in size and weight. Furthermore, since the two-component developing method needs to keep the toner concentration in the two-component developer constant, a device for detecting the toner concentration and supplying a necessary amount of toner is required. For this reason, the developing device tends to be large and heavy. The one-component developing system is preferable because a replenishing device is not required, and the developing device can be made smaller and lighter.

一成分系現像方式には、トナー中に磁性体を含有しない非磁性トナーと磁性体を含有する磁性トナーを用いる場合があるが、フルカラー画像に用いる場合には色再現性の点から磁性体を含まない非磁性一成分系トナーが用いられることが多い。
一成分系現像方式を用いた現像装置としては、静電潜像担持体としての感光ドラム表面に静電潜像を形成し、現像剤担持体(現像スリーブ)とトナーとの摩擦、及び/又は現像スリーブ上のトナーコート量を規制するための現像剤層厚規制部材との摩擦により、トナーに正又は負の電荷を与え、そのトナーを現像スリーブ上に薄く塗布して感光ドラムと現像スリーブとが対向した現像領域に搬送し、現像領域において現像バイアスを印加して、トナーを感光ドラム表面の静電潜像に飛翔・付着させて現像し、静電潜像をトナー画像として顕像化するものが知られている。現像バイアスとしては、ブランクパルス、デューティバイアス、のこぎり波等が用いられている。これらのバイアスは、1周期内で電界の極性が反転しており、広義の交互バイアスである。現像バイアスの飛ばし電圧(現像)の大きさと印加時間、引き戻し電圧の大きさと印加時間を調整することで画像のがさつき防止やカブリの改善等に用いられてきている。
In the one-component development system, a non-magnetic toner containing no magnetic material and a magnetic toner containing a magnetic material may be used in the toner, but when using for a full color image, the magnetic material is used from the viewpoint of color reproducibility. Non-magnetic one-component toner not included is often used.
As a developing device using a one-component developing system, an electrostatic latent image is formed on the surface of a photosensitive drum as an electrostatic latent image carrier, and friction between a developer carrier (developing sleeve) and toner, and / or The toner is positively or negatively charged by friction with the developer layer thickness regulating member for regulating the toner coat amount on the developing sleeve, and the toner is applied thinly on the developing sleeve, and the photosensitive drum and the developing sleeve Is transferred to the opposite development area, and a development bias is applied in the development area to develop the toner by causing the toner to fly and adhere to the electrostatic latent image on the surface of the photosensitive drum, thereby developing the electrostatic latent image as a toner image. Things are known. As the development bias, a blank pulse, a duty bias, a sawtooth wave, or the like is used. These biases are alternating biases in a broad sense, with the polarity of the electric field reversed within one period. By adjusting the magnitude and application time of the developing bias skipping voltage (development) and the magnitude and application time of the pull-back voltage, it has been used to prevent image blurring and to improve fog.

また最近では、電子写真装置のデジタル化、更なる高画質化のために、トナーの小粒径化及び微粒子化が図られ、また電子写真装置のさらなる軽量・小型化等を目的として、廃トナーを軽減させるために、トナーの転写効率の向上が図られている。さらにファーストコピー時間の短縮化や省電力化の目的で、トナー中の低軟化点物質の割合を高める等の方法により、トナーの定着温度を下げる傾向にある。
上記のようなトナーの小粒径化及び微粒子化、転写効率の向上、低温定着の達成等は、従来の粉砕法による製造法のみでは難しくなる傾向にある。
Recently, in order to digitize the electrophotographic apparatus and further increase the image quality, the toner has been reduced in particle size and particle size, and the waste toner has been used for the purpose of further reducing the weight and size of the electrophotographic apparatus. In order to alleviate this, toner transfer efficiency is improved. Further, for the purpose of shortening the first copy time and saving power, the toner fixing temperature tends to be lowered by a method such as increasing the ratio of the low softening point substance in the toner.
The above-described reduction in toner particle size and particle size, improvement in transfer efficiency, achievement of low-temperature fixing, and the like tend to be difficult only by a conventional pulverization method.

そこで、重合法によりトナーを得る方法が検討されている。トナー製造に用いる重合法は、重合性単量体・着色剤・重合開始剤、更に必要に応じて架橋剤・荷電制御剤・その他添加剤を、均一に溶解又は分散させて単量体組成物とした後、この単量体組成物を、分散安定剤を含有する連続相、たとえば水相中に適当な撹拌機を用いて分散し、同時に重合反応を行い、所望の粒径を有するトナーを得る方法である。
この製造方法は、粉砕工程を経ないため現像剤に脆性を付与する必要がなく、更に従来の粉砕法では使用することができなかった低軟化点物質を多量に使用できる等、材料の選択幅が広がり好ましい。
Therefore, a method for obtaining toner by a polymerization method has been studied. The polymerization method used for toner production is a monomer composition in which a polymerizable monomer, a colorant, a polymerization initiator and, if necessary, a crosslinking agent, a charge control agent, and other additives are uniformly dissolved or dispersed. After that, the monomer composition is dispersed in a continuous phase containing a dispersion stabilizer, for example, an aqueous phase using a suitable stirrer, and simultaneously undergoes a polymerization reaction to obtain a toner having a desired particle size. How to get.
Since this manufacturing method does not go through a pulverization step, it is not necessary to impart brittleness to the developer, and furthermore, a wide range of materials can be used, such as a large amount of low softening point substances that could not be used in conventional pulverization methods. Is preferable.

さらに重合法は、粒度分布がシャープであり、球形で転写効率の高い微小粒径のトナーを比較的容易に製造できる特性を有している。
しかしながら、重合法によるトナーを用いた場合でも、現像剤担持体上のトナー層の形成は環境状態、トナーの物性、現像剤担持体表面の状態等に依存し、制御しにくい。特に低温低湿下においては、単位質量当たりの電荷量が増えるため更に現像剤担持体上へ静電的に付着しやすくなり、また高温高湿下においては、外部からの物理的な力を受ける場合トナーが流動化しやすい材料を用いているため変質しやすくなり、トナーによる現像剤担持体の汚染(所謂、「スリーブ汚染」)や現像剤担持体への融着(所謂、「スリーブ融着」)が起こりやすい。
Further, the polymerization method has characteristics that the particle size distribution is sharp, and a spherical toner having a high transfer efficiency can be produced relatively easily.
However, even when a toner by polymerization is used, the formation of the toner layer on the developer carrying member depends on the environmental state, the physical properties of the toner, the surface state of the developer carrying member, etc., and is difficult to control. Especially at low temperatures and low humidity, the amount of charge per unit mass increases, so it is more likely to adhere electrostatically on the developer carrier. Also, under high temperatures and high humidity, external physical force is applied. Since the toner is made of a material that is easy to fluidize, the toner is easily deteriorated, and the developer carrier is contaminated by the toner (so-called “sleeve contamination”) or fused to the developer carrier (so-called “sleeve fusion”). Is likely to occur.

複写を重ねるにつれてトナーが繰り返し現像剤担持体と摩擦された結果、トナーの流動性向上のための添加剤等がトナーから遊離し、これらの遊離物質が現像剤担持体上に堆積したり、又はトナー中の低軟化点物質が現像剤担持体上に成膜するために、現像剤担持体の表面状態が変化し、トナーの現像性が変化するという問題がある。   As the copying is repeated, the toner is repeatedly rubbed against the developer carrier, so that additives for improving the fluidity of the toner are released from the toner, and these free substances are deposited on the developer carrier, or Since the low softening point substance in the toner forms a film on the developer carrier, there is a problem that the surface state of the developer carrier changes and the developability of the toner changes.

重合法で得られたトナーは粉砕法で得るトナーと比較して極めて流動性が良いため、従来の一成分系現像方式を用いた現像装置に重合法で得られたトナーを用いた場合、トナーが現像剤担持体と規制部材間をすり抜ける現象が発生しやすい場合がある。このため、現像剤粒子間の帯電量が不均一になり易く、またトナーが現像剤担持体上で不均一なコート状態になりやすく、結果としてカブリや画像ムラのある不良画像が発生しやすくなる。更に繰り返し長期間にわたる画出し評価時に軸受け等にトナーが入り込みやすく、これによるトナーの融着物が発生しやすいため、転写時において転写不良を起こしやすくなる。   Since the toner obtained by the polymerization method has extremely good fluidity compared to the toner obtained by the pulverization method, when the toner obtained by the polymerization method is used in a developing device using a conventional one-component development system, the toner However, there is a case where the phenomenon of slipping between the developer carrying member and the regulating member is likely to occur. For this reason, the charge amount between the developer particles is likely to be non-uniform, and the toner is likely to be in a non-uniform coating state on the developer carrying member, and as a result, a defective image with fog and unevenness is likely to occur. . Furthermore, since it is easy for toner to enter a bearing or the like during repeated image formation evaluation over a long period of time, and thus a toner fusion product is likely to occur, transfer defects are likely to occur during transfer.

一般的に重合法で得られたトナーは、転写効率をよくするために実質球形であることから現像装置内で最密充填しやすく、現像装置内の規制部材下流部分にトナーが密に充填するため、トナーへの機械的負荷力が増加し現像剤担持体上にトナーが融着する、所謂スリーブ汚染が発生する場合がある。スリーブ汚染は、画像濃度の低下や地カブリの原因となり好ましくない。
重合法により得られたトナーは、球形度が高いためにトナー自身の帯電が高くなりすぎる傾向があるため、トナーの帯電調整が難しく、それを改善するため外添剤等による工夫が種々行われているものの、トナー帯電の不均一性や上記スリーブ表面への融着の発生等の耐久安定性に関わる問題は、完全には解決されていない。
In general, the toner obtained by the polymerization method is substantially spherical in order to improve transfer efficiency, so that it is easy to close-pack the toner in the developing device, and the toner is densely packed in the downstream portion of the regulating member in the developing device. Therefore, there is a case where the mechanical load force on the toner increases and the toner is fused on the developer carrying member, so-called sleeve contamination occurs. Sleeve contamination is undesirable because it causes a reduction in image density and fogging.
Since the toner obtained by the polymerization method has a high sphericity, the charge of the toner itself tends to be too high. Therefore, it is difficult to adjust the charge of the toner. However, problems relating to durability stability such as non-uniformity of toner charging and occurrence of fusion to the sleeve surface have not been completely solved.

また、現像スリーブが繰り返し回転を行っていくうちに、現像スリーブ上にコーティングされたトナーの帯電量が現像スリーブとの接触により高くなり過ぎ、トナーが現像スリーブ表面との鏡映力により引き合って現像スリーブ表面上で不動状態となり、現像スリーブから静電潜像保持体(ドラム)上の静電潜像に移動しなくなる、所謂、チャージアップ現象が特に低湿下で起こりやすくなる。この様なチャージアップ現象が発生すると、上層のトナーは帯電しにくくなってトナーの現像量が低下するため、ライン画像の細りやベタ画像の画像濃度薄等の問題点を生じる。更に、チャージアップにより適正に帯電されないトナーが規制不良となってスリーブ上に流出し、斑点状、波状のムラとなる、所謂ブロッチ現象も発生する。ハーフトーン画像を現像すると、濃度ムラが発生する等、画像濃度一様性に対し問題が生じ易い。   In addition, as the developing sleeve rotates repeatedly, the charge amount of the toner coated on the developing sleeve becomes too high due to contact with the developing sleeve, and the toner is attracted by the reflection force on the developing sleeve surface and developed. The so-called charge-up phenomenon that becomes stationary on the surface of the sleeve and does not move from the developing sleeve to the electrostatic latent image on the electrostatic latent image holding member (drum) is likely to occur particularly under low humidity. When such a charge-up phenomenon occurs, the toner in the upper layer becomes difficult to be charged and the development amount of the toner is reduced, which causes problems such as thin line images and thin image density of solid images. Furthermore, the toner that is not properly charged due to charge-up becomes poorly regulated and flows out onto the sleeve, so that a so-called blotch phenomenon in which spots and wavy irregularities occur. When a halftone image is developed, problems such as density unevenness are likely to occur.

現像スリーブと感光ドラムとの間に現像バイアスとしてブランクパルスを印加することで、カブリや濃度ムラの発生を改善する方法が提案されている(例えば、特許文献1参照)。この方法を用いることによりハーフトーン画像における濃度ムラ及びカブリは軽減されるが、小粒径且つ球形の重合法により得られたトナーを用いた場合、すり抜け等の規制不良によりスリーブ上のトナー層の層厚が厚くなりやすく、またトナーの帯電分布が生じやすいため、カブリや濃度ムラへの改善効果は未だ不十分である。   There has been proposed a method for improving the occurrence of fog and density unevenness by applying a blank pulse as a developing bias between the developing sleeve and the photosensitive drum (see, for example, Patent Document 1). By using this method, density unevenness and fogging in a halftone image are reduced. However, when toner obtained by a polymerization method having a small particle size and a spherical shape is used, the toner layer on the sleeve due to poor regulation such as slip-through. Since the layer thickness tends to increase and toner charge distribution tends to occur, the effect of improving fog and density unevenness is still insufficient.

樹脂中に、結晶性グラファイト及びカーボン等の導電性微粉末を分散させた被覆層が基体上に設けられている現像スリーブを用いる方法が提案されている(例えば、特許文献2及び3参照)。この方法を用いることにより、チャージアップ現象の防止と帯電の均一性の向上に効果は認められるものの、未だ不十分であり、上記粉末を多量に添加した場合には、チャージアップに対しては改善されるが、特に非磁性一成分系現像剤を用いた場合、トナーへの帯電付与能力が不十分となり、搬送性の低下や濃度ムラ等が発生しやすい。更に、被覆層が脆性化して削れやすくなると共に表面が不均一となり、被覆層の耐久性低下等の弊害を生ずる。また、前記結晶性グラファイトを分散させた被覆層を用いた場合は、被覆層表面が結晶性グラファイトの燐片状構造に起因して潤滑性を有するようになるのでスリーブへの融着に関しては改善がみられるが、結晶性グラファイトの形状が鱗片状であるがために被覆層表面が耐久による部分的な摩耗により不均一となりやすく、トナー搬送性の変動等の問題がある。特に現像剤担持体上のトナー層を規制するため現像剤層厚規制部材による当接圧等、規制力を強めた場合に、規制部材にキズが発生しやすく、これによるトナーの融着や画像スジが発生しやすい。さらに結晶性グラファイトの硬度が低いため、被覆層表面で結晶性グラファイト自体の摩耗や脱離が発生しやすく、耐久試験を進めていった場合に被覆層の表面粗さや表面組成が変化して、トナーの搬送不良やトナーへの帯電付与の不均一化が起こりやすくなる。一方、添加量が少量の場合には、結晶性グラファイト及びカーボン等の導電性微粉末の効果が薄く、チャージアップやカブリに対して不十分であるという問題が残る。   There has been proposed a method using a developing sleeve in which a coating layer in which conductive fine powder such as crystalline graphite and carbon is dispersed in a resin is provided on a substrate (see, for example, Patent Documents 2 and 3). Although this method is effective for preventing the charge-up phenomenon and improving the uniformity of charging, it is still insufficient. When a large amount of the above powder is added, the charge-up phenomenon is improved. However, in particular, when a non-magnetic one-component developer is used, the ability to impart charge to the toner becomes insufficient, and transportability is reduced and density unevenness is likely to occur. Furthermore, the coating layer becomes brittle and becomes easy to scrape, and the surface becomes non-uniform, resulting in problems such as a decrease in the durability of the coating layer. In addition, when the coating layer in which the crystalline graphite is dispersed is used, the surface of the coating layer has lubricity due to the scaly structure of the crystalline graphite, so the fusion to the sleeve is improved. However, since the shape of the crystalline graphite is scaly, the surface of the coating layer tends to be non-uniform due to partial wear due to durability, and there is a problem such as fluctuation in toner transportability. In particular, when the regulating force such as the contact pressure by the developer layer thickness regulating member is strengthened to regulate the toner layer on the developer carrying member, the regulating member is likely to be scratched. Lines are likely to occur. Furthermore, since the hardness of the crystalline graphite is low, wear and desorption of the crystalline graphite itself is likely to occur on the surface of the coating layer, and when the durability test was advanced, the surface roughness and surface composition of the coating layer changed, Toner conveyance failure and non-uniform charge application to the toner are likely to occur. On the other hand, when the addition amount is small, the effect of the conductive fine powder such as crystalline graphite and carbon is thin, and there remains a problem that it is insufficient for charge-up and fogging.

結晶性グラファイトに代えて特定の結晶化度を有する黒鉛化粒子を用いることでトナーのチャージアップ現象の防止とトナーへの迅速な帯電付与を図る方法も提案されている(例えば、特許文献4参照)。しかしながらこの方法を用いることにより、チャージアップ現象の防止と帯電の均一性の向上に一定の効果は認められるものの、球形化処理や重合法によって調製されたカラーの非磁性トナーに対する帯電安定性と搬送安定性は未だ不十分である。   There has also been proposed a method of preventing charge-up phenomenon of a toner and promptly imparting charging to the toner by using graphitized particles having a specific crystallinity instead of crystalline graphite (see, for example, Patent Document 4). ). However, using this method, although certain effects are observed in preventing charge-up phenomenon and improving charging uniformity, charging stability and transport for color non-magnetic toners prepared by spheronization or polymerization methods Stability is still insufficient.

トナーの樹脂中に、鉄粉に対して正帯電性である第四級アンモニウム塩化合物を添加して球形化処理されたトナー及び重合法によって製造されたトナーに対しチャージアップ等の過剰な帯電を防ぐ現像スリーブを用いる方法が提案されている(例えば、特許文献5及び6参照)。
これら方法を用いることにより、チャージアップ現象の防止と帯電の均一性の向上に効果は認められるものの、トナーに対する帯電安定性と搬送安定性は未だ不十分である。
In the toner resin, a quaternary ammonium salt compound, which is positively charged with respect to iron powder, is added to the spheroidized toner and the toner produced by the polymerization method is charged excessively such as charge-up. There has been proposed a method using a developing sleeve for preventing (see, for example, Patent Documents 5 and 6).
Although these methods are effective in preventing the charge-up phenomenon and improving the uniformity of charging, the charging stability and the conveyance stability for the toner are still insufficient.

特に重合法により製造される磁性体を有さない非磁性トナーを用い、感光ドラムと現像剤担持体が非接触の状態で現像を行う非接触型現像装置を用いる場合、磁性体を有さない非磁性トナーに対する帯電安定性と搬送安定性は未だ十分には解決されていない。
また、樹脂中に結晶性グラファイト及びカーボン等の導電性微粉末、更に球状粒子を分散させた導電性被覆層を金属基体上に設けた現像スリーブが提案されている(例えば、特許文献7参照)。この現像スリーブでは、被覆層の耐摩耗性がある程度向上するとともに、被覆層表面の形状も均一化し、耐久試験による表面粗さの変化も比較的少なくなることから、スリーブ上のトナーコーティングが安定化して、トナーの帯電を均一化することができ、カブリ、画像濃度、画像濃度ムラ等が少なく、画質が安定化する傾向にある。しかしながら、この現像スリーブにおいても重合法により製造される球形の非磁性トナーへの均一帯電及びトナーへの帯電付与能力の安定化には不十分であり、被覆層の球状粒子や結晶性グラファイトが摩耗又は脱離することで生じる被覆層表面粗さの変化や表面粗さの不均一化、それに伴う被覆層のトナー汚染及びトナー融着等が生じ、このような場合にはトナーの帯電が不安定となり画像不良の原因となりやすい。
In particular, when using a non-contact type developing device that uses a non-magnetic toner that does not have a magnetic material produced by a polymerization method and performs development in a non-contact state between the photosensitive drum and the developer carrier, it does not have a magnetic material. The charging stability and transport stability for non-magnetic toners have not been sufficiently solved.
Further, there has been proposed a developing sleeve in which a conductive coating layer in which conductive fine powders such as crystalline graphite and carbon and spherical particles are dispersed in a resin is provided on a metal substrate (see, for example, Patent Document 7). . In this developing sleeve, the wear resistance of the coating layer is improved to some extent, the shape of the coating layer surface is made uniform, and the change in surface roughness due to the durability test is relatively small, so that the toner coating on the sleeve is stabilized. Thus, the charge of the toner can be made uniform, there is little fog, image density, image density unevenness, etc., and the image quality tends to be stabilized. However, this developing sleeve is also insufficient for uniform charging to the spherical non-magnetic toner produced by the polymerization method and stabilization of the charge imparting ability to the toner, and the spherical particles and crystalline graphite of the coating layer are worn. Or, the coating layer surface roughness change or surface roughness non-uniformity caused by detachment, toner contamination and toner fusion of the coating layer, and the like occur. In such a case, toner charging is unstable. Tends to cause image defects.

現像剤担持体の導電性被覆層中に分散された球状粒子が低比重且つ導電性の球状粒子であり、これにより導電性被覆層中に均一に導電性球状粒子が分散されることで被覆層の耐摩耗性及び被覆層表面の形状が均一化してトナーへの均一な帯電性が向上し、且つ被覆層が多少摩耗した際にもトナー汚染及びトナー融着が抑制されうる現像スリーブが提案されている(例えば、特許文献8参照)。しかしながら、この現像スリーブにおいても、非磁性一成分トナーを用いた場合、トナーへの均一帯電及びトナーへの帯電付与能力の点では完全ではなく、被覆層表面の導電性球状粒子が存在しない部分から、結晶性グラファイト等の導電性粒子が摩耗又は脱落しやすく、この摩耗及び脱落した部分から被覆層の摩耗が促進されてトナー汚染及びトナー融着が生じ、トナーの帯電が不安定となり画像不良の原因となる。   The spherical particles dispersed in the conductive coating layer of the developer carrier are low specific gravity and conductive spherical particles, and thereby the conductive spherical particles are uniformly dispersed in the conductive coating layer. A developing sleeve has been proposed in which the wear resistance of the coating layer and the shape of the surface of the coating layer are made uniform to improve uniform chargeability on the toner, and even when the coating layer is worn somewhat, toner contamination and toner fusion can be suppressed. (For example, refer to Patent Document 8). However, even in this developing sleeve, when a non-magnetic one-component toner is used, it is not complete in terms of uniform charging to the toner and the ability to impart charge to the toner. In addition, conductive particles such as crystalline graphite are likely to wear or drop off, and the wear of the coating layer is promoted from the worn and dropped parts, causing toner contamination and toner fusing, resulting in unstable toner charging and poor image quality. Cause.

現像剤担持体の被覆層中に粒径の異なる無機化合物を分散することでトナーの搬送量の適正化とトナーへの摩擦帯電の付与をはかった現像スリーブが提案されている(例えば、特許文献9参照)。しかしながら小粒径且つ重合法により製造された球形化度の高い非磁性トナーを用いた場合には、すり抜け等、トナー層厚の規制不良によりスリーブ上のトナー層の層厚が大きくなりやすく、またトナーへの均一帯電及びトナーへの帯電付与能力の安定化には不十分であり、カブリ、掃き寄せ等の画像不良となりやすい等十分な解決には到っていない。
特開平09−311539号公報 特開平02−105181号公報 特開平03−036570号公報 特開2003−323042号公報 特開2003−057951号公報 特開2002−311636号公報 特開平03−200986号公報 特開平08−240981号公報 特開平07−306586号公報
There has been proposed a developing sleeve in which an inorganic compound having a different particle diameter is dispersed in a coating layer of a developer carrier to optimize the amount of toner transport and to impart frictional charge to the toner (for example, Patent Documents). 9). However, when a non-magnetic toner having a small particle size and a high sphericity produced by a polymerization method is used, the thickness of the toner layer on the sleeve tends to increase due to poor regulation of the toner layer thickness, such as slipping through. It is insufficient for stabilizing the uniform charging of the toner and the ability to impart charge to the toner, and has not yet reached a sufficient solution, such as being liable to cause image defects such as fogging and sweeping.
JP 09-311539 A Japanese Patent Laid-Open No. 02-105181 Japanese Unexamined Patent Publication No. 03-036570 Japanese Patent Laid-Open No. 2003-323042 JP 2003-057951 A JP 2002-311636 A Japanese Patent Laid-Open No. 03-200986 Japanese Patent Laid-Open No. 08-240981 Japanese Patent Application Laid-Open No. 07-306586

本発明の課題は、長期間にわたる使用によっても現像剤担持体の樹脂被覆層の摩耗が少なく高耐久性を有し、樹脂被覆層の摩耗のばらつきが少なく、且つ現像剤搬送性の不安定化、現像剤の帯電の不均一化、さらに画像濃度低下、画像濃度ムラ、カブリ、掃き寄せ等の問題が発生せず、高品位の画像を安定して得ることのできる現像方法を提供することである。
It is an object of the present invention to have high durability with little wear of the resin coating layer of the developer carrying member even after long-term use, less variation in wear of the resin coating layer, and destabilization of developer transportability provides non-uniform charging of the developer, further lowering of image density, image density unevenness, fogging, without problems such as swept occurs, the current image how high quality images to enable you be stably obtained That is.

本発明の別の課題は、長期間にわたる使用によっても現像剤担持体上の現像剤に均一で高い帯電を付与すると共に、現像剤への過剰帯電を防止し、且つ現像剤の帯電を安定に保持し、画像濃度低下・カブリ・飛び散り等が起こりにくい、安定した画質が得られる現像方法を提供することである。
Another object of the present invention is to impart a uniform and high charge to the developer on the developer carrying member even when used for a long period of time, to prevent overcharging of the developer, and to stabilize the charging of the developer. holding, image density decrease, fog, hardly occurs such scattering is to provide a current image how to obtain a stable image quality.

本発明の別の課題は、異なる環境条件下においても、濃度低下、画像濃度ムラ、掃き寄せ、カブリ、現像剤融着及びブロッチ等の問題が発生せず、高品位の画像を安定して得ることのできる現像方法を提供することである。
Another object of the present invention is to stably obtain a high-quality image without causing problems such as density reduction, image density unevenness, sweeping, fogging, developer fusion, and blotch even under different environmental conditions. to enable you be to provide a current image method.

本発明の課題は、粒径の小さい現像剤や球形化度の高い現像剤を用いた場合に現われる、現像剤の不均一な帯電を制御すると共に、現像剤に十分な帯電を与え、さらに現像剤担持体上の現像剤層を安定して形成し搬送することができる現像方法を提供することである。
The object of the present invention is to control the uneven charging of the developer that appears when a developer having a small particle diameter or a developer having a high spheroidization degree is used, and to provide sufficient charge to the developer. it is to provide a current image method is Ru can be a developer layer stably formed transported on-carrying member.

本発明の課題は、規制部材へのキズや融着の発生しにくく、これによるスジ状の画像欠陥の生じにくい、安定した画質が得られる現像方法を提供することである。
本発明の課題は、現像バイアスとして断続的に休止する交流成分を直流成分に重畳した電圧を印加し、静電潜像担持体上の潜像を可視像化する現像方法に用いられる現像剤担持体において、一成分系現像剤として重合法により製造された円形度の高い非磁性現像剤を用いた場合でも、現像剤担持体上の現像剤層厚が厚くなるのを防ぎ、且つ現像剤の帯電を均一化させ、濃度ムラ、カブリ、現像剤融着やブロッチ及び掃き寄せ等の画像欠陥のない高品位の画像を安定して得ることのできる現像方法を提供することである。
An object of the present invention, scratches and less likely to occur in fusion of the restriction member, which due to less likely to occur streaky image defect is to provide a current image how stable image quality can be obtained.
An object of the present invention is to apply a voltage in which an alternating current component that intermittently pauses as a developing bias is applied to a direct current component, and to develop the developer used in a developing method for visualizing a latent image on an electrostatic latent image carrier Even when a non-magnetic developer having a high degree of circularity produced by a polymerization method is used as a one-component developer in the carrier, the developer layer thickness on the developer carrier is prevented from being increased, and the developer to equalize the charge of, it is to provide a density unevenness, fogging developer fusion or blotches and sweeping like current image how a high-quality image free from image defects to enable you be stably obtained for.

本発明等は、前記課題について鋭意検討を行った結果、現像バイアスとして断続的に休止する交流成分を直流成分に重畳した電圧を用いる現像方法において、特定の粒子を現像剤担持体表面の樹脂被覆層に含有させることで、現像剤担持体表面の凹凸形状(以下、「表面粗さ」)ともいう)や材料組成のばらつきを小さくすることができ、それにより現像剤担持体上の現像剤層厚を安定に形成できると共に現像剤への帯電を均一に行うことができることを見出し、本発明を完成するに至った。
現像剤担持体上の現像剤層厚を低く安定に維持できること及び均一に現像剤を帯電できることにより、現像バイアスとしてブランクパルスを用いた際に濃度一様性、掃き寄せ及びカブリの改善の効果が相乗的に現れることを見出した。また、一成分系現像剤として重
合法により製造された円形度の高い非磁性現像剤を用いた場合に、特にその効果を発揮できることも見出した。
すなわち、流動性が高く規制部材からのすり抜け等のため現像剤担持体上に安定した薄層のトナー層を形成することが困難であり、またチャージアップしやすく安定した帯電付与が難しいと従来考えられていた球形の現像剤に対して、本発明の、現像方法は、現像剤担持体上のトナー層厚を安定に形成できると共に現像剤への帯電を均一に行うことができることを見出した。
As a result of diligent investigations on the above problems, the present invention and the like are based on a resin coating on the surface of a developer carrying member in a developing method using a voltage in which an alternating current component that intermittently pauses as a developing bias is superimposed on a direct current component. By including in the layer, the unevenness of the surface of the developer carrying member (hereinafter also referred to as “surface roughness”) and the variation in the material composition can be reduced, thereby the developer layer on the developer carrying member. the thickness found that charging of the developer can be uniformly performed with can be formed stably, and completed the present invention.
Since the developer layer thickness on the developer carrying member can be stably kept low and the developer can be charged uniformly, the effect of improving density uniformity, sweeping and fogging can be obtained when a blank pulse is used as a developing bias. I found that it appears synergistically. It has also been found that when a non-magnetic developer having a high degree of circularity produced by a polymerization method is used as a one-component developer, the effect can be exhibited particularly.
In other words, it is difficult to form a stable thin toner layer on the developer carrier due to high fluidity and slipping from the regulating member, etc. It has been found that the developing method of the present invention can stably form the toner layer thickness on the developer carrying member and can uniformly charge the developer with respect to the spherical developer that has been used.

すなわち、本発明は以下の通りである。
(1)静電潜像担持体と現像剤担持体とが非接触の状態で現像を行う非接触型現像装置を用いた非接触の現像方法であって、
非磁性一成分系現像剤を現像剤担持体に担持させ、静電潜像担持体に対向する現像領域へ搬送し、該現像剤担持体に断続的に休止する交流成分を直流成分に重畳した電圧を現像バイアスとして印加し、静電潜像担持体上の潜像を可視像化する工程を有し
該現像剤担持体が、少なくとも基体及び該基体上に形成された樹脂被覆層を有し、該樹脂被覆層が、
体積平均粒径が3.28.7μmである、該樹脂被覆層の表面に凹凸を付与するための球状炭素粒子からなる凹凸付与粒子、及び
黒鉛化度P(002)が0.23≦P(002)≦0.92であり且つ体積平均粒径が0.493.78μmである、導電性を付与するための黒鉛化粒子を少なくとも含有し、且つ、
該樹脂被覆層中に含有される粒子の体積粒度分布において、体積粒径10μm以上である粒子の存在比率が4.80%以下である現像剤担持体であることを特徴とする現像方法。

That is, the present invention is as follows.
(1) A non-contact developing method using a non-contact type developing device that performs development in a non-contact state between an electrostatic latent image carrier and a developer carrier,
A non-magnetic one-component developer is carried on a developer carrier, transported to a development area facing the electrostatic latent image carrier, and an alternating current component intermittently paused on the developer carrier is superimposed on the direct current component. applying a voltage as developing bias, and a step of a visible image of the latent image on the electrostatic latent image bearing member,
The developer carrier has at least a substrate and a resin coating layer formed on the substrate, and the resin coating layer includes:
Concavity and convexity imparting particles made of spherical carbon particles for imparting concavity and convexity to the surface of the resin coating layer having a volume average particle diameter of 3.2 to 8.7 μm, and a graphitization degree P (002) of 0.23 ≦ P (002) ≦ 0.92 and containing at least graphitized particles for imparting conductivity, having a volume average particle diameter of 0.49 to 3.78 μm, and
A developing method comprising: a developer carrying member having a volume particle size distribution of particles contained in the resin coating layer of 4.80 % or less.

(2)前記黒鉛化粒子の体積平均粒径は、前記凹凸付与粒子の体積平均粒径より小さいことを特徴とする(1)に記載の現像方法
(3)前記黒鉛化粒子はバルクメソフェーズピッチまたはメソカーボンマイクロビーズを黒鉛化して得られたものであることを特徴とする(1)または(2)に記載の現像方法。(4)前記非磁性一成分系現像剤としての非磁性トナーが重合法により製造されたものである(1)乃至(3)の何れかに記載の現像方法。

(2) The developing method according to (1), wherein a volume average particle diameter of the graphitized particles is smaller than a volume average particle diameter of the unevenness imparting particles .
(3) The developing method according to (1) or (2), wherein the graphitized particles are obtained by graphitizing bulk mesophase pitch or mesocarbon microbeads. (4) The developing method according to any one of (1) to (3), wherein the nonmagnetic toner as the nonmagnetic one-component developer is produced by a polymerization method.

(5)前記非磁性一成分系現像剤は下記式(C)、(D)より求められる平均円形度が0.935以上の現像剤であることを特徴とする(4)に記載の現像方法。
円形度a=L /L (C)
(式中、L は粒子像と同じ投影面積を持つ円の周囲長を示し、Lは粒子像の周囲長を示す。)

Figure 0004324040

(式中、平均円形度をa ave 、各粒子における円形度をa 、測定粒子数をmとして示す。)。

(6)前記樹脂被覆層の層厚が4〜20μmである請求項1〜5の何れかに記載の現像方法。 (5) The developing method according to (4), wherein the non-magnetic one-component developer is a developer having an average circularity of 0.935 or more obtained from the following formulas (C) and (D): .
Circularity a = L 0 / L (C)
(In the formula, L 0 represents the circumference of a circle having the same projected area as the particle image, and L represents the circumference of the particle image.)
Figure 0004324040

(In the formula, the average circularity is a ave , the circularity of each particle is a i , and the number of measured particles is m).

(6) The developing method according to any one of claims 1 to 5, wherein the resin coating layer has a thickness of 4 to 20 µm.

以上説明したように、現像剤担持体の樹脂被覆層に特定の凹凸付与粒子と黒鉛化粒子を含有させることにより、従来問題とされていた樹脂被覆層の耐久性を向上させ、現像剤担持体表面の凹凸形状や摩耗のばらつき及び材料組成のばらつきを小さくすることができ、現像剤担持体上の現像剤層厚を安定に形成できると共に現像剤への帯電を均一に行うことができる。さらには、この現像剤担持体に断続的に休止する交流成分を直流成分に重畳した電圧を現像バイアスとして印加することにより、画像濃度低下、画像濃度ムラ、カブリ、現像剤融着、掃き寄せ等の問題を改善できるようになる。
As described above, by incorporating specific irregularity-providing particles and graphitized particles in the resin coating layer of the developer carrier, the durability of the resin coating layer, which has been considered a problem in the past, can be improved, and the developer carrier It is possible to reduce the unevenness of the surface, the variation in wear and the variation in material composition, the developer layer thickness on the developer carrying member can be stably formed, and the developer can be charged uniformly . The further, by applying a voltage superimposed on the DC component of the AC component to pause intermittently to the developer carrying member as the developing bias, the image density decrease, image density unevenness, fogging, developer fused, sweeping It becomes possible to improve such problems.

また現像剤担持体の樹脂被覆層に含有される黒鉛化粒子の体積平均粒径と黒鉛化度を適宜選択することにより、現像剤担持体の被覆層表面の耐摩耗性、樹脂被覆層の機械的強度及び現像剤への帯電付与性を向上させるとともにブロッチやチャージアップ発生の抑制及びブレード傷の発生を抑えることができる
Further, by appropriately selecting the volume average particle size and the degree of graphitization of the graphitized particles contained in the resin coating layer of the developer carrier, the abrasion resistance of the coating layer surface of the developer carrier, the machine of the resin coating layer it is possible to suppress the generation of suppression and blade scratches blotch and charge-up occurs with strength and improve the charge-providing performance to the developer.

現像剤担持体の樹脂被覆層に含有される黒鉛化粒子の体積平均粒径を凹凸付与粒子の体積平均粒径より小さくすることにより、耐久による被覆層表面の摩耗が発生したとしても表面粗さが変化しにくく、現像剤の搬送性及び現像剤への帯電付与性を安定に保つことができる
By making the volume average particle size of the graphitized particles contained in the resin coating layer of the developer carrier smaller than the volume average particle size of the unevenness imparting particles, even if the coating layer surface wear due to durability occurs, the surface roughness Is less likely to change, and the developer transportability and the charge imparting property to the developer can be kept stable.

また、現像剤担持体の樹脂被覆層に含有される黒鉛化粒子をバルクメソフェーズピッチ又はメソカーボンマイクロビーズを黒鉛化して得られたものを用いることにより、樹脂被覆層表面に均一な表面粗さを保持させると同時に、被覆層表面が摩耗した場合でも樹脂被覆層の表面粗さの変化が少なく、且つ現像剤汚染や現像剤融着を発生し難い
In addition, by using graphitized particles contained in the resin coating layer of the developer carrier obtained by graphitizing bulk mesophase pitch or mesocarbon microbeads, a uniform surface roughness can be obtained on the surface of the resin coating layer. At the same time, even when the surface of the coating layer is worn, there is little change in the surface roughness of the resin coating layer, and it is difficult for developer contamination and developer fusion to occur .

さらに、樹脂被覆層に、第四級アンモニウム塩化合物を含有させることにより、現像剤への帯電付与の安定性及び搬送安定性を有する
また特定の第四級アンモニウム塩化合物を用い、現像剤担持体の樹脂被覆層に含窒素樹脂を含有することにより、現像剤への帯電付与の安定性及び搬送安定性の効果をより得ることができ、カブリやブロッチ、チャージアップの発生を抑制できる
Further, the resin coating layer, by incorporating the quaternary ammonium salt compound, having stability and transport stability of the charge-providing to the developer.
In addition, by using a specific quaternary ammonium salt compound and containing a nitrogen-containing resin in the resin coating layer of the developer carrying member, it is possible to obtain more effects of charging stability and transport stability to the developer. can, fog or blotch, the occurrence of charge-up can be suppressed.

本発明の現像剤担持体は、断続的に休止する交流成分を直流成分に重畳した電圧を現像バイアスとして印加し、静電潜像担持体上の静電潜像を可視像化する現像方法に用いられる現像剤担持体であって、
該現像剤担持体は、少なくとも基体及び該基体上に形成された樹脂被覆層を有し、
前記樹脂被覆層は、体積平均粒径3.0〜9.0μmである、樹脂被覆層表面に凹凸を付与するための凹凸付与粒子、及び黒鉛化度P(002)が0.20≦P(002)≦0.95であり且つ体積平均粒径が0.5〜4.0μmである、導電性を付与するための黒鉛化粒子を含有し、前記樹脂被覆層は、該樹脂被覆層中に含有される粒子の体積粒度分布において、体積粒径が10μm以上である粒子の存在比率が5.0%以下であることを特徴とする。
The developer carrying member of the present invention is a developing method in which a voltage obtained by superimposing an intermittently alternating AC component on a DC component is applied as a developing bias to visualize an electrostatic latent image on the electrostatic latent image carrier A developer carrier used for
The developer carrier has at least a substrate and a resin coating layer formed on the substrate,
The resin coating layer has a volume average particle size of 3.0 to 9.0 μm, and has irregularity-imparting particles for imparting irregularities to the resin coating layer surface, and the degree of graphitization P (002) is 0.20 ≦ P ( 002) ≦ 0.95 and containing graphitized particles for imparting electrical conductivity having a volume average particle size of 0.5 to 4.0 μm, and the resin coating layer is contained in the resin coating layer. In the volume particle size distribution of the contained particles, the abundance ratio of particles having a volume particle size of 10 μm or more is 5.0% or less.

本発明の現像剤担持体は、上記構成により、現像剤担持体の凹凸形状や材料組成のばらつきを小さくすることができ、現像剤担持体上の現像剤層厚を安定に形成できると共に現像剤への帯電を均一に行うことができる。このように現像剤担持体上の現像剤層厚を低く安定に維持できること及び均一に現像剤を帯電できることにより、現像バイアスとしてブ
ランクパルスを用いた際に濃度一様性、掃き寄せ及びカブリの改善の効果が相乗的に現れる。
また、長期間にわたる使用を行っていくと、現像剤層厚規制部材や現像剤に含まれる研磨剤等の外添剤等からの力を受けることにより現像剤担持体表面の樹脂被覆層の摩耗が進行していくが、本発明の現像剤担持体は、凹凸付与粒子が樹脂被覆層中に含有されることで、現像剤搬送に関わる表面粗さの変化を抑制できる。また、本発明の現像剤担持体は、樹脂被覆層に用いられる黒鉛化粒子が、従来用いられている黒鉛化度の高い結晶性グラファイトに比べ、比較的硬く、摩耗しづらく、また従来樹脂被覆層に用いられているフェノール樹脂等の結着樹脂との硬度差が小さい故に、耐久による削れや黒鉛化粒子の脱離が発生しても不均一に削られることが少なく、現像剤担持体表面の凹凸形状及び材料組成が変化しづらい効果を有する。また、本発明の現像剤担持体に用いる黒鉛化度0.20〜0.95の黒鉛化粒子は、潤滑性を有する為に現像剤担持体への現像剤融着も発生しづらいという効果も有している。
本発明に係る黒鉛化粒子を樹脂被覆層に含有させることにより、現像剤汚染や現像剤のチャージアップを発生させること無く現像剤への均一で高く安定した帯電を付与する効果を得ることができる。
The developer carrier of the present invention can reduce unevenness of the developer carrier and variations in material composition, and can stably form the developer layer thickness on the developer carrier, with the above-described configuration. Can be uniformly charged. In this way, the developer layer thickness on the developer carrier can be stably maintained at a low level and the developer can be charged uniformly, thereby improving density uniformity, sweeping and fogging when using a blank pulse as a developing bias. The effect of synergistically appears.
In addition, when used over a long period of time, the wear of the resin coating layer on the surface of the developer carrying member is caused by receiving a force from the developer layer thickness regulating member or an external additive such as an abrasive contained in the developer. However, the developer-carrying member of the present invention can suppress the change in surface roughness associated with the developer conveyance because the unevenness imparting particles are contained in the resin coating layer. In addition, the developer-carrying member of the present invention is such that the graphitized particles used in the resin coating layer are relatively hard and less likely to wear compared to crystalline graphite having a high degree of graphitization that has been used in the past. Because the difference in hardness from the binder resin such as phenol resin used in the layer is small, it is less likely to be unevenly scraped even if scraping due to durability or detachment of graphitized particles occurs. This has the effect of making it difficult for the uneven shape and material composition to change. In addition, the graphitized particles having a graphitization degree of 0.20 to 0.95 used for the developer carrier of the present invention have lubricity, so that it is difficult for the developer to adhere to the developer carrier. Have.
By including the graphitized particles according to the present invention in the resin coating layer, it is possible to obtain an effect of imparting a uniform and stable charge to the developer without causing developer contamination or developer charge-up. .

以下、好ましい実施の形態を挙げて本発明について詳述する。
本発明の現像剤担持体において、基体上に形成される樹脂被覆層を構成する材料として、樹脂被覆層中に凹凸を付与して耐久を通じトナーの搬送性を安定的に維持するために、体積平均粒径3.0〜9.0μmである凹凸付与粒子、及び導電性を付与するために、黒鉛化度P(002)が0.20≦P(002)≦0.95であり且つ体積平均粒径が0.5〜4.0μmである黒鉛化粒子を用いる。
Hereinafter, the present invention will be described in detail with reference to preferred embodiments.
In the developer carrying member of the present invention, as a material constituting the resin coating layer formed on the substrate, in order to stably maintain the toner transportability through durability by imparting irregularities in the resin coating layer, In order to impart conductivity, the irregularity imparting particles having an average particle size of 3.0 to 9.0 μm, and the degree of graphitization P (002) is 0.20 ≦ P (002) ≦ 0.95 and the volume average Graphitized particles having a particle size of 0.5 to 4.0 μm are used.

以下、本発明に用いる凹凸付与粒子について説明する。
本発明に用いる凹凸付与粒子としては、不定形の粒子よりも球状粒子を用いる方が、樹脂被覆層表面の凹凸が均一なものとなり易く現像剤の搬送性が安定したものとなるため、より好ましい。
ここで「球状粒子」とは、粒子の長径/短径の比が1.0〜1.5程度の粒子を意味しており、本発明において好ましくは、長径/短径の比が1.0〜1.2の粒子を使用することが良い。球状粒子の長径/短径の比が1.5以下のものの方が、樹脂被覆層中への粒子の分散性が良好となり、均一な被覆層表面形状を得やすく、均一な摩擦帯電を得やすく、樹脂被覆層の不均一な削れ等が発生しにくいことから好ましい。
Hereinafter, the unevenness imparting particles used in the present invention will be described.
As the irregularity-imparting particles used in the present invention, it is more preferable to use spherical particles than irregular particles because the irregularities on the surface of the resin coating layer are likely to be uniform and the developer transportability is stable. .
Here, the “spherical particles” mean particles having a major axis / minor axis ratio of about 1.0 to 1.5, and in the present invention, the ratio of major axis / minor axis is preferably 1.0. It is better to use particles of ~ 1.2. When the ratio of the major axis / minor axis of the spherical particles is 1.5 or less, the dispersibility of the particles in the resin coating layer becomes better, and it is easier to obtain a uniform coating layer surface shape and to obtain uniform frictional charge. It is preferable because non-uniform shaving of the resin coating layer hardly occurs.

本発明における凹凸付与粒子は、体積平均粒径3.0〜9.0μmであることが好ましい。凹凸付与粒子の体積平均粒径が3.0μm未満のものでは被覆層表面への凹凸形成効果が少なく、現像剤の搬送性維持という面でも不十分となる場合がある。搬送性が十分に得られない場合には、現像剤への均一な帯電が不十分となると共に、樹脂被覆層の摩耗が大きくなりやすく、さらに現像剤のチャージアップ等の帯電不均一や、現像剤汚染及び現像剤融着等が発生し、画像濃度低下や濃度ムラを生じやすくなる。体積平均粒径が9.0μmを越える場合には、樹脂被覆層表面の凹凸が大きくなり過ぎ、現像剤の搬送過多又は不均一な状態となり、さらに現像剤の帯電が十分に行われにくくなる。このような場合、摩擦帯電の不均一化により画像のスジやフェーディング、カブリや濃度薄が発生しやすくなる。また、凹凸付与粒子が形成する凸部が高くなりすぎるため、現像剤層厚規制部材として弾性ブレードを用いた場合は凹凸付与粒子自身の突起がブレードを傷つける場合があり、画像上に濃度ムラ・スジ等が発生しやすくなる。   The unevenness imparting particles in the present invention preferably have a volume average particle size of 3.0 to 9.0 μm. If the volume average particle size of the unevenness imparting particles is less than 3.0 μm, the effect of forming unevenness on the surface of the coating layer is small, and it may be insufficient in terms of maintaining the developer transportability. If sufficient transportability cannot be obtained, uniform charging to the developer becomes insufficient, wear of the resin coating layer tends to increase, and charging unevenness such as developer charge-up and development Agent contamination, developer fusion, and the like occur, and image density lowering and density unevenness are likely to occur. When the volume average particle size exceeds 9.0 μm, the unevenness on the surface of the resin coating layer becomes too large, the developer is excessively conveyed or non-uniform, and the developer is not sufficiently charged. In such a case, image streaking, fading, fogging, and low density are likely to occur due to non-uniform frictional charging. In addition, since the convexity formed by the irregularity-imparting particles becomes too high, when the elastic blade is used as the developer layer thickness regulating member, the projections of the irregularity-imparting particles themselves may damage the blade. Streaks are likely to occur.

なお、本発明の現像剤担持体は、樹脂被覆層表面の樹脂被覆層の凹凸、すわなち算術平均粗さRa(以下、「Ra」と称す。)が0.2〜1.5μmであることが好ましく、0.3〜0.9μmであることがより好ましい。
Raが0.2μm未満であると、特に弾性ブレードと球形化度の高い現像剤を用いた場合に現像剤の融着やチャージアップが発生しやすくなり、画像濃度低下、画像のスジ、画像濃度ムラ及びスリーブゴースト等が発生する場合がある。
Raが1.5μmを超えると、現像剤担持体上の現像剤の搬送量が多くなりすぎて現像剤に均一に帯電付与しにくくなり、カブリやスリーブゴーストが発生しやすくなる。
The developer carrying member of the present invention has an unevenness of the resin coating layer on the surface of the resin coating layer, that is, an arithmetic average roughness Ra (hereinafter referred to as “Ra”) of 0.2 to 1.5 μm. It is preferable that the thickness is 0.3 to 0.9 μm.
When Ra is less than 0.2 μm, particularly when an elastic blade and a developer having a high sphericity are used, the developer is likely to be fused or charged up, resulting in a decrease in image density, image streaking, and image density. Unevenness and sleeve ghosts may occur.
When Ra exceeds 1.5 μm, the amount of developer transported on the developer carrying member becomes too large, and it becomes difficult to uniformly charge the developer, and fog and sleeve ghost are likely to occur.

本発明で用いる凹凸付与粒子の真密度は、3g/cm以下、好ましくは2.7g/cm以下、より好ましくは0.9〜2.3g/cmであることが良い。凹凸付与粒子の真密度が3g/cm以下のものの方が、樹脂被覆層中での粒子の分散性が良好であり、樹脂被覆層表面に均一な粗さが得られやすく、安定して現像剤を搬送することができる。さらに均一な帯電付与及び樹脂被覆層の強度を得ることができ好ましい。さらには、凹凸付与粒子の真密度が0.9g/cm以上の場合、樹脂被覆層中での凹凸付与粒子の分散性がより良好となり好ましい。 True density of unevenness imparting particles used in the present invention, 3 g / cm 3 or less, preferably 2.7 g / cm 3 or less, it is better and more preferably from 0.9~2.3g / cm 3. When the true density of the unevenness imparting particles is 3 g / cm 3 or less, the dispersibility of the particles in the resin coating layer is better, and it is easier to obtain a uniform roughness on the surface of the resin coating layer, and the development is stable. The agent can be conveyed. Further, it is preferable because uniform charging and strength of the resin coating layer can be obtained. Furthermore, when the true density of the unevenness imparting particles is 0.9 g / cm 3 or more, the dispersibility of the unevenness imparting particles in the resin coating layer becomes better, which is preferable.

本発明に用いられる凹凸付与粒子は、公知の粒子が使用可能である。例えば、樹脂粒子、金属酸化物粒子、炭素化物粒子等があり、好ましい形状は球状である。これらの球状の凹凸付与粒子は、例えば、懸濁重合、分散重合法等により得られた球状の樹脂粒子等が用いられる。球状の樹脂粒子は、より少ない添加量で好適な表面粗さが得られ、更に均一な表面形状が得ることができる。この様な球状の凹凸付与粒子としては、ポリアクリレート、ポリメタクリレート等のアクリル系樹脂粒子、ナイロン等のポリアミド系樹脂粒子、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂粒子、シリコーン系樹脂粒子、フェノール系樹脂粒子、ポリウレタン系樹脂粒子、スチレン系樹脂粒子、ベンゾグアナミン粒子等が挙げられる。   Known particles can be used as the irregularity-imparting particles used in the present invention. For example, there are resin particles, metal oxide particles, carbonized particles and the like, and a preferable shape is spherical. As these spherical unevenness-imparting particles, for example, spherical resin particles obtained by suspension polymerization, dispersion polymerization or the like are used. The spherical resin particles can obtain a suitable surface roughness with a smaller addition amount, and can obtain a more uniform surface shape. Examples of such spherical unevenness-imparting particles include acrylic resin particles such as polyacrylate and polymethacrylate, polyamide resin particles such as nylon, polyolefin resin particles such as polyethylene and polypropylene, silicone resin particles, and phenol resin particles. , Polyurethane resin particles, styrene resin particles, benzoguanamine particles, and the like.

粉砕法により得られた樹脂粒子を熱的に又は物理的な球形化処理を行って用いてもよい。本発明では、上記凹凸付与粒子の中では特に導電性を有する凹凸付与粒子を用いることが好ましい。即ち、凹凸付与粒子に導電性を持たせることによって、その導電性ゆえに粒子表面にチャージが蓄積しにくく、現像剤付着の軽減や現像剤への帯電付与性を向上させることができるからである。本発明において、凹凸付与粒子の導電性としては、体積抵抗値が10Ω・cm以下、より好ましくは10−3〜10Ω・cmであることが好ましい。凹凸付与粒子の体積抵抗値が10Ω・cm以下のものの方が、摩耗によって樹脂被覆層表面に露出した粒子を核として現像剤の汚染や融着を発生しにくく、迅速且つ均一な帯電を行いやすいため好ましい。特に下記に示すような導電性球状の凹凸付与粒子を用いた場合には、より良い効果が得られる。 The resin particles obtained by the pulverization method may be used after thermally or physically spheroidizing. In this invention, it is preferable to use the uneven | corrugated particle | grains which have electroconductivity especially in the said uneven | corrugated particle | grains. That is, by imparting conductivity to the irregularity imparting particles, it is difficult to accumulate charges on the particle surface due to the conductivity, and it is possible to reduce the adhesion of the developer and improve the charge imparting property to the developer. In the present invention, the conductivity of the irregularity-imparting particles is preferably 10 6 Ω · cm or less, more preferably 10 −3 to 10 6 Ω · cm. When the unevenness imparting particles have a volume resistance of 10 6 Ω · cm or less, the particles exposed on the surface of the resin coating layer due to wear are less likely to cause contamination and fusion of the developer, and prompt and uniform charging is achieved. It is preferable because it is easy to perform. In particular, when conductive spherical unevenness-imparting particles as shown below are used, a better effect can be obtained.

特に好ましい導電性球状の凹凸付与粒子は、例えば、球状樹脂粒子等を焼成して炭素化及び/又は黒鉛化して得られた低密度且つ良導電性の球状炭素粒子が挙げられる。炭素化及び/又は黒鉛化するために用いる球状樹脂粒子としては、例えば、フェノール樹脂、ナフタレン樹脂、フラン樹脂、キシレン樹脂、ジビニルベンゼン重合体、スチレン−ジビニルベンゼン共重合体、ポリアクリロニトリル等の樹脂からなる球状粒子が挙げられる。   Particularly preferable conductive spherical unevenness-imparting particles include, for example, low density and highly conductive spherical carbon particles obtained by carbonizing and / or graphitizing by firing spherical resin particles and the like. Examples of spherical resin particles used for carbonization and / or graphitization include resins such as phenol resin, naphthalene resin, furan resin, xylene resin, divinylbenzene polymer, styrene-divinylbenzene copolymer, and polyacrylonitrile. And spherical particles.

より好ましい導電性球状の凹凸付与粒子は、フェノール樹脂、ナフタレン樹脂、フラン樹脂、キシレン樹脂、ジビニルベンゼン重合体、スチレン−ジビニルベンゼン共重合体、ポリアクリロニトリル等からなる球状樹脂粒子表面に、メカノケミカル法によってバルクメソフェーズピッチを被覆し、被覆された粒子を酸化性雰囲気化で熱処理した後に不活性雰囲気下又は真空下で焼成して炭素化及び/又は黒鉛化する方法で得られた導電性球状凹凸付与粒子である。   More preferable conductive spherical unevenness-imparting particles are formed on the surface of spherical resin particles made of phenol resin, naphthalene resin, furan resin, xylene resin, divinylbenzene polymer, styrene-divinylbenzene copolymer, polyacrylonitrile, etc. Conductive spherical unevenness obtained by coating carbon particles and / or graphitizing by coating bulk mesophase pitch by heat treatment of the coated particles in an oxidizing atmosphere followed by firing in an inert atmosphere or vacuum Particles.

上記のいずれの方法においても、焼成条件を変化させることによって得られる球状凹凸付与粒子の導電性を制御することが可能であることから、本発明において好ましく使用さ
れる方法である。また、上記方法で得られる球状凹凸付与粒子は、場合によっては、更に導電性を高めるために導電性球状凹凸付与粒子の真密度が大きくなりすぎない範囲で、導電性の金属及び/又は金属酸化物のメッキを施しても良い。
凹凸付与樹脂粒子の体積平均粒径は分級操作により、球形の度合いは熱的又は機械的処理により、真密度は材料及び分子量を適宜選択するかメッキ処理により、調整することができる。
In any of the above methods, the conductivity of the spherical irregularity-imparting particles obtained by changing the firing conditions can be controlled, so that the method is preferably used in the present invention. In addition, in some cases, the spherical irregularity-imparting particles obtained by the above-described method may have a conductive metal and / or metal oxidation within a range in which the true density of the conductive spherical irregularity-imparting particles does not become too high in order to further increase conductivity. An object may be plated.
The volume average particle diameter of the unevenness imparting resin particles can be adjusted by classification operation, the degree of sphericalness can be adjusted by thermal or mechanical treatment, and the true density can be adjusted by appropriately selecting the material and molecular weight or by plating treatment.

次に本発明に使用される黒鉛化粒子について説明する。
本発明に使用される黒鉛化粒子は、現像剤担持体の樹脂被覆層表面に均一な表面粗さを保持させると同時に、被覆層表面が摩耗した場合でも被覆層の表面粗さの変化が少なく、且つトナー汚染やトナー融着を発生し難くするために添加するものである。更に、該黒鉛化粒子はトナーへの帯電付与性を高める効果もある。
Next, the graphitized particles used in the present invention will be described.
The graphitized particles used in the present invention maintain a uniform surface roughness on the surface of the resin coating layer of the developer carrier, and at the same time, there is little change in the surface roughness of the coating layer even when the coating layer surface is worn. In addition, it is added to make it difficult to cause toner contamination and toner fusion. Further, the graphitized particles have an effect of enhancing the charge imparting property to the toner.

本発明において、現像剤担持体の被覆層に分散される黒鉛化粒子の黒鉛化度P(002)は、0.20≦P(002)≦0.95を満たす。黒鉛化度P(002)とは、FranklinのP値といわれるもので、黒鉛のX線回折図から得られる格子間隔d(002)を測定することで、d(002)=3.440−0.086(1−P)で求められる。このP値は、炭素の六方網目平面積み重なりのうち、無秩序な部分の割合を示すもので、P値が小さいほど黒鉛化度は大きい。
樹脂被覆層中に分散される黒鉛化粒子の黒鉛化度P(002)が0.95を超える場合は、耐摩耗性には優れているが、導電性や潤滑性が低下してトナーの帯電不均一やチャージアップを発生する場合があり、カブリ、濃度ムラ、画像濃度低下等の画質が悪化しやすくなる。更に現像剤層厚規制部材として弾性規制ブレードを使用した場合にブレード傷が発生する場合があり、画像にスジ・濃度ムラ等が発生しやすくなる。P(002)が0.20未満の場合は、黒鉛化粒子の耐摩耗性の悪化により樹脂被覆層表面の耐摩耗性、樹脂被覆層の機械的強度及びトナーへの帯電付与性が低下する傾向がある。
In the present invention, the graphitization degree P (002) of the graphitized particles dispersed in the coating layer of the developer carrier satisfies 0.20 ≦ P (002) ≦ 0.95. The degree of graphitization P (002) is said to be the Franklin P value. By measuring the lattice spacing d (002) obtained from the X-ray diffraction diagram of graphite, d (002) = 3.440-0. .086 (1-P 2 ). This P value indicates the proportion of the disordered portion of the hexagonal mesh plane stack of carbon. The smaller the P value, the greater the degree of graphitization.
When the degree of graphitization P (002) of the graphitized particles dispersed in the resin coating layer exceeds 0.95, the wear resistance is excellent, but the conductivity and lubricity are deteriorated and the toner charge is reduced. Inhomogeneity and charge-up may occur, and image quality such as fogging, uneven density, and reduced image density tends to deteriorate. Further, when an elastic regulating blade is used as the developer layer thickness regulating member, blade scratches may occur, and streaks, density unevenness, etc. are likely to occur in the image. When P (002) is less than 0.20, the wear resistance of the surface of the resin coating layer, the mechanical strength of the resin coating layer, and the charge imparting property to the toner tend to decrease due to the deterioration of the wear resistance of the graphitized particles. There is.

本発明で用いる黒鉛化粒子は、前記特許文献2、特許文献3等において現像剤担持体表面の被覆層中に用いられていた、コークス等の骨材をタールピッチ等により固めて成形後1000〜1300℃程度で焼成してから2500〜3000℃程度で黒鉛化して得た人造黒鉛、又は天然黒鉛からなる結晶性のグラファイトとは、原材料及び製造工程が異なる。そのため、本発明に係る黒鉛化粒子は、従来用いられる結晶性グラファイトより黒鉛化度は若干低いものの、従来用いられる結晶性グラファイトと同様に高い導電性や潤滑性を有しており、更に粒子の形状が従来用いられている結晶性グラファイトの燐片状又は針状とは異なり、塊状でしかも粒子自身の硬度が比較的高いのが特徴である。   The graphitized particles used in the present invention are 1000 to 100000 after the aggregate such as coke, which has been used in the coating layer on the surface of the developer carrying member in Patent Document 2, Patent Document 3, etc., is solidified with tar pitch or the like. The raw materials and the manufacturing process are different from those of artificial graphite obtained by firing at about 1300 ° C. and then graphitizing at about 2500 to 3000 ° C. or crystalline graphite made of natural graphite. Therefore, although the graphitized particles according to the present invention have a slightly lower degree of graphitization than the conventionally used crystalline graphite, they have high conductivity and lubricity similarly to the conventionally used crystalline graphite. Unlike the crystalline graphite flakes or needles used in the past, it is characterized by being massive and having relatively high hardness.

本発明における黒鉛化粒子は、本発明に用いられる前述した凹凸付与粒子としての導電性球状粒子とも原材料及び製法が異なることにより、粒子自身の潤滑性や帯電付与特性の点で異なる。   The graphitized particles in the present invention are different from the conductive spherical particles as the above-described unevenness-imparting particles used in the present invention in terms of the lubricity and charge imparting characteristics of the particles themselves due to the difference in raw materials and production methods.

前記導電性球状の凹凸付与粒子は、前述のようにフェノール樹脂、ナフタレン樹脂、フラン樹脂、キシレン樹脂、ジビニルベンゼン重合体、スチレン−ジビニルベンゼン共重合体、ポリアクリロニトリル等の樹脂からなる球状樹脂粒子表面に、メカノケミカル法によってバルクメソフェーズピッチを被覆し、被覆された粒子を酸化性雰囲気化で熱処理した後に不活性雰囲気下又は真空下で焼成して炭素化及び/又は黒鉛化したものも用いられる。しかし、前記樹脂粒子そのものは黒鉛化しにくい材質であるので、表面は黒鉛化されていても粒子内部は炭化されたものであり、粒子自体の黒鉛化度P(002)は結晶性でないために粒子としての結晶性は小さい。そのため、前記導電性球状凹凸付与粒子が樹脂被覆層中に分散された場合、前述したように表面粗さを均一に付与しその耐久性を向上させる効果を有し、トナーの安定した搬送性及び帯電安定性の効果を有する。しかしながら、
凹凸付与粒子のみの添加では、樹脂被覆層表面に均一な潤滑性、導電性、帯電付与性等の特性を十分発揮できない。
As described above, the conductive spherical unevenness-imparting particle is a spherical resin particle surface made of a resin such as phenol resin, naphthalene resin, furan resin, xylene resin, divinylbenzene polymer, styrene-divinylbenzene copolymer, polyacrylonitrile. In addition, a bulk mesophase pitch is coated by mechanochemical method, and the coated particles are heat-treated in an oxidizing atmosphere and then baked in an inert atmosphere or vacuum to be carbonized and / or graphitized. However, since the resin particles themselves are hard to graphitize, even if the surface is graphitized, the inside of the particles is carbonized, and the degree of graphitization P (002) of the particles themselves is not crystalline. The crystallinity is small. Therefore, when the conductive spherical unevenness imparting particles are dispersed in the resin coating layer, as described above, it has the effect of imparting a uniform surface roughness and improving the durability thereof, stable toner transportability and Has the effect of charging stability. However,
Addition of the irregularity-imparting particles alone cannot sufficiently exhibit uniform properties such as lubricity, conductivity, and chargeability on the resin coating layer surface.

そこで、樹脂被覆層中に前記凹凸付与粒子と共に上記特性を有する黒鉛化粒子を用いることにより、優れた潤滑性を保持しつつ耐摩耗性を樹脂被覆層表面に与えることができる。
これに加えて本発明に用いられる黒鉛化粒子は黒鉛化度と形状により黒鉛化粒子自身の形状が変化しがたいため、樹脂被覆層中の樹脂部分の削れ、又はその影響により黒鉛化粒子自身の脱離が生じたとしても、樹脂被覆層の表面形状の変化を小さく抑えることができる。また、従来用いられていた結晶性グラファイトに比べて本発明における黒鉛化粒子は、樹脂被覆層に用いられるフェノール樹脂等の結着樹脂との硬度差が小さいため、削れたとしても選択的に樹脂被覆層の樹脂部分又は黒鉛化粒子部分が削れることが少なく不均一に削られにくい。よって樹脂被覆層表面の凹凸形状の変化を小さく抑えることができる。
Therefore, by using graphitized particles having the above characteristics together with the unevenness imparting particles in the resin coating layer, it is possible to impart wear resistance to the surface of the resin coating layer while maintaining excellent lubricity.
In addition to this, the graphitized particles used in the present invention are difficult to change in shape due to the degree of graphitization and the shape of the graphitized particles themselves. Even if the detachment occurs, the change in the surface shape of the resin coating layer can be kept small. In addition, the graphitized particles in the present invention have a small hardness difference from a binder resin such as a phenol resin used for the resin coating layer compared to the crystalline graphite that has been conventionally used, so that even if it is scraped, the resin is selectively used. The resin portion or graphitized particle portion of the coating layer is less likely to be scraped and is less likely to be shaved unevenly. Therefore, the change of the uneven shape on the surface of the resin coating layer can be suppressed small.

前記黒鉛化粒子が樹脂被覆層中に微細且つ均一に分散されていると、トナーの搬送性及び耐摩耗性が向上するために、樹脂被覆層中に含有される凹凸付与粒子の分散性もより良好となり、より均一な凹凸を有し、樹脂被覆層の耐摩耗性や耐久によりトナー融着が発生し難くなる効果が向上する。   When the graphitized particles are finely and uniformly dispersed in the resin coating layer, the transportability and wear resistance of the toner are improved, and therefore the dispersibility of the irregularity-imparting particles contained in the resin coating layer is also increased. As a result, the effect of preventing toner fusion is improved due to wear resistance and durability of the resin coating layer.

本発明において、現像剤担持体の樹脂被覆層に分散される黒鉛化粒子は、体積平均粒径0.5〜4.0μmのものが好ましい。また、樹脂被覆層に分散される前記黒鉛化粒子の体積平均粒径は前記凹凸付与粒子の体積平均粒径よりも小さいことが好ましい。
黒鉛化粒子の方が前記凹凸付与粒子に比べ比較的強度が低いため、凹凸付与粒子の体積平均粒径よりも小さい方が、樹脂被覆層表面において均一に分散しやすく、耐久による摩耗等が発生した場合でも樹脂被覆層表面の削れが不均一なものになりにくく、表面粗さを均一に保ち易いためである。
In the present invention, the graphitized particles dispersed in the resin coating layer of the developer carrying member preferably have a volume average particle size of 0.5 to 4.0 μm. Moreover, it is preferable that the volume average particle diameter of the graphitized particles dispersed in the resin coating layer is smaller than the volume average particle diameter of the unevenness imparting particles.
Since graphitized particles have a relatively low strength compared to the irregularity-providing particles, the smaller the volume average particle diameter of the irregularity-providing particles, the easier it is to disperse uniformly on the surface of the resin coating layer, and wear due to durability occurs. Even in this case, the surface of the resin coating layer is unlikely to become uneven, and the surface roughness is easily maintained.

黒鉛化粒子の体積平均粒径が0.5μm未満では、樹脂被覆層表面に均一な表面粗さを付与する効果と帯電付与性能を高める効果が少なく、トナーへの迅速且つ均一な帯電が不十分となると共に、樹脂被覆層の摩耗によるトナーのチャージアップ、トナー汚染及びトナー融着が発生し、カブリの悪化、画像濃度低下を生じやすくなるため好ましくない。体積平均粒径が4.0μmを越える場合には、樹脂被覆層への均一な分散性が薄れ、表面粗さが不均一となりやすく、また長期にわたる使用の際に樹脂被覆層の摩耗にばらつきが生じやすく、削れ部分に起因する画像濃度ムラやトナー汚染・融着等が発生しやすくなる。   When the volume average particle diameter of the graphitized particles is less than 0.5 μm, the effect of imparting uniform surface roughness to the surface of the resin coating layer and the effect of enhancing the charge imparting performance are small, and the toner is insufficiently charged quickly and uniformly. In addition, toner charge-up due to abrasion of the resin coating layer, toner contamination, and toner fusion occur, which tends to cause fogging and a decrease in image density. When the volume average particle size exceeds 4.0 μm, the uniform dispersibility in the resin coating layer is reduced, the surface roughness tends to be non-uniform, and the wear of the resin coating layer varies during long-term use. It tends to occur, and image density unevenness and toner contamination / fusion due to the shaved portion are likely to occur.

本発明では、樹脂被覆層中に分散される黒鉛化粒子の体積平均粒径と黒鉛化度P(002)との関係が下記式(A)、(B)を満たすものが好ましい。   In the present invention, it is preferable that the relationship between the volume average particle diameter of the graphitized particles dispersed in the resin coating layer and the degree of graphitization P (002) satisfies the following formulas (A) and (B).

-0.0464Ln(x)+0.3143≦Y≦-0.0464Ln(x)+0.7643 (A)
0.5≦X≦4.0 (B)
(式中、Xは黒鉛化粒子の体積平均粒径(μm)、Yは黒鉛化粒子の黒鉛化度P(002)を示す。)
-0.0464Ln (x) + 0.3143≤Y≤-0.0464Ln (x) +0.7643 (A)
0.5 ≦ X ≦ 4.0 (B)
(In the formula, X represents the volume average particle diameter (μm) of the graphitized particles, and Y represents the degree of graphitization P (002) of the graphitized particles.)

黒鉛等の層状鉱物は、摩砕・粉砕の際のせん断応力によって層の積み重なりに不整を起こしたり、層間距離に変化が生じたりすることが認められている。本発明においても、黒鉛化粒子の製造過程における粉砕・分級工程等で粒径をコントロールする際、また、樹脂溶液中で黒鉛化粒子の分散を行う際に黒鉛化粒子の小粒径化が進むに従い、その黒鉛化度が若干低下する傾向にある。上記式(A)及び(B)は、分散後の黒鉛化粒子の黒鉛化度に対する分散粒径依存性を加味したもので、樹脂被覆層に分散される黒鉛化粒子の体積平均粒径が0.5〜4.0μmのときに、−0.0464Ln(x)+0.3143≦Y≦
−0.0464Ln(x)+0.7643を充たすことが好ましい。Y<−0.0464Ln(x)+0.3143の場合は、黒鉛化粒子の耐摩耗性が落ちる傾向で、樹脂被覆層表面の耐摩耗性、樹脂被覆層の機械的強度及びトナーへの帯電付与性の低下を招きやすくなる。また、Y>−0.0464Ln(x)+0.7643の場合は、耐摩耗性には優れているが、導電性や潤滑性が低下してトナーのチャージアップを発生する場合があり、濃度一様性の悪化、画像濃度低下等の画質が悪化しやすくなり、更に現像剤層厚規制部材に弾性ブレードを使用した場合に、ブレード傷が発生する場合があり、画像にスジ・濃度ムラ等が発生しやすくなる。
It has been recognized that layered minerals such as graphite cause irregularity in layer stacking due to shear stress during grinding and pulverization, and change in interlayer distance. Also in the present invention, when the particle size is controlled in the pulverization / classification step in the manufacturing process of the graphitized particles, or when the graphitized particles are dispersed in the resin solution, the particle size of the graphitized particles is reduced. Accordingly, the degree of graphitization tends to decrease slightly. The above formulas (A) and (B) take into account the dispersion particle size dependence on the degree of graphitization of the graphitized particles after dispersion, and the volume average particle size of the graphitized particles dispersed in the resin coating layer is 0. -0.0464Ln (x) + 0.3143 ≦ Y ≦ when .5 to 4.0 μm
It is preferable to satisfy −0.0464Ln (x) +0.7643. In the case of Y <−0.0464Ln (x) +0.3143, the wear resistance of the graphitized particles tends to decrease, the wear resistance of the surface of the resin coating layer, the mechanical strength of the resin coating layer, and the charging of the toner. It tends to cause a decline in sex. Further, in the case of Y> −0.0464Ln (x) +0.7643, the wear resistance is excellent, but the conductivity and lubricity may be reduced, and the toner may be charged up. Image quality is likely to deteriorate, such as deterioration in image quality and image density reduction. In addition, when an elastic blade is used for the developer layer thickness regulating member, blade damage may occur. It tends to occur.

本発明の樹脂被覆層は、樹脂被覆層が含有する粒子全体において、体積粒度分布における体積粒径10μm以上である粒子の存在比率が5.0%以下であることが必要である。樹脂被覆層中に存在する粒子において、体積粒度分布における体積粒径10μm以上の存在率が5.0%より多い場合、樹脂被覆層の表面粗さが均一になりにくく、トナーへの迅速且つ均一な帯電が不十分となると共に、樹脂被覆層の凸部分にトナーによる汚染及び融着が発生しやすく、さらに耐久によって現像剤層厚規制部材に傷が発生しやすい等好ましくない。   The resin coating layer of the present invention requires that the abundance ratio of particles having a volume particle size of 10 μm or more in the volume particle size distribution is 5.0% or less in the entire particles contained in the resin coating layer. If particles existing in the resin coating layer have a volume particle size distribution of 10 μm or more in the volume particle size distribution of more than 5.0%, the surface roughness of the resin coating layer is difficult to be uniform, and the toner is rapidly and uniformly distributed. Inadequate charging is likely to occur, the toner coating is liable to be contaminated and fused on the convex portion of the resin coating layer, and the developer layer thickness regulating member is liable to be damaged due to durability.

本発明における黒鉛化粒子を得る方法としては、以下に示すような方法が好ましいが、必ずしもこれらの方法に限定されるものではない。
本発明に使用される特に好ましい黒鉛化粒子を得る方法としては、原材料としてメソカーボンマイクロビーズやバルクメソフェーズピッチ等の光学的に異方性で且つ単一の相からなる粒子を用いて黒鉛化することが、該黒鉛化粒子の黒鉛化度を所望の値とし且つ塊状形状を保持させることができるために好ましい。
上記の原材料の光学的異方性は芳香族分子の積層から生じるものであり、その秩序性が黒鉛化処理でさらに発達し、高度の黒鉛化度を有する黒鉛化粒子が得られる。
The method for obtaining graphitized particles in the present invention is preferably the following method, but is not necessarily limited to these methods.
As a method for obtaining particularly preferred graphitized particles used in the present invention, graphitization is performed using optically anisotropic and single phase particles such as mesocarbon microbeads and bulk mesophase pitch as raw materials. It is preferable that the graphitized particles have a desired graphitization degree and can retain a lump shape.
The optical anisotropy of the above-mentioned raw materials is caused by the lamination of aromatic molecules, and the order is further developed by the graphitization treatment, and graphitized particles having a high degree of graphitization are obtained.

前記バルクメソフェーズピッチを用いる場合は、加熱で軟化溶融するものを用いることが塊状で黒鉛化度の高い黒鉛化粒子を得るために好ましい。
本発明で用いるバルクメソフェーズピッチは、例えば、以下のようにして得られる。コールタールピッチ等から溶剤分別によりβ−レジンを抽出し、これを水素添加、重質化処理を行うことによって得られる。また前記重質化処理後、微粉砕し、次いでベンゼン又はトルエン等により溶剤可溶分を除去することで得られたものを用いても良い。
In the case of using the bulk mesophase pitch, it is preferable to use a material that is softened and melted by heating in order to obtain graphitized particles that are massive and have a high degree of graphitization.
The bulk mesophase pitch used in the present invention is obtained, for example, as follows. It can be obtained by extracting β-resin from a coal tar pitch or the like by solvent fractionation, and performing hydrogenation and heavy treatment. Moreover, you may use what was obtained by pulverizing after the said heavyening process, and then removing a solvent soluble part with benzene or toluene.

本発明におけるバルクメソフェーズピッチはキノリン可溶分が95質量%以上であることが好ましい。95質量%未満のものを用いると、粒子内部が液相炭化しにくく、固相炭化するため粒子が破砕状のままとなり、球状のものが得られにくい。キノリン可溶分が95質量%以上とするには、重質化処理での温度と処理時間等で調整する。
前記バルクメソフェーズピッチを用いて黒鉛化し黒鉛化粒子を得る方法としては、以下の方法が挙げられる。まず、バルクメソフェーズピッチを2〜25μmに微粉砕して、これを空気中で約200〜350℃の熱処理することにより軽度に酸化処理する。この酸化処理によって、バルクメソフェーズピッチは表面のみ不融化され、次工程の黒鉛化熱処理時において内部の溶融、融着が防止される。この酸化処理されたバルクメソフェーズピッチは、酸素含有量が5〜15質量%であることが好ましい。5質量%未満であると熱処理時の粒子同士の融着が激しいので好ましくなく、15質量%を超えると粒子内部まで酸化されてしまい、形状が破砕状のまま黒鉛化し球状のものが得られにくい。酸化処理されたバルクメソフェーズピッチの酸素含有量は、酸化処理の温度と処理時間等で調整する。
次いで、上記酸化処理されたバルクメソフェーズピッチを窒素、アルゴン等の不活性雰囲気下にて、約2000〜3500℃で焼成することにより所望の黒鉛化粒子が得られる。
The bulk mesophase pitch in the present invention preferably has a quinoline soluble content of 95% by mass or more. When the amount less than 95% by mass is used, the inside of the particles is hardly liquid-phase carbonized, and solid-phase carbonization causes the particles to remain in a crushed state, making it difficult to obtain a spherical one. In order to make the quinoline soluble content 95% by mass or more, the temperature and the treatment time in the heavy processing are adjusted.
Examples of methods for graphitizing using the bulk mesophase pitch to obtain graphitized particles include the following methods. First, the bulk mesophase pitch is finely pulverized to 2 to 25 μm, and this is lightly oxidized by heat treatment at about 200 to 350 ° C. in air. By this oxidation treatment, only the surface of the bulk mesophase pitch is infusible, and internal melting and fusion are prevented during the graphitizing heat treatment in the next step. This oxidized bulk mesophase pitch preferably has an oxygen content of 5 to 15% by mass. If it is less than 5% by mass, fusion between the particles during the heat treatment is severe, which is not preferable. If it exceeds 15% by mass, the inside of the particle is oxidized, and it is difficult to obtain a spherical product in a crushed shape. . The oxygen content of the oxidized bulk mesophase pitch is adjusted by the temperature and time of the oxidation treatment.
Next, desired graphitized particles are obtained by firing the oxidized bulk mesophase pitch at about 2000 to 3500 ° C. in an inert atmosphere such as nitrogen or argon.

黒鉛化粒子の好ましい原材料であるメソカーボンマイクロビーズは、以下の方法で得られる。例えば、石炭系重質油又は石油系重質油を300〜500℃の温度で熱処理し、重縮合させて粗メソカーボンマイクロビーズを生成し、濾過、静置沈降、遠心分離等の処理に供することによりメソカーボンマイクロビーズを分離した後、ベンゼン、トルエン、キシレン等の溶剤で洗浄精製し、更に乾燥することによって得る方法である。   Mesocarbon microbeads, which are preferred raw materials for graphitized particles, can be obtained by the following method. For example, coal-based heavy oil or petroleum-based heavy oil is heat-treated at a temperature of 300 to 500 ° C. and polycondensed to produce crude mesocarbon microbeads, which are subjected to processes such as filtration, stationary sedimentation, and centrifugation. In this method, the mesocarbon microbeads are separated, washed and purified with a solvent such as benzene, toluene, xylene and the like, and further dried.

前記メソカーボンマイクロビーズを用いて黒鉛化し黒鉛化粒子を得る方法としては、まず乾燥を終えたメソカーボンマイクロビーズを破壊させない程度の温和な力で機械的に一次分散させる。このことが黒鉛化後の粒子の合一防止や均一な粒度を得るために好ましい。次に、この一次分散を終えたメソカーボンマイクロビーズを、不活性雰囲気下において200〜1500℃の温度で一次加熱処理し、炭化する。一次加熱処理を終えた炭化物は、やはり炭化物を破壊させない程度の温和な力で炭化物を機械的に二次分散させることが黒鉛化後の粒子の合一防止や均一な粒度を得るために好ましい。
二次分散処理を終えた炭化物を、不活性雰囲気下において約2000〜3500℃で焼成(二次加熱処理)することにより所望の黒鉛化粒子が得られる。
As a method for obtaining graphitized particles by using the mesocarbon microbeads, firstly, the mesocarbon microbeads after drying are mechanically primarily dispersed with a mild force that does not cause destruction. This is preferable for preventing coalescence of the graphitized particles and obtaining a uniform particle size. Next, the mesocarbon microbeads after the primary dispersion are subjected to primary heat treatment at a temperature of 200 to 1500 ° C. in an inert atmosphere to be carbonized. In order to prevent the coalescence of the graphitized particles and to obtain a uniform particle size, it is preferable to mechanically disperse the carbide with a mild force that does not destroy the carbide.
The desired graphitized particles can be obtained by firing (secondary heat treatment) the carbide after the secondary dispersion treatment at about 2000 to 3500 ° C. in an inert atmosphere.

前記方法で得られた黒鉛化粒子は、いずれの生成法にかかわらず、分級により体積平均粒径0.5〜4.0μmとし、且つ粒度分布をある程度均一にしておくことが樹脂被覆層の表面形状を均一にするために好ましい。   Regardless of the production method, the graphitized particles obtained by the above method should have a volume average particle size of 0.5 to 4.0 μm by classification and a uniform particle size distribution to some extent. It is preferable for making the shape uniform.

いずれの原材料を用いた場合でも、黒鉛化するための焼成温度は2000〜3500℃が好ましく、2300℃〜3200℃がより好ましい。
焼成温度が2000℃以下の場合は、黒鉛化粒子の黒鉛化度が不十分であり、導電性や潤滑性が低下してトナーのチャージアップを発生する場合がある。それにより、カブリ、画像濃度低下等の画質が悪化しやすくなり、更に現像剤層厚規制部材に弾性ブレードを使用した場合にブレード傷が発生する場合があり、画像にスジ・濃度ムラ等が発生しやすくなる傾向がある。焼成温度が3500℃以上の場合は黒鉛化粒子の黒鉛化度が高すぎてしまう場合があり、そのため黒鉛化粒子の硬度が下がり、黒鉛化粒子の耐摩耗性の悪化により樹脂被覆層表面の耐摩耗性、樹脂被覆層の機械的強度及びトナーへの帯電付与性が低下しやすい。
Regardless of which raw material is used, the firing temperature for graphitization is preferably from 2000 to 3500 ° C, more preferably from 2300 to 3200 ° C.
When the calcination temperature is 2000 ° C. or lower, the graphitized particles have insufficient degree of graphitization, and the electrical conductivity and lubricity may be lowered to cause toner charge-up. As a result, image quality such as fogging and reduced image density is likely to deteriorate, and when an elastic blade is used for the developer layer thickness regulating member, blade damage may occur, causing streaks and uneven density in the image. It tends to be easy to do. When the firing temperature is 3500 ° C. or higher, the graphitized particles may have a too high graphitization degree. Therefore, the hardness of the graphitized particles is lowered, and the wear resistance of the graphitized particles is deteriorated. Abrasion, mechanical strength of the resin coating layer, and charge imparting property to the toner are likely to decrease.

本発明の現像剤担持体は、上記構成に加えて、第四級アンモニウム塩化合物を樹脂被覆層にさらに添加することで、樹脂被覆層の結着樹脂中に均一に分散された第四級アンモニウム塩化合物により、球形化処理されたトナー又は重合法等によって製造された、非磁性で且つ球形化度の高い負帯電性トナーへの良好な帯電付与安定性及び搬送安定性を発揮できる。   In addition to the above-described configuration, the developer carrier of the present invention further includes a quaternary ammonium salt compound that is uniformly dispersed in the binder resin of the resin coating layer by further adding a quaternary ammonium salt compound to the resin coating layer. With the salt compound, it is possible to exhibit good charge imparting stability and conveyance stability to a non-magnetic and highly spheroidized negatively charged toner manufactured by a spheroidizing toner or a polymerization method.

一般的に重合法により製造されたトナーにおいては、従来のジェットミルによる粉砕法で製造されたトナーと比較した場合、トナーの転写性が格段に向上し転写効率が向上するという利点が大きい。一方、重合法により製造されたトナーは、カーボン等の着色材料等が粒子の内部に取り込まれるためトナー粒子表面において電荷を逃がしにくくチャージアップしやすい。そのため現像ムラやブロッチ、現像剤担持体へのトナー汚染や融着等による濃度低下等が発生しやすい。これは磁性体を有さない非磁性トナーにおいては特に顕著に現れる。   In general, a toner manufactured by a polymerization method has a great advantage in that transferability of the toner is remarkably improved and transfer efficiency is improved as compared with a toner manufactured by a conventional jet milling method. On the other hand, the toner produced by the polymerization method is easy to charge up on the surface of the toner particles because the coloring material such as carbon is taken into the particles. For this reason, development unevenness, blotches, and density reduction due to toner contamination or fusion to the developer carrier are likely to occur. This is particularly noticeable in non-magnetic toners that do not have a magnetic material.

現像剤担持体の樹脂被覆層に用いられる結着樹脂として、その構造中に少なくとも−NH基、=NH基、又は−NH−結合のいずれかを有する含窒素樹脂を用い、さらに以下に示すような特定の第四級アンモニウム塩化合物を樹脂被覆層に加えた構成とすることで、迅速で高く安定した帯電付与及び搬送安定性を有し、さらに過剰に帯電を持ちやすい非磁性で且つ球形化度の高い負帯電性トナーに対し、現像剤担持体の樹脂被覆層の帯電付与
能を全体的に抑えることができるため、過剰帯電を防ぎ、迅速かつ適正で均一なトナーの帯電を得ることができる。
As the binder resin used for the resin coating layer of the developer carrying member, a nitrogen-containing resin having at least one of —NH 2 group, ═NH group, and —NH— bond in the structure is used, and further shown below. By adding such a specific quaternary ammonium salt compound to the resin coating layer, it has a rapid and highly stable charge application and transport stability, and is also non-magnetic and spherical with a tendency to have excessive charge. The ability of the resin coating layer of the developer carrier to suppress the overall charging of negatively charged toners with a high degree of conversion can be suppressed, so that overcharging can be prevented and toner charge can be obtained quickly, properly and uniformly. Can do.

従来トナーの正荷電制御剤として知られている第四級アンモニウム塩化合物が負帯電性トナーの帯電安定化に寄与する正確な理由は定かではないが、次のように推測される。現像剤担持体上の樹脂被覆層に、鉄粉に対して正帯電性である第四級アンモニウム塩化合物を添加すると、樹脂被覆層中の結着樹脂中に均一に分散され、被覆層を形成する際に結着樹脂中の−NH基、=NH基又は−NH−結合等を有する樹脂の構造中に取り込まれ、結着樹脂組成物自身が負帯電性を持つようになるものと考えられる。そのため負帯電性トナーに対しては、トナーに負帯電量が過剰となることを妨ぐ方向に働き、結果として帯電量を安定してコントロールすることが可能となる。 The exact reason why a quaternary ammonium salt compound, which has been known as a positive charge control agent for conventional toners, contributes to stabilizing the charge of negatively charged toners is not clear, but is presumed as follows. When a quaternary ammonium salt compound that is positively charged to iron powder is added to the resin coating layer on the developer carrier, it is uniformly dispersed in the binder resin in the resin coating layer to form a coating layer It is considered that the binder resin composition itself becomes negatively charged by being incorporated into the structure of the resin having —NH 2 group, ═NH group, —NH— bond or the like in the binder resin. It is done. Therefore, for negatively chargeable toner, it acts in a direction that prevents the toner from having an excessive negative charge amount, and as a result, the charge amount can be stably controlled.

これらのことより、上記第四級アンモニウム塩化合物を現像剤担持体の樹脂被覆層に含有することにより、黒鉛化粒子による樹脂被覆層への帯電付与性、潤滑性等の効果と相まって、特にチャージアップ等の発生しやすい、重合法により得られた非磁性トナーに対しての高い帯電安定性及び安定した薄層でのトナー搬送性を得ることができる。これによりブランクパルスバイアスによるカブリ及び掃き寄せの改善との相乗的な効果を得られ、球状の非磁性一成分トナーに対して良好な画質を得ることができる。   From these facts, the inclusion of the quaternary ammonium salt compound in the resin coating layer of the developer carrier, in particular, combined with effects such as charge imparting to the resin coating layer by the graphitized particles, lubricity, etc. It is possible to obtain high charging stability and stable toner transportability in a thin layer with respect to non-magnetic toners obtained by a polymerization method, which are likely to occur. As a result, a synergistic effect with the improvement of fogging and sweeping by the blank pulse bias can be obtained, and a good image quality can be obtained with respect to the spherical non-magnetic one-component toner.

本発明においてより好適に使用される、鉄粉に対して正帯電性を有する第四級アンモニウム塩化合物としては、例えば、下記一般式で表される化合物が挙げられる。

Figure 0004324040
Examples of the quaternary ammonium salt compound having a positive chargeability with respect to iron powder that is more preferably used in the present invention include compounds represented by the following general formula.
Figure 0004324040

(式中のR、R、R及びRは、それぞれ置換基を有してもよいアルキル基、置換基を有してもよいアリール基、又はアルアルキル基を表し、R〜Rはそれぞれ同一でも又は異なっていても良い。Xは酸の陰イオンを表す。) (R 1, R 2, R 3 and R 4 in the formula are each an optionally substituted alkyl group, an optionally substituted aryl group, or an aralkyl group, R 1 ~ R 4 may be the same or different, and X represents an anion of an acid.)

上記一般式において、Xの酸イオンの具体例としては、有機硫酸イオン、有機スルホン酸イオン、有機リン酸イオン、モリブデン酸イオン、タングステン酸イオン、モリブデン原子又はタングステン原子を含むヘテロポリ酸等が好ましく用いられる。 In the above general formula, X - Specific examples of the acid ions, organic sulfate ions, organic sulfonate ions, organic phosphate ions, molybdate ions, tungstate ions, such as heteropoly acid containing molybdenum atoms or tungsten atoms are preferred Used.

本発明に好適に用いられる、それ自身が鉄粉に対して正帯電性である第四級アンモニウム塩化合物としては、具体的には、以下に示す(1)〜(19)の化合物が挙げられる。勿論、本発明はこれらに限定されるものではない。   Specific examples of the quaternary ammonium salt compound that is preferably used in the present invention and is positively charged with respect to iron powder include the following compounds (1) to (19). . Of course, the present invention is not limited to these.

Figure 0004324040
Figure 0004324040





Figure 0004324040
Figure 0004324040

Figure 0004324040
Figure 0004324040

Figure 0004324040
Figure 0004324040

上記第四級アンモニウム塩化合物の添加量は、樹脂被覆層に用いる結着樹脂100質量部に対して1〜100質量部とすることが好ましい。1質量部未満では添加による帯電量制御の効果が見られず、100質量部を超えると結着樹脂中での存在量が過剰となって元の樹脂の特性を損ない被膜強度の低下を招きやすい。
また、前記第四級アンモニウム塩化合物と好適に組合せて用いられる、構造中に−NH基、=NH基又は−NH−結合の少なくとも1つを含む樹脂としては、その製造工程において触媒として含窒素化合物を用いて製造されたフェノール樹脂、ポリアミド樹脂、ポリアミドを硬化剤として用いたエポキシ樹脂、ウレタン樹脂、又はこれらの樹脂の共重合体等が挙げられる。これらの樹脂と第四級アンモニウム塩化合物を混合して樹脂被覆層として成膜する際、第四級アンモニウム塩化合物が樹脂被覆層の結着樹脂の構造中に容易に取り込まれる。
The addition amount of the quaternary ammonium salt compound is preferably 1 to 100 parts by mass with respect to 100 parts by mass of the binder resin used for the resin coating layer. If the amount is less than 1 part by mass, the effect of controlling the charge amount due to the addition is not observed. .
In addition, a resin containing at least one of —NH 2 group, ═NH group or —NH— bond in the structure, preferably used in combination with the quaternary ammonium salt compound, is included as a catalyst in the production process. Examples thereof include a phenol resin, a polyamide resin, an epoxy resin using a polyamide as a curing agent, a urethane resin, or a copolymer of these resins. When these resins and a quaternary ammonium salt compound are mixed to form a resin coating layer, the quaternary ammonium salt compound is easily taken into the structure of the binder resin of the resin coating layer.

本発明の現像剤担持体の樹脂被覆層において、前記第四級アンモニウム塩化合物との組合せで好適に使用し得るフェノール樹脂としては、製造工程において触媒として含窒素化合物を用いたフェノール樹脂であり、用いられる含窒素化合物は、酸性触媒、塩基性触媒のいずれでもよい。例えば、酸性触媒としては、硫酸アンモニウム、リン酸アンモニウム、スルファミド酸アンモニウム、炭酸アンモニウム、酢酸アンモニウム、マレイン酸アンモニウム等のアンモニウム塩又はアミン塩類が挙げられる。塩基性触媒としては、アンモニア;ジメチルアミン、ジエチルアミン、ジイソプロピルアミン、ジイソブチルアミン、ジアミルアミン、トリメチルアミン、トリエチルアミン、トリn−ブチルアミン、トリアミルアミン、ジメチルベンジルアミン、ジエチルベンジルアミン、ジメチルアニリン、ジエチルアニリン、N,N−ジn−ブチルアニリン、N,N−ジアミルアニリン、N,N−ジt−アミルアニリン、N−メチルエタノールアミン、N−エチルエタノールアミン、ジエタノールアミン、トリエタノールアミン、ジメチルエタノールアミン、ジエチルエタノールアミン、エチルジエタノールアミン、n−ブチルジエタノールアミン、ジn−ブチルエタノールアミン、トリイソプロパノールアミン、エチレンジアミン、ヘキサメチレンテトラミン等のアミノ化合物;ピリジン、α−ピコリン、β−ピコリン、γ−ピコリン、2,4−ルチジン、2,6−ルチジン等のピリジン及びその誘導体;キノリン化合物、イミダゾール、2−メチルイミダゾール、2,4−ジメチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、2−ヘプタデシルイミダゾール等のイミダゾール及びその誘導体等の含窒素複素環式化合物;等が挙げられる。   In the resin coating layer of the developer carrying member of the present invention, the phenol resin that can be suitably used in combination with the quaternary ammonium salt compound is a phenol resin using a nitrogen-containing compound as a catalyst in the production process, The nitrogen-containing compound used may be either an acidic catalyst or a basic catalyst. For example, examples of the acidic catalyst include ammonium salts such as ammonium sulfate, ammonium phosphate, ammonium sulfamate, ammonium carbonate, ammonium acetate, and ammonium maleate, or amine salts. Basic catalysts include ammonia; dimethylamine, diethylamine, diisopropylamine, diisobutylamine, diamylamine, trimethylamine, triethylamine, tri-n-butylamine, triamylamine, dimethylbenzylamine, diethylbenzylamine, dimethylaniline, diethylaniline, N, N-di-n-butylaniline, N, N-diamilaniline, N, N-di-t-amylaniline, N-methylethanolamine, N-ethylethanolamine, diethanolamine, triethanolamine, dimethylethanolamine, diethylethanol Amine, ethyldiethanolamine, n-butyldiethanolamine, di-n-butylethanolamine, triisopropanolamine, ethylenediamine, hexamethylenete Amino compounds such as lamin; pyridine and derivatives thereof such as pyridine, α-picoline, β-picoline, γ-picoline, 2,4-lutidine, 2,6-lutidine; quinoline compounds, imidazole, 2-methylimidazole, 2, Nitrogen-containing heterocyclic compounds such as imidazole such as 4-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-heptadecylimidazole and the like; Can be mentioned.

本発明において好適に用いられる樹脂被覆層の結着樹脂を構成するポリアミド樹脂としては、例えば、ナイロン6、66、610、11、12、9、13、Q2ナイロン等、又はこれらを主成分とするナイロンの共重合体等、N−アルキル変性ナイロン、N−アルコキシルアルキル変性ナイロン等、いずれも好適に用いることができる。更にはポリアミド変性フェノール樹脂のようにポリアミドにて変性された各種樹脂、又は硬化剤としてポリアミド樹脂を用いたエポキシ樹脂等のポリアミド樹脂成分を含有している樹脂であれば、いずれも用いることができる。   Examples of the polyamide resin constituting the binder resin of the resin coating layer preferably used in the present invention include nylon 6, 66, 610, 11, 12, 9, 13, Q2 nylon, and the like, or these as a main component. Nylon copolymers, N-alkyl-modified nylon, N-alkoxylalkyl-modified nylon, and the like can be suitably used. Furthermore, various resins modified with polyamide, such as polyamide-modified phenol resin, or any resin containing a polyamide resin component such as an epoxy resin using a polyamide resin as a curing agent can be used. .

本発明で前記第四級アンモニウム塩化合物との組合せで好適に用いられる樹脂被覆層を構成するウレタン樹脂としては、ウレタン結合を含んだ樹脂であれば、いずれも用いることができる。ウレタン結合はポリイソシアネートとポリオールとの重合付加反応によって得られる。ポリウレタン樹脂の主原料となるポリイソシアネートとしては、TDI(トリレンジイソシアネート)、ピュアMDI(ジフェニルメタンジイソシアネート)、ポリメリックMDI(ポリメチレンポリフェニルポリイソシアネート)、TODI(トリジンジイソシアネート)、NDI(ナフタリンジイソシアネート)等の芳香族系ポリイソシアネート;HMDI(ヘキサメチレンジイソシアネート)、IPDI(イソホロンジイソシアネート)、XDI(キシリレンジイソシアネート)、水添XDI(水添キシリレンジイソシアネート)、水添MDI(ジシクロヘキシルメタンジイソシアネート)等の脂肪族系ポリイソシアネート等が挙げられる。   As the urethane resin constituting the resin coating layer suitably used in combination with the quaternary ammonium salt compound in the present invention, any resin containing a urethane bond can be used. The urethane bond is obtained by polymerization addition reaction of polyisocyanate and polyol. Polyisocyanates that are the main raw materials for polyurethane resins include TDI (tolylene diisocyanate), pure MDI (diphenylmethane diisocyanate), polymeric MDI (polymethylene polyphenyl polyisocyanate), TODI (tolidine diisocyanate), NDI (naphthalene diisocyanate), etc. Aromatic polyisocyanates; aliphatic systems such as HMDI (hexamethylene diisocyanate), IPDI (isophorone diisocyanate), XDI (xylylene diisocyanate), hydrogenated XDI (hydrogenated xylylene diisocyanate), hydrogenated MDI (dicyclohexylmethane diisocyanate) Polyisocyanate etc. are mentioned.

ポリウレタン樹脂の主原料となるポリオールとしては、PPG(ポリオキシプロピレングリコール)、ポリマーポリオール、ポリテトラメチレングリコール(PTMG)等のポリエーテル系ポリオール;アジペート、ポリカプロラクトン、ポリカーボネートポリオール等のポリエステル系ポリオール;PHDポリオール、ポリエーテルエステルポリオール等のポリエーテル系の変性ポリオール;その他、エポキシ変性ポリオール;エチレン−酢酸ビニル共重合物の部分ケン化ポリオール(ケン化EVA);難燃ポリオール等が挙げられる。   Polyols that are the main raw materials for polyurethane resins include polyether polyols such as PPG (polyoxypropylene glycol), polymer polyol, and polytetramethylene glycol (PTMG); polyester polyols such as adipate, polycaprolactone, and polycarbonate polyol; PHD Examples thereof include polyether-based modified polyols such as polyols and polyether ester polyols; other epoxy-modified polyols; partially saponified polyols of ethylene-vinyl acetate copolymers (saponified EVA); flame retardant polyols and the like.

本発明において、現像剤担持体の樹脂被覆層の体積抵抗値は好ましくは10−2〜10Ω・cmであり、より好ましくは10−2〜10Ω・cmである。樹脂被覆層の体積抵抗値が10Ω・cmを越える場合には、トナーのチャージアップが発生し易くなり、樹脂被覆層へのトナー汚染や融着を引き起こし易い。
本発明においては、樹脂被覆層の体積抵抗値を上記の値に調整するため、樹脂被覆層中に、さらに他の導電性微粒子を分散含有させてもよい。
本発明で使用することのできる導電性微粒子としては、例えば、ファーネスブラック、ランプブラック、サーマルブラック、アセチレンブラック、チャンネルブラック等のカーボンブラック;酸化チタン、酸化スズ、酸化亜鉛、酸化モリブデン、チタン酸カリウム、酸化アンチモン及び酸化インジウム等の金属酸化物微粒子等;アルミニウム、銅、銀、ニッケル等の金属微粒子、金属繊維、炭素繊維等の無機系充填剤等が挙げられる。導電性微粒子としては、個数平均粒径が好ましくは1μm以下、より好ましくは0.01〜0.8μmのものがよい。導電性微粒子の個数平均粒径が1μm以下の方が、樹脂被覆層の体積抵抗値を良好に低く制御しやすく、さらにトナーのチャージアップを防ぎ、トナー汚染の発生を抑えることが可能となる。
この中でも導電性微粒子としては、導電性カーボンブラックが好ましく、個数平均粒径は1μm以下のものが好ましく用いられる。
In the present invention, the volume resistance value of the resin coating layer of the developer carrying member is preferably 10 −2 to 10 5 Ω · cm, more preferably 10 −2 to 10 4 Ω · cm. When the volume resistance value of the resin coating layer exceeds 10 5 Ω · cm, the toner is likely to be charged up, and toner contamination and fusion to the resin coating layer are likely to occur.
In the present invention, in order to adjust the volume resistance value of the resin coating layer to the above value, other conductive fine particles may be further dispersed in the resin coating layer.
Examples of the conductive fine particles that can be used in the present invention include carbon black such as furnace black, lamp black, thermal black, acetylene black, and channel black; titanium oxide, tin oxide, zinc oxide, molybdenum oxide, and potassium titanate. Metal oxide fine particles such as antimony oxide and indium oxide; metal fine particles such as aluminum, copper, silver and nickel; and inorganic fillers such as metal fibers and carbon fibers. The conductive fine particles preferably have a number average particle diameter of 1 μm or less, more preferably 0.01 to 0.8 μm. When the number average particle diameter of the conductive fine particles is 1 μm or less, the volume resistance value of the resin coating layer can be controlled to be satisfactorily low, toner charge-up can be prevented, and toner contamination can be suppressed.
Among these, as the conductive fine particles, conductive carbon black is preferable, and those having a number average particle diameter of 1 μm or less are preferably used.

次に、本発明に用いられる現像剤担持体の構成について具体的に説明する。本発明の現像剤担持体は、基体及び該基体上に形成された樹脂被覆層よりなる。現像剤担持体の基体としては、円筒状部材、円柱状部材、ベルト状部材等があるが、感光ドラムに非接触の現像方法においては、金属等の剛体の円筒管又は中実棒が好ましく用いられる。このような基体はアルミニウム、ステンレス鋼、真鍮等の非磁性の金属若しくは合金を円筒状又は円柱状に成型し、研磨、研削等を施したものが好適に用いられる。基体は、画像の均一性を良くするために、高精度に成型又は加工されて用いられることが好ましい。例えば長手方向の真直度は30μm以下、より好ましくは20μm以下、さらに好ましくは10μm以下のものが好適に用いられ、現像剤担持体と感光ドラムとの間隙の振れ、例えば、垂直面に対し均一なスペーサーを介して突き当て、現像剤担持体を回転させた場合の垂直面との間隙の振れも30μm以下、更には20μm以下、特に10μm以下であることが好ましい。材料コストや加工のしやすさから基体の材料としてはアルミニウムが好ましく用いられる。   Next, the configuration of the developer carrier used in the present invention will be specifically described. The developer carrying member of the present invention comprises a substrate and a resin coating layer formed on the substrate. The base of the developer carrying member includes a cylindrical member, a columnar member, a belt-like member, etc., but a rigid cylindrical tube or a solid rod such as a metal is preferably used in a developing method that is not in contact with the photosensitive drum. It is done. As such a substrate, a non-magnetic metal or alloy such as aluminum, stainless steel, or brass, which is molded into a cylindrical shape or a cylindrical shape, and subjected to polishing, grinding, or the like is preferably used. The substrate is preferably used after being molded or processed with high accuracy in order to improve the uniformity of the image. For example, the straightness in the longitudinal direction is preferably 30 μm or less, more preferably 20 μm or less, and even more preferably 10 μm or less, and the gap between the developer carrying member and the photosensitive drum is, for example, uniform with respect to the vertical plane. When the developer carrier is abutted through a spacer and the developer carrier is rotated, the fluctuation of the gap with the vertical surface is preferably 30 μm or less, more preferably 20 μm or less, and particularly preferably 10 μm or less. Aluminum is preferably used as the base material because of material cost and ease of processing.

以下に樹脂被覆層を構成する各成分の構成比について説明するが、これは本発明において特に好ましい範囲である。
樹脂被覆層中に分散される凹凸付与粒子の含有量は、樹脂被覆層に用いる結着樹脂100質量部に対して2〜60質量部が好ましく、より好ましくは2〜40質量部の範囲である。凹凸付与粒子の含有量が2質量部未満の場合には、凹凸付与粒子の添加効果が小さく必要な凹凸が形成されにくい。60質量部を越える場合には、凹凸付与粒子と樹脂被覆層の密着性が低くなり過ぎて耐摩耗性が悪化してしまう場合がある。
樹脂被覆層中に分散される黒鉛化粒子の含有量は、樹脂被覆層に用いる結着樹脂100質量部に対して2〜200質量部が好ましく、より好ましくは10〜100質量部の範囲である。この範囲内にすると、現像剤担持体の表面形状の維持及びトナーへの帯電付与、樹脂被覆層の潤滑性の効果がより発揮される。黒鉛化粒子の含有量が2質量部未満の場合には黒鉛化粒子の添加効果が小さく、200質量部を越える場合には樹脂被覆層の密着性が低くなり過ぎて耐摩耗性が悪化してしまう場合がある。
Although the composition ratio of each component constituting the resin coating layer will be described below, this is a particularly preferable range in the present invention.
As for content of the unevenness | corrugation provision particle | grains disperse | distributed in a resin coating layer, 2-60 mass parts is preferable with respect to 100 mass parts of binder resin used for a resin coating layer, More preferably, it is the range of 2-40 mass parts. . When the content of the unevenness-imparting particles is less than 2 parts by mass, the effect of adding the unevenness-imparting particles is small and it is difficult to form necessary unevenness. When the amount exceeds 60 parts by mass, the adhesion between the unevenness imparting particles and the resin coating layer may become too low, and the wear resistance may deteriorate.
The content of the graphitized particles dispersed in the resin coating layer is preferably 2 to 200 parts by mass, more preferably 10 to 100 parts by mass with respect to 100 parts by mass of the binder resin used for the resin coating layer. . Within this range, the effect of maintaining the surface shape of the developer carrying member, imparting electrification to the toner, and lubricity of the resin coating layer are further exhibited. When the content of the graphitized particles is less than 2 parts by mass, the effect of adding the graphitized particles is small. When the content of the graphitized particles exceeds 200 parts by mass, the adhesion of the resin coating layer becomes too low and the wear resistance deteriorates. May end up.

上記凹凸付与粒子及び黒鉛化粒子とともに樹脂被覆層中に含有されうる導電性微粒子の含有量は、樹脂被覆層に用いられる結着樹脂100質量部に対して40質量部以下が好ましく、より好ましくは2〜35質量部である。導電性微粒子の含有量を上記範囲内とした場合に、樹脂被覆層に求められる他の物理的性質を損なうことなく、体積抵抗値等を所望
の値に調整できるため好ましい。
The content of conductive fine particles that can be contained in the resin coating layer together with the unevenness imparting particles and graphitized particles is preferably 40 parts by mass or less, more preferably 100 parts by mass of the binder resin used for the resin coating layer. 2 to 35 parts by mass. When the content of the conductive fine particles is within the above range, it is preferable because the volume resistance value and the like can be adjusted to a desired value without impairing other physical properties required for the resin coating layer.

上記したような構成の樹脂被覆層の層厚は、25μm以下、より好ましくは20μm以下、更に好ましくは4〜20μmであると、均一な膜厚を得るために好ましい。しかし、特にこの層厚に限定されるものではない。これらの層厚は、樹脂被覆層に使用する材料にもよるが、付着質量として、4000〜20000mg/m程度にすることで得られる。 The layer thickness of the resin coating layer having the above-described configuration is preferably 25 μm or less, more preferably 20 μm or less, and further preferably 4 to 20 μm, in order to obtain a uniform film thickness. However, it is not particularly limited to this layer thickness. Although these layer thicknesses are based also on the material used for a resin coating layer, they are obtained by making the adhesion mass into about 4000-20000 mg / m < 2 >.

これら粒子の結着樹脂中への分散には、一般的に公知の分散装置、例えばペイントシェーカー、サンドミル、アトライター、ダイノミル、パールミル等のビーズを用いた分散機が好ましく用いられる。本発明に係る樹脂被覆層を基体上に形成する方法については、特に限定されない。例えば、本発明の現像剤担持体の樹脂被覆層に用いられる粒子を結着樹脂に分散させた塗布液を、ディッピング法、スプレー法、はけ塗り法等の方法で現像剤担持体の基体上に塗布し乾燥させれば、本発明の現像剤担持体が得られる。現像剤担持体への樹脂被覆層の形成方法の一例としては、基体をスプレーガンの移動方向に平行に垂直に立てて、基体を回転させつつ、基体とスプレーガンのノズル先端との距離を一定に保ちスプレーガンを一定速度で上昇させながら上記材料を分散させた塗布液をエアスプレー法により基体に塗布する方法が挙げられる。一般にエアスプレー法では塗布液を安定して微粒子液滴化させることにより、粒子の分散が良好な樹脂被覆層を得ることができる。   For dispersing these particles in the binder resin, generally known dispersing devices such as a disperser using beads such as a paint shaker, a sand mill, an attritor, a dyno mill, a pearl mill and the like are preferably used. The method for forming the resin coating layer according to the present invention on the substrate is not particularly limited. For example, a coating liquid in which particles used for the resin coating layer of the developer carrier of the present invention are dispersed in a binder resin is applied to the developer carrier substrate by a method such as dipping, spraying, or brushing. The developer carrying member of the present invention can be obtained by coating on and drying. As an example of the method for forming the resin coating layer on the developer carrier, the distance between the substrate and the nozzle tip of the spray gun is constant while the substrate is rotated in the vertical direction parallel to the moving direction of the spray gun. And a coating solution in which the above materials are dispersed while applying a spray gun at a constant speed while keeping the spray gun at a constant speed. In general, in the air spray method, a coating liquid having a good particle dispersion can be obtained by stably forming a coating liquid into fine particle droplets.

図1に本発明の現像剤担持体の樹脂被覆層の基本的な構成を模式的に示す。アルミ円筒状基体11上の樹脂被覆層12中に、凹凸付与粒子13及び黒鉛化粒子14が分散されている。なお、カーボンブラック等の導電性微粒子は、凹凸付与粒子及び黒鉛化粒子と比べて微少なので図1においては図示していない。   FIG. 1 schematically shows the basic structure of the resin coating layer of the developer carrying member of the present invention. Concavity and convexity imparting particles 13 and graphitized particles 14 are dispersed in the resin coating layer 12 on the aluminum cylindrical substrate 11. Note that conductive fine particles such as carbon black are not shown in FIG. 1 because they are very small compared to the unevenness imparting particles and graphitized particles.

次に、本発明の現像剤担持体が組み込まれている現像装置について説明する。なお、本発明の現像剤担持体を用いた現像方法についても、本発明の範囲内である。
図2に、一成分系現像剤として非磁性トナーを用いた場合に用いられる感光ドラムと現像剤担持体が非接触の状態で現像を行う非接触型現像装置の構成の一例を模式的に示す。図2において、公知のプロセスにより形成された静電潜像を担持する像担持体としての電子写真感光ドラム21は、矢印B方向に回転される。現像剤担持体としての現像スリーブ24は、金属製円筒管(基体)26とその上に形成される樹脂被膜層25から構成されている。一成分系現像剤(非磁性トナー)23を用いるために金属製円筒管26の内部には磁石は内設されていない。金属製円筒管の替わりに円柱状部材を用いることもできる。
Next, a developing device incorporating the developer carrying member of the present invention will be described. The developing method using the developer carrying member of the present invention is also within the scope of the present invention.
FIG. 2 schematically shows an example of the configuration of a non-contact type developing apparatus that performs development in a non-contact state between a photosensitive drum and a developer carrier used when a non-magnetic toner is used as a one-component developer. . In FIG. 2, an electrophotographic photosensitive drum 21 as an image carrier that carries an electrostatic latent image formed by a known process is rotated in the arrow B direction. The developing sleeve 24 as a developer carrier is composed of a metal cylindrical tube (base) 26 and a resin coating layer 25 formed thereon. Since a one-component developer (nonmagnetic toner) 23 is used, no magnet is provided inside the metal cylindrical tube 26. A columnar member can be used instead of the metal cylindrical tube.

ホッパー22中には一成分系現像剤23を撹拌するための撹拌翼28が設けられている。現像スリーブ24に一成分系現像剤23を供給し、且つ現像後の現像スリーブ24の表面に存在する一成分系現像剤23を剥ぎ取るための現像剤供給・剥ぎ取り部材である供給・剥ぎ取りローラ20が現像スリーブ24に当接している。現像剤供給・剥ぎ取り部材である供給・剥ぎ取りローラ20が現像スリーブ24と同じ方向に回転することにより、供給・剥ぎ取りローラ20の表面は、現像スリーブ24の表面とカウンター方向に移動する。ホッパー22から供給された一成分系現像剤23は、現像剤スリーブ24に供給され、現像スリーブ24が一成分系現像剤23を担持して、矢印A方向に回転することにより、現像スリーブ24と感光ドラム21とが対向した現像部Dに一成分系現像剤23を搬送する。現像スリーブ24に担持されている一成分系現像剤23は、現像スリーブ24の表面に対して現像剤層を介して圧接する現像剤層厚規制部材29により現像剤層厚が規定される。一成分系現像剤23は現像スリーブ24との摩擦により、感光ドラム21上の静電潜像を現像可能な摩擦帯電電荷を得る。   A stirring blade 28 for stirring the one-component developer 23 is provided in the hopper 22. Supply / peel as a developer supply / peeling member for supplying the monocomponent developer 23 to the developing sleeve 24 and stripping off the monocomponent developer 23 present on the surface of the developing sleeve 24 after development. The roller 20 is in contact with the developing sleeve 24. When the supply / peeling roller 20 as the developer supply / peeling member rotates in the same direction as the developing sleeve 24, the surface of the supply / peeling roller 20 moves in the counter direction with the surface of the developing sleeve 24. The one-component developer 23 supplied from the hopper 22 is supplied to the developer sleeve 24, and the developing sleeve 24 carries the one-component developer 23 and rotates in the direction of arrow A. The one-component developer 23 is transported to the developing portion D facing the photosensitive drum 21. The developer layer thickness of the one-component developer 23 carried on the developing sleeve 24 is regulated by a developer layer thickness regulating member 29 that presses the surface of the developing sleeve 24 via the developer layer. The one-component developer 23 obtains a triboelectric charge that can develop the electrostatic latent image on the photosensitive drum 21 by friction with the developing sleeve 24.

現像剤供給・剥ぎ取り部材の供給・剥ぎ取りローラ20としては、樹脂、ゴム、スポン
ジ等の弾性ローラ部材が好ましく用いられる。現像剤供給・剥ぎ取り部材としては、ローラ部材に代えてベルト部材又はブラシ部材を用いることもできる。感光ドラム21に現像移行されなかった一成分系現像剤23を供給・剥ぎ取りローラ20により、一旦現像スリーブ24表面から剥ぎ取ることにより、現像スリーブ上に不動の現像剤の発生を防ぐとともに、現像剤の帯電を均一化する働きを有する。
As the developer supply / peeling member supply / peeling roller 20, an elastic roller member such as resin, rubber or sponge is preferably used. As the developer supply / stripping member, a belt member or a brush member may be used instead of the roller member. The one-component developer 23 that has not been transferred to the photosensitive drum 21 is once peeled off from the surface of the developing sleeve 24 by the supply / peeling roller 20, thereby preventing the generation of a stationary developer on the developing sleeve and developing. It has the function of making the charge of the agent uniform.

現像剤供給・剥ぎ取り部材として弾性ローラからなる供給・剥ぎ取りローラ20を用いる場合には、供給・剥ぎ取りローラ20の周速は、現像スリーブに対して対向部でカウンター方向に回転する場合、現像スリーブ24の周速100%に対して、好ましくは20〜120%、より好ましくは30〜100%であることが良い。供給・剥ぎ取りローラ20の周速が20%未満の場合には、一成分系現像剤の供給が不足し、ベタ画像の追従性が低下しやすく、ゴースト画像の原因となる。120%を超える場合には、一成分系現像剤の供給量が多くなり現像剤層厚の規性不良や帯電量不足によるカブリの原因となり、さらにトナーにダメージを与えやすいため、トナー劣化によるカブリやトナー融着の原因となり易い。
供給・剥ぎ取りローラ20の回転方向が現像スリーブ24に対して対向部で同(順)方向の場合には、供給・剥ぎ取りローラの周速は、現像スリーブ周速に対して、好ましくは100〜300%、より好ましくは101〜200%であることが、トナー供給量の点で良い。
供給・剥ぎ取りローラ20の回転方向は、現像スリーブとの対向位置でカウンター方向に回転させることが、剥ぎ取り性及び供給性の点でより好ましい。
When the supply / peeling roller 20 made of an elastic roller is used as the developer supply / peeling member, the peripheral speed of the supply / peeling roller 20 rotates in the counter direction at a portion facing the developing sleeve. It is preferably 20 to 120%, more preferably 30 to 100% with respect to 100% of the peripheral speed of the developing sleeve 24. When the peripheral speed of the supply / peeling roller 20 is less than 20%, the supply of the one-component developer is insufficient, the followability of the solid image is liable to deteriorate, and a ghost image is caused. If it exceeds 120%, the supply amount of the one-component developer is increased, which causes fogging due to poor regulation of the developer layer thickness and insufficient charge amount, and further easily damages the toner. Or toner fusing.
When the rotation direction of the supply / peeling roller 20 is the same (forward) direction at the portion facing the developing sleeve 24, the peripheral speed of the supplying / peeling roller is preferably 100 with respect to the peripheral speed of the developing sleeve. The toner supply amount may be in the range of ˜300%, more preferably 101 to 200%.
The rotation direction of the supply / peeling roller 20 is more preferably rotated in the counter direction at a position facing the developing sleeve in terms of stripping property and feeding property.

現像スリーブ24に対する供給・剥ぎ取りローラ20の侵入量は、0.5〜2.5mmであることが、現像剤の供給及び剥ぎ取り性の点で好ましい。供給・剥ぎ取りローラ20の侵入量が0.5mm未満の場合には、剥ぎ取り不足により、ゴーストが発生し易くなり、侵入量が2.5mmを超える場合には、トナーのダメージが大きくなり、トナー劣化により融着やカブリの原因となり易い。   The intrusion amount of the supply / peeling roller 20 with respect to the developing sleeve 24 is preferably 0.5 to 2.5 mm from the viewpoint of developer supply and stripping property. When the amount of penetration of the supply / peeling roller 20 is less than 0.5 mm, a ghost is likely to be generated due to insufficient peeling, and when the amount of penetration exceeds 2.5 mm, damage to the toner increases. The toner is likely to cause fusing and fogging due to toner deterioration.

現像スリーブ24には、これに担持された一成分系現像剤23を現像するために、電源27により現像バイアス電圧が印加される。
本発明の装置に用いられる現像バイアスに関して、以下に説明する。現像バイアスとしては、従来、矩形波高周波、正弦高周波等が用いられたが、近年の高画質化の流れの中で潜像を忠実に現像する技術が望まれ、現像剤担持体に断続的に休止する交流成分を直流成分に重畳した電圧を現像バイアスとして印加することが行われるようになってきている。現像剤担持体に断続的に休止する交流成分を直流成分に重畳した現像バイアスとしては、図3に示すような現像バイアス(ブランクパルスバイアス)等が挙げられる。
A developing bias voltage is applied to the developing sleeve 24 by a power source 27 in order to develop the one-component developer 23 carried on the developing sleeve 24.
The developing bias used in the apparatus of the present invention will be described below. Conventionally, rectangular wave high frequency, sine high frequency, etc. have been used as the developing bias. However, a technique for faithfully developing a latent image in the trend of high image quality in recent years is desired, and the developer carrier is intermittently used. Application of a voltage obtained by superimposing a resting alternating current component on a direct current component as a developing bias has been performed. A developing bias (blank pulse bias) as shown in FIG. 3 is an example of the developing bias in which an alternating current component that intermittently pauses on the developer carrier is superimposed on the direct current component.

現像バイアスの「ブランクパルスバイアス」とは交流電圧と直流電圧を重畳して印加する区間(振幅部)と、これに続いて直流電圧のみを印加する区間(ブランク部)の全体を1サイクルとして、このサイクルを繰り返すバイアスである。このブランクパルスバイアスを現像バイアスとして用いると、ブランク部分では、トナーが現像スリーブと感光ドラムとの間を往復しない、即ちトナーが現像スリーブと感光ドラムのどちらか一方に引き付けられている、といった理由でトナー飛散レベルが良化する。また、濃度一様性、掃き寄せ及びカブリが良化するといった効果が得られる。   The “blank pulse bias” of the development bias is a cycle in which an AC voltage and a DC voltage are superimposed and applied (amplitude part), and a subsequent period in which only the DC voltage is applied (blank part) is defined as one cycle. It is a bias that repeats this cycle. When this blank pulse bias is used as the developing bias, the toner does not reciprocate between the developing sleeve and the photosensitive drum in the blank portion, that is, the toner is attracted to either the developing sleeve or the photosensitive drum. The toner scattering level is improved. In addition, it is possible to obtain effects such as density uniformity, sweeping, and fogging.

しかしながら従来の現像スリーブでは、前述したように、一成分系現像剤として球形化度の高いトナーを用いた場合、すり抜け等の規制不良により、現像スリーブ24上に形成されるトナーの薄層の厚みは、大きくなりやすく、またトナーの帯電分布が生じやすいため、ブランクパルスによるカブリ等の改善効果が得られにくい。
これに対し、本発明の現像スリーブは、球形化度の高いトナーを用いた場合でも現像ス
リーブ上のトナー層厚が厚くなるのを防ぐことができ、且つトナーの帯電を均一化させることで、カブリ等の改善効果を相乗的に得ることができる。
However, in the conventional developing sleeve, as described above, when a highly spherical toner is used as the one-component developer, the thickness of the thin toner layer formed on the developing sleeve 24 due to poor regulation such as slipping through. Is likely to be large, and toner charge distribution is likely to occur, so that it is difficult to obtain an improvement effect such as fogging by a blank pulse.
On the other hand, the developing sleeve of the present invention can prevent the toner layer thickness on the developing sleeve from becoming thick even when toner having a high sphericity is used, and by uniformizing the toner charge, Improvement effects such as fogging can be obtained synergistically.

図4の現像装置では、現像スリーブ24上の一成分系現像剤(非磁性トナー)23の層厚を規制する現像剤層厚規制部材として、ウレタンゴム、シリコーンゴム等のゴム弾性を有する材料、又はリン青銅、ステンレス銅等の金属弾性を有する材料からなる弾性規制ブレード29を使用することができる。この弾性規制ブレード29を図4の現像装置において、現像スリーブ24の回転方向と順方向の姿勢で圧接させ、現像スリーブ24上に更に薄いトナー層を形成できる。   In the developing device of FIG. 4, as a developer layer thickness regulating member that regulates the layer thickness of the one-component developer (nonmagnetic toner) 23 on the developing sleeve 24, a material having rubber elasticity such as urethane rubber, silicone rubber, Alternatively, an elastic regulation blade 29 made of a material having metal elasticity such as phosphor bronze or stainless copper can be used. In the developing device shown in FIG. 4, the elastic regulating blade 29 can be pressed against the developing sleeve 24 in the forward direction with the rotating direction of the developing sleeve 24 to form a thinner toner layer on the developing sleeve 24.

弾性規制ブレード29としては、安定した規制力とトナーへの(負)帯電付与性のため、安定した加圧力の得られるリン青銅板表面にポリアミドエラストマー(PAE)を貼り付けた構造のものを用いることが好ましい。ポリアミドエラストマー(PAE)としては、例えばポリアミドとポリエーテルの共重合体が挙げられる。
現像スリーブ26に対する弾性規制ブレード29の当接圧力は、線圧5〜50g/cmであることが、トナーの規制を安定化させ、現像剤層厚を好適にさせることができる点で好ましい。弾性規制ブレード29の当接圧力が線圧5g/cm未満の場合には、トナーの規制が弱くなり、カブリやトナーもれの原因となり、線圧50g/cmを超える場合には、トナーへのダメージが大きくなり、トナー劣化やスリーブ及びブレードへの融着の原因となり易い。
The elastic regulating blade 29 has a structure in which polyamide elastomer (PAE) is bonded to the surface of a phosphor bronze plate, which can obtain a stable pressurizing force, for stable regulating force and imparting (negative) charge to toner. It is preferable. Examples of the polyamide elastomer (PAE) include a copolymer of polyamide and polyether.
The contact pressure of the elastic regulating blade 29 against the developing sleeve 26 is preferably a linear pressure of 5 to 50 g / cm from the viewpoint of stabilizing the regulation of the toner and making the developer layer thickness suitable. If the contact pressure of the elastic regulating blade 29 is less than the linear pressure of 5 g / cm, the toner regulation becomes weak, causing fogging and toner leakage, and if the linear pressure exceeds 50 g / cm, Damage increases and tends to cause toner deterioration and fusion to the sleeve and blade.

本発明の現像剤担持体は、供給・剥ぎ取りローラ20及び弾性規制ブレード29が圧接する装置に適用した場合に、特に有効である。すなわち、現像スリーブ24に対して、供給・剥ぎ取りローラ20及び弾性規制ブレード29が圧接する場合には、現像スリーブ24の表面がこれらの圧接される部材によって摩耗や現像剤の融着がより生じ易い使用環境にあることから、本発明の樹脂被覆層を有する現像剤担持体による効果が有効に発現されることになる。図4はあくまでも本発明の現像装置を模式的に例示したものであり、現像剤容器(ホッパー22)の形状、撹拌翼28の有無等様々な形態があることは言うまでもない。   The developer carrier of the present invention is particularly effective when applied to an apparatus in which the supply / peeling roller 20 and the elastic regulating blade 29 are in pressure contact. That is, when the supply / peeling roller 20 and the elastic regulating blade 29 are in pressure contact with the developing sleeve 24, the surface of the developing sleeve 24 is more worn and the developer is fused by the members to be pressed. Since the environment is easy to use, the effect of the developer carrying member having the resin coating layer of the present invention is effectively expressed. FIG. 4 is merely a schematic illustration of the developing device of the present invention, and it goes without saying that there are various forms such as the shape of the developer container (hopper 22) and the presence or absence of the stirring blade 28.

以下、本発明に用いられる現像剤について説明する。
本発明に用いられる現像剤は、非磁性一成分系現像剤としての非磁性トナーを用いることが好ましい。非磁性トナーは、粉砕トナー製法及び重合トナー製法を用いて製造することが可能である。本発明にかかる非磁性トナーを重合法により製造する場合は、以下に示す具体的な製造方法によってトナーを製造することが可能である。
まず、単量体の他、離型剤、極性樹脂、着色剤、荷電制御剤、重合開始剤、架橋剤その他の添加剤を適宜加え、ホモジナイザー、超音波分散機等によって均一に溶解又は分散させた単量体組成物を、分散安定剤を含有する水相中に通常の撹拌機又はホモミキサー、ホモジナイザー等により分散させる。好ましくは、単量体組成物の液滴が所望のトナー粒子のサイズを有するように撹拌速度・時間を調整し、造粒する。その後は分散安定剤の作用により、粒子状態が維持され、且つ粒子の沈降が防止される程度の撹拌を行えば良い。重合温度は40℃以上、一般的には50〜90℃の温度に設定して重合を行う。また、重合反応後半に昇温しても良く、更に、トナー定着時の臭いの原因等となる未反応の重合性単量体、副生成物等を除去するために反応後半、又は、反応終了後に一部水系媒体を留去しても良い。反応終了後、生成したトナー粒子を洗浄・濾過により回収し、乾燥した後、必要により外添剤を外添しトナーを得る。懸濁重合法においては、通常単量体組成物100質量部に対して水300〜3000質量部を分散媒として使用するのが好ましい。
Hereinafter, the developer used in the present invention will be described.
The developer used in the present invention is preferably a nonmagnetic toner as a nonmagnetic one-component developer. The non-magnetic toner can be manufactured using a pulverized toner manufacturing method and a polymerized toner manufacturing method. When the nonmagnetic toner according to the present invention is produced by a polymerization method, the toner can be produced by a specific production method described below.
First, in addition to monomers, a release agent, polar resin, colorant, charge control agent, polymerization initiator, cross-linking agent and other additives are added as appropriate, and uniformly dissolved or dispersed by a homogenizer, an ultrasonic disperser or the like. The monomer composition is dispersed in an aqueous phase containing a dispersion stabilizer by a usual stirrer, homomixer, homogenizer or the like. Preferably, granulation is performed by adjusting the stirring speed and time so that the droplets of the monomer composition have a desired toner particle size. Thereafter, stirring may be performed to such an extent that the particle state is maintained and the sedimentation of the particles is prevented by the action of the dispersion stabilizer. The polymerization is performed at a polymerization temperature of 40 ° C. or higher, generally 50 to 90 ° C. In addition, the temperature may be raised in the latter half of the polymerization reaction, and in order to remove unreacted polymerizable monomers and by-products that cause odor during toner fixing, the latter half of the reaction, or the completion of the reaction. A part of the aqueous medium may be distilled off later. After completion of the reaction, the produced toner particles are collected by washing and filtration, dried, and then externally added with an external additive as necessary to obtain a toner. In the suspension polymerization method, it is usually preferable to use 300 to 3000 parts by weight of water as a dispersion medium with respect to 100 parts by weight of the monomer composition.

上記の重合トナーに使用できる重合性単量体としては、スチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、p−メトキシスチレン、p−エチルスチレ
ン等のスチレン系単量体;アクリル酸メチル、アクリル酸エチル、アクリル酸n−ブチル、アクリル酸イソブチル、アクリル酸n−プロピル、アクリル酸n−オクチル、アクリル酸ドデシル、アクリル酸2−エチルヘキシル、アクリル酸ステアリル、アクリル酸2−クロルエチル、アクリル酸フェニル等のアクリル酸エステル類;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n−プロピル、メタクリル酸n−ブチル、メタクリル酸イソブチル、メタクリル酸n−オクチル、メタクリル酸ドデシル、メタクリル酸2−エチルヘキシル、メタクリル酸ステアリル、メタクリル酸フェニル、メタクリル酸ジメチルアミノエチル、メタクリル酸ジエチルアミノエチル等のメタクリル酸エステル類その他アクリロニトリル、メタクリロニトリル、アクリルアミド等の単量体が挙げられる。
これらの単量体は単独で、又は2種以上を混合して使用し得る。上述の単量体の中でも、スチレン又はスチレン誘導体を単独で、又は他の単量体と混合して使用することがトナーの現像特性、及び耐久性の点から好ましい。
Examples of polymerizable monomers that can be used in the above polymerized toner include styrene monomers such as styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, p-methoxystyrene, and p-ethylstyrene; acrylic Methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, n-propyl acrylate, n-octyl acrylate, dodecyl acrylate, 2-ethylhexyl acrylate, stearyl acrylate, 2-chloroethyl acrylate, acrylic Acrylic acid esters such as phenyl acid; methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, n-octyl methacrylate, dodecyl methacrylate, 2-ethylhexyl methacrylate, methacryl Acid steer Le, phenyl methacrylate, dimethylaminoethyl methacrylate, methacrylic acid esters other acrylonitrile such as diethylaminoethyl methacrylate, methacrylonitrile, and the like monomers acrylamide.
These monomers can be used alone or in admixture of two or more. Among the above-mentioned monomers, styrene or a styrene derivative is preferably used alone or mixed with other monomers from the viewpoint of toner development characteristics and durability.

重合法に用いられる架橋剤としては、ジビニルベンゼン、ジビニルナフタレン等の芳香族ジビニル化合物;エチレングリコールジアクリレート、エチレングリコールジメタクリレート、1,3−ブタンジオールジメタクリレート等の二重結合を2個有するカルボン酸エステル;ジビニルアニリン、ジビニルエーテル、ジビニルスルフィド、ジビニルスルホン等のジビニル化合物;及び3個以上のビニル基を有する化合物が挙げられる。特に好ましいも架橋剤としては、ジビニルベンゼンが挙げられる。   Examples of the crosslinking agent used in the polymerization method include aromatic divinyl compounds such as divinylbenzene and divinylnaphthalene; carboxyls having two double bonds such as ethylene glycol diacrylate, ethylene glycol dimethacrylate, and 1,3-butanediol dimethacrylate. Acid esters; divinyl compounds such as divinylaniline, divinyl ether, divinyl sulfide, divinyl sulfone; and compounds having three or more vinyl groups. Particularly preferable cross-linking agents include divinylbenzene.

架橋剤の好ましい添加量としては、ビニル系重合体又はビニル系共重合体100質量部当たり、架橋剤が0.01〜1.0質量部であることが好ましい。より好ましくは0.1〜0.9質量部である。   As a preferable addition amount of the crosslinking agent, the crosslinking agent is preferably 0.01 to 1.0 part by mass per 100 parts by mass of the vinyl polymer or vinyl copolymer. More preferably, it is 0.1-0.9 mass part.

本発明に用いられるイエロートナー、マゼンタトナー及びシアントナーには離型剤としてワックスを含有することが好ましい。ワックスとしては室温で固体の固体ワックスが好ましい。トナーに含有されるワックスは、重合トナー、粉砕トナーに制限を受けることはない。具体的には、パラフィンワックス、ポリオレフィンワックス、フィッシャートロプシュワックス、アミドワックス、高級脂肪酸、エステルワックス、及びグラフト化合物、ブロック化合物等の誘導体が挙げられる。   The yellow toner, magenta toner and cyan toner used in the present invention preferably contain a wax as a release agent. The wax is preferably a solid wax that is solid at room temperature. The wax contained in the toner is not limited by the polymerized toner and the pulverized toner. Specific examples include paraffin wax, polyolefin wax, Fischer-Tropsch wax, amide wax, higher fatty acid, ester wax, and derivatives such as graft compounds and block compounds.

本発明においては、ワックスをトナー粒子中に5〜30質量%添加することが好ましい。5質量%未満の添加では耐高温オフセット性が低下し、更に両面画像の定着時において裏面の画像がオフセット現象を示す場合がある。30質量%より多い場合は、重合法によりトナーを製造した場合、造粒時にトナー粒子の合一が起き易く、粒度分布の広いものが生成し易い。さらにこのことからワックスのカプセル化が不十分となり、現像性、転写性、耐ブロッキング性が悪化する傾向がある。よって画像の均一性も劣るようになる。   In the present invention, it is preferable to add 5 to 30% by mass of wax in the toner particles. When the addition amount is less than 5% by mass, the high-temperature offset resistance is deteriorated, and further, the image on the back surface may show an offset phenomenon when fixing a double-sided image. When the amount is more than 30% by mass, when toner is produced by a polymerization method, toner particles are easily coalesced during granulation, and a product having a wide particle size distribution is easily generated. Furthermore, from this, the encapsulation of the wax becomes insufficient, and the developability, transferability, and blocking resistance tend to deteriorate. Therefore, the uniformity of the image is also inferior.

トナーの帯電性を制御する目的でトナー粒子中に荷電制御剤を添加しておくことが好ましい。これらの荷電制御剤としては、公知のもののうち、重合阻害性、水相移行性の殆どないものが好ましい。例えば、正荷電制御剤としてニグロシン系染料、トリフェニルメタン系染料、第四級アンモニウム塩、グアニジン誘導体、イミダゾール誘導体、アミン系化合物等が挙げられる。負荷電制御剤としては、含金属サリチル酸共重合体、含金属モノアゾ系染料化合物、尿素誘導体、スチレン−アクリル酸共重合体、スチレン−メタクリル酸共重合体が挙げられる。これらの荷電制御剤の添加量としては、結着樹脂又は重合体単量体100質量部に対し、0.1〜10質量部が好ましい。なお、本発明の現像剤担持体は、第四級アンモニウム塩化合物を樹脂被覆層に分散させたときに、負帯電性トナーとの組み合わせにおいて特に効果を有することから、トナー粒子に用いる荷電制御剤は、負荷電制御剤が好ましい。   For the purpose of controlling the chargeability of the toner, it is preferable to add a charge control agent to the toner particles. Of these known charge control agents, those having little polymerization inhibition and aqueous phase transfer are preferred. Examples of the positive charge control agent include nigrosine dyes, triphenylmethane dyes, quaternary ammonium salts, guanidine derivatives, imidazole derivatives, amine compounds, and the like. Examples of negative charge control agents include metal-containing salicylic acid copolymers, metal-containing monoazo dye compounds, urea derivatives, styrene-acrylic acid copolymers, and styrene-methacrylic acid copolymers. As addition amount of these charge control agents, 0.1-10 mass parts is preferable with respect to 100 mass parts of binder resin or a polymer monomer. The developer carrier of the present invention is particularly effective in combination with a negatively charged toner when a quaternary ammonium salt compound is dispersed in a resin coating layer. Is preferably a negative charge control agent.

本発明において、トナーに用いられる着色剤としては、公知のものを使用することが出来る。例えば、黒色顔料としては、カーボンブラック、アニリンブラック、非磁性フェライト、マグネタイト等が挙げられる。
黄色顔料としては、黄色酸化鉄、ネーブルスイエロー、ナフトールイエローS、ハンザイエローG、ハンザイエロー10G、ベンジジンイエローG、ベンジジンイエローGR、キノリンイエローレーキ、パーマネントイエローNCG、タートラジンレーキ等が挙げられる。
In the present invention, known colorants can be used for the toner. For example, examples of the black pigment include carbon black, aniline black, nonmagnetic ferrite, and magnetite.
Examples of the yellow pigment include yellow iron oxide, navel yellow, naphthol yellow S, Hansa yellow G, Hansa yellow 10G, benzidine yellow G, benzidine yellow GR, quinoline yellow lake, permanent yellow NCG, tartrazine lake and the like.

橙色顔料としては、パーマネントオレンジGTR、ピラゾロンオレンジ、バルカンオレンジ、ベンジジンオレンジG、インダスレンブリリアントオレンジRK、インダンスレンブリリアントオレンジGK等が挙げられる。
赤色顔料としては、ベンガラ、パーマネントレッド4R、リソールレッド、ピラゾロンレッド、ウォッチングレッドカルシウム塩、レーキレッドC、レーキレッドD、ブリリアントカーミン6B、ブリリアントカーミン3B、エオキシンレーキ、ローダミンレーキB、アリザリンレーキ等が挙げられる。
Examples of the orange pigment include permanent orange GTR, pyrazolone orange, vulcan orange, benzidine orange G, indanthrene brilliant orange RK, and indanthrene brilliant orange GK.
Examples of red pigments include Bengala, Permanent Red 4R, Risor Red, Pyrazolone Red, Watching Red Calcium Salt, Lake Red C, Lake Red D, Brilliant Carmine 6B, Brilliant Carmine 3B, Eoxin Lake, Rhodamine Lake B, Alizarin Lake, etc. Can be mentioned.

青色顔料としては、アルカリブルーレーキ、ビクトリアブルーレーキ、フタロシアニンブルー、無金属フタロシアニンブルー、フタロシアニンブルー部分塩化物、ファーストスカイブルー、インダンスレンブルーBG等が挙げられる。
紫色顔料としては、ファストバイオレットB、メチルバイオレットレーキ等が挙げられる。
緑色顔料としては、ピグメントグリーンB、マラカイトグリーンレーキ、ファイナルイエローグリーンG等が挙げられる。
白色顔料としては、亜鉛華、酸化チタン、アンチモン白、硫化亜鉛が挙げられる。
Examples of the blue pigment include alkali blue lake, Victoria blue lake, phthalocyanine blue, metal-free phthalocyanine blue, phthalocyanine blue partial chloride, first sky blue, and indanthrene blue BG.
Examples of purple pigments include Fast Violet B and Methyl Violet Lake.
Examples of the green pigment include Pigment Green B, Malachite Green Lake, Final Yellow Green G, and the like.
Examples of white pigments include zinc white, titanium oxide, antimony white, and zinc sulfide.

これらの着色剤は、単独又は混合して、更には固溶体の状態で用いることが出来る。
本発明で使用する着色剤は、色相角、彩度、明度、耐候性、OHP透明性、トナー中への分散性の点から選択される。着色剤の添加量は、結着樹脂100質量部に対して1〜20質量部用いるのが好ましい。
These colorants can be used alone or in combination, and further in a solid solution state.
The colorant used in the present invention is selected from the viewpoints of hue angle, saturation, brightness, weather resistance, OHP transparency, and dispersibility in the toner. The addition amount of the colorant is preferably 1 to 20 parts by mass with respect to 100 parts by mass of the binder resin.

本発明におけるトナーを透光性カラートナーとして用いる場合の着色剤としては、以下に示す様な、各種及び各色の顔料も使用することが出来る。
例えば、黄色顔料としては、C.I.10316(ナフトールイエローS)、C.I.11710(ハンザイエロー10G)、C.I.11660(ハンザイエロー5G)、C.I.11670(ハンザイエロー3G)、C.I.11680(ハンザイエローG)、C.I.11730(ハンザイエローGR)、C.I.11735(ハンザイエローA)、C.I.117408(ハンザイエローRN)、C.I.12710(ハンザイエローR)、C.I.12720(ピグメントイエローL)、C.I.21090(ベンジジンイエロー)、C.I.21095(ベンジジンイエローG)、C.I.21100(ベンジジンイエローGR)、C.I.20040(パーマネントイエローNCR)、C.I.21220(バルカンファストイエロー5)、C.I.21135(バルカンファストイエローR)等が挙げられる。
As the colorant when the toner of the present invention is used as a translucent color toner, various types and pigments of various colors as shown below can be used.
For example, C.I. I. 10316 (Naphthol Yellow S), C.I. I. 11710 (Hansa Yellow 10G), C.I. I. 11660 (Hanza Yellow 5G), C.I. I. 11670 (Hanza Yellow 3G), C.I. I. 11680 (Hansa Yellow G), C.I. I. 11730 (Hansa Yellow GR), C.I. I. 11735 (Hansa Yellow A), C.I. I. 117408 (Hansa Yellow RN), C.I. I. 12710 (Hansa Yellow R), C.I. I. 12720 (Pigment Yellow L), C.I. I. 21090 (benzidine yellow), C.I. I. 21095 (Benzidine Yellow G), C.I. I. 21100 (Benzidine Yellow GR), C.I. I. 20040 (Permanent Yellow NCR), C.I. I. 21220 (Vulcan Fast Yellow 5), C.I. I. 21135 (Vulcan Fast Yellow R) and the like.

赤色顔料としては、C.I.12055(スターリンI)、C.I.12075(パーマネントオレンジ)、C.I.12175(リソールファストオレンジ3GL)、C.I.12305(パーマネントオレンジGTR)、C.I.11725(ハンザイエロー3R)、C.I.21165(バルカンファストオレンジGG)、C.I.21110(ベンジジンオレンジG)、C.I.12120(パーマネントレッド4R)、C.I.1270(パラレッド)、C.I.12085(ファイヤーレッド)、C.I.12315(ブリリアントファストスカーレット)、C.I.12310(パーマネントレッドF2R
)、C.I.12335(パーマネントレッドF4R)、C.I.12440(パーマネントレッドFRL)、C.I.12460(パーマネントレッドFRLL)、C.I.12420(パーマネントレッドF4RH)、C.I.12450(ライトファストレッドトーナーB)、C.I.12490(パーマネントカーミンFB)、C.I.15850(ブリリアントカーミン6B)等が挙げられる。
Examples of red pigments include C.I. I. 12055 (Starlin I), C.I. I. 12075 (permanent orange), C.I. I. 12175 (Risor Fast Orange 3GL), C.I. I. 12305 (permanent orange GTR), C.I. I. 11725 (Hansa Yellow 3R), C.I. I. 21165 (Vulcan Fast Orange GG), C.I. I. 21110 (Benzidine Orange G), C.I. I. 12120 (Permanent Red 4R), C.I. I. 1270 (Para Red), C.I. I. 12085 (Fire Red), C.I. I. 12315 (Brilliant Fast Scarlet), C.I. I. 12310 (Permanent Red F2R
), C.I. I. 12335 (Permanent Red F4R), C.I. I. 12440 (Permanent Red FRL), C.I. I. 12460 (Permanent Red FRLL), C.I. I. 12420 (Permanent Red F4RH), C.I. I. 12450 (Light Fast Red Toner B), C.I. I. 12490 (Permanent Carmine FB), C.I. I. 15850 (brilliant carmine 6B) and the like.

青色顔料としては、C.I.74100(無金属フタロシアニンブルー)、C.I.74160(フタロシアニンブルー)、C.I.74180(ファストスカイブルー)等が挙げられる。   Examples of blue pigments include C.I. I. 74100 (metal-free phthalocyanine blue), C.I. I. 74160 (phthalocyanine blue), C.I. I. 74180 (Fast Sky Blue).

重合法に用いられる重合開始剤としては、例えば、2,2’−アゾビス−(2,4−ジメチルバレロニトリル)、2,2’−アゾビスイソブチロニトリル、1,1’−アゾビス(シクロヘキサン−1−カルボニトリル)、2,2’−アゾビス−4−メトキシ−2,4−ジメチルバレロニトリル、アゾビスイソブチロニトリル等のアゾ系又はジアゾ系重合開始剤、ベンゾイルペルオキシド、メチルエチルケトンペルオキシド、ジイソピロピルオキシカーボネート、クメンヒドロペルオキシド、t−ブチルヒドロペルオキシド、ジ−t−ブチルペルオキシド、ジクシルペルオキシド、2,4−ジクロロベンゾイルペルオキシド、ラウタイルペルオキシド、2,2−ビス’4,4−t−ブチルペルオキシシクロヘキシル)プロパン、トリス(t−ブチルペルオキシ)トリアジン等の過酸化物系開始剤や、過酸化物を側鎖に有する高分子開始剤、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩、過酸化水素等が使用される。重合開始剤は、重合性単量体100質量部に対して0.5〜20質量部の添加量が好ましく、単独で、又は、併用しても良い。   Examples of the polymerization initiator used in the polymerization method include 2,2′-azobis- (2,4-dimethylvaleronitrile), 2,2′-azobisisobutyronitrile, 1,1′-azobis (cyclohexane). -1-carbonitrile), 2,2′-azobis-4-methoxy-2,4-dimethylvaleronitrile, azo or diazo polymerization initiators such as azobisisobutyronitrile, benzoyl peroxide, methyl ethyl ketone peroxide, di Isopropylpyrooxycarbonate, cumene hydroperoxide, t-butyl hydroperoxide, di-t-butyl peroxide, dicyl peroxide, 2,4-dichlorobenzoyl peroxide, lauryl peroxide, 2,2-bis'4,4-t -Butylperoxycyclohexyl) propane, tris (t-butyl) Ruperuokishi) or peroxide initiators such as triazine, polymeric initiators having a peroxide in the side chain, potassium persulfate, persulfates such as ammonium persulfate, hydrogen peroxide or the like is used. The polymerization initiator is preferably added in an amount of 0.5 to 20 parts by mass with respect to 100 parts by mass of the polymerizable monomer, and may be used alone or in combination.

重合法に用いられる極性樹脂として、メタクリル酸ジメチルアミノエチル、メタクリル酸ジエチルアミノエチル等の含窒素単量体の重合体又はスチレン、不飽和カルボン酸エステル等との共重合体等のカチオン性重合体;アクリロニトリル等のニトリル系単量体、塩化ビニル等の含ハロゲン系単量体、アクリル酸・メタクリル酸等の不飽和カルボン酸、その他不飽和二塩基酸・不飽和二塩基酸無水物、ニトロ系単量体等の重合体又はスチレン系単量体等との共重合体等のアニオン性重合体を用いることが出来る。   As a polar resin used in the polymerization method, a cationic polymer such as a polymer of a nitrogen-containing monomer such as dimethylaminoethyl methacrylate or diethylaminoethyl methacrylate or a copolymer with styrene or an unsaturated carboxylic acid ester; Nitrile monomers such as acrylonitrile, halogen-containing monomers such as vinyl chloride, unsaturated carboxylic acids such as acrylic acid and methacrylic acid, other unsaturated dibasic acids and unsaturated dibasic acid anhydrides, nitro-based monomers An anionic polymer such as a polymer with a monomer or a copolymer with a styrene monomer or the like can be used.

本発明におけるトナー粒子には各種特性付与を目的として、外添剤を添加しても良い。外添剤は、トナーに添加した時の耐久性の点から、トナー粒子の重量平均粒径の1/10以下の粒径であることが好ましい。外添剤の粒径とは、電子顕微鏡におけるトナー粒子の表面観察により求めたその体積平均粒径を意味する。これら特性付与を目的とした外添剤としては、例えば、以下のようなものが用いられる。   An external additive may be added to the toner particles in the present invention for the purpose of imparting various properties. The external additive preferably has a particle size of 1/10 or less of the weight average particle size of the toner particles from the viewpoint of durability when added to the toner. The particle diameter of the external additive means the volume average particle diameter obtained by observing the surface of the toner particles with an electron microscope. As external additives for the purpose of imparting these characteristics, for example, the following are used.

(1)流動性付与剤:金属酸化物(酸化ケイ素、酸化アルミニウム、酸化チタン)、カーボ
ンブラック及びフッ化カーボン。それぞれ疎水化処理を行ったものが、より好ましい。
(2)研磨剤:金属酸化物(チタン酸ストロンチウム、酸化セリウム、酸化アルミニウム、
酸化マグネシウム、酸化クロム)、窒化物(窒化ケイ素)、炭化物(炭化ケイ素)及び金属塩(硫酸カルシウム、硫酸バリウム、炭酸カルシウム)。
(3)滑剤:フッ素樹脂粉末(フッ化ビニリデン、ポリテトラフルオロエチレン)及び脂肪
酸金属塩(ステアリン酸亜鉛、ステアリン酸カルシウム)。
(4)荷電制御性粒子:金属酸化物(酸化錫、酸化チタン、酸化亜鉛、酸化ケイ素、酸化ア
ルミニウム)及びカーボンブラック。
(1) Fluidity imparting agent: metal oxide (silicon oxide, aluminum oxide, titanium oxide), carbon black and carbon fluoride. Those subjected to hydrophobic treatment are more preferred.
(2) Abrasive: Metal oxide (strontium titanate, cerium oxide, aluminum oxide,
Magnesium oxide, chromium oxide), nitride (silicon nitride), carbide (silicon carbide) and metal salts (calcium sulfate, barium sulfate, calcium carbonate).
(3) Lubricant: fluororesin powder (vinylidene fluoride, polytetrafluoroethylene) and fatty acid metal salt (zinc stearate, calcium stearate).
(4) Charge controllable particles: metal oxides (tin oxide, titanium oxide, zinc oxide, silicon oxide, aluminum oxide) and carbon black.

これら外添剤は、トナー粒子100質量部に対し、好ましくは0.1〜10質量部の範囲で用いれば良く、より好ましくは、0.1〜5質量部の範囲で用いるのが良い。これら外添剤は、単独で用いても、また、複数併用しても良い。   These external additives may be used preferably in the range of 0.1 to 10 parts by mass, more preferably in the range of 0.1 to 5 parts by mass with respect to 100 parts by mass of the toner particles. These external additives may be used alone or in combination.

高画質化の為には、トナーは重量平均粒径が4〜8μmであることが好ましい。重量平均粒径が4μm未満のトナーにおいては、カブリや転写不良に基づく画像の不均一ムラの原因となり易く好ましくなく、トナーの重量平均粒径が8μmを超える場合には、融着等が起きやすい。
また、フロー式粒子像測定装置で計測されるトナーの個数基準の円形度(頻度分布)において、平均円形度が0.935以上であることが転写率の点から好ましい。
In order to improve the image quality, the toner preferably has a weight average particle diameter of 4 to 8 μm. A toner having a weight average particle size of less than 4 μm is not preferable because it tends to cause uneven image unevenness due to fogging or transfer failure. If the toner has a weight average particle size exceeding 8 μm, fusion or the like is likely to occur. .
Further, in the circularity (frequency distribution) based on the number of toners measured by the flow type particle image measuring device, the average circularity is preferably 0.935 or more from the viewpoint of transfer rate.

トナーの粒度分布制御や粒径の制御は、難水溶性の無機塩や保護コロイド作用をする分散剤の種類や添加量を変える方法や機械的装置条件例えばローターの周速・パス回数・撹拌羽根形状等の撹拌条件や容器形状又は、水溶液中での固形分濃度等を制御することにより、所定のトナーを得ることができる。
円形度の調整は、懸濁重合による製造において用いる重合開始剤の種類、量、製造における撹拌速度・時間・温度等によって調整できる。
Toner particle size distribution control and particle size control can be done by changing the type and amount of a poorly water-soluble inorganic salt or protective colloid dispersant and mechanical device conditions such as rotor peripheral speed, number of passes, and stirring blades. A predetermined toner can be obtained by controlling stirring conditions such as shape, container shape, solid content concentration in an aqueous solution, and the like.
The degree of circularity can be adjusted by the type and amount of the polymerization initiator used in the production by suspension polymerization, the stirring speed, time, temperature, etc. in the production.

本発明において、重合法によりトナーを製造する際に用いられる分散媒には、いずれか適当な安定剤を使用する。例えば、無機化合物として、リン酸三カルシウム、リン酸マグネシウム、リン酸亜鉛、リン酸アルミニウム、炭酸カルシウム、炭酸マグネシウム、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、メタ珪酸カルシウム、硫酸カルシウム、硫酸バリウム、ベントナイト、シリカ、アルミナ等の無機化合物の微粉体が挙げられる。ポリビニルアルコール、ゼラチン、メチルセルロース、メチルヒドロキシプロピルセルロース、エチルセルロース、カルボキシメチルセルロースのナトリウム塩、ポリアクリル酸、及びその塩、ポリメタアクリル酸、及びその塩、澱粉等の有機化合物を使用しても良い。   In the present invention, any appropriate stabilizer is used as a dispersion medium used when a toner is produced by a polymerization method. For example, as an inorganic compound, tricalcium phosphate, magnesium phosphate, zinc phosphate, aluminum phosphate, calcium carbonate, magnesium carbonate, calcium hydroxide, magnesium hydroxide, aluminum hydroxide, calcium metasilicate, calcium sulfate, barium sulfate And fine powders of inorganic compounds such as bentonite, silica and alumina. Organic compounds such as polyvinyl alcohol, gelatin, methyl cellulose, methyl hydroxypropyl cellulose, ethyl cellulose, sodium salt of carboxymethyl cellulose, polyacrylic acid and salts thereof, polymethacrylic acid and salts thereof, and starch may be used.

また、本発明において重合法によりトナーを製造する際に用いられる着色剤としては、着色剤の持つ重合阻害性や水相移行性に注意を払う必要があり、前記着色剤を好ましくは表面改質、例えば重合阻害のない疎水化処理を施したほうが良い。特に染料系やカーボンブラックは、重合阻害性を有しているものが多いので使用の際に注意を要する。染料系を表面処理する好ましい方法としては、これら染料の存在下に重合性単量体をあらかじめ重合させる方法が挙げられ、得られた着色重合体を単量体組成物に添加する。また、カーボンブラックについては、上記染料と同様の処理のほか、カーボンブラックの表面官能基と反応する物質、たとえば、ポリオルガノシロキサン等で処理を行っても良い。   In the present invention, as a colorant used in producing a toner by a polymerization method, it is necessary to pay attention to the polymerization inhibitory property and water phase migration property of the colorant, and the colorant is preferably surface-modified. For example, it is better to perform a hydrophobic treatment without polymerization inhibition. In particular, dyes and carbon blacks have a polymerization inhibition property, so care must be taken when using them. A preferable method for surface-treating the dye system includes a method in which a polymerizable monomer is previously polymerized in the presence of these dyes, and the obtained colored polymer is added to the monomer composition. Carbon black may be treated with a substance that reacts with the surface functional group of carbon black, such as polyorganosiloxane, in addition to the same treatment as the above dye.

粉砕系トナーの場合には、公知の方法が用いられる。例えば、結着樹脂、荷電制御剤、必要に応じてワックス、磁性体、着色剤、その他の添加剤等をヘンシェルミキサー、ボールミル等の混合器により十分混合してから、加熱ロール、ニーダー、エクストルーダー等の熱混練機を用いて溶融混練して、冷却固化、粉砕を行い、その後分級することで所望の粒径のトナー粒子を得る。得られたトナー粒子に対して必要に応じ表面処理を行っても構わない。その後、上記外添剤を添加混合することによって、トナーを得る。分級及び表面処理の順序は、どちらが先でも良い。分級工程においては生産効率上、コアンダ効果を利用した多分割分級機を用いることが好ましい。   In the case of a pulverized toner, a known method is used. For example, a binder resin, a charge control agent, and if necessary, a wax, a magnetic material, a colorant, and other additives are sufficiently mixed by a mixer such as a Henschel mixer or a ball mill, and then heated rolls, kneaders, and extruders. The toner particles having a desired particle diameter are obtained by melt-kneading using a heat kneader, etc., cooling and solidifying and pulverizing, followed by classification. The obtained toner particles may be subjected to a surface treatment as necessary. Thereafter, the toner is obtained by adding and mixing the external additive. Either the classification or the surface treatment may be performed first. In the classification process, it is preferable to use a multi-division classifier utilizing the Coanda effect in terms of production efficiency.

粉砕法で得られたトナー粒子の転写性の向上を目的とした球形化処理、表面平滑化処理としては、粉砕トナー粒子を水中に分散させ加熱する温浴法、熱気流中を通過させる熱処理法、機械的エネルギーを付与して処理する機械的衝撃法等が挙げられる。その中でも、機械的衝撃法において処理温度をトナー粒子のガラス転移点Tg付近の温度(Tg±10℃)を加える熱機械的衝撃が、凝集防止、生産性の観点から好ましい。   Spheroidization treatment and surface smoothening treatment for the purpose of improving transferability of toner particles obtained by the pulverization method include a warm bath method in which pulverized toner particles are dispersed in water and heated, a heat treatment method in which the toner particles pass through a hot air stream, Examples include a mechanical impact method in which mechanical energy is applied and processed. Among them, the thermomechanical impact in which the processing temperature is a temperature in the vicinity of the glass transition point Tg of toner particles (Tg ± 10 ° C.) in the mechanical impact method is preferable from the viewpoint of preventing aggregation and productivity.

粉砕トナーに使用する結着樹脂としては、ポリスチレン、ポリ−p−クロルスチレン、ポリビニルトルエン、スチレン−p−クロルスチレン共重合体、スチレンビニルトルエン
共重合体等のスチレン及びその誘導体の単独重合体並びにそれらの共重合体;スチレン−アクリル酸メチル共重合体、スチレン−アクリル酸エチル共重合体、スチレン−アクリル酸nブチル共重合体等のスチレンとアクリル酸エステルとの共重合体;スチレン−メタクリル酸メチル共重合体、スチレン−メタクリル酸エチル共重合体、スチレン−メタクリル酸nブチル共重合体等のスチレンとメタクリルエステルとの共重合体;スチレンとアクリル酸エステル及びメタクリル酸エステルとの多元共重合体;スチレン−アクリロニトリル共重合体、スチレン−ビニルメチルエーテル共重合体、スチレン−ブタジエン共重合体、スチレン−ビニルメチルケトン共重合体、スチレン−アクリロニトリルインデン共重合体、スチレン−マレイン酸エステル共重合体等のスチレンと他のビニル系モノマーとのスチレン系共重合体;ポリメチルメタクリレート、ポリブチルメタクリレート、ポリ酢酸ビニル、ポリエステル、ポリアミド、エポキシ樹脂、ポリビニルブチラール、ポリアクリル酸、フェノール樹脂、脂肪族又は脂環族炭化水素樹脂、石油樹脂、塩素化パラフィン等が例示される。これらは、単独又は混合して使用できる。
The binder resin used in the pulverized toner includes polystyrene, poly-p-chlorostyrene, polyvinyltoluene, styrene-p-chlorostyrene copolymer, styrene vinyltoluene copolymer and other homopolymers of styrene and its derivatives, and Copolymers thereof; Styrene-methyl acrylate copolymer, styrene-ethyl acrylate copolymer, styrene-n-butyl acrylate copolymer, etc., styrene-acrylic acid ester copolymer; styrene-methacrylic acid Copolymers of styrene and methacrylic esters such as methyl copolymers, styrene-ethyl methacrylate copolymers, styrene-n-butyl methacrylate copolymers; multi-component copolymers of styrene, acrylate esters and methacrylate esters Styrene-acrylonitrile copolymer, styrene-vinyl Styrenes of styrene and other vinyl monomers such as ruether copolymer, styrene-butadiene copolymer, styrene-vinyl methyl ketone copolymer, styrene-acrylonitrile indene copolymer, styrene-maleic acid ester copolymer Copolymer: Polymethyl methacrylate, polybutyl methacrylate, polyvinyl acetate, polyester, polyamide, epoxy resin, polyvinyl butyral, polyacrylic acid, phenol resin, aliphatic or alicyclic hydrocarbon resin, petroleum resin, chlorinated paraffin, etc. Is exemplified. These can be used alone or in combination.

圧力定着方式に用いられる場合、トナー用の結着樹脂としては、低分子ポリエチレン、低分子量ポリプロピレン、エチレン−酢酸ビニル共重合体、エチレン−アクリル酸エステル共重合体、高級脂肪酸、ポリアミド樹脂、ポリエステル樹脂が単独又は混合して使用できる。スチレン系共重合体を構成するためのコモノマーとしては、アクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸ドデシル、アクリル酸オクチル、アクリル酸−2−エチルヘキシル、アクリル酸フェニル、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸オクチル、アクリロニトリル、メタクリロニトリル、アクリルアミド等の二重結合を有するモノカルボン酸又はその誘導体、マレイン酸、マレイン酸ブチル、マレイン酸メチル、マレイン酸ジメチル等の二重結合を有するジカルボン酸及びその誘導体が挙げられる。   When used in the pressure fixing system, the binder resin for toner includes low molecular weight polyethylene, low molecular weight polypropylene, ethylene-vinyl acetate copolymer, ethylene-acrylic acid ester copolymer, higher fatty acid, polyamide resin, polyester resin. Can be used alone or in combination. As comonomer for constituting the styrene copolymer, acrylic acid, methyl acrylate, ethyl acrylate, butyl acrylate, dodecyl acrylate, octyl acrylate, 2-ethylhexyl acrylate, phenyl acrylate, methacrylic acid , Methyl methacrylate, ethyl methacrylate, butyl methacrylate, octyl methacrylate, acrylonitrile, methacrylonitrile, acrylamide and other monocarboxylic acids or derivatives thereof, maleic acid, butyl maleate, methyl maleate, maleic And dicarboxylic acids having a double bond such as dimethyl acid and derivatives thereof.

粉砕法で得られる非磁性トナー(イエロー、マゼンタ、シアン、ブラック)の場合の特に好ましい結着樹脂としては、スチレン−アクリル酸エステル系樹脂、ポリエステル樹脂がある。また、着色剤としては、重合トナーと同様のものが使用可能である。その含有量としては、結着樹脂100質量部に対して12質量部以下であり、好ましくは0.5〜9質量部である。   Particularly preferred binder resins for non-magnetic toners (yellow, magenta, cyan, black) obtained by the pulverization method include styrene-acrylate resins and polyester resins. As the colorant, the same colorant as that for the polymerized toner can be used. The content is 12 parts by mass or less, preferably 0.5 to 9 parts by mass with respect to 100 parts by mass of the binder resin.

以下に本発明に関わる物性の測定方法について述べる。
(1)黒鉛化粒子の黒鉛化度P(002)
黒鉛化度P(002)は、(株)マックサイエンス製の強力型全自動X線回折装置“MXP18”システムにより、黒鉛のX線回折スペクトルから得られる格子間隔d(002)を測定し、d(002)=3.440−0.086(1−P(002))により求める。塗布液中間体中の黒鉛化粒子の黒鉛化度は、塗布液中間体から黒鉛化粒子を洗浄分離して、測定を行う。
なお、格子間隔d(002)は、CuKαをX線源とし、CuKβ線はニッケルフィルターにより除去している。標準物質に高純度シリコンを使用し、C(002)及びSi(111)回折パターンのピーク位置から算出する。主な測定条件は以下のとおりである。X線発生装置:18kw
ゴニオメータ:横型ゴニオメータ
モノクロメータ:使用
管電圧:30.0kV
管電流:10.0mA
測定法:連続法
スキャン軸:2θ/θ
サンプリング間隔:0.020deg
スキャン速度:6.000deg/min
発散スリット:0.50deg
散乱スリット:0.50deg
受光スリット:0.30mm
The physical property measurement method according to the present invention will be described below.
(1) Graphitization degree of graphitized particles P (002)
The degree of graphitization P (002) is determined by measuring the lattice spacing d (002) obtained from the X-ray diffraction spectrum of graphite using a powerful fully automatic X-ray diffractometer “MXP18” system manufactured by Mac Science Co., Ltd. (002) = 3.440−0.086 (1-P (002) 2 ) The degree of graphitization of the graphitized particles in the coating solution intermediate is measured by washing and separating the graphitized particles from the coating solution intermediate.
Note that the lattice interval d (002) is CuKα as an X-ray source, and the CuKβ line is removed by a nickel filter. High-purity silicon is used as the standard substance, and the calculation is performed from the peak positions of the C (002) and Si (111) diffraction patterns. The main measurement conditions are as follows. X-ray generator: 18 kW
Goniometer: Horizontal goniometer Monochromator: Working tube voltage: 30.0kV
Tube current: 10.0mA
Measurement method: Continuous method Scan axis: 2θ / θ
Sampling interval: 0.020 deg
Scan speed: 6.000 deg / min
Divergence slit: 0.50deg
Scattering slit: 0.50deg
Receiving slit: 0.30mm

(2)トナーの粒径測定
トナーの平均粒径及び粒度分布はコールターマルチサイザー(ベックマン・コールター(株)製)を用い、個数分布、体積分布を出力する。電解液は1級塩化ナトリウムを用いて約1%NaCl水溶液を調製する。測定法としては、前記電解水溶液100〜150ml中に分散剤として界面活性剤(好ましくはアルキルベンゼンスルホン酸塩)を0.1〜5ml加え、更に測定試料を2〜20mg加える。試料を懸濁した電解液は超音波分散器で約1〜3分間分散処理を行い、前記コールターマルチサイザーにより100μmアパチャーを用い、2μm以上のトナーの体積、個数を測定して体積分布を算出し、これより体積分布から求めた体積基準の重量平均粒径を求める。
(2) Measurement of toner particle size For the average particle size and particle size distribution of toner, Coulter Multisizer (manufactured by Beckman Coulter, Inc.) is used, and the number distribution and volume distribution are output. As the electrolytic solution, a 1% NaCl aqueous solution is prepared using first grade sodium chloride. As a measuring method, 0.1 to 5 ml of a surfactant (preferably alkylbenzene sulfonate) is added as a dispersant to 100 to 150 ml of the aqueous electrolytic solution, and 2 to 20 mg of a measurement sample is further added. The electrolytic solution in which the sample is suspended is subjected to a dispersion process for about 1 to 3 minutes with an ultrasonic disperser, and the volume distribution is calculated by measuring the volume and number of toners of 2 μm or more using the Coulter Multisizer with a 100 μm aperture. From this, the volume-based weight average particle diameter obtained from the volume distribution is obtained.

(3)トナーの円形度
本発明におけるトナーの円形度aは、トナー粒子の形状を定量的に表現する簡便な方法として用いたものであり、本発明ではフロー式粒子像測定装置「FPIA−2100型」(シスメックス社製)を用いて測定を行い、下記式(C)を用いて算出する。
円形度a=L/L (C)
(式中、Lは粒子像と同じ投影面積を持つ円の周囲長を示し、Lは粒子像の周囲長を示す。)
ここで、「粒子像と同じ投影面積」とは二値化されたトナー粒子像の面積であり、「粒子像の周囲長」とは該トナー粒子像のエッジ点を結んで得られる輪郭線の長さと定義する。測定は、512×512の画像処理解像度(0.3μm×0.3μmの画素)で画像処理した時の粒子像の周囲長を用いる。
本発明における円形度aはトナーの凹凸の度合いを示す指標であり、トナーが完全な球形の場合に1.000を示し、表面形状が複雑になる程、円形度は小さな値となる。また、円形度頻度分布の平均値を意味する平均円形度aaveは、粒度分布の分割点iでの円形
度(中心値)をai、測定粒子数をmとすると、次式(D)から算出される。
(3) Toner circularity The toner circularity a in the present invention is used as a simple method for quantitatively expressing the shape of toner particles. In the present invention, the flow type particle image measuring device “FPIA-2100” is used. Measurement is performed using “type” (manufactured by Sysmex Corporation), and calculation is performed using the following formula (C).
Circularity a = L 0 / L (C)
(In the formula, L 0 represents the circumference of a circle having the same projected area as the particle image, and L represents the circumference of the particle image.)
Here, “the same projected area as the particle image” is the area of the binarized toner particle image, and “peripheral length of the particle image” is the contour line obtained by connecting the edge points of the toner particle image. Define length. The measurement uses the perimeter of the particle image when image processing is performed at an image processing resolution of 512 × 512 (pixels of 0.3 μm × 0.3 μm).
In the present invention, the degree of circularity a is an index indicating the degree of unevenness of the toner, and is 1.000 when the toner is a perfect sphere. The more complicated the surface shape, the smaller the degree of circularity. The average circularity a ave , which means the average value of the circularity frequency distribution, is expressed by the following equation (D) where the circularity (center value) at the dividing point i of the particle size distribution is ai and the number of measured particles is m. Calculated.

Figure 0004324040
Figure 0004324040

具体的な測定方法としては、容器中に予め不純固形物等を除去したイオン交換水10mlを用意し、その中に分散剤として界面活性剤、好ましくはアルキルベンゼンスルホン酸塩を加えた後、測定試料を0.02g加え、均一に分散させる。分散させる手段としては、超音波分散機「UH−50型」((株)エスエムテー製)に振動子として直径5mmのチタン合金チップを装着したものを用い、5分間分散処理を用い、測定用の分散液とする。その際、該分散液の温度が40℃以上とならない様に適宜冷却する。測定時のトナー粒子濃度が3000〜1万個/μlとなる様に分散液濃度を調整し、トナー粒子を1000個以上計測する。計測後、このデータを用いて、トナーの平均円形度を求める。   As a specific measurement method, 10 ml of ion-exchanged water from which impure solids and the like are previously removed is prepared in a container, and after adding a surfactant, preferably an alkylbenzene sulfonate as a dispersant, a measurement sample 0.02 g is added and dispersed uniformly. As a means to disperse, an ultrasonic disperser “UH-50 type” (manufactured by SMT Co., Ltd.) equipped with a titanium alloy chip having a diameter of 5 mm as a vibrator is used. A dispersion is obtained. In that case, it cools suitably so that the temperature of this dispersion may not be 40 degreeC or more. The dispersion concentration is adjusted so that the toner particle concentration at the time of measurement is 3000 to 10,000 / μl, and 1000 or more toner particles are measured. After the measurement, the average circularity of the toner is obtained using this data.

(4)現像剤担持体表面の算術平均粗さRaの測定
現像剤担持体の表面の算術平均粗さは、JIS B0601(2001)に基づき、(株)小坂研究所製サーフコーダーSE−3500を用いて行う。測定条件としては、カッ
トオフ0.8mm、評価長さ4mm、送り速度0.5mm/sにて、軸方向3点×周方向3点=9点について各々測定し、その平均値をとる。
(4) Measurement of the arithmetic average roughness Ra of the surface of the developer carrier The arithmetic average roughness of the surface of the developer carrier is based on JIS B0601 (2001), according to Surfcorder SE-3500 manufactured by Kosaka Laboratory. To do. As measurement conditions, each of 3 points in the axial direction × 3 points in the circumferential direction = 9 points was measured at a cutoff of 0.8 mm, an evaluation length of 4 mm, and a feed rate of 0.5 mm / s, and an average value thereof was taken.

(5)樹脂被覆層の体積抵抗値の測定
樹脂被覆層の体積抵抗値は、100μmの厚さのPETシート上に、現像剤担持体の樹脂被覆層を構成する同じ塗布液を用い、7〜20μmの厚さの被覆層を形成し、ローレスターAP(三菱油化(株)製)に4端子プローブを取り付けて測定する。なお、測定環境は20〜25℃、50〜60RH%とする。
(5) Measurement of Volume Resistance Value of Resin Coating Layer The volume resistance value of the resin coating layer is determined by using the same coating liquid that constitutes the resin coating layer of the developer carrier on a PET sheet having a thickness of 100 μm. A coating layer having a thickness of 20 μm is formed, and measurement is performed by attaching a 4-terminal probe to Lorester AP (manufactured by Mitsubishi Yuka Co., Ltd.). In addition, a measurement environment shall be 20-25 degreeC and 50-60RH%.

(6)凹凸付与粒子及び黒鉛化粒子の粒径測定並びに樹脂被覆層中の粒子の存在比率の測定
凹凸付与粒子及び黒鉛化粒子の体積平均粒径及び樹脂被覆層中の粒子の存在比率は、レーザ回折型粒度分布計のコールターLS−230型粒度分布計(ベックマン・コールター(株)製)を用いて測定することができる。測定方法としては、少量モジュールを用い、測定溶媒としてはイソプロピルアルコール(IPA)を使用する。IPAにて粒度分布計の測定系内を約5分間洗浄し、洗浄後バックグラウンドファンクションを実行する。次にIPA50ml中に、測定試料を1〜25mg加える。試料を懸濁した溶液は、超音波分散機で約1〜3分間分散処理を行い、試料液を得て、前記測定装置の測定系内に試料液を徐々に加えて、装置の画面上のPIDS(偏向散乱強度差測定法)により、サンプルセルのサンプル濃度が45〜55%になるように測定系内の試料濃度を調整して測定を行い、体積平均粒径及び体積分布から算出した粒子の存在比率を得ることができる。
(7)凹凸付与粒子の球形の度合いの測定
凹凸形成粒子の長径/短径比は、電子顕微鏡を用いて、6000倍程度で撮影し、写真上で粒子の長径及び短径を測定して、算出する。これを100サンプルについて測定し、その平均値を長径/短径比とする。
(6) Measurement of particle size of irregularity imparting particles and graphitized particles and measurement of abundance ratio of particles in resin coating layer Volume average particle size of irregularity imparting particles and graphitized particles and abundance ratio of particles in resin coating layer are: It can be measured using a Coulter LS-230 particle size distribution meter (manufactured by Beckman Coulter, Inc.) of a laser diffraction type particle size distribution meter. As a measuring method, a small amount module is used, and isopropyl alcohol (IPA) is used as a measuring solvent. Wash the measurement system of the particle size distribution analyzer with IPA for about 5 minutes, and execute the background function after washing. Next, 1 to 25 mg of a measurement sample is added to 50 ml of IPA. The solution in which the sample is suspended is subjected to a dispersion treatment with an ultrasonic disperser for about 1 to 3 minutes to obtain a sample solution, and the sample solution is gradually added into the measurement system of the measurement device, and the sample solution is displayed on the screen of the device. Particles calculated from the volume average particle diameter and volume distribution by PIDS (polarized scattering intensity difference measurement method), adjusting the sample concentration in the measurement system so that the sample concentration in the sample cell is 45 to 55%. Can be obtained.
(7) Measuring the degree of spherical shape of the irregularity-imparting particles The major axis / minor axis ratio of the irregularity-forming particles was photographed at about 6000 times using an electron microscope, and the major axis and minor axis of the particles were measured on the photograph, calculate. This is measured for 100 samples, and the average value is taken as the ratio of major axis / minor axis.

以下、本発明を実施例及び比較例を用いて詳細に説明するが、本実施例は本発明を何ら限定するものではない。なお、実施例及び比較例中の「%」及び「部」とあるのは、特に断りのない限り全て質量基準である。   EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example and a comparative example, a present Example does not limit this invention at all. In the examples and comparative examples, “%” and “part” are all based on mass unless otherwise specified.

<黒鉛化粒子の製造方法>
現像剤担持体の樹脂被覆層に用いる黒鉛化粒子は以下のように作製した。
(黒鉛化粒子A−1の製造例)
黒鉛化粒子A−1の製造方法について説明する。
まず、黒鉛化粒子の原材料として、石炭系重質油を熱処理し、生成した粗メソカーボンマイクロビーズを遠心分離し、ベンゼンで洗浄精製して乾燥した後、アトマイザーミルで機械的に分散を行うことでメソカーボンマイクロビーズを得た。このメソカーボンマイクロビーズを窒素雰囲気下において1200℃で一次焼成を行い炭化させ、続いてアトマイザーミルで二次分散を行った後、窒素雰囲気下において3000℃で二次焼成を行い黒鉛化し、更に分級して黒鉛化粒子A−1(黒鉛化度0.42、体積平均粒径1.86μm)を得た。黒鉛化粒子A−1の物性を表1に示す。
(黒鉛化粒子A−2の製造例)
黒鉛化粒子A−1の分級条件を変えた以外は、黒鉛化粒子A−1と同様に作製し、黒鉛化粒子A−2(黒鉛化度0.42、体積平均粒径3.95μm)を得た。黒鉛化粒子A−2の物性を表1に示す。
(黒鉛化粒子A−3の製造例)
黒鉛化粒子A−1の分級条件を変えた以外は、黒鉛化粒子A−1と同様に作製し、黒鉛化粒子A−3(黒鉛化度0.42、体積平均粒径0.53μm)を得た。黒鉛化粒子A−3の物性を表1に示す。
<Method for producing graphitized particles>
Graphitized particles used for the resin coating layer of the developer carrying member were prepared as follows.
(Production Example of Graphitized Particle A-1)
The manufacturing method of graphitized particle A-1 is demonstrated.
First, as a raw material for graphitized particles, heat-treat heavy coal oil, centrifuge the generated crude mesocarbon microbeads, wash with benzene, dry, and then mechanically disperse with an atomizer mill To obtain mesocarbon microbeads. The mesocarbon microbeads were subjected to primary firing at 1200 ° C. in a nitrogen atmosphere and carbonized, followed by secondary dispersion in an atomizer mill, followed by secondary firing at 3000 ° C. in a nitrogen atmosphere, followed by graphitization. Thus, graphitized particles A-1 (degree of graphitization 0.42, volume average particle size 1.86 μm) were obtained. Table 1 shows the physical properties of the graphitized particles A-1.
(Production Example of Graphitized Particle A-2)
The graphitized particle A-2 was prepared in the same manner as the graphitized particle A-1 except that the classification conditions of the graphitized particle A-1 were changed. Obtained. Table 1 shows the physical properties of the graphitized particles A-2.
(Production Example of Graphitized Particle A-3)
The graphitized particles A-3 were prepared in the same manner as the graphitized particles A-1, except that the classification conditions of the graphitized particles A-1 were changed. Obtained. Table 1 shows the physical properties of the graphitized particles A-3.

(黒鉛化粒子A−4の製造例)
黒鉛化粒子A−4の製造方法について説明する。
黒鉛化粒子の原材料として、黒鉛化粒子A−1で用いたものと同様の石炭系重質油を熱処理し、生成した粗メソカーボンマイクロビーズを遠心分離し、ベンゼンで洗浄精製して乾燥した後、アトマイザーミルで機械的に分散を行うことでメソカーボンマイクロビーズを得た。このメソカーボンマイクロビーズを窒素雰囲気下において1200℃で一次焼成を行い炭化させ、続いてアトマイザーミルで二次分散を行った後、窒素雰囲気下において2200℃で二次焼成を行い黒鉛化し、更に分級して黒鉛化粒子A−4(黒鉛化度0.93、体積平均粒径3.82μm)を得た。黒鉛化粒子A−4の物性を表1に示す。
(黒鉛化粒子A−5の製造例)
黒鉛化粒子A−4の分級条件を変えた以外は、黒鉛化粒子A−4と同様に作製し、黒鉛化粒子A−5(黒鉛化度0.93、体積平均粒径0.55μm)を得た。黒鉛化粒子A−5の物性を表1に示す。
(Production Example of Graphitized Particle A-4)
A method for producing the graphitized particles A-4 will be described.
After heat treating coal-based heavy oil similar to that used in graphitized particle A-1 as a raw material for graphitized particles, the resulting crude mesocarbon microbeads are centrifuged, washed and purified with benzene, and dried. Then, mesocarbon microbeads were obtained by mechanically dispersing with an atomizer mill. The mesocarbon microbeads were first baked at 1200 ° C. in a nitrogen atmosphere to be carbonized, followed by secondary dispersion in an atomizer mill, followed by secondary calcination at 2200 ° C. in a nitrogen atmosphere, followed by classification. As a result, graphitized particles A-4 (degree of graphitization: 0.93, volume average particle size: 3.82 μm) were obtained. Table 1 shows the physical properties of the graphitized particles A-4.
(Production example of graphitized particles A-5)
The graphitized particle A-5 was prepared in the same manner as the graphitized particle A-4 except that the classification conditions of the graphitized particle A-4 were changed, and the graphitized particle A-5 (graphitization degree 0.93, volume average particle size 0.55 μm) was obtained. Obtained. Table 1 shows the physical properties of the graphitized particles A-5.

(黒鉛化粒子A−6の製造例)
黒鉛化粒子A−6の製造方法について説明する。
黒鉛化粒子の原材料として、黒鉛化粒子A−1で用いたものと同様の石炭系重質油を熱処理し、生成した粗メソカーボンマイクロビーズを遠心分離し、ベンゼンで洗浄精製して乾燥した後、アトマイザーミルで機械的に分散を行うことでメソカーボンマイクロビーズを得た。このメソカーボンマイクロビーズを窒素雰囲気下において1200℃で一次焼成を行い炭化させ、続いてアトマイザーミルで二次分散を行った後、窒素雰囲気下において3300℃で二次焼成を行い黒鉛化し、更に分級して黒鉛化粒子A−6(黒鉛化度0.23、体積平均粒径3.92μm)を得た。黒鉛化粒子A−6の物性を表1に示す。
(黒鉛化粒子A−7の製造例)
黒鉛化粒子A−6の分級条件を変えた以外は、黒鉛化粒子A−6と同様に作製し、黒鉛化粒子(黒鉛化度0.23、体積平均粒径0.52μm)A−7を得た。黒鉛化粒子A−7の物性を表1に示す。
(Production Example of Graphitized Particle A-6)
A method for producing the graphitized particles A-6 will be described.
After heat treating coal-based heavy oil similar to that used in graphitized particle A-1 as a raw material for graphitized particles, the resulting crude mesocarbon microbeads are centrifuged, washed and purified with benzene, and dried. Then, mesocarbon microbeads were obtained by mechanically dispersing with an atomizer mill. The mesocarbon microbeads were subjected to primary firing at 1200 ° C. in a nitrogen atmosphere and carbonized, followed by secondary dispersion with an atomizer mill, followed by secondary firing at 3300 ° C. in a nitrogen atmosphere for further graphitization. As a result, graphitized particles A-6 (degree of graphitization 0.23, volume average particle size 3.92 μm) were obtained. Table 1 shows the physical properties of the graphitized particles A-6.
(Production Example of Graphitized Particle A-7)
A graphitized particle (degree of graphitization 0.23, volume average particle size 0.52 μm) A-7 was prepared in the same manner as graphitized particle A-6 except that the classification conditions of graphitized particle A-6 were changed. Obtained. Table 1 shows the physical properties of the graphitized particles A-7.

(黒鉛化粒子A−8の製造例)
黒鉛化粒子A−8の製造方法について説明する。
黒鉛化粒子の原材料として、コールタールピッチから溶剤分別によりβ−レジンを抽出し、これを水素添加、重質化処理を行った後、次いでトルエンにより溶剤可溶分を除去することでバルクメソフェーズピッチを得た。そのバルクメソフェーズピッチ粉末を微粉砕し、それを空気中において約300℃で酸化処理した後、窒素雰囲気下にて2300℃で熱処理し、更に分級して黒鉛化粒子A−8(黒鉛化度0.39、体積平均粒径1.92μm)を得た。黒鉛化粒子A−8の物性を表1に示す。
(黒鉛化粒子A−9の製造例)
黒鉛化粒子A−9の製造方法について説明する。
黒鉛化粒子の原材料として、黒鉛化粒子A−8で用いたものと同様のコールタールピッチから溶剤分別によりβ−レジンを抽出し、これを水素添加、重質化処理を行った後、次いでトルエンにより溶剤可溶分を除去することでバルクメソフェーズピッチを得た。そのバルクメソフェーズピッチ粉末を微粉砕し、それを空気中において約300℃で酸化処理した後、窒素雰囲気下にて2000℃で熱処理し、更に分級して黒鉛化粒子A−9(黒鉛化度0.65、体積平均粒径3.89μm)を得た。黒鉛化粒子A−9の物性を表1に示す。
(Production Example of Graphitized Particle A-8)
A method for producing the graphitized particles A-8 will be described.
As a raw material for graphitized particles, β-resin is extracted from coal tar pitch by solvent fractionation, hydrogenated and heavyized, and then the solvent-soluble component is removed with toluene to remove bulk mesophase pitch. Got. The bulk mesophase pitch powder was finely pulverized, oxidized in air at about 300 ° C., heat-treated at 2300 ° C. in a nitrogen atmosphere, further classified, and graphitized particles A-8 (degree of graphitization 0) .39, volume average particle size 1.92 μm). Table 1 shows the physical properties of the graphitized particles A-8.
(Production Example of Graphitized Particle A-9)
A method for producing the graphitized particles A-9 will be described.
As a raw material for graphitized particles, β-resin was extracted from the same coal tar pitch as that used for graphitized particles A-8 by solvent fractionation, hydrogenated and heavyized, and then toluene. The bulk mesophase pitch was obtained by removing the solvent-soluble component. The bulk mesophase pitch powder was finely pulverized, oxidized in air at about 300 ° C., then heat-treated at 2000 ° C. in a nitrogen atmosphere, further classified, and graphitized particles A-9 (zero graphitization degree). 0.65 and a volume average particle size of 3.89 μm). Table 1 shows the physical properties of the graphitized particles A-9.

(黒鉛化粒子A−10の製造例)
黒鉛化粒子A−10の製造方法について説明する。
黒鉛化粒子の原材料として、黒鉛化粒子A−8で用いたものと同様のコールタールピッ
チから溶剤分別によりβ−レジンを抽出し、これを水素添加、重質化処理を行った後、次いでトルエンにより溶剤可溶分を除去することでバルクメソフェーズピッチを得た。そのバルクメソフェーズピッチ粉末を微粉砕し、それを空気中において約300℃で酸化処理した後、窒素雰囲気下にて3200℃で熱処理し、更に分級して黒鉛化粒子A−10(黒鉛化度0.25、体積平均粒径0.62μm)を得た。黒鉛化粒子A−10の物性を表1に示す。
(黒鉛化粒子a−1の製造例)
黒鉛化粒子A−8の分級条件を変えた以外は、黒鉛化粒子A−8と同様に作製し、黒鉛化粒子a−1(黒鉛化度0.39、体積平均粒径7.18μm)を得た。黒鉛化粒子a−1の物性を表1に示す。
(黒鉛化粒子a−2の製造例)
黒鉛化粒子a−2の製造方法について説明する。
黒鉛化粒子の原材料として、黒鉛化粒子A−1で用いたものと同様の石炭系重質油を熱処理し、生成した粗メソカーボンマイクロビーズを遠心分離し、ベンゼンで洗浄精製して乾燥した後、アトマイザーミルで機械的に分散を行うことでメソカーボンマイクロビーズを得た。このメソカーボンマイクロビーズを窒素雰囲気下において1200℃で一次焼成を行い炭化させ、続いてアトマイザーミルで二次分散を行った後、窒素雰囲気下において1800℃で二次焼成を行い黒鉛化し、更に分級して黒鉛化粒子a−2(黒鉛化度0.98、体積平均粒径3.64μm)を得た。黒鉛化粒子a−2の物性を表1に示す。
(Production Example of Graphitized Particle A-10)
A method for producing the graphitized particles A-10 will be described.
As a raw material for graphitized particles, β-resin was extracted from the same coal tar pitch as that used for graphitized particles A-8 by solvent fractionation, hydrogenated and heavyized, and then toluene. The bulk mesophase pitch was obtained by removing the solvent-soluble component. The bulk mesophase pitch powder was finely pulverized, oxidized in air at about 300 ° C., then heat treated at 3200 ° C. in a nitrogen atmosphere, and further classified to graphitized particles A-10 (zero graphitization degree). .25, volume average particle size 0.62 μm). Table 1 shows the physical properties of the graphitized particles A-10.
(Production example of graphitized particles a-1)
A graphitized particle a-1 (degree of graphitization 0.39, volume average particle size 7.18 μm) was prepared in the same manner as graphitized particle A-8 except that the classification conditions of graphitized particle A-8 were changed. Obtained. Table 1 shows the physical properties of the graphitized particles a-1.
(Production example of graphitized particles a-2)
A method for producing the graphitized particles a-2 will be described.
After heat treating coal-based heavy oil similar to that used in graphitized particle A-1 as a raw material for graphitized particles, the resulting crude mesocarbon microbeads are centrifuged, washed and purified with benzene, and dried. Then, mesocarbon microbeads were obtained by mechanically dispersing with an atomizer mill. The mesocarbon microbeads were subjected to primary firing at 1200 ° C. in a nitrogen atmosphere and carbonized, followed by secondary dispersion in an atomizer mill, followed by secondary firing at 1800 ° C. in a nitrogen atmosphere, followed by classification. Thus, graphitized particles a-2 (degree of graphitization 0.98, volume average particle size 3.64 μm) were obtained. Table 1 shows the physical properties of the graphitized particles a-2.

(黒鉛化粒子a−3の製造例)
黒鉛化粒子a−3の製造方法について説明する。
黒鉛化粒子の原材料として、球状フェノール樹脂粒子(体積平均粒径3.91μm)を用い、この球状フェノール樹脂粒子を窒素雰囲気下において2200℃で焼成することで黒鉛化し、更に分級して黒鉛化粒子a−3(黒鉛化度は測定不能、体積平均粒径3.89μm)を得た。黒鉛化粒子a−3の物性を表1に示す。
(黒鉛化粒子a−4の製造例)
次に、黒鉛化粒子a−4の製造方法について説明する。
黒鉛化粒子の原材料として、コークス及びタールピッチを用い、このコークス及びタールピッチを窒素雰囲気下において2800℃で焼成することで黒鉛化し、更に分級して黒鉛化粒子a−4(黒鉛化度0.07、体積平均粒径7.38μm)を得た。黒鉛化粒子a−4の物性を表1に示す。
(Production example of graphitized particles a-3)
A method for producing the graphitized particles a-3 will be described.
Spherical phenol resin particles (volume average particle diameter 3.91 μm) are used as raw materials for graphitized particles, and the spherical phenol resin particles are graphitized by firing at 2200 ° C. in a nitrogen atmosphere, and further classified to graphitized particles. a-3 (degree of graphitization cannot be measured, volume average particle size 3.89 μm) was obtained. Table 1 shows the physical properties of the graphitized particles a-3.
(Production example of graphitized particles a-4)
Next, the manufacturing method of graphitized particle a-4 is demonstrated.
Coke and tar pitch are used as raw materials for the graphitized particles. The coke and tar pitch are graphitized by firing at 2800 ° C. in a nitrogen atmosphere, and further classified to graphitized particles a-4 (degree of graphitization 0. 07, volume average particle size 7.38 μm). Table 1 shows the physical properties of graphitized particles a-4.

Figure 0004324040
Figure 0004324040

<凹凸付与粒子の製造方法>
(凹凸付与粒子B−1の製造例)
凹凸付与粒子は、体積平均粒径6.1μmの球状フェノール樹脂粒子100部にライカイ機(自動乳鉢、(株)石川工場製)を用いて個数平均粒径2μm以下の石炭系バルクメソフェーズピッチ粉末14部を均一に被覆し、空気中下280℃で熱安定化処理した後に窒素雰囲気下2000℃で焼成することにより黒鉛化し、更に分級して凹凸付与粒子B−1を得た。得られた凹凸付与粒子B−1は、体積平均粒径6.3μmの球状導電性炭素粒子であった。この凹凸付与粒子B−1の真密度は1.48g/cm、体積抵抗値は8.1×10−2Ω・cm、粒子の長径/短径の比は1.05であった。凹凸付与粒子B−1の物性を表2に示す。
(凹凸付与粒子B−2の製造例)
凹凸付与粒子B−1の分級条件を変えた以外は、凹凸付与粒子B−1と同様に作製し、体積平均粒径3.2μmの凹凸付与粒子B−2を得た。凹凸粒子B−2の物性を表2に示す。
<Method for producing irregularity imparting particles>
(Production example of irregularity imparting particles B-1)
Concavity and convexity imparted particles are obtained by using a coal-based bulk mesophase pitch powder 14 having a number average particle diameter of 2 μm or less using a raikai machine (automatic mortar, manufactured by Ishikawa Factory) on 100 parts of spherical phenol resin particles having a volume average particle diameter of 6.1 μm. The coating was uniformly coated, thermally stabilized at 280 ° C. in air, then graphitized by firing at 2000 ° C. in a nitrogen atmosphere, and further classified to obtain unevenness imparting particles B-1. The obtained unevenness imparting particles B-1 were spherical conductive carbon particles having a volume average particle size of 6.3 μm. The true density of the unevenness imparting particles B-1 was 1.48 g / cm 3 , the volume resistance value was 8.1 × 10 −2 Ω · cm, and the ratio of major axis / minor axis of the particles was 1.05. Table 2 shows the physical properties of the irregularity-providing particles B-1.
(Production example of irregularity imparting particles B-2)
Except having changed the classification conditions of uneven | corrugated particle | grains B-1, it produced similarly to the uneven | corrugated particle | grains B-1, and obtained uneven | corrugated particle | grains B-2 with a volume average particle diameter of 3.2 micrometers. Table 2 shows the physical properties of the uneven particle B-2.

(凹凸付与粒子B−3の製造例)
凹凸付与粒子B−1を作製するために用いられた体積平均粒径6.1μmの球状フェノール樹脂粒子の代わりに体積平均粒径8.6μmの球状フェノール樹脂粒子を用いたこと以外は、凹凸付与粒子B−1と同様に作製し、体積平均粒径8.7μmの凹凸付与粒子B−3を得た。凹凸粒子B−3の物性を表2に示す。
(凹凸付与粒子b−1の製造例)
凹凸付与粒子B−1の分級条件を変えた以外は、凹凸付与粒子B−1と同様に作製し、体積平均粒径2.1μmの凹凸付与粒子b−1を得た。凹凸付与粒子b−1の物性を表2に示す。
(凹凸付与粒子b−2の製造例)
凹凸付与粒子B−1の分級条件を変えた以外は、凹凸付与粒子B−1と同様に作製し、体積平均粒径9.5μmの凹凸付与粒子b−2を得た。凹凸付与粒子b−2の物性を表2に示す。
(Production example of irregularity imparting particles B-3)
Except for using spherical phenol resin particles having a volume average particle size of 8.6 μm instead of spherical phenol resin particles having a volume average particle size of 6.1 μm used for producing the uneven particle providing particle B-1, providing irregularities. Produced in the same manner as the particle B-1, an unevenness imparting particle B-3 having a volume average particle size of 8.7 μm was obtained. Table 2 shows the physical properties of the uneven particle B-3.
(Manufacturing example of irregularity imparting particles b-1)
Except having changed the classification conditions of uneven | corrugated particle | grains B-1, it produced similarly to the uneven | corrugated particle | grains B-1, and obtained uneven | corrugated particle | grains b-1 with a volume average particle diameter of 2.1 micrometers. Table 2 shows the physical properties of the unevenness imparting particles b-1.
(Production example of unevenness imparting particles b-2)
Except having changed the classification conditions of uneven | corrugated particle | grains B-1, it produced similarly to the uneven | corrugated particle | grains B-1, and obtained uneven | corrugated particle | grains b-2 with a volume average particle diameter of 9.5 micrometers. Table 2 shows the physical properties of the unevenness imparting particles b-2.

Figure 0004324040
Figure 0004324040

[実施例1]
<現像剤担持体の製造>
下記に示す配合比で現像スリーブ表面に設ける樹脂被覆層の塗布液を作製した。
・アンモニアを触媒として製造された
レゾール型フェノール樹脂(50%メタノール溶液) 300部
・黒鉛化粒子A−1 70部
・カーボンブラック 30部
・凹凸付与粒子B−1 12部
・イソプロピルアルコール 500部
上記材料を、ガラスビーズを用いてサンドミルにて分散する。分散方法としては、アンモニアを触媒として製造されたレゾール型フェノール樹脂溶液(メタノール50%含有)200部に黒鉛化粒子A−1を70部、及びイソプロピルアルコールを200部添加し、直径1mmのガラスビーズをメディア粒子として用いたサンドミルにて分散して塗布液中間体I−1を得た。この塗布液中間体I−1中の黒鉛化粒子の体積平均粒径は1.73μm、黒鉛化度P(002)は0.41であった。
[Example 1]
<Manufacture of developer carrier>
A coating solution for the resin coating layer provided on the surface of the developing sleeve was prepared at the following mixing ratio.
-300 parts of resol-type phenolic resin (50% methanol solution) produced using ammonia as a catalyst-70 parts of graphitized particles A-1-30 parts of carbon black-12 parts of irregularities imparted particles B-1-500 parts of isopropyl alcohol Is dispersed in a sand mill using glass beads. As a dispersion method, 70 parts of graphitized particles A-1 and 200 parts of isopropyl alcohol are added to 200 parts of a resol-type phenol resin solution (containing 50% methanol) prepared using ammonia as a catalyst, and glass beads having a diameter of 1 mm are added. Was dispersed in a sand mill using media particles to obtain a coating liquid intermediate I-1. The volume average particle diameter of graphitized particles in this coating liquid intermediate I-1 was 1.73 μm, and the degree of graphitization P (002) was 0.41.

残りのレゾール型フェノール樹脂溶液(メタノール50%含有)100部にイソプロピルアルコール100部とカーボンブラック30部及び凹凸付与粒子B−1の12部を加え、直径1.5mmのガラスビーズをメディア粒子としたサンドミル分散して塗布液中間体J−1を得た。前記塗布液中間体I−1、塗布液中間体J−1及びイソプロピルアルコール200部を混合・攪拌して塗布液K−1を得た。塗布液K−1中の体積粒度分布における体積粒径が10μm以上の粒子の存在比率は0.15%であった。塗布液の物性を表3に示す。   100 parts of isopropyl alcohol, 30 parts of carbon black, and 12 parts of irregularity-providing particles B-1 were added to 100 parts of the remaining resol type phenol resin solution (containing 50% methanol), and glass beads having a diameter of 1.5 mm were used as media particles. Sand mill dispersion was performed to obtain a coating liquid intermediate J-1. The coating liquid intermediate I-1, the coating liquid intermediate J-1, and 200 parts of isopropyl alcohol were mixed and stirred to obtain a coating liquid K-1. The abundance ratio of particles having a volume particle size of 10 μm or more in the volume particle size distribution in the coating liquid K-1 was 0.15%. Table 3 shows the physical properties of the coating solution.

Figure 0004324040
Figure 0004324040

上記塗布液K−1を用いてスプレー法により外径16mmのアルミニウム製円筒管上に樹脂被覆層を形成させ、続いて熱風乾燥炉により150℃、30分間加熱して樹脂被覆層を硬化させて現像剤担持体S−1を得た。   A resin coating layer is formed on an aluminum cylindrical tube having an outer diameter of 16 mm by the spray method using the coating solution K-1, and then heated at 150 ° C. for 30 minutes in a hot air drying furnace to cure the resin coating layer. Developer carrier S-1 was obtained.

<トナーの製造例1>
下記の手順によって重合法で重合トナーを作製した。まず、60℃に加温したイオン交
換水900gに、リン酸三カルシウム3部を添加し、TK式ホモミキサー(特殊機化工業(株)製)を用いて、10,000rpmにて撹拌し、水系媒体を作製した。
また、下記処方をホモジナイザー(日本精機(株)製)に投入し、60℃に加温した後、9,000rpmにて攪拌し、溶解、分散した。
・スチレン 150部
・n−ブチルアクリレート 50部
・C.I.ピグメントブルー15:3 18部
・サリチル酸アルミニウム化合物 2部
(ボントロンE−88:オリエント化学(株)製)
・ポリエステル樹脂 15部
(プロピレンオキサイド変性ビスフェノールAとイソフタル酸との重縮合物、Tg=65℃、Mw=10000、Mn=6000)
・ステアリン酸ステアリルワックス 30部
(DSCのメインピーク60℃)
・ジビニルベンゼン 0.6部
<Toner Production Example 1>
A polymerized toner was prepared by a polymerization method according to the following procedure. First, 3 parts of tricalcium phosphate is added to 900 g of ion-exchanged water heated to 60 ° C., and stirred at 10,000 rpm using a TK homomixer (manufactured by Tokushu Kika Kogyo Co., Ltd.). An aqueous medium was prepared.
Further, the following formulation was put into a homogenizer (manufactured by Nippon Seiki Co., Ltd.), heated to 60 ° C., stirred at 9,000 rpm, dissolved and dispersed.
-Styrene 150 parts-n-butyl acrylate 50 parts-C.I. I. Pigment Blue 15: 3 18 parts, Aluminum salicylate compound 2 parts (Bontron E-88: manufactured by Orient Chemical Co., Ltd.)
Polyester resin 15 parts (polycondensation product of propylene oxide modified bisphenol A and isophthalic acid, Tg = 65 ° C., Mw = 10000, Mn = 6000)
-Stearyl stearate 30 parts (DSC main peak 60 ° C)
・ Divinylbenzene 0.6 parts

これに重合開始剤2,2’−アゾビス(2,4−ジメチルバレロニトリル)5部を溶解し、重合性単量体組成物を調製した。前記水系媒体中に上記重合性単量体組成物を投入し、60℃、窒素雰囲気下において、TK式ホモミキサーを用いて8,000rpmで攪拌し、造粒した。その後、プロペラ式攪拌装置に移して攪拌しつつ、2時間かけて70℃に昇温し、更に4時間後、昇温速度40℃/Hrで80℃まで昇温し、80℃で5時間反応を行い、重合体粒子を製造した。重合反応終了後、該粒子を含むスラリーを冷却し、スラリーの10倍の水量で洗浄し、ろ過、乾燥の後、分級によって粒径を調整して、シアントナー粒子(重量平均粒径6.8μm、平均円形度0.976)を得た。
上記シアントナー粒子100部に対して、シリカ(R812、日本アエロジル(株)製)1.3部をヘンシェルミキサー(三井三池化工業(株)製)で混合して本発明のトナーAを得た。
In this, 5 parts of a polymerization initiator 2,2′-azobis (2,4-dimethylvaleronitrile) was dissolved to prepare a polymerizable monomer composition. The polymerizable monomer composition was put into the aqueous medium, and granulated by stirring at 8,000 rpm using a TK homomixer at 60 ° C. in a nitrogen atmosphere. Then, the temperature was raised to 70 ° C. over 2 hours while being transferred to a propeller type agitator and further heated up to 80 ° C. at a temperature raising rate of 40 ° C./Hr after 4 hours, and reacted at 80 ° C. for 5 hours. To produce polymer particles. After the completion of the polymerization reaction, the slurry containing the particles is cooled, washed with 10 times the amount of water as the slurry, filtered and dried, and the particle size is adjusted by classification to obtain cyan toner particles (weight average particle size 6.8 μm). The average circularity was 0.976).
To 100 parts of the cyan toner particles, 1.3 parts of silica (R812, manufactured by Nippon Aerosil Co., Ltd.) was mixed with a Henschel mixer (manufactured by Mitsui Miike Chemical Co., Ltd.) to obtain the toner A of the present invention. .

<評価>
評価機の現像装置構成の改造は、市販のカラーレーザビームプリンタ(キヤノン(株)製 LBP2510)に用いられるEP−85のシアンカートリッジから現像剤担持体及び現像剤担持体上に装着されている帯電補助ローラを外し、シアンカートリッジに前記トナーAを充填し、更に上記現像剤担持体S−1を組み込んで行った。また、現像剤担持体の左右についているコロの直径を大きいものに変更し、現像剤担持体と感光体との間のS−Dギャップを250μmとした。現像剤層厚規制部材として弾性ブレード(リン青銅薄板上にショアーD硬度40度のポリアミドポリエーテルエラストマーを射出成形したもの)を設けて、改造したものを用いた。また現像バイアスとしては、図3に示すようなVpp:2kV、Vdc:250V、周波数f=3kHz、ブランク部100Hzのものを用いた。改造したEP−85のシアンカートリッジをシアンステーションに装着し、その他のステーションにはダミーカートリッジを装着して、1.5万枚の耐久試験として単色評価を実施した。
<Evaluation>
Remodeling of the developing device configuration of the evaluation machine is based on the EP-85 cyan cartridge used in a commercially available color laser beam printer (LBP2510 manufactured by Canon Inc.) and the developer carrier and the developer carrier mounted on the developer carrier. The auxiliary roller was removed, the toner cartridge A was filled with the toner A, and the developer carrier S-1 was further incorporated. Further, the diameter of the roller on the left and right of the developer carrying member was changed to a larger one, and the SD gap between the developer carrying member and the photosensitive member was set to 250 μm. An elastic blade (in which a polyamide polyether elastomer having a Shore D hardness of 40 degrees was injection-molded on a phosphor bronze thin plate) as a developer layer thickness regulating member was used, and a modified one was used. As the developing bias, those shown in FIG. 3 having Vpp: 2 kV, Vdc: 250 V, frequency f = 3 kHz, and blank portion 100 Hz were used. A modified EP-85 cyan cartridge was installed in the cyan station, and dummy cartridges were installed in the other stations, and a single color evaluation was performed as a durability test of 15,000 sheets.

下記に挙げる項目について評価試験を行った。表4に評価結果を示した。耐久環境として、15℃/10%RHの低温/低湿環境(L/L)下、23℃/60%RHの常温/常湿環境(N/N)下及び30℃/85%RHの高温/高湿環境(H/H)の3つの耐久環境について評価試験を行った。
<評価方法>
(1)画像濃度
画像濃度は、反射濃度計RD918(マクベス社製)を使用し、ベタ印字した際のベタ部の濃度を5点測定し、その平均値を画像濃度とした。
An evaluation test was conducted on the following items. Table 4 shows the evaluation results. Endurance environment: 15 ° C / 10% RH low temperature / low humidity environment (L / L), 23 ° C / 60% RH normal temperature / normal humidity environment (N / N) and 30 ° C / 85% RH high temperature / An evaluation test was conducted on three durability environments of high humidity environment (H / H).
<Evaluation method>
(1) Image Density For the image density, a reflection densitometer RD918 (manufactured by Macbeth Co., Ltd.) was used.

(2)カブリ
ベタ白画像の反射率を測定し、さらに未使用の転写紙の反射率を測定し、ベタ白画像の反射率の最悪値から未使用転写紙の反射率の最高値を引いたものをカブリ濃度とし下記の評価基準で評価した。反射率はTC−6DS(東京電色(株)製)で測定した。
A:1.5%以下であり目視では殆ど確認できないレベル。
B:1.5〜2.0%程度であり、よく見ると確認できるレベル。
C:2.0〜3.0%程度であり、実用上下限レベル。
D:4.0%を超える場合、一見してカブリが確認できるレベル(実用不可)。
(2) Fog Measure the reflectance of a solid white image, further measure the reflectance of an unused transfer paper, and subtract the highest value of the reflectance of the unused transfer paper from the worst value of the reflectance of the solid white image. The thing was made into fog density and evaluated according to the following evaluation criteria. The reflectance was measured with TC-6DS (manufactured by Tokyo Denshoku Co., Ltd.).
A: The level is 1.5% or less and is hardly observable visually.
B: A level that is about 1.5 to 2.0% and can be confirmed by looking closely.
C: About 2.0 to 3.0%, practically lower limit level.
D: When it exceeds 4.0%, it is a level where fog can be confirmed at first glance (impractical).

(3)濃度一様性
ハーフトーン画像での濃度一様性を主として目視で比較した。評価結果は、下記の指標で表示した。
A:濃淡差が全く見られない。
B:軽微な濃淡差が見られる。
C:濃淡差がかなり見られる。
D:実用上問題となる濃淡差がみられる。
(3) Density uniformity The density uniformity in the halftone images was mainly compared visually. The evaluation results were displayed with the following indices.
A: No difference in shading is observed.
B: A slight shading difference is observed.
C: A considerable difference in shading is observed.
D: A light and shade difference which is a practical problem is observed.

(4)樹脂被膜層の耐摩耗性
耐久前後で現像剤担持体の樹脂被覆層表面の算術平均粗さ(Ra)の測定を行った。また、樹脂被覆層の削れ量(膜削れ)の測定としては、(株)キーエンス製のレーザ寸法測定器を用いた。コントローラLS−5500及びセンサーヘッドLS−5040Tを用い、現像スリーブ固定治具及び現像スリーブ送り機構を取り付けた装置にセンサー部を別途固定し、現像スリーブの外径寸法の平均値から測定を行った。現像測定はスリーブ長手方向に対し30分割して30箇所測定し、さらに現像スリーブを周方向に90°回転させた後さらに30箇所、計60箇所の測定を行い、その平均値をとった。樹脂被覆層塗布前のスリーブの外径を予め測定しておき、樹脂被覆層形成後の外径、さらに耐久使用後の外径を測定し、その差分を樹脂被覆層の膜厚及び削れ量とした。
(4) Abrasion resistance of resin coating layer The arithmetic average roughness (Ra) of the resin coating layer surface of the developer carrier was measured before and after durability. Further, a laser dimension measuring device manufactured by Keyence Co., Ltd. was used for measuring the amount of abrasion (film abrasion) of the resin coating layer. Using a controller LS-5500 and a sensor head LS-5040T, a sensor unit was separately fixed to an apparatus equipped with a developing sleeve fixing jig and a developing sleeve feed mechanism, and measurement was performed from an average value of the outer diameter dimensions of the developing sleeve. The development measurement was divided into 30 parts in the longitudinal direction of the sleeve and measured at 30 points. Further, after the development sleeve was rotated 90 ° in the circumferential direction, measurements were further made at 30 points, a total of 60 points, and the average value was taken. The outer diameter of the sleeve before application of the resin coating layer is measured in advance, the outer diameter after the resin coating layer is formed, and further the outer diameter after durable use is measured. did.

(5)樹脂被覆層の耐汚染性
耐久試験後の現像剤担持体表面を(株)キーエンス製の超深度形状測定顕微鏡を用いて、約200倍で観察し、樹脂被覆層上のトナー汚染の程度を下記の基準に基づいて評価した。
A:軽微な汚染しか観察されない。
B:やや汚染が観察される。
C:部分的に汚染が観察される。
D:著しい汚染が観察される(実用不可レベル)。
(5) Contamination resistance of the resin coating layer The surface of the developer carrying member after the durability test was observed at about 200 times using an ultra-deep shape measuring microscope manufactured by Keyence Co., Ltd. The degree was evaluated based on the following criteria.
A: Only minor contamination is observed.
B: Some contamination is observed.
C: Contamination is partially observed.
D: Significant contamination is observed (impractical level).

(6)画像スジ・ムラ
ハーフトーンに発生する、画像進行方向に走る、線状、帯状のスジについて、下記基準にて評価した。
A:画像にもスリーブ上にも全く確認できない。
B:ハーフトーンでは、スジが確認できるが、ベタ黒では軽微に確認できるレベル。
C:ベタ黒画像でも濃淡差が確認できるが、実用可。
D:ベタ黒画像全体で実用上問題となる濃淡差が目立つ。
(6) Image streaks / unevenness Linear and striped streaks that occur in the halftone and run in the image traveling direction were evaluated according to the following criteria.
A: Neither image nor sleeve can be confirmed at all.
B: At halftone, streaks can be confirmed, but with solid black, minor levels can be confirmed.
C: Although a difference in shading can be confirmed even in a solid black image, it can be used.
D: The density difference which is a practical problem in the whole solid black image is conspicuous.

(7)掃き寄せ
縦×横が30mm×20mmのベタ画像の次にベタ白画像が続く画像を出力し、濃度が濃くなった部分を目視により下記の基準にて評価した。
A:画像上でほとんど確認できない。
B:軽微に濃度差が確認できる。
C:濃度差が確認できるが実用上問題のないレベル。
D:実用不可レベル。
(7) Sweeping An image in which a solid white image followed by a solid image having a length × width of 30 mm × 20 mm was output, and the darkened portion was visually evaluated according to the following criteria.
A: Almost no confirmation on the image.
B: A slight difference in density can be confirmed.
C: Level at which density difference can be confirmed, but there is no practical problem.
D: Unusable level.

(8)ブレードキズ
評価試験終了後にブレード表面の目視及びサンプリングした画像により、下記の基準にて評価した。
ブレード傷A:軽微で画像には影響無し。
ブレード傷B:やや目立つが、画像には影響無し。
ブレード傷C:目立つ傷が数箇所に発生し、画像上軽微なスジとして現れる。
ブレード傷D:非常に目立つ傷が多数発生し、画像上に顕著なスジとして現れる(実用不可レベル)。
(8) Blade Scratch After the evaluation test, the blade surface was visually evaluated and sampled images were evaluated according to the following criteria.
Blade scratch A: Minor and no effect on image.
Blade scratch B: Slightly conspicuous, but no effect on image.
Blade scratch C: Conspicuous scratches occur in several places and appear as slight streaks on the image.
Blade scratch D: A lot of very conspicuous scratches are generated and appear as remarkable streaks on the image (impractical level).

Figure 0004324040
Figure 0004324040

[実施例2]
凹凸付与粒子として、実施例1で用いた凹凸付与粒子B−1の代わりに体積平均粒径3.2μmの凹凸付与粒子B−2を用いた。
凹凸付与粒子B−2の添加量は、実施例1で作製した現像剤担持体S−1と表面の算術平均粗さRaがほぼ同等となるように調整した(表3に記載)。なお、現像剤担持体の表面の算術平均粗さRaを同等となるように調整するには、凹凸付与粒子の添加量を予め数点振って調整を行った。以下の実施例においても同様とする。実施例1で用いた塗布液中間体I−1に、塗布液中間体J−1に変えて凹凸付与粒子B−2を用いた塗布液中間体J−2を混合・攪拌して塗布液K−2を得た。塗布液K−2中の体積粒度分布における体積粒径が10μm以上の粒子の存在比率は0.07%であった。塗布液K−2を用いた以外は実施例1と同様に現像剤担持体S−2を作製し、同様の評価を行った。結果を表4に示す。
[Example 2]
As the unevenness imparting particles, the unevenness imparting particles B-2 having a volume average particle diameter of 3.2 μm were used instead of the unevenness imparting particles B-1 used in Example 1.
The addition amount of the irregularity imparting particles B-2 was adjusted so that the developer carrying body S-1 prepared in Example 1 and the surface arithmetic average roughness Ra were substantially equal (described in Table 3). In addition, in order to adjust the arithmetic average roughness Ra of the surface of the developer carrying member to be equal, the addition amount of the unevenness imparting particles was adjusted in advance by several points. The same applies to the following embodiments. The coating liquid intermediate I-1 used in Example 1 was mixed and stirred with the coating liquid intermediate J-2 using the unevenness imparting particles B-2 instead of the coating liquid intermediate J-1, and the coating liquid K was mixed. -2 was obtained. The abundance ratio of the particles having a volume particle size of 10 μm or more in the volume particle size distribution in the coating liquid K-2 was 0.07%. A developer carrier S-2 was produced in the same manner as in Example 1 except that the coating liquid K-2 was used, and the same evaluation was performed. The results are shown in Table 4.

[実施例3]
凹凸付与粒子として、実施例1で用いた凹凸付与粒子B−1の代わりに体積平均粒径8.7μmの凹凸付与粒子B−3を用いた。
凹凸付与粒子B−3の添加量は実施例1で作製した現像剤担持体S−1と表面の算術平均粗さRaがほぼ同等となるように調整した(表3に記載)。実施例1で用いた塗布液中間体I−1に、塗布液中間体J−1に変えて凹凸付与粒子B−3を用いた塗布液中間体J−3を混合・攪拌して塗布液K−3を得た。塗布液K−3中の体積粒度分布における体積粒径が10μm以上の粒子の存在比率は4.20%であった。塗布液K−3を用いる以外は実施例1と同様に現像剤担持体S−3を作製し、同様の評価を行った。結果を表4に示す。
[Example 3]
As the unevenness imparting particles, the unevenness imparting particles B-3 having a volume average particle size of 8.7 μm were used instead of the unevenness imparting particles B-1 used in Example 1.
The addition amount of the unevenness imparting particles B-3 was adjusted so that the developer carrying body S-1 prepared in Example 1 and the surface arithmetic average roughness Ra were substantially equivalent (described in Table 3). The coating liquid intermediate I-1 used in Example 1 was mixed and stirred with the coating liquid intermediate J-3 using the unevenness imparting particles B-3 instead of the coating liquid intermediate J-1, and the coating liquid K was mixed. -3 was obtained. The ratio of particles having a volume particle size of 10 μm or more in the volume particle size distribution in the coating liquid K-3 was 4.20%. A developer carrier S-3 was prepared in the same manner as in Example 1 except that the coating liquid K-3 was used, and the same evaluation was performed. The results are shown in Table 4.

[比較例1]
凹凸付与粒子として、実施例1で用いた凹凸付与粒子B−1の代わりに体積平均粒径2.1μmの凹凸付与粒子b−1を用いた。
凹凸付与粒子b−1の添加量は実施例1で作製した現像剤担持体S−1と表面の算術平均粗さRaがほぼ同等となるように調整した(表3に記載)。実施例1で用いた塗布液中間体I−1に、塗布液中間体J−1に変えて凹凸付与粒子b−1を用いた塗布液中間体J−4を混合・攪拌して塗布液K−4を得た。塗布液K−4中の体積粒度分布における体積粒径が10μm以上の粒子の存在比率は0.04%であった。塗布液K−4を用いた以外は実施例1と同様に現像剤担持体S−4を作製し、同様の評価を行った。結果を表4に示す。
[Comparative Example 1]
As the unevenness imparting particles, the unevenness imparting particles b-1 having a volume average particle size of 2.1 μm were used instead of the unevenness imparting particles B-1 used in Example 1.
The addition amount of the unevenness imparting particles b-1 was adjusted so that the developer carrying member S-1 prepared in Example 1 and the surface arithmetic average roughness Ra were substantially equal (described in Table 3). The coating liquid intermediate I-1 used in Example 1 was mixed and stirred with the coating liquid intermediate J-4 using the unevenness imparting particles b-1 instead of the coating liquid intermediate J-1, and the coating liquid K was mixed. -4 was obtained. The abundance ratio of particles having a volume particle size of 10 μm or more in the volume particle size distribution in the coating liquid K-4 was 0.04%. A developer carrier S-4 was prepared in the same manner as in Example 1 except that the coating liquid K-4 was used, and the same evaluation was performed. The results are shown in Table 4.

[比較例2]
凹凸付与粒子として、実施例1で用いた凹凸付与粒子B−1の代わりに、体積平均粒径9.5μmの凹凸付与粒子b−2を用いた。
凹凸付与粒子b−2の添加量は実施例1で作製した現像剤担持体S−1と表面粗さRaがほぼ同等となるように調整した(表3に記載)。実施例1で用いた塗布液中間体I−1に、塗布液中間体J−1に変えて凹凸付与粒子b−2を用いた塗布液中間体J−5を混合・攪拌して塗布液K−5を得た。塗布液K−5中の体積粒度分布における体積粒径が10μm以上の粒子の存在比率は5.40%であった。塗布液K−5を用いた以外は実施例1と同様に現像剤担持体S−5を作製し、同様の評価を行った。結果を表4に示す。
[Comparative Example 2]
As the unevenness imparting particles, the unevenness imparting particles b-2 having a volume average particle size of 9.5 μm were used instead of the unevenness imparting particles B-1 used in Example 1.
The addition amount of the irregularity imparting particles b-2 was adjusted so that the developer carrying body S-1 prepared in Example 1 and the surface roughness Ra were substantially equal (described in Table 3). The coating liquid intermediate I-1 used in Example 1 was mixed and stirred with the coating liquid intermediate J-5 using the unevenness imparting particles b-2 instead of the coating liquid intermediate J-1, and the coating liquid K was mixed. -5 was obtained. The abundance ratio of the particles having a volume particle size of 10 μm or more in the volume particle size distribution in the coating liquid K-5 was 5.40%. A developer carrier S-5 was prepared in the same manner as in Example 1 except that the coating liquid K-5 was used, and the same evaluation was performed. The results are shown in Table 4.

[実施例4]
実施例1で用いた黒鉛化粒子A−1の代わりに黒鉛化粒子A−2(黒鉛化度0.42、体積平均粒径3.95μm)を用いて、塗布液中間体I−2を得た。この塗布液中間体I−2中の黒鉛化粒子の体積平均粒径は3.78μm、黒鉛化度P(002)は0.41であった。凹凸付与粒子B−1の添加量は実施例1で作製した現像剤担持体S−1と表面の算術平均粗さRaがほぼ同等となるように調整した(表3に記載)。実施例1と同様にして塗布液中間体I−2に、塗布液中間体J−1に変えて凹凸付与粒子B−1の添加量を調整した塗布液中間体J−6を混合・攪拌して塗布液K−6を得た。塗布液K−6中の体積
粒度分布における体積粒径が10μm以上の粒子の存在比率は0.13%であった。塗布液K−5を用いた以外は実施例1と同様に現像剤担持体S−6を作製し、同様の評価を行った。結果を表4に示す。
[Example 4]
Using the graphitized particle A-2 (degree of graphitization 0.42 and volume average particle size 3.95 μm) instead of the graphitized particle A-1 used in Example 1, a coating liquid intermediate I-2 is obtained. It was. The volume average particle diameter of the graphitized particles in this coating liquid intermediate I-2 was 3.78 μm, and the degree of graphitization P (002) was 0.41. The addition amount of the unevenness imparting particles B-1 was adjusted so that the developer carrying body S-1 prepared in Example 1 and the surface arithmetic average roughness Ra were substantially equal (described in Table 3). In the same manner as in Example 1, the coating liquid intermediate I-2 was mixed and stirred with the coating liquid intermediate J-2 in which the addition amount of the unevenness imparting particles B-1 was adjusted instead of the coating liquid intermediate J-1. Thus, a coating solution K-6 was obtained. The abundance ratio of particles having a volume particle size of 10 μm or more in the volume particle size distribution in the coating liquid K-6 was 0.13%. A developer carrier S-6 was produced in the same manner as in Example 1 except that the coating liquid K-5 was used, and the same evaluation was performed. The results are shown in Table 4.

[実施例5]
実施例4で用いた塗布液中間体I−2に、凹凸付与粒子B−2を用いた塗布液中間体J−7を混合・攪拌して塗布液K−7を得た。凹凸付与粒子B−2の添加量は実施例1で作製した現像剤担持体S−1と表面粗さRaがほぼ同等となるように調整した(表3に記載)。塗布液K−7中の体積粒度分布における体積粒径が10μm以上の粒子の存在比率は0.12%であった。塗布液K−7を用いた以外は実施例1と同様に現像剤担持体S−7を作製し、同様の評価を行った。結果を表4に示す。
[Example 5]
The coating liquid intermediate I-2 used in Example 4 was mixed and stirred with the coating liquid intermediate J-7 using the unevenness imparting particles B-2 to obtain a coating liquid K-7. The addition amount of the unevenness imparting particles B-2 was adjusted so that the developer carrying body S-1 prepared in Example 1 and the surface roughness Ra were substantially equal (described in Table 3). The abundance ratio of particles having a volume particle size of 10 μm or more in the volume particle size distribution in the coating liquid K-7 was 0.12%. A developer carrier S-7 was produced in the same manner as in Example 1 except that the coating liquid K-7 was used, and the same evaluation was performed. The results are shown in Table 4.

[実施例6]
実施例4で用いた塗布液中間体I−2に、凹凸付与粒子B−3を用いた塗布液中間体J−8を混合・攪拌して塗布液K−8を得た。凹凸付与粒子B−3の添加量は実施例1で作製した現像剤担持体S−1と表面粗さRaがほぼ同等となるように調整した(表3に記載)。塗布液K−8中の体積粒度分布における体積粒径が10μm以上の粒子の存在比率は2.70%であった。塗布液K−8を用いた以外は実施例1と同様に現像剤担持体S−8を作製し、同様の評価を行った。結果を表4に示す。
[Example 6]
The coating liquid intermediate I-2 used in Example 4 was mixed and stirred with the coating liquid intermediate J-8 using the unevenness imparting particles B-3 to obtain a coating liquid K-8. The addition amount of the unevenness imparting particles B-3 was adjusted so that the developer carrying member S-1 prepared in Example 1 and the surface roughness Ra were substantially equal (described in Table 3). The abundance ratio of particles having a volume particle size of 10 μm or more in the volume particle size distribution in the coating liquid K-8 was 2.70%. A developer carrier S-8 was produced in the same manner as in Example 1 except that the coating liquid K-8 was used, and the same evaluation was performed. The results are shown in Table 4.

[比較例3]
実施例4で用いた塗布液中間体I−2に、凹凸付与粒子b−1を用いた塗布液中間体J−9を混合・攪拌して塗布液K−9を得た。凹凸付与粒子b−1の添加量は実施例1で作製した現像剤担持体S−1と表面粗さRaがほぼ同等となるように調整した(表3に記載)。塗布液K−9中の体積粒度分布における体積粒径が10μm以上の粒子の存在比率は0.09%であった。塗布液K−9を用いた以外は実施例1と同様に現像剤担持体S−9を作製し、同様の評価を行った。結果を表4に示す。
[Comparative Example 3]
The coating liquid intermediate J-2 used in Example 4 was mixed and stirred with the coating liquid intermediate J-9 using the unevenness imparting particles b-1 to obtain a coating liquid K-9. The addition amount of the unevenness imparting particles b-1 was adjusted so that the developer carrying body S-1 prepared in Example 1 and the surface roughness Ra were substantially equal (described in Table 3). The abundance ratio of the particles having a volume particle size of 10 μm or more in the volume particle size distribution in the coating liquid K-9 was 0.09%. A developer carrier S-9 was produced in the same manner as in Example 1 except that the coating liquid K-9 was used, and the same evaluation was performed. The results are shown in Table 4.

[比較例4]
実施例4で用いた塗布液中間体I−2に、凹凸付与粒子b−2を用いた塗布液中間体J−10を混合・攪拌して塗布液K−10を得た。凹凸付与粒子b−2の添加量は実施例1で作製した現像剤担持体S−1と表面粗さRaがほぼ同等となるように調整した(表3に記載)。塗布液K−10中の体積粒度分布における体積粒径が10μm以上の粒子の存在比率は4.20%であった。塗布液K−10を用いた以外は実施例1と同様に現像剤担持体S−10を作製し、同様の評価を行った。結果を表4に示す。
[Comparative Example 4]
The coating liquid intermediate J-2 used in Example 4 was mixed and stirred with the coating liquid intermediate J-10 using the unevenness imparting particles b-2 to obtain a coating liquid K-10. The addition amount of the irregularity imparting particles b-2 was adjusted so that the developer carrying body S-1 prepared in Example 1 and the surface roughness Ra were substantially equal (described in Table 3). The abundance ratio of particles having a volume particle size of 10 μm or more in the volume particle size distribution in the coating solution K-10 was 4.20%. A developer carrier S-10 was produced in the same manner as in Example 1 except that the coating liquid K-10 was used, and the same evaluation was performed. The results are shown in Table 4.

[実施例7]
実施例1で用いた黒鉛化粒子A−1の代わりに黒鉛化粒子A−3(黒鉛化度0.42、体積平均粒径0.53μm)を用いて、塗布液中間体I−3を得た。この塗布液中間体I−3中の黒鉛化粒子の体積平均粒径は0.49μm、黒鉛化度P(002)は0.41であった。凹凸付与粒子B−1の添加量は実施例1で作製した現像剤担持体S−1と表面粗さRaがほぼ同等となるように調整した(表3に記載)。実施例1と同様にして塗布液中間体I−3に、塗布液中間体J−1に変えて凹凸付与粒子B−1の添加量を調整した塗布液中間体J−11を混合・攪拌して塗布液K−11を得た。塗布液K−11中の体積粒度分布における体積粒径が10μm以上の粒子の存在比率は0.22%であった。塗布液K−11を用いた以外は実施例1と同様に現像剤担持体S−11を作製し、同様の評価を行った。結果を表4に示す。
[Example 7]
Using the graphitized particles A-3 (degree of graphitization 0.42 and volume average particle size 0.53 μm) instead of the graphitized particles A-1 used in Example 1, a coating liquid intermediate I-3 is obtained. It was. The volume average particle diameter of the graphitized particles in this coating liquid intermediate I-3 was 0.49 μm, and the degree of graphitization P (002) was 0.41. The addition amount of the unevenness imparting particles B-1 was adjusted so that the developer carrying body S-1 prepared in Example 1 and the surface roughness Ra were substantially equivalent (described in Table 3). In the same manner as in Example 1, the coating liquid intermediate I-3 was mixed and stirred with the coating liquid intermediate J-3 in which the addition amount of the unevenness imparting particles B-1 was adjusted instead of the coating liquid intermediate J-1. Thus, a coating liquid K-11 was obtained. The abundance ratio of the particles having a volume particle size of 10 μm or more in the volume particle size distribution in the coating liquid K-11 was 0.22%. A developer carrier S-11 was produced in the same manner as in Example 1 except that the coating liquid K-11 was used, and the same evaluation was performed. The results are shown in Table 4.

[実施例8、9]
実施例7で用いた塗布液中間体I−3に、凹凸付与粒子B−2又はB−3を用いた塗布
液中間体J−12、13を混合・攪拌して塗布液K−12、13を得た。凹凸付与粒子B−2又はB−3の添加量は実施例1で作製した現像剤担持体S−1と表面粗さRaがほぼ同等となるように調整した(表3に記載)。塗布液K−12、13中の体積粒度分布における体積粒径が10μm以上の粒子の存在比率はそれぞれ0.08%、4.80%であった。塗布液K−12、13を用いた以外は実施例1と同様に現像剤担持体S−12、13を作製し、同様の評価を行った。結果を表4に示す。
[Examples 8 and 9]
The coating liquid intermediate I-3 used in Example 7 was mixed and stirred with the coating liquid intermediate J-12, 13 using the unevenness imparting particles B-2 or B-3, and the coating liquid K-12, 13 was mixed. Got. The addition amount of the unevenness imparting particles B-2 or B-3 was adjusted so that the developer carrying member S-1 prepared in Example 1 and the surface roughness Ra were substantially equivalent (described in Table 3). The abundance ratio of particles having a volume particle size of 10 μm or more in the volume particle size distribution in the coating liquids K-12 and 13 was 0.08% and 4.80%, respectively. Developer carrying bodies S-12 and 13 were produced in the same manner as in Example 1 except that the coating liquids K-12 and 13 were used, and the same evaluation was performed. The results are shown in Table 4.

[比較例5、6]
実施例7で用いた塗布液中間体I−3に、凹凸付与粒子b−1及びb−2を用いた塗布液中間体J−14、15を混合・攪拌して塗布液K−14、15を得た。凹凸付与粒子b−1及びb−2の添加量は実施例1で作製した現像剤担持体S−1と表面粗さRaがほぼ同等となるように調整した(表3に記載)。塗布液K−14、15中の体積粒度分布における体積粒径が10μm以上の粒子の存在比率はそれぞれ0.13%、6.30%であった。塗布液K−14、15を用いた以外は実施例1と同様に現像剤担持体S−14、15を作製し、同様の評価を行った。結果を表4に示す。
[Comparative Examples 5 and 6]
The coating liquid intermediates J-14 and 15 using the unevenness imparting particles b-1 and b-2 were mixed and stirred into the coating liquid intermediate I-3 used in Example 7, and the coating liquids K-14 and 15 were mixed. Got. The addition amount of the unevenness imparting particles b-1 and b-2 was adjusted so that the developer carrying member S-1 prepared in Example 1 and the surface roughness Ra were substantially equal (described in Table 3). The abundance ratio of particles having a volume particle size of 10 μm or more in the volume particle size distribution in the coating liquids K-14 and 15 was 0.13% and 6.30%, respectively. Developer carrying bodies S-14 and 15 were produced in the same manner as in Example 1 except that the coating liquids K-14 and 15 were used, and the same evaluation was performed. The results are shown in Table 4.

[実施例10]
実施例1で用いた黒鉛化粒子A−1の代わりに黒鉛化粒子A−4(黒鉛化度0.93、体積平均粒径3.82μm)を用いた。
黒鉛化粒子A−4を用いて実施例1と同様にして塗布液中間体I−4を作製した。この塗布液中間体I−4中の黒鉛化粒子の体積平均粒径は3.71μm、黒鉛化度P(002)は0.92であった。凹凸付与粒子B−2の添加量を調整した塗布液中間体J−16を混合・攪拌して塗布液K−16を得た。凹凸付与粒子B−2の添加量は実施例1で作製した現像剤担持体S−1と表面粗さRaがほぼ同等となるように調整した(表3に記載)。塗布液K−16中の体積粒度分布における体積粒径が10μm以上の粒子の存在比率は0.14%であった。塗布液K−16を用いた以外は実施例1と同様に現像剤担持体S−16を作製し、同様の評価を行った。結果を表5に示す。
[Example 10]
Instead of graphitized particle A-1 used in Example 1, graphitized particle A-4 (degree of graphitization 0.93, volume average particle size 3.82 μm) was used.
A coating liquid intermediate I-4 was prepared in the same manner as in Example 1 using the graphitized particles A-4. The volume average particle diameter of the graphitized particles in this coating liquid intermediate I-4 was 3.71 μm, and the degree of graphitization P (002) was 0.92. The coating liquid intermediate J-16 in which the addition amount of the unevenness imparting particles B-2 was adjusted was mixed and stirred to obtain a coating liquid K-16. The addition amount of the unevenness imparting particles B-2 was adjusted so that the developer carrying body S-1 prepared in Example 1 and the surface roughness Ra were substantially equal (described in Table 3). The abundance ratio of particles having a volume particle size of 10 μm or more in the volume particle size distribution in the coating liquid K-16 was 0.14%. A developer carrier S-16 was produced in the same manner as in Example 1 except that the coating liquid K-16 was used, and the same evaluation was performed. The results are shown in Table 5.

Figure 0004324040
Figure 0004324040

[実施例11]
黒鉛化粒子A−4を用いた塗布液中間体I−4に、凹凸付与粒子B−3の添加量を調整した塗布液中間体J−17を作製し、それらを混合・攪拌して塗布液K−17を得た。凹凸付与粒子B−3の添加量は実施例1で作製した現像剤担持体S−1と表面粗さRaがほぼ同等となるように調整した(表3に記載)。塗布液K−17中の体積粒度分布における体積粒径が10μm以上の粒子の存在比率は2.60%であった。塗布液K−17を用いた以外は実施例1と同様に現像剤担持体S−17を作製し、同様の評価を行った。結果を表5に示す。
[Example 11]
A coating liquid intermediate J-17 in which the addition amount of the unevenness imparting particles B-3 was adjusted to the coating liquid intermediate I-4 using the graphitized particles A-4 was prepared, and the coating liquid was mixed and stirred. K-17 was obtained. The addition amount of the unevenness imparting particles B-3 was adjusted so that the developer carrying member S-1 prepared in Example 1 and the surface roughness Ra were substantially equal (described in Table 3). The abundance ratio of the particles having a volume particle size of 10 μm or more in the volume particle size distribution in the coating liquid K-17 was 2.60%. A developer carrier S-17 was produced in the same manner as in Example 1 except that the coating liquid K-17 was used, and the same evaluation was performed. The results are shown in Table 5.

[実施例12、13]
実施例10で用いた黒鉛化粒子A−4の代わりに黒鉛化粒子A−5(黒鉛化度0.93、体積平均粒径0.55μm)を用いて、実施例1と同様にして塗布液中間体I−5を作製した。この塗布液中間体I−5中の黒鉛化粒子の体積平均粒径は0.53μm、黒鉛化
度P(002)は0.92であった。凹凸付与粒子B−2、B−3の添加量を調整した塗布液中間体J−18、19を得て、それらを混合・攪拌して塗布液K−18、19を得た。凹凸付与粒子B−2、B−3の添加量は実施例1で作製した現像剤担持体S−1と表面粗さRaがほぼ同等となるように調整した(表3に記載)。塗布液K−18、19中の体積粒度分布における体積粒径が10μm以上の粒子の存在比率はそれぞれ0.07%、4.80%であった。塗布液K−18、19を用いた以外は実施例1と同様に現像剤担持体S−18、19を作製し、同様の評価を行った。結果を表5に示す。
[Examples 12 and 13]
A coating solution was used in the same manner as in Example 1 except that graphitized particles A-5 (degree of graphitization: 0.93, volume average particle size: 0.55 μm) were used instead of the graphitized particles A-4 used in Example 10. Intermediate I-5 was made. The volume average particle diameter of the graphitized particles in this coating liquid intermediate I-5 was 0.53 μm, and the degree of graphitization P (002) was 0.92. Coating liquid intermediates J-18 and 19 in which the addition amounts of the unevenness imparting particles B-2 and B-3 were adjusted were obtained, and these were mixed and stirred to obtain coating liquids K-18 and 19. The addition amount of the unevenness imparting particles B-2 and B-3 was adjusted so that the developer carrying member S-1 prepared in Example 1 and the surface roughness Ra were substantially equal (described in Table 3). The abundance ratio of particles having a volume particle size of 10 μm or more in the volume particle size distribution in the coating liquids K-18 and 19 was 0.07% and 4.80%, respectively. Developer carrying bodies S-18 and 19 were produced in the same manner as in Example 1 except that the coating liquids K-18 and 19 were used, and the same evaluation was performed. The results are shown in Table 5.

[実施例14]
実施例1で用いた黒鉛化粒子A−1の代わりに黒鉛化粒子A−6(黒鉛化度0.23、体積平均粒径3.92μm)を用いた。
この黒鉛化粒子A−6を用いて、塗布液中間体I−6を作製した。この塗布液中間体I−6中の黒鉛化粒子の体積平均粒径は3.75μm、黒鉛化度P(002)は0.23であった。凹凸付与粒子B−2の添加量を調整した塗布液中間体J−20を得て、それらを混合・攪拌して塗布液K−20を得た。凹凸付与粒子B−2の添加量は実施例1で作製した現像剤担持体S−1と表面粗さRaがほぼ同等となるように調整した(表3に記載)。塗布液K−20中の体積粒度分布における体積粒径が10μm以上の粒子の存在比率は0.14%であった。塗布液K−20を用いた以外は実施例1と同様に現像剤担持体S−16を作製し、同様の評価を行った。結果を表5に示す。
[Example 14]
Instead of graphitized particle A-1 used in Example 1, graphitized particle A-6 (degree of graphitization 0.23, volume average particle size 3.92 μm) was used.
A coating liquid intermediate I-6 was produced using the graphitized particles A-6. The volume average particle diameter of the graphitized particles in this coating liquid intermediate I-6 was 3.75 μm, and the degree of graphitization P (002) was 0.23. A coating liquid intermediate J-20 with an adjusted amount of the irregularity imparting particles B-2 was obtained, and these were mixed and stirred to obtain a coating liquid K-20. The addition amount of the unevenness imparting particles B-2 was adjusted so that the developer carrying body S-1 prepared in Example 1 and the surface roughness Ra were substantially equal (described in Table 3). The abundance ratio of particles having a volume particle size of 10 μm or more in the volume particle size distribution in the coating liquid K-20 was 0.14%. A developer carrier S-16 was produced in the same manner as in Example 1 except that the coating liquid K-20 was used, and the same evaluation was performed. The results are shown in Table 5.

[実施例15]
実施例14で用いた黒鉛化粒子A−6の代わりに黒鉛化粒子A−7(黒鉛化度0.23、体積平均粒径0.52μm)を用いて、実施例1と同様にして塗布液中間体I−7を作製した。この塗布液中間体I−7中の黒鉛化粒子の体積平均粒径は0.52μm、黒鉛化度P(002)は0.23であった。凹凸付与粒子B−2の添加量を調整した塗布液中間体J−21を得て、それらを混合・攪拌して塗布液K−21を得た。凹凸付与粒子B−2の添加量は実施例1で作製した現像剤担持体S−1と表面粗さRaがほぼ同等となるように調整した(表3に記載)。塗布液K−21中の体積粒度分布における体積粒径が10μm以上の粒子の存在比率はそれぞれ0.07%であった。塗布液K−21を用いた以外は実施例1と同様に現像剤担持体S−21を作製し、同様の評価を行った。結果を表5に示す。
[Example 15]
Coating solution in the same manner as in Example 1 except that graphitized particle A-7 (degree of graphitization 0.23, volume average particle size 0.52 μm) was used instead of graphitized particle A-6 used in Example 14. Intermediate I-7 was made. The volume average particle diameter of the graphitized particles in this coating liquid intermediate I-7 was 0.52 μm, and the degree of graphitization P (002) was 0.23. A coating liquid intermediate J-21 with an adjusted addition amount of the unevenness imparting particles B-2 was obtained, and these were mixed and stirred to obtain a coating liquid K-21. The addition amount of the unevenness imparting particles B-2 was adjusted so that the developer carrying body S-1 prepared in Example 1 and the surface roughness Ra were substantially equal (described in Table 3). The ratio of particles having a volume particle size of 10 μm or more in the volume particle size distribution in the coating liquid K-21 was 0.07%. A developer carrier S-21 was produced in the same manner as in Example 1 except that the coating liquid K-21 was used, and the same evaluation was performed. The results are shown in Table 5.

[実施例16]
黒鉛化粒子A−1の代わりに黒鉛化粒子A−8(黒鉛化度0.39、体積平均粒径1.92μm)を用いた。他は実施例1と同様の材料及び配合比として、塗布液中間体I−8を作製し、また、実施例1で作製した現像剤担持体S−1と表面粗さRaがほぼ同等となるように凹凸付与粒子B−1の添加量を調整した塗布液中間体J−22を得て(表3に記載)、それらを混合・攪拌して塗布液K−22を得た。なお、塗布液中間体I−8中の黒鉛化粒子の体積平均粒径は1.87μm、黒鉛化度P(002)は0.38であった。塗布液K−22中の体積粒度分布における体積粒径が10μm以上の粒子の存在比率は0.14%であった。塗布液K−22を用いた以外は実施例1と同様に現像剤担持体S−22を作製し、同様の評価を行った。結果を表5に示す。
[Example 16]
Instead of the graphitized particles A-1, graphitized particles A-8 (degree of graphitization 0.39, volume average particle size 1.92 μm) were used. Other than that, the coating liquid intermediate I-8 was prepared with the same material and blending ratio as in Example 1, and the surface roughness Ra was almost the same as that of the developer carrier S-1 prepared in Example 1. Thus, the coating liquid intermediate J-22 in which the addition amount of the unevenness imparting particles B-1 was adjusted was obtained (described in Table 3), and these were mixed and stirred to obtain a coating liquid K-22. In addition, the volume average particle diameter of the graphitized particles in the coating liquid intermediate I-8 was 1.87 μm, and the degree of graphitization P (002) was 0.38. The abundance ratio of particles having a volume particle size of 10 μm or more in the volume particle size distribution in the coating liquid K-22 was 0.14%. A developer carrier S-22 was produced in the same manner as in Example 1 except that the coating liquid K-22 was used, and the same evaluation was performed. The results are shown in Table 5.

[実施例17]
黒鉛化粒子A−1の代わりに黒鉛化粒子A−9(黒鉛化度0.65、体積平均粒径3.89μm)を用いた。他は実施例1と同様の材料及び配合比とし、塗布液中間体I−9を作製した。この塗布液中間体I−9中の黒鉛化粒子の体積平均粒径は3.76μm、黒鉛化度P(002)は0.63であった。また、実施例1で作製した現像剤担持体S−1と表面粗さRaがほぼ同等となるように凹凸付与粒子B−1の添加量を調整し、塗布液中間体J−23を得て(表3に記載)、それらを混合・攪拌して塗布液K−23を得た。塗布
液K−23中の体積粒度分布における体積粒径が10μm以上の粒子の存在比率は0.12%であった。塗布液K−23を用いた以外は実施例1と同様に現像剤担持体S−23を作製し、同様の評価を行った。結果を表5に示す。
[Example 17]
Instead of graphitized particle A-1, graphitized particle A-9 (degree of graphitization 0.65, volume average particle size 3.89 μm) was used. Others were the same materials and blending ratio as in Example 1, and a coating liquid intermediate I-9 was produced. The volume average particle diameter of the graphitized particles in this coating liquid intermediate I-9 was 3.76 μm, and the degree of graphitization P (002) was 0.63. Further, the amount of the irregularity imparting particle B-1 added was adjusted so that the developer carrying body S-1 produced in Example 1 and the surface roughness Ra were substantially equal to obtain a coating liquid intermediate J-23. (Described in Table 3), and they were mixed and stirred to obtain a coating solution K-23. The abundance ratio of particles having a volume particle size of 10 μm or more in the volume particle size distribution in the coating liquid K-23 was 0.12%. A developer carrier S-23 was produced in the same manner as in Example 1 except that the coating liquid K-23 was used, and the same evaluation was performed. The results are shown in Table 5.

[実施例18]
黒鉛化粒子A−9の代わりに黒鉛化粒子A−10(黒鉛化度0.25、体積平均粒径0.62μm)を用いた。他は実施例1と同様の材料及び配合比とし、塗布液中間体I−10を作製し、実施例1で作製した現像剤担持体S−1と表面粗さRaがほぼ同等となるように凹凸付与粒子B−1の添加量を調整して塗布液中間体J−24を得て(表3に記載)、それらを混合・攪拌して塗布液K−24を得た。なお、塗布液中間体I−10中の黒鉛化粒子の体積平均粒径は0.62μm、黒鉛化度P(002)は0.25であった。塗布液K−24中の体積粒度分布における体積粒径が10μm以上の粒子の存在比率は0.21%であった。塗布液K−24を用いた以外は実施例1と同様に現像剤担持体S−24を作製し、同様の評価を行った。結果を表5に示す。
[Example 18]
Instead of graphitized particles A-9, graphitized particles A-10 (degree of graphitization 0.25, volume average particle size 0.62 μm) were used. The other materials and blending ratios are the same as those in Example 1, and the coating liquid intermediate I-10 is prepared so that the surface roughness Ra is substantially the same as that of the developer carrier S-1 prepared in Example 1. Coating liquid intermediate J-24 was obtained by adjusting the amount of addition of irregularity imparting particles B-1 (described in Table 3), and mixed and stirred to obtain coating liquid K-24. In addition, the volume average particle diameter of the graphitized particles in the coating liquid intermediate I-10 was 0.62 μm, and the degree of graphitization P (002) was 0.25. The abundance ratio of particles having a volume particle size of 10 μm or more in the volume particle size distribution in the coating liquid K-24 was 0.21%. A developer carrier S-24 was produced in the same manner as in Example 1 except that the coating liquid K-24 was used, and the same evaluation was performed. The results are shown in Table 5.

[比較例7]
黒鉛化粒子A−1の代わりに黒鉛化粒子a−1(黒鉛化度0.72、体積平均粒径7.18μm)を用いた。他は実施例1と同様の材料及び配合比とし、塗布液中間体I−11を作製し、実施例1で作製した現像剤担持体S−1と表面粗さRaがほぼ同等となるように凹凸付与粒子B−1の添加量を調整して塗布液中間体J−25を得て(表3に記載)、それらを混合・攪拌して塗布液K−25を得た。なお、塗布液中間体I−11中の黒鉛化粒子の体積平均粒径は6.97μm、黒鉛化度P(002)は0.72であった。塗布液K−25中の体積粒度分布における体積粒径が10μm以上の粒子の存在比率は7.10%であった。塗布液K−25を用いた以外は実施例1と同様に現像剤担持体S−25を作製し、同様の評価を行った。結果を表5に示す。
[Comparative Example 7]
Instead of graphitized particle A-1, graphitized particle a-1 (degree of graphitization: 0.72, volume average particle size: 7.18 μm) was used. The other materials and blending ratios are the same as in Example 1, and the coating liquid intermediate I-11 is prepared so that the surface roughness Ra is substantially equal to the developer carrier S-1 prepared in Example 1. A coating liquid intermediate J-25 was obtained by adjusting the amount of addition of the unevenness imparting particles B-1 (described in Table 3), and mixed and stirred to obtain a coating liquid K-25. The volume average particle diameter of the graphitized particles in the coating liquid intermediate I-11 was 6.97 μm, and the degree of graphitization P (002) was 0.72. The abundance ratio of particles having a volume particle size of 10 μm or more in the volume particle size distribution in the coating liquid K-25 was 7.10%. A developer carrier S-25 was produced in the same manner as in Example 1 except that the coating liquid K-25 was used, and the same evaluation was performed. The results are shown in Table 5.

[比較例8]
黒鉛化粒子A−1の代わりに黒鉛化粒子a−2(黒鉛化度0.98、体積平均粒径3.64μm)を用いた。他は実施例1と同様の材料及び配合比とし、塗布液中間体I−12を作製し、実施例1で作製した現像剤担持体S−1と表面粗さRaがほぼ同等となるように凹凸付与粒子B−1の添加量を調整して塗布液中間体J−26得て(表3に記載)、それらを混合・攪拌して塗布液K−26を得た。なお、塗布液中間体I−12中の黒鉛化粒子の体積平均粒径は3.51μm、黒鉛化度P(002)は0.97であった。塗布液K−26中の体積粒度分布における体積粒径が10μm以上の粒子の存在比率は0.14%であった。塗布液K−26を用いた以外は実施例1と同様に現像剤担持体S−26を作製し、同様の評価を行った。結果を表5に示す。
[Comparative Example 8]
Instead of graphitized particle A-1, graphitized particle a-2 (graphitization degree 0.98, volume average particle size 3.64 μm) was used. The other materials and blending ratios are the same as in Example 1, and the coating liquid intermediate I-12 is prepared so that the surface roughness Ra is substantially equal to the developer carrier S-1 prepared in Example 1. The addition amount of the unevenness imparting particles B-1 was adjusted to obtain a coating liquid intermediate J-26 (described in Table 3), which was mixed and stirred to obtain a coating liquid K-26. In addition, the volume average particle diameter of the graphitized particles in the coating liquid intermediate I-12 was 3.51 μm, and the degree of graphitization P (002) was 0.97. The abundance ratio of particles having a volume particle size of 10 μm or more in the volume particle size distribution in the coating liquid K-26 was 0.14%. A developer carrier S-26 was produced in the same manner as in Example 1 except that the coating liquid K-26 was used, and the same evaluation was performed. The results are shown in Table 5.

[実施例19]
下記に示す配合比にて現像スリーブ表面に設ける樹脂被覆層の塗布液を作製した。
・レゾール型フェノール樹脂(50%メタノール溶液) 300部
(フェノール合成時にアンモニアを触媒として用いた)
・黒鉛化粒子A−1 70部
・カーボンブラック 30部
・凹凸付与粒子B−1 12部
・メタノール 500部
・下記式で表される第四級アンモニウム塩化合物 50部
[Example 19]
A coating solution for a resin coating layer provided on the surface of the developing sleeve was prepared at the following mixing ratio.
-300 parts of a resol type phenolic resin (50% methanol solution) (Ammonia was used as a catalyst during phenol synthesis)
-Graphitized particles A-1 70 parts-Carbon black 30 parts-Concavity and convexity imparting particles B-1 12 parts-Methanol 500 parts-Quaternary ammonium salt compound represented by the following formula 50 parts

Figure 0004324040
Figure 0004324040

上記式で表される第四級アンモニム塩化合物について、鉄粉との摩擦帯電量を摩擦帯電量測定器TB−200型(東芝ケミカル(株)製)を用いてブローオフ法により測定したところ、負極性であった。
イソプロピルアルコールに代えてメタノールを用いた以外は実施例1と同様にして、塗布液中間体I−13を得た。塗布液中間体I−13中の黒鉛化粒子の体積平均粒径は1.77μm、黒鉛化度P(002)は0.41であった。次いで残りのレゾール型フェノール樹脂溶液(メタノール50%含有)100部に100部とカーボンブラック30部、凹凸付与粒子B−1及び上記第四級アンモニウム塩化合物を直径1.5mmのガラスビーズをメディア粒子としたサンドミル分散して塗布液中間体J−27を得た。前記塗布液中間体I−13、塗布液中間体J−27及びメタノール200部を混合・攪拌して塗布液K−27を得た。塗布液K−27中の体積粒度分布における体積粒径が10μm以上の粒子の存在比率は0.18%であった。塗布液K−27を用いた以外は実施例1と同様に現像剤担持体S−27を作製し、同様の評価を行った。結果を表5に示す。
For the quaternary ammonium salt compound represented by the above formula, the triboelectric charge amount with the iron powder was measured by a blow-off method using a triboelectric charge meter TB-200 type (manufactured by Toshiba Chemical Co., Ltd.). It was sex.
A coating liquid intermediate I-13 was obtained in the same manner as in Example 1 except that methanol was used instead of isopropyl alcohol. The volume average particle diameter of the graphitized particles in the coating liquid intermediate I-13 was 1.77 μm, and the degree of graphitization P (002) was 0.41. Next, 100 parts of the remaining resol type phenolic resin solution (containing 50% methanol), 30 parts of carbon black, irregularity-providing particles B-1, and the above quaternary ammonium salt compound were used as media particles. Then, a coating liquid intermediate J-27 was obtained. The coating liquid intermediate I-13, the coating liquid intermediate J-27, and 200 parts of methanol were mixed and stirred to obtain a coating liquid K-27. The abundance ratio of particles having a volume particle size of 10 μm or more in the volume particle size distribution in the coating liquid K-27 was 0.18%. A developer carrier S-27 was produced in the same manner as in Example 1 except that the coating liquid K-27 was used, and the same evaluation was performed. The results are shown in Table 5.

[実施例20]
実施例19で用いた第四級アンモニウム塩化合物に変えて下記式で表される第四級アンモニウム塩化合物を用いた以外は実施例19と同様にして塗布液K−28を得た。塗布液K−28中の体積粒度分布における体積粒径が10μm以上の粒子の存在比率は0.18%であった。塗布液K−28を用いた以外は実施例1と同様に現像剤担持体S−28を作製し、同様の評価を行った。結果を表5に示す。
[Example 20]
A coating solution K-28 was obtained in the same manner as in Example 19 except that the quaternary ammonium salt compound represented by the following formula was used instead of the quaternary ammonium salt compound used in Example 19. The abundance ratio of particles having a volume particle size of 10 μm or more in the volume particle size distribution in the coating liquid K-28 was 0.18%. A developer carrier S-28 was produced in the same manner as in Example 1 except that the coating liquid K-28 was used, and the same evaluation was performed. The results are shown in Table 5.

Figure 0004324040
Figure 0004324040

上記式で表される第四級アンモニウム塩化合物について、鉄粉との摩擦帯電量を摩擦帯電量測定器TB−200型(東芝ケミカル(株)製)を用いてブローオフ法により測定したところ、正極性であった。
[比較例9]
黒鉛化粒子A−1の代わりに黒鉛化粒子a−3(黒鉛化度は測定不能、体積平均粒径3.89μm)を用いた。他は実施例1と同様の材料及び配合比とし、塗布液中間体I−14を作製し、実施例1で作製した現像剤担持体S−1と表面粗さRaがほぼ同等となるよ
うに凹凸付与粒子B−1の添加量を調整して塗布液中間体J−29を得て(表3に記載)、それらを混合・攪拌して塗布液K−29を得た。なお、塗布液中間体I−14中の黒鉛化粒子の体積平均粒径は3.86μm、黒鉛化度P(002)は測定不能であった。塗布液K−29中の体積粒度分布における体積粒径が10μm以上の粒子の存在比率は0.16%であった。塗布液K−29を用いた以外は実施例1と同様に現像剤担持体S−29を作製し、同様の評価を行った。結果を表5に示す。
For the quaternary ammonium salt compound represented by the above formula, the triboelectric charge amount with the iron powder was measured by the blow-off method using a triboelectric charge meter TB-200 type (manufactured by Toshiba Chemical Corporation). It was sex.
[Comparative Example 9]
Instead of graphitized particle A-1, graphitized particle a-3 (the degree of graphitization cannot be measured and the volume average particle size is 3.89 μm) was used. The other materials and blending ratios are the same as in Example 1, and the coating liquid intermediate I-14 is prepared so that the surface roughness Ra is substantially the same as that of the developer carrier S-1 prepared in Example 1. Coating liquid intermediate J-29 was obtained by adjusting the amount of addition of irregularity imparting particles B-1 (described in Table 3), and mixed and stirred to obtain coating liquid K-29. In addition, the volume average particle diameter of the graphitized particles in the coating liquid intermediate I-14 was 3.86 μm, and the degree of graphitization P (002) was not measurable. The abundance ratio of particles having a volume particle size of 10 μm or more in the volume particle size distribution in the coating liquid K-29 was 0.16%. A developer carrier S-29 was produced in the same manner as in Example 1 except that the coating liquid K-29 was used, and the same evaluation was performed. The results are shown in Table 5.

[比較例10]
黒鉛化粒子A−1の代わりに黒鉛化粒子a−4(黒鉛化度0.07、体積平均粒径7.38μm)を用いた。他は実施例1と同様の材料及び配合比とし、塗布液中間体I−15を作製し、実施例1で作製した現像剤担持体S−1と表面粗さRaがほぼ同等となるように凹凸付与粒子B−1の添加量を調整して塗布液中間体J−30得て(表3に記載)、それらを混合・攪拌して塗布液K−30を得た。なお、塗布液中間体I−15中の黒鉛化粒子の体積平均粒径は7.16μm、黒鉛化度P(002)は0.07であった。塗布液K−30中の体積粒度分布における体積粒径が10μm以上の粒子の存在比率は6.80%であった。塗布液K−30を用いた以外は実施例1と同様に現像剤担持体S−30を作製し、同様の評価を行った。結果を表5に示す。
[Comparative Example 10]
Instead of graphitized particle A-1, graphitized particle a-4 (degree of graphitization 0.07, volume average particle size 7.38 μm) was used. The other materials and blending ratios are the same as in Example 1, and the coating liquid intermediate I-15 is prepared so that the surface roughness Ra is substantially the same as that of the developer carrier S-1 prepared in Example 1. The coating liquid intermediate | middle J-30 was obtained by adjusting the addition amount of uneven | corrugated provision particle | grains B-1 (it describes in Table 3), they were mixed and stirred and the coating liquid K-30 was obtained. In addition, the volume average particle diameter of the graphitized particles in the coating liquid intermediate I-15 was 7.16 μm, and the degree of graphitization P (002) was 0.07. The abundance ratio of particles having a volume particle size of 10 μm or more in the volume particle size distribution in the coating liquid K-30 was 6.80%. A developer carrier S-30 was produced in the same manner as in Example 1 except that the coating liquid K-30 was used, and the same evaluation was performed. The results are shown in Table 5.

[実施例21]
下記に示す配合比にて現像スリーブ表面に設ける樹脂被覆層の塗布液を作製した。
・66ナイロンを主成分とするナイロンの共重合物 500部
(固形分30%)
・黒鉛化粒子A−1 70部
・カーボンブラック 30部
・凹凸付与粒子B−1 12部
・メタノール 300部
・下記式で示される第四級アンモニウム塩化合物 50部
[Example 21]
A coating solution for a resin coating layer provided on the surface of the developing sleeve was prepared at the following mixing ratio.
・ Nylon copolymer consisting mainly of 66 nylon 500 parts (solid content 30%)
-Graphitized particles A-1 70 parts-Carbon black 30 parts-Concavity and convexity imparting particles B-1 12 parts-Methanol 300 parts-Quaternary ammonium salt compound represented by the following formula 50 parts

Figure 0004324040
Figure 0004324040

上記式で表される第四級アンモニウム塩化合物について、鉄粉との摩擦帯電量を摩擦帯電量測定器TB−200型(東芝ケミカル(株)製)を用いてブローオフ法により測定したところ、正極性であった。   For the quaternary ammonium salt compound represented by the above formula, the triboelectric charge amount with the iron powder was measured by the blow-off method using a triboelectric charge meter TB-200 type (manufactured by Toshiba Chemical Co., Ltd.). It was sex.

上記材料を、ガラスビーズを用いてサンドミルにて分散した。分散方法としては、66ナイロンを主成分とするナイロンの共重合物300部に黒鉛化粒子A−1を70部、及びメタノールを100部添加し、直径1mmのガラスビーズをメディア粒子として用いたサンドミルにて分散して塗布液中間体I−16を得た。塗布液中間体I−16中の黒鉛化粒子の体積平均粒径は1.75μm、黒鉛化度P(002)は0.41であった。また、残りの66ナイロンを主成分とするナイロンの共重合物200部にメタノール100部とカーボンブラック30部及び凹凸付与粒子B−1の12部及び上記第四級アンモニウム塩化合物50部を加え、直径1.5mmのガラスビーズをメディア粒子としたサンドミル分散
して塗布液中間体J−31を得た。前記塗布液中間体I−16、塗布液中間体J−31及びメタノール100部を混合・攪拌して塗布液K−31を得た。塗布液K−31中の体積粒度分布における体積粒径が10μm以上の粒子の存在比率は0.13%であった。塗布液の物性を表3に示す。塗布液K−31を用いた以外は実施例1と同様に現像剤担持体S−31を作製し、同様の評価を行った。結果を表5に示す。
The above material was dispersed in a sand mill using glass beads. As a dispersion method, a sand mill in which 70 parts of graphitized particles A-1 and 100 parts of methanol are added to 300 parts of a nylon copolymer mainly composed of 66 nylon, and glass beads having a diameter of 1 mm are used as media particles. To obtain a coating liquid intermediate I-16. The volume average particle diameter of the graphitized particles in the coating liquid intermediate I-16 was 1.75 μm, and the degree of graphitization P (002) was 0.41. In addition, 100 parts of methanol, 30 parts of carbon black, 12 parts of unevenness imparting particles B-1 and 50 parts of the quaternary ammonium salt compound were added to the remaining 200 parts of nylon copolymer consisting mainly of 66 nylon, A sand mill dispersion using glass beads having a diameter of 1.5 mm as media particles was dispersed to obtain a coating liquid intermediate J-31. The coating liquid intermediate I-16, the coating liquid intermediate J-31, and 100 parts of methanol were mixed and stirred to obtain a coating liquid K-31. The abundance ratio of particles having a volume particle size of 10 μm or more in the volume particle size distribution in the coating liquid K-31 was 0.13%. Table 3 shows the physical properties of the coating solution. A developer carrier S-31 was produced in the same manner as in Example 1 except that the coating liquid K-31 was used, and the same evaluation was performed. The results are shown in Table 5.

本発明の現像剤担持体の樹脂被覆層の構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of the resin coating layer of the developing agent carrier of this invention. 本発明の現像剤担持体を用いた現像装置の一つの実施の形態を示す構成模式図である。1 is a schematic configuration diagram showing one embodiment of a developing device using a developer carrying member of the present invention. 本発明の現像方法に用いる現像バイアス(ブランクパルスバイアス)の一例を示す。An example of a developing bias (blank pulse bias) used in the developing method of the present invention is shown. 本発明の現像剤担持体を用いた現像装置の一つの実施の形態を示す構成模式図である。1 is a schematic configuration diagram showing one embodiment of a developing device using a developer carrying member of the present invention.

符号の説明Explanation of symbols

11:円筒状基体
12:樹脂被覆層
13:凹凸付与粒子
14:黒鉛化粒子
20:供給・剥ぎ取りローラ
21:電子写真感光ドラム
22:ホッパー
23:非磁性一成分現像剤
24:現像スリーブ
25:樹脂被膜層
26:金属製円筒管(基体)
27:電源
28:撹拌翼
29:現像剤層厚規制部材
11: Cylindrical substrate 12: Resin coating layer 13: Concavity / convexity imparting particles 14: Graphitized particles 20: Feeding / peeling roller 21: Electrophotographic photosensitive drum 22: Hopper 23: Nonmagnetic one-component developer 24: Development sleeve 25: Resin coating layer 26: Metal cylindrical tube (base)
27: Power supply 28: Stirring blade 29: Developer layer thickness regulating member

Claims (6)

静電潜像担持体と現像剤担持体とが非接触の状態で現像を行う非接触型現像装置を用いた非接触の現像方法であって、
非磁性一成分系現像剤を現像剤担持体に担持させ、静電潜像担持体に対向する現像領域へ搬送し、該現像剤担持体に断続的に休止する交流成分を直流成分に重畳した電圧を現像バイアスとして印加し、静電潜像担持体上の潜像を可視像化する工程を有し
該現像剤担持体が、少なくとも基体及び該基体上に形成された樹脂被覆層を有し、該樹脂被覆層が、
体積平均粒径が3.28.7μmである、該樹脂被覆層の表面に凹凸を付与するための球状炭素粒子からなる凹凸付与粒子、及び
黒鉛化度P(002)が0.23≦P(002)≦0.92であり且つ体積平均粒径が0.493.78μmである、導電性を付与するための黒鉛化粒子を少なくとも含有し、且つ、
該樹脂被覆層中に含有される粒子の体積粒度分布において、体積粒径10μm以上である粒子の存在比率が4.80%以下である現像剤担持体であることを特徴とする現像方法。
A non-contact developing method using a non-contact type developing device that performs development in a non-contact state between an electrostatic latent image carrier and a developer carrier,
A non-magnetic one-component developer is carried on a developer carrier, transported to a development area facing the electrostatic latent image carrier, and an alternating current component intermittently paused on the developer carrier is superimposed on the direct current component. applying a voltage as developing bias, and a step of a visible image of the latent image on the electrostatic latent image bearing member,
The developer carrier has at least a substrate and a resin coating layer formed on the substrate, and the resin coating layer includes:
Concavity and convexity imparting particles made of spherical carbon particles for imparting concavity and convexity to the surface of the resin coating layer having a volume average particle diameter of 3.2 to 8.7 μm, and a graphitization degree P (002) of 0.23 ≦ P (002) ≦ 0.92 and containing at least graphitized particles for imparting conductivity, having a volume average particle diameter of 0.49 to 3.78 μm, and
A developing method comprising: a developer carrying member having a volume particle size distribution of particles contained in the resin coating layer of 4.80 % or less.
前記黒鉛化粒子の体積平均粒径は、前記凹凸付与粒子の体積平均粒径より小さいことを特徴とする請求項に記載の現像方法The volume average particle diameter of the graphitized particles, a developing method according to claim 1, wherein the smaller than the volume average particle size of the concavo-convex imparting particles. 前記黒鉛化粒子はバルクメソフェーズピッチまたはメソカーボンマイクロビーズを黒鉛化して得られたものであることを特徴とする請求項1または2に記載の現像方法。 3. The developing method according to claim 1, wherein the graphitized particles are obtained by graphitizing bulk mesophase pitch or mesocarbon microbeads . 前記非磁性一成分系現像剤としての非磁性トナーが重合法により製造されたものである請求項1乃至3の何れかに記載の現像方法。4. The developing method according to claim 1, wherein the nonmagnetic toner as the nonmagnetic one-component developer is produced by a polymerization method. 記非磁性一成分系現像剤は下記式(C)、(D)より求められる平均円形度が0.935以上の現像剤であることを特徴とする請求項4に記載の現像方法。
円形度a=L/L (C)
(式中、Lは粒子像と同じ投影面積を持つ円の周囲長を示し、Lは粒子像の周囲長を示す。)
Figure 0004324040
(式中、平均円形度をaave、各粒子における円形度をa、測定粒子数をmとして示す。)
Before Kihi magnetic one-component developer the following formula (C), the developing method according to claim 4, characterized in that an average circularity of 0.935 or more developer obtained from (D).
Circularity a = L 0 / L (C)
(In the formula, L 0 represents the circumference of a circle having the same projected area as the particle image, and L represents the circumference of the particle image.)
Figure 0004324040
(In the formula, the average circularity is a ave , the circularity of each particle is a i , and the number of measured particles is m) .
前記樹脂被覆層の層厚が4〜20μmである請求項1〜5の何れかに記載の現像方法。The developing method according to claim 1, wherein the resin coating layer has a thickness of 4 to 20 μm.
JP2004207198A 2004-07-14 2004-07-14 Development method Expired - Fee Related JP4324040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004207198A JP4324040B2 (en) 2004-07-14 2004-07-14 Development method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004207198A JP4324040B2 (en) 2004-07-14 2004-07-14 Development method

Publications (3)

Publication Number Publication Date
JP2006030455A JP2006030455A (en) 2006-02-02
JP2006030455A5 JP2006030455A5 (en) 2007-08-23
JP4324040B2 true JP4324040B2 (en) 2009-09-02

Family

ID=35896910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004207198A Expired - Fee Related JP4324040B2 (en) 2004-07-14 2004-07-14 Development method

Country Status (1)

Country Link
JP (1) JP4324040B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096870A (en) * 2006-10-16 2008-04-24 Konica Minolta Business Technologies Inc Developing roller
JP2009058865A (en) * 2007-09-03 2009-03-19 Konica Minolta Business Technologies Inc Manufacturing method of electrophotographic developing roller, and the electrophotographic developing roller

Also Published As

Publication number Publication date
JP2006030455A (en) 2006-02-02

Similar Documents

Publication Publication Date Title
KR101188078B1 (en) Developer carrying member and developing assembly
KR100558825B1 (en) Developer Carrying Member and Developing Method by Using Thereof
JP5471680B2 (en) Electrostatic image developing carrier, electrostatic image developer, process cartridge, image forming apparatus, and image forming method
JP5094552B2 (en) Image forming method
JP4756885B2 (en) Development device
JP2007025599A (en) Developing device
JP2007206647A (en) Electrophotographic developing method, developer carrier used in same, and process cartridge and electrophotographic apparatus using same
JP2007225967A (en) Toner and image forming method
JP4250486B2 (en) Development method
JP4324040B2 (en) Development method
JPH09319209A (en) Image forming method
JP2007147734A (en) Developing method and developer carrier
JP4035279B2 (en) Developing method, developing device, and image forming apparatus
JP4324014B2 (en) Developer carrier and developing method using the same
JP2007108467A (en) Developer carrier and developing device
JP4280602B2 (en) Development method
JP5235352B2 (en) Development device
JP2005157270A (en) Developer carrying member and developing apparatus
JP2007183482A (en) Developer carrier and manufacturing method for developer carrier
JP4455174B2 (en) Developer carrier and developing device
JP5173127B2 (en) Development device
JP4794933B2 (en) Developer carrier and developing device
JP2000214678A (en) Image forming method and image forming device
JP4508387B2 (en) Developing device and process cartridge
JP5173122B2 (en) Developer carrier and developing device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070709

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090605

R150 Certificate of patent or registration of utility model

Ref document number: 4324040

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees