JP4323753B2 - Method of grasping the pressure contact state of the pressure contact terminal - Google Patents

Method of grasping the pressure contact state of the pressure contact terminal Download PDF

Info

Publication number
JP4323753B2
JP4323753B2 JP2002110408A JP2002110408A JP4323753B2 JP 4323753 B2 JP4323753 B2 JP 4323753B2 JP 2002110408 A JP2002110408 A JP 2002110408A JP 2002110408 A JP2002110408 A JP 2002110408A JP 4323753 B2 JP4323753 B2 JP 4323753B2
Authority
JP
Japan
Prior art keywords
wire
load
press
insulation
electric wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002110408A
Other languages
Japanese (ja)
Other versions
JP2003308942A (en
Inventor
信幸 朝倉
圭 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2002110408A priority Critical patent/JP4323753B2/en
Publication of JP2003308942A publication Critical patent/JP2003308942A/en
Application granted granted Critical
Publication of JP4323753B2 publication Critical patent/JP4323753B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、絶縁被覆電線を圧接端子に圧接接続した状態を容易に把握することができる圧接端子の圧接状態把握方法に関するものである。
【0002】
【従来の技術】
複数本の素線を撚った撚線をPVC、ポリエチレン等の絶縁被覆材料により被覆した絶縁被覆電線を接続する端子として圧接端子がある。圧接端子は、絶縁被覆電線との接続作業が簡単なことから多用されつつあり、圧接端子のほぼU字状のスロットに絶縁被覆電線を圧入することにより、一対の圧接刃が絶縁被覆電線の絶縁部に切り込まれて絶縁部内の芯線(撚線)と接触し、絶縁被覆電線と圧接端子とが電気的に接続されるものである。
圧接端子は、一対の圧接刃を1又は2以上有する電線接続部を備え、絶縁被覆電線が圧入されるスロットが一対の圧接刃間に形成され、このスロットの幅が絶縁被覆電線の芯線の外径より狭く形成されている。
【0003】
【発明が解決しようとする課題】
ところで、芯線と一対の圧接刃との接触はできるだけ大きな荷重が作用したままの方が接触を確実に行う上で重要である、つまり、絶縁被覆電線を一対の圧接刃の間のスロットに圧入したとき、一対の圧接刃の間隔(スロット)が広がりその戻ろうとする力が強ければ強いほど接触が確実に行われるため、一対の圧接刃が広がった状態のままで芯線がその圧縮荷重に耐えられることが絶縁被覆電線の芯線と接触する上で重要である。しかし、芯線は複数本の素線を撚った撚線であるため、一対の圧接刃間のスロットに圧入したとき、電線の種類及びスロットの間隔によっては圧接刃による芯線にかかる圧縮荷重が大きく、芯線がその荷重に耐えられずバラケが起きる。本発明でいうバラケとは単に撚りが解除されて素線がばらけたり、芯線が削れたりすることをいう。バラケが起きると、一対の圧接刃が広がった状態から狭くなり、長期間使用していると、圧接刃と芯線との接触が不十分になって接続信頼性が低下することが有り得る。
【0004】
すなわち、圧接端子の電線接続部では、絶縁被覆電線の種類によって接続過程における接続状態が大きく異なり、電線接続部の接続信頼性が確保できない品種つまりばらけが起きる品種がある。例えば、図9に示すように、CAVUS(圧縮導体)、AVS、AVSS−f(フレキシブル線)、スズメッキ(Snメッキ)の4つの絶縁被覆電線を同一の一対の圧接刃間のスロット(スロット幅0.45mm)に圧入(圧接)すると、圧縮導体の場合がバラケが少なく、AVS及びフレキシブル線の場合がバラケが多いことが分かる。ここで用いたCAVUSは、径(直径)が1.3mm、芯線径が0.9mm、撚り径が7本/0.32mm、撚り条件が同心撚りのものである。AVSは、径(直径)が2.0mm、芯線径が1.0mm、撚り径が7本/0.32mm、撚り条件が同心撚りのものである。AVSS−fは、径(直径)が2.0mm、芯線径が1.0mm、撚り径が20本/0.18mm、撚り条件が同心撚りのものである。Snメッキは、径(直径)が2.0mm、芯線径が1.0mm、撚り径が7本/0.32mm、撚り条件が同心撚りのものである。
【0005】
接続信頼性を調べる手段としては、サーマルショックテストや高温放置試験などあるが、これら手段はいずれも長期間実施しないと、圧接刃と絶縁被覆電線の芯線との接触状態を把握することができず、工数的な問題がある。
また、経験上、芯線のバラケが少ない方が接続信頼性が高いが、このバラケは、極めて主観的でそれを数値として定量的に調べることができないのが現状である。
【0006】
そこで、本発明は、このような実状に鑑みなされたものであり、その目的は、絶縁被覆電線を圧接接続したときの接続状態を数値として定量的に把握することができる圧接端子の圧接状態把握方法を提供することにある。
【0007】
【課題を解決するための手段】
前記目的を達成するために、本発明の圧接端子の圧接状態把握方法は、一対の圧接刃の間のスロットに絶縁被覆電線を圧入して、絶縁被覆電線の芯線と電気的に接続した圧接端子の接続状態を把握する方法であって、前記スロットに絶縁被覆電線を圧入するときの絶縁被覆電線にかかる電線挿入力による挿入荷重及び一方の圧接刃にかかる圧接部荷重をそれぞれ測定し、この測定した電線挿入力による挿入荷重を縦軸に、絶縁被覆電線の挿入長(電線挿入長)を横軸にしてプロットして得られる挿入荷重曲線における前記挿入荷重の最大点と最小点とを求め、この求めた最大点に対応する挿入長と最小点に対応する挿入長とを求め、前記測定した圧接部荷重を縦軸に、絶縁被覆電線の挿入長(電線挿入長)を横軸にしてプロットして得られる圧接荷重曲線と前記最大点の挿入長に相当する直線と前記最小点の挿入長に対応する前記圧接荷重曲線における前記圧接荷重に相当する直線とによって囲まれる面積を求めて、この面積を電線作用量として圧接端子の接続状態を把握するばらけ情報値とし、前記挿入荷重の最小点は、前記最大点から減少した挿入荷重が一時的に増加した後再び減少したとき、前記挿入荷重が一時的に増大する直前の最小値となる点として求められる
【0008】
このように、求めた面積つまり電線作用量は、スロット幅に応じて数値が異なるため、絶縁被覆電線の条件や種類毎に前もって圧接刃と芯線との接触抵抗が安定する範囲を類別することにより、圧接刃と芯線との接触状態を電線作用量として定量値化することができ、絶縁被覆電線を圧接接続したときの接続状態を容易に把握することができることになる。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面に基づいて詳述する。
図1は本発明の圧接端子の圧接状態把握方法を実施するための測定装置の一例を示す図である。図1において、1は圧接端子の一対の圧接刃又は試験片の試料2に対する絶縁被覆電線3(図2参照)との圧接状態を把握するための測定装置を示す。
【0010】
絶縁被覆電線3は、複数本の素線を撚り合わせた芯線(撚線)の外周面に絶縁材料を被覆してなるもので、特に自動車用低圧電線(AV線)として用いられるものである。具体的には例えば、自動車用圧縮導体薄肉低圧電線(CAVUS)、自動車用薄肉低圧電線(AVS)、自動車用超薄肉低圧電線(AVVS)等である。
試験片は、圧接刃(圧接端子)と同じ金属材料からなり、一対の圧接刃とほぼ同じ形状及びスロットを有する一対の板片により形成されている。
【0011】
測定装置1は、一対の試料2、2のスロット4に絶縁被覆電線3が圧入(圧接)するときの電線挿入力(f)、その電線挿入力(f)により絶縁被覆電線3にかかる荷重(電線挿入力による荷重)及び一方の試料2にかかる圧接部荷重(F)をそれぞれ測定するものである。測定装置1は、一対の試料2、2を保持する保持部5と、その保持部5に保持された一対の試料2、2のスロット4に絶縁被覆電線3を圧入(圧接)するための金型6とを備えている。
【0012】
保持部5は、スロット4に絶縁被覆電線3が圧入(圧接)したときに一対の試料2、2に抵抗がかかることなく移動可能に一対の試料2、2の両側部をそれぞれ保持する一対の保持体7、8を有し、これら一対の保持体7、8のどちらか一方の保持体8には、スロット4に絶縁被覆電線3を圧入するときの一方の試料2かかる圧接部荷重(F)を連続して測定する第1測定手段9が設けられている。第1測定手段は、圧接部荷重(F)を連続して測定することができるならばどのようなものでもよく、例えば、圧力検出素子である第1ロードセル9が用いられる。第1ロードセル9で測定された測定値は例えば測定部10に送信されるようになっている。
【0013】
金型6は、保持部5に保持された一対の試料2、2のスロット4に絶縁被覆電線3を圧入(圧接)すべく往復移動可能に支持されている。この金型6には、スロット4に絶縁被覆電線3を圧入するときの電線挿入力(f)及び電線挿入力による荷重を連続して測定する第2測定手段11が設けられている。第2測定手段は、電線挿入力(f)及び電線挿入力による荷重を連続して測定することができるならばどのようなものでもよく、例えば、圧力検出素子である第2ロードセル11が用いられる。第2ロードセル11で測定された測定値は例えば測定部10に送信されるようになっている。
【0014】
測定部10は、第1、第2ロードセル9、11からの測定値や算出した関係式をグラフにあらわしたり、算出値を表示するCRT等の表示部(図示せず)を備えている。
測定部10は、演算処理等を行えるものであればどのようなものでもよく、例えばパーソナルコンピュータ(PC)が用いられる。
【0015】
この測定部10は、金型6又は金型6を駆動する駆動機構等からスロット4に圧入される絶縁被覆電線3のスロット4(又は試料2)に対する位置(絶縁被覆電線3の挿入長)を求める挿入長算出機能と、第2ロードセル11からの測定値(電線挿入力による挿入荷重)を縦軸に、絶縁被覆電線の挿入長を横軸にしてプロットして得られる挿入荷重曲線の最大点と最小点とを求める第1算出機能と、第1ロードセル9からの測定値(圧接部荷重(F))を縦軸に、絶縁被覆電線の挿入長を横軸にしてプロットして圧接荷重曲線を求め、この圧接荷重曲線と前記最大点の挿入長に相当する直線と前記最小点の挿入長における圧接荷重に相当する直線とによって囲まれる面積を求める第2算出機能とを備えている。ここで、挿入荷重曲線における挿入荷重の最大点は、挿入荷重曲線における挿入荷重の最大値の点、最小点は、最大点から減少した挿入荷重が一時的に増加した後再び減少したとき、挿入荷重が一時的に増大する直前の最小値となる点である
【0016】
挿入長算出機能は、金型6の位置を例えば位置検出センサ等により検出してこの検出値から絶縁被覆電線3のスロット4に対する位置(絶縁被覆電線3の挿入長)を求めたり、金型6を駆動する駆動機構例えばモータの回転数等の変位等から絶縁被覆電線3の挿入長を求めたりするものであり、絶縁被覆電線3の挿入長が求められるならばどのように構成してもよい。
【0017】
第1算出機能は、具体的には例えば、図3に示すように、電線挿入力による荷重(N)を縦軸に、絶縁被覆電線の挿入長(電線挿入長)を横軸にしてプロットして曲線を求め、この曲線(電線挿入力)の最大点(a)と最小点(c)とを求めるものである。
【0018】
第1算出機能では、具体的には、最大点は挿入荷重が最大値となる点として求めることができ、最小点については、図3のcの部分に見られるように、一対の圧接刃の間に絶縁被覆電線が挟まれている状態で、挿入荷重が一時的に増大する現象を捉え、挿入荷重が一時的に増大する直前の最小値となる点として求めることができる
【0019】
さて、この測定装置1を用いて圧接端子の圧接状態を把握するには、まず、一対の保持体7、8に一対の試料2、2を保持させる。そのスロット4に絶縁被覆電線3を金型6を用いて圧入(圧接)する。すなわち、図1に示すように、一対の保持体7、8に一対の試料例えば圧接刃2、2を保持させ、このスロット4の開口部に絶縁被覆電線3を位置させて、この絶縁被覆電線3を金型6によりスロット4の深さ方向に向けて押圧する。これにより、絶縁被覆電線3が図2に示すようにスロット4内に圧入すると共に、一対の圧接刃2、2が絶縁被覆電線3の絶縁部に切り込まれて絶縁部内の芯線(撚線)と接触する。
【0020】
このときの絶縁被覆電線3にかかる荷重(電線挿入力による荷重)及び一方の圧接刃にかかる圧接部荷重(F)が第2、第1ロードセル11、9によって連続して測定され、これら測定値が測定部10に送られる。このときの圧接部荷重はスロット4の開口部に位置されている場合にはFoである。
【0021】
測定部10は、まず、図3に示すように、電線挿入力による荷重(N)を縦軸に、絶縁被覆電線3の挿入長(電線挿入長)を横軸にしてプロットして挿入荷重曲線(電線挿入力)を求め、この曲線の最大点(a)と最小点とを求める。
次に、圧接部荷重を縦軸に、絶縁被覆電線の挿入長(電線挿入長)を横軸にしてプロットして圧接荷重曲線を求め、図3に示されるように、この圧接荷重曲線(圧接部荷重)と前記最大点(a)の挿入長(b)に相当する直線と前記最小点の挿入長(c)の挿入荷重に相当する直線とによって囲まれる面積(図に示した斜線の部分の面積S)を求める。この求められた面積が電線作用量Sとして圧接端子の接続状態を把握するばらけ情報値である。
【0022】
すなわち、一対の圧接刃2、2間のスロット4に絶縁被覆電線3を圧入する場合、図8に示すように、絶縁被覆電線3の形状は、まず(a)に示すように、スロット4の開口部に絶縁被覆電線3を位置させたときには原形のままである。スロット4に圧入されると、(b)に示すように、圧接刃2が絶縁被覆電線3の絶縁部に切り込まれて絶縁部内の芯線と接触し、(c)に示すように、芯線のほぼ半分がスロット4内に圧入する。そして、(d)に示すように、芯線のほとんどがスロット4内に圧入して、芯線のスロット4内での形状がほぼ決まってから、(e)に示すように、芯線が完全にスロット4内に圧入する。このときの電線挿入力(荷重)(N)を縦軸に、絶縁被覆電線の挿入長(電線挿入長)を横軸にしてプロットすると、図8のグラフに示す実線で示された曲線になる。ここで用いた絶縁被覆電線3としては、径(直径)が1.3mm、芯線径が0.9mm、撚り径が7本/0.32mm、撚り条件が同心撚りのものを用いて、スロット幅が0.48mmの圧接刃2に圧入したものである。
【0023】
このように、絶縁被覆電線3をスロット4に圧入する場合、スロット4内で芯線がばらけると、圧接刃2、2の開き量が小さくなり、圧接荷重も減少する。この挙動が、(a)に示すようにスロット4の開口部に絶縁被覆電線3を位置させたときから(d)に示すように芯線のほとんどがスロット4内に圧入して芯線のスロット4内での形状がほぼ決まるときまでの荷重における前記面積に表われ、この面積をみれば圧接端子2の接続状態を把握することができることになる。換言すれば、その面積が電線作用量Sとして圧接端子2の接続状態を把握するばらけ情報値である。
【0024】
つまり、ばらけ情報値(電線作用容量S)は、電線の品種及びスロット幅によって明らかに異なる。例えば、CAVUS(圧縮導体)とAVSS(自動車用超薄肉低圧電線)とについてばらけ情報値(電線作用容量)を求めると、図4及び図5に示すように、CAVUSは、2.57N・mm、AVSSは、5.71N・mmとなる。ここで用いたCAVUSは、径(直径)が1.3mm、芯線径が0.9mm、撚り径が7本/0.32mm、撚り条件が同心撚りのものである。AVSSは、径(直径)が2.0mm、芯線径が1.0mm、撚り径が7本/0.32mm、撚り条件が同心撚りのものである。スロット幅は0.48mmである。なお、図4及び図5は図面が小さいため、図3における最小点cに相当する荷重の上昇が描かれていないが、最小点に相当する点は図3の場合同様に、挿入荷重の一時的な上昇を検出することによって見つけられる。
【0025】
さらに、CAVUS、AVSS−f(フレキシブル線)、AVSについて、0.4mmから0.8mmまでの0.1mm間隔で5つのスロット幅におけるばらけ情報値(電線作用容量)を求め、電線作用容量を縦軸に、スロット幅(mm)を横軸にしてプロットすると、図6に示すようになった。ここで用いたCAVUSは、径(直径)が1.3mm、芯線径が0.9mm、撚り径が7本/0.32mm、撚り条件が同心撚りのものである。AVSS−fは、径(直径)が2.0mm、芯線径が1.0mm、撚り径が20本/0.18mm、撚り条件が同心撚りのものである。AVSは、径(直径)が2.0mm、芯線径が1.0mm、撚り径が7本/0.32mm、撚り条件が同心撚りのものである。
【0026】
ばらけ情報値(電線作用容量S)は、電線の品種及びスロット幅によって明らかに異なると共に、スロット幅に応じて数値が異なるため、絶縁被覆電線の条件や種類毎に前もって圧接刃と芯線との接触抵抗が安定する範囲を類別することで、圧接刃と芯線との接触状態を電線作用量として定量値化することができる。
【0027】
すなわち、図6に示したCAVUS、AVSS−f、AVSについて、スロット幅における接触抵抗(mΩ)を求め、この接触抵抗を縦軸に、スロット幅(mm)を横軸にしてプロットすると、図7に示すようになった。この結果からもわかるように、スロット幅が狭ければ抵抗も小さいが、これは圧接の場合、スロット幅が狭くてばらけが起きたとしても、圧接の直後はばらけた芯線と圧接刃とは十分に接触しているので接触抵抗は小さい。つまり、ばらけが起きてスロット幅が広がった状態から狭くなっても(スロット4内で芯線がばらけ、圧接刃2、2の開き量が小さくなり、圧接荷重が減しても)、特に圧接直後は芯線と圧接刃2とは十分に接触している。しかし、このままの状態で長期間使用していると、圧接荷重が小さいため、圧接刃2と芯線との接触が不十分になって接続信頼性が低下することが有り得る。換言すると、接触抵抗が安定していない。よって、接触抵抗をみただけでは、接触抵抗が小さくても安定しているとはいえない。
【0028】
これに対して、ばらけ情報値(電線作用容量S)は、図6に示すように、スロット幅に応じて数値が異なるため、絶縁被覆電線の条件や種類毎に前もって圧接刃と芯線との接触抵抗が安定する範囲を類別することで、圧接刃と芯線との接触状態を電線作用量として定量値化することができる。
【0029】
したがって、本発明の圧接端子の圧接状態把握方法は、圧接過程における芯線のバラケ量を定量値化することができ、ばらけ情報値を測定すれば、接続信頼性を直ちに判断することができる。
【0030】
【発明の効果】
以上要するに請求項1に記載の発明によれば、求めた電線作用量がスロット幅に応じて数値が異なるため、絶縁被覆電線の条件や種類毎に前もって圧接刃と芯線との接触抵抗が安定する範囲を類別することで、圧接刃と芯線との接触状態を電線作用量として定量値化することができ、絶縁被覆電線を圧接接続したときの接続状態を容易に把握することができる。
【図面の簡単な説明】
【図1】 本発明の圧接端子の圧接状態把握方法を実施するための測定装置の一例を示す概略図である。
【図2】 圧接端子に絶縁被覆電線が圧入された状態を示す概略図である。
【図3】 荷重と電線挿入長との関係を示す図である。
【図4】 荷重と電線挿入長との関係を示す図である。
【図5】 荷重と電線挿入長との関係を示す図である。
【図6】 電線作用量とスロット幅との関係を示す図である。
【図7】 圧接部抵抗とスロット幅との関係を示す図である。
【図8】 圧接刃に絶縁被覆電線を圧入するときの状態及び電線挿入力と電線挿入長との関係を示す図である。
【図9】 圧接刃に各種の絶縁被覆電線を圧入するときの状態を示す図である。
【符号の説明】
2 圧接刃
3 絶縁被覆電線
4 スロット
9 第1ロードセル
10 測定部
11 第2ロードセル
S 電線作用量(面積
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pressure contact state grasping method of a pressure contact terminal that can easily grasp a state in which an insulation coated electric wire is pressure contact connected to a pressure contact terminal.
[0002]
[Prior art]
There is a press contact terminal as a terminal for connecting an insulation coated electric wire in which a stranded wire obtained by twisting a plurality of strands is coated with an insulation coating material such as PVC or polyethylene. The press contact terminals are being used frequently because the connection work with the insulated wire is simple, and a pair of press contact blades can insulate the insulated wire by press-fitting the insulated wire into a substantially U-shaped slot of the press contact terminal. The insulation-coated electric wire and the press contact terminal are electrically connected by being cut into the portion and in contact with the core wire (twisted wire) in the insulating portion.
The press contact terminal includes an electric wire connecting portion having one or more pair of press contact blades, and a slot into which the insulation covered electric wire is press-fitted is formed between the pair of press contact blades, and the width of the slot is outside the core wire of the insulation cover electric wire. It is formed narrower than the diameter.
[0003]
[Problems to be solved by the invention]
By the way, the contact between the core wire and the pair of press contact blades is more important to ensure the contact with as much load as possible, that is, the insulation-coated electric wire is press-fitted into the slot between the pair of press contact blades. When the distance (slot) between the pair of press contact blades increases and the force to return the force increases, the contact is more reliably performed, so that the core wire can withstand the compressive load with the pair of press contact blades extended. This is important for making contact with the core wire of the insulated wire. However, since the core wire is a stranded wire in which a plurality of strands are twisted, when it is press-fitted into the slot between a pair of press contact blades, the compressive load applied to the core wire by the press contact blade is large depending on the type of the wire and the interval between the slots. , The core wire cannot withstand the load and breaks up. In the present invention, the looseness simply means that twisting is released and the strands are scattered or the core wire is scraped. When the irregularity occurs, the pair of press contact blades are narrowed from the expanded state, and when used for a long time, the contact between the press contact blade and the core wire becomes insufficient, and the connection reliability may be lowered.
[0004]
That is, in the wire connection portion of the press contact terminal, there are some varieties in which the connection state in the connection process varies greatly depending on the type of the insulation-coated wire, and the connection reliability of the wire connection portion cannot be ensured, that is, the variability occurs. For example, as shown in FIG. 9, four insulation coated electric wires of CAVUS (compressed conductor), AVS, AVSS-f (flexible wire), and tin plating (Sn plating) are connected to the same pair of slots (slot width 0). .45 mm), it can be seen that there are few variations in the case of the compressed conductor, and there are many variations in the case of the AVS and the flexible wire. CAVUS used here has a diameter (diameter) of 1.3 mm, a core wire diameter of 0.9 mm, a twist diameter of 7 / 0.32 mm, and a twist condition of concentric twist. The AVS has a diameter (diameter) of 2.0 mm, a core wire diameter of 1.0 mm, a twist diameter of 7 / 0.32 mm, and a twist condition of concentric twist. AVSS-f has a diameter (diameter) of 2.0 mm, a core wire diameter of 1.0 mm, a twist diameter of 20 pieces / 0.18 mm, and a twist condition of concentric twist. The Sn plating has a diameter (diameter) of 2.0 mm, a core wire diameter of 1.0 mm, a twist diameter of 7 / 0.32 mm, and a twist condition of concentric twist.
[0005]
There are thermal shock tests and high-temperature storage tests as methods for checking connection reliability. However, if neither of these methods is performed for a long period of time, the contact state between the pressure contact blade and the core wire of the insulated wire cannot be grasped. There is a man-hour problem.
In addition, experience shows that connection reliability is higher when there are fewer variations in the core wire, but this variation is extremely subjective and cannot be quantitatively examined as a numerical value.
[0006]
Therefore, the present invention has been made in view of such a situation, and its purpose is to grasp the pressure contact state of the pressure contact terminal that can quantitatively grasp the connection state when the insulation-coated electric wire is pressure contact connected. It is to provide a method.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the press contact state grasping method of the press contact terminal according to the present invention is a press contact terminal in which an insulation covered electric wire is press-fitted into a slot between a pair of press contact blades and electrically connected to a core wire of the insulation cover electric wire. And measuring the insertion load due to the wire insertion force applied to the insulation covered wire and the pressure contact portion load applied to one pressure contact blade when the insulation covered wire is press-fitted into the slot. Determine the maximum and minimum points of the insertion load in the insertion load curve obtained by plotting the insertion load due to the inserted wire force on the vertical axis and the insertion length of the insulated wire (wire insertion length) on the horizontal axis, seeking a interpolation Iricho corresponding to the insertion length and the minimum point corresponding to the maximum point this that obtained, the pressure contact portion load said measured on the vertical axis, the insertion length of insulation coated wire (the wire insertion length) in the horizontal axis Obtained by plotting Seeking area surrounded by the straight lines corresponding to the pressure load in the press-contact load curve corresponding to the insertion length of the straight line and the minimum points equivalent to the insertion length of the maximum point and the contact load curve, the electric wire of this area The amount of action is a variation information value that grasps the connection state of the press contact terminal, and the minimum point of the insertion load is when the insertion load decreased from the maximum point temporarily increases and then decreases again. It is obtained as the point that becomes the minimum value immediately before increasing temporarily .
[0008]
In this way, the calculated area, that is, the amount of wire action, varies depending on the slot width, so by classifying the range in which the contact resistance between the press contact blade and the core wire is stable in advance for each condition and type of the insulation coated wire The contact state between the press contact blade and the core wire can be quantified as an electric wire action amount, and the connection state when the insulation coated electric wire is press contact connected can be easily grasped.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a diagram showing an example of a measuring apparatus for carrying out the method of grasping a pressure contact state of a pressure contact terminal according to the present invention. In FIG. 1, reference numeral 1 denotes a measuring device for grasping a pressure contact state between a pair of pressure contact blades of a pressure contact terminal or a specimen 2 of a test piece with an insulation-coated electric wire 3 (see FIG. 2).
[0010]
The insulation-coated electric wire 3 is formed by coating an outer peripheral surface of a core wire (twisted wire) obtained by twisting a plurality of strands with an insulating material, and is particularly used as a low-voltage electric wire (AV wire) for automobiles. Specifically, for example, a compressed conductor thin-walled low-voltage electric wire (CAVUS) for automobiles, a thin-walled low-voltage electric wire (AVS) for automobiles, an ultra-thin low-voltage electric wire (AVVS) for automobiles, and the like.
The test piece is made of the same metal material as the press contact blade (pressure contact terminal), and is formed by a pair of plate pieces having substantially the same shape and slot as the pair of press contact blades.
[0011]
The measuring device 1 has a wire insertion force (f) when the insulation-coated wire 3 is press-fitted (press-contacted) into the slots 4 of the pair of samples 2 and 2, and a load applied to the insulation-coated wire 3 by the wire insertion force (f) ( The load due to the wire insertion force) and the pressure contact portion load (F) applied to one sample 2 are respectively measured. The measuring device 1 includes a holding part 5 for holding a pair of samples 2 and 2 and a gold for press-fitting (pressing) the insulation-coated electric wire 3 into a slot 4 of the pair of samples 2 and 2 held by the holding part 5. A mold 6 is provided.
[0012]
The holding portion 5 is a pair of holding portions for holding both sides of the pair of samples 2 and 2 so that the pair of samples 2 and 2 can move without resistance when the insulation-coated electric wire 3 is press-fitted into the slot 4 (pressure contact). A holding body 7, 8 is provided, and one of the pair of holding bodies 7, 8 has a pressure contact portion load (F) applied to one sample 2 when the insulation-coated electric wire 3 is press-fitted into the slot 4. ) Is continuously measured. The first measuring means may be anything as long as it can continuously measure the pressure contact portion load (F). For example, the first load cell 9 which is a pressure detecting element is used. The measurement value measured by the first load cell 9 is transmitted to the measurement unit 10, for example.
[0013]
The mold 6 is supported so as to be able to reciprocate so as to press-fit (pressure contact) the insulation-coated wires 3 into the slots 4 of the pair of samples 2 and 2 held by the holding unit 5. The mold 6 is provided with the second measuring means 11 for continuously measuring the wire insertion force (f) when the insulation-coated wire 3 is press-fitted into the slot 4 and the load due to the wire insertion force. The second measuring means may be anything as long as it can continuously measure the wire insertion force (f) and the load due to the wire insertion force. For example, the second load cell 11 that is a pressure detection element is used. . The measurement value measured by the second load cell 11 is transmitted to the measurement unit 10, for example.
[0014]
The measurement unit 10 includes a display unit (not shown) such as a CRT that displays the measurement values from the first and second load cells 9 and 11 and the calculated relational expression on a graph and displays the calculation values.
The measuring unit 10 may be anything as long as it can perform arithmetic processing or the like, and for example, a personal computer (PC) is used.
[0015]
The measuring unit 10 determines the position (insertion length of the insulated wire 3) of the insulated wire 3 that is press-fitted into the slot 4 from the mold 6 or a drive mechanism that drives the die 6 with respect to the slot 4 (or the sample 2). an insertion length calculation function of obtaining, measurements from the second load cell 11 (insertion load by the wire insertion force) on the vertical axis, the top of the insertion load curve obtained by plotting with the insertion length of the insulated wire to the horizontal axis The first calculation function for obtaining the large point and the minimum point, and the measured value (pressure contact load (F)) from the first load cell 9 are plotted on the vertical axis and the insertion length of the insulated wire is plotted on the horizontal axis for pressure welding A second calculation function for obtaining a load curve and obtaining an area surrounded by the pressure contact load curve, a straight line corresponding to the insertion length of the maximum point, and a straight line corresponding to the pressure load at the insertion length of the minimum point; . Here, the maximum point of the insertion load in insertion load curve, the point of the maximum value of the insertion load in insertion load curve, the minimum point, when the insertion load was reduced from the maximum point is decreased again after a temporary increase, insertion It is a point that becomes the minimum value immediately before the load temporarily increases .
[0016]
The insertion length calculation function detects the position of the mold 6 by, for example, a position detection sensor, and obtains the position (insertion length of the insulation coated electric wire 3) with respect to the slot 4 of the insulation coated electric wire 3 from the detected value. For example, the insertion length of the insulation-coated electric wire 3 is obtained from displacement such as the rotational speed of the motor, and any configuration may be used as long as the insertion length of the insulation-coated electric wire 3 is obtained. .
[0017]
Specifically, for example, as shown in FIG. 3, the first calculation function plots the load (N) due to the wire insertion force on the vertical axis and the insertion length of the insulation-coated electric wire (wire insertion length) on the horizontal axis. The curve is obtained, and the maximum point (a) and the minimum point (c) of this curve (wire insertion force) are obtained.
[0018]
In the first calculation function, specifically, the maximum point can be obtained as a point at which the insertion load becomes the maximum value, and the minimum point of the pair of press contact blades as seen in part c of FIG. in a state in which the sheathed wires are sandwiched between, can be determined as a point where capture the phenomenon that insertion load is temporarily increased, the insertion load becomes the minimum value of the straight before you temporarily increased .
[0019]
Now, in order to grasp the pressure contact state of the pressure contact terminal using the measuring apparatus 1, first, the pair of holding bodies 7, 8 are made to hold the pair of samples 2, 2. The insulation-coated electric wire 3 is press-fitted (pressed) into the slot 4 using a mold 6. That is, as shown in FIG. 1, a pair of samples, for example, press contact blades 2, 2 are held by a pair of holding bodies 7, 8, and an insulation covered electric wire 3 is positioned in the opening of the slot 4. 3 is pressed by the mold 6 toward the depth direction of the slot 4. Thereby, the insulation coated electric wire 3 is press-fitted into the slot 4 as shown in FIG. 2, and the pair of press contact blades 2 and 2 are cut into the insulation portion of the insulation coated electric wire 3 so that the core wire (stranded wire) in the insulation portion is formed. Contact with.
[0020]
At this time, the load applied to the insulated coated electric wire 3 (the load due to the insertion force of the electric wire) and the press contact portion load (F) applied to one of the press contact blades are continuously measured by the second and first load cells 11 and 9, and these measured values are measured. Is sent to the measurement unit 10. The pressure contact load at this time is Fo when it is positioned at the opening of the slot 4.
[0021]
As shown in FIG. 3, the measurement unit 10 first plots the insertion load curve by plotting the load (N) due to the wire insertion force on the vertical axis and the insertion length (wire insertion length) of the insulation-coated wire 3 on the horizontal axis. (Electric wire insertion force) is obtained, and the maximum point (a) and the minimum point of this curve are obtained.
Next, the vertical axis the pressure contact portion load, obtains a pressure load curve was plotted by insertion length of insulation coated wire (the wire insertion length) on the horizontal axis, as shown in FIG. 3, the pressure-load curve (pressure part load) before and Symbol maximum point insertion length (b) insertion length of the corresponding linear and the minimum point in the hatched shown in the area (drawing surrounded by a straight line corresponding to the insertion load in (c) of (a) The area S) of the part is obtained. The obtained area is a variation information value for grasping the connection state of the press contact terminal as the electric wire action amount S.
[0022]
That is, when the insulation-coated electric wire 3 is press-fitted into the slot 4 between the pair of press contact blades 2, the shape of the insulation-coated electric wire 3 is as shown in FIG. When the insulation-coated electric wire 3 is positioned in the opening, it remains in its original form. When press-fitted into the slot 4, as shown in (b), the press contact blade 2 is cut into the insulating portion of the insulation-coated electric wire 3 and comes into contact with the core wire in the insulating portion, as shown in (c). Almost half is press fit into the slot 4. Then, as shown in (d), most of the core wire is press-fitted into the slot 4, and the shape of the core wire in the slot 4 is almost determined, and then the core wire is completely inserted into the slot 4 as shown in (e). Press fit inside. When the electric wire insertion force (load) (N) at this time is plotted on the vertical axis and the insertion length of the insulated coated electric wire (electric wire insertion length) is plotted on the horizontal axis, a curve indicated by the solid line shown in the graph of FIG. 8 is obtained. . The insulation coated electric wire 3 used here has a diameter (diameter) of 1.3 mm, a core wire diameter of 0.9 mm, a twist diameter of 7 wires / 0.32 mm, and a twist condition of a concentric twist, and a slot width. Is press-fitted into the press contact blade 2 of 0.48 mm.
[0023]
As described above, when the insulation-coated electric wire 3 is press-fitted into the slot 4, if the core wire is dispersed in the slot 4, the opening amount of the press-contact blades 2 and 2 is reduced, and the press-contact load is also reduced. As shown in (a), when the insulation-coated electric wire 3 is positioned at the opening of the slot 4 as shown in (a), most of the core wire is press-fitted into the slot 4 as shown in (d), and the inside of the slot 4 of the core wire is inserted. the area in our table at load time the shape almost determined at, will be able to grasp the connection state of the press-connecting terminal 2 Looking at this area. In other words, the area is a variation information value for grasping the connection state of the press contact terminal 2 as the wire action amount S.
[0024]
That is, the variation information value (wire action capacity S) is clearly different depending on the type and slot width of the wire. For example, when CAVUS (compressed conductor) and AVSS (ultra-thin automotive low-voltage electric wire) are obtained, the information value (wire working capacity) is calculated as shown in FIG. 4 and FIG. mm and AVSS are 5.71 N · mm. CAVUS used here has a diameter (diameter) of 1.3 mm, a core wire diameter of 0.9 mm, a twist diameter of 7 / 0.32 mm, and a twist condition of concentric twist. AVSS has a diameter (diameter) of 2.0 mm, a core wire diameter of 1.0 mm, a twist diameter of 7 pieces / 0.32 mm, and a twist condition of concentric twist. The slot width is 0.48 mm. 4 and 5 are small in size, the increase in the load corresponding to the minimum point c in FIG. 3 is not drawn. However, the point corresponding to the minimum point is the same as in FIG. Can be found by detecting a typical rise.
[0025]
Further, for CAVUS, AVSS-f (flexible wire), and AVS, the information values (wire working capacities) at five slot widths at intervals of 0.1 mm from 0.4 mm to 0.8 mm are obtained, and the wire working capacities are calculated. Plotting with the vertical axis representing the slot width (mm) as the horizontal axis, the result is as shown in FIG. CAVUS used here has a diameter (diameter) of 1.3 mm, a core wire diameter of 0.9 mm, a twist diameter of 7 / 0.32 mm, and a twist condition of concentric twist. AVSS-f has a diameter (diameter) of 2.0 mm, a core wire diameter of 1.0 mm, a twist diameter of 20 pieces / 0.18 mm, and a twist condition of concentric twist. The AVS has a diameter (diameter) of 2.0 mm, a core wire diameter of 1.0 mm, a twist diameter of 7 / 0.32 mm, and a twist condition of concentric twist.
[0026]
The variation information value (cable working capacity S) is obviously different depending on the type and slot width of the electric wire, and the numerical value is different depending on the slot width. By classifying the range in which the contact resistance is stable, the contact state between the press contact blade and the core wire can be quantified as an electric wire action amount.
[0027]
That is, for the CAVUS, AVSS-f, and AVS shown in FIG. 6, the contact resistance (mΩ) in the slot width is obtained, and plotted with the contact resistance on the vertical axis and the slot width (mm) on the horizontal axis. It came to show in. As can be seen from this result, if the slot width is narrow, the resistance is small, but in the case of pressure welding, even if the slot width is narrow and scattering occurs, the loose core wire and the pressure welding blade are sufficient immediately after the pressure welding. The contact resistance is small because it is in contact with In other words, even when the slot width is increased and the slot width is increased, it is narrowed (even if the core wire is dispersed in the slot 4 and the opening amount of the press contact blades 2 and 2 is reduced and the press load is reduced). Immediately after that, the core wire and the press contact blade 2 are in sufficient contact. However, when used in this state for a long time, since the pressure contact load is small, the contact between the pressure contact blade 2 and the core wire becomes insufficient, and the connection reliability may be lowered. In other words, the contact resistance is not stable. Therefore, it cannot be said that it is stable even if the contact resistance is small only by looking at the contact resistance.
[0028]
On the other hand, as shown in FIG. 6, the variation information value (wire action capacity S) varies depending on the slot width, so that the contact between the pressure contact blade and the core wire in advance for each condition and type of the insulation-coated wire. By classifying the range in which the contact resistance is stable, the contact state between the press contact blade and the core wire can be quantified as an electric wire action amount.
[0029]
Therefore, the method of grasping the pressure contact state of the pressure contact terminal according to the present invention can quantify the amount of variation in the core wire in the pressure contact process, and can immediately determine the connection reliability by measuring the variation information value.
[0030]
【The invention's effect】
In short, according to the first aspect of the present invention, since the calculated wire action amount varies depending on the slot width, the contact resistance between the press contact blade and the core wire is stabilized in advance for each condition and type of the insulated coated wire. By classifying the ranges, the contact state between the press contact blade and the core wire can be quantified as an electric wire action amount, and the connection state when the insulation coated electric wire is press contact connected can be easily grasped.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of a measuring apparatus for carrying out a method for grasping a pressure contact state of a pressure contact terminal according to the present invention.
FIG. 2 is a schematic view showing a state where an insulation-coated electric wire is press-fitted into a press-contact terminal.
FIG. 3 is a diagram showing a relationship between a load and a wire insertion length.
FIG. 4 is a diagram showing a relationship between a load and a wire insertion length.
FIG. 5 is a diagram showing a relationship between a load and a wire insertion length.
FIG. 6 is a diagram showing the relationship between the electric wire action amount and the slot width.
FIG. 7 is a diagram showing the relationship between the pressure contact resistance and the slot width.
FIG. 8 is a diagram showing a state when an insulation-coated electric wire is press-fitted into a press contact blade and a relationship between an electric wire insertion force and an electric wire insertion length.
FIG. 9 is a view showing a state when various insulation-coated electric wires are press-fitted into the press contact blade.
[Explanation of symbols]
2 Press-contact blade 3 Insulated coated wire 4 Slot 9 First load cell 10 Measuring section 11 Second load cell S Electric wire acting amount ( area )

Claims (1)

一対の圧接刃の間のスロットに絶縁被覆電線を圧入して、絶縁被覆電線の芯線と電気的に接続した圧接端子の接続状態を把握する方法であって、前記スロットに絶縁被覆電線を圧入するときの絶縁被覆電線にかかる電線挿入力による挿入荷重及び一方の圧接刃にかかる圧接部荷重をそれぞれ測定し、この測定した電線挿入力による挿入荷重を縦軸に、絶縁被覆電線の挿入長(電線挿入長)を横軸にしてプロットして得られる挿入荷重曲線における前記挿入荷重の最大点と最小点とを求め、この求めた最大点に対応する挿入長と最小点に対応する挿入長とを求め、前記測定した圧接部荷重を縦軸に、絶縁被覆電線の挿入長(電線挿入長)を横軸にしてプロットして得られる圧接荷重曲線と前記最大点の挿入長に相当する直線と前記最小点の挿入長に対応する前記圧接荷重曲線における前記圧接荷重に相当する直線とによって囲まれる面積を求めて、この面積を電線作用量として圧接端子の接続状態を把握するばらけ情報値とし、前記挿入荷重の最小点は、前記最大点から減少した挿入荷重が一時的に増加した後再び減少したとき、挿入荷重が一時的に増大する直前の最小値となる点であることを特徴とする圧接端子の圧接状態把握方法。A method for press-fitting an insulation-coated electric wire into a slot between a pair of press-contacting blades and grasping a connection state of a pressure-contact terminal electrically connected to a core wire of the insulation-coated electric wire, and press-fitting the insulation-coated electric wire into the slot Measure the insertion load due to the wire insertion force applied to the insulation coated wire and the pressure contact portion load applied to one pressure contact blade, and the insertion load due to the measured wire insertion force along the vertical axis seeking a maximum and minimum points of the insertion load in insertion load curve obtained the insertion length) is plotted on the horizontal axis, and interpolation Iricho corresponding to the insertion length and the minimum point corresponding to the maximum point this that obtained look, the measured pressure contact portion longitudinal axis load, straight line insertion length equivalent to insertion length of the (electric wire insertion length) in the horizontal axis and pressure load curve obtained by plotting the maximum point of the insulated wire insertion and of the minimum point Seeking area surrounded by the straight lines corresponding to the pressure load in the press-contact load curve corresponding to, the area and loosened information value to grasp the connection state of the pressure contact terminal as the wire working amount, the insertion load The minimum point is the point at which the insertion load decreased from the maximum point temporarily increases and then decreases again, and is the point immediately before the insertion load temporarily increases. Status grasp method.
JP2002110408A 2002-04-12 2002-04-12 Method of grasping the pressure contact state of the pressure contact terminal Expired - Fee Related JP4323753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002110408A JP4323753B2 (en) 2002-04-12 2002-04-12 Method of grasping the pressure contact state of the pressure contact terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002110408A JP4323753B2 (en) 2002-04-12 2002-04-12 Method of grasping the pressure contact state of the pressure contact terminal

Publications (2)

Publication Number Publication Date
JP2003308942A JP2003308942A (en) 2003-10-31
JP4323753B2 true JP4323753B2 (en) 2009-09-02

Family

ID=29393554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002110408A Expired - Fee Related JP4323753B2 (en) 2002-04-12 2002-04-12 Method of grasping the pressure contact state of the pressure contact terminal

Country Status (1)

Country Link
JP (1) JP4323753B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101686395B1 (en) * 2015-06-22 2016-12-15 주식회사 선일기연 Measuring device of the terminal inserter for a pcb

Also Published As

Publication number Publication date
JP2003308942A (en) 2003-10-31

Similar Documents

Publication Publication Date Title
US8746026B2 (en) Method for determining the quality of a crimped connection between a conductor and a contact
US9484640B2 (en) Wire with a crimp terminal with a bottom plate with an inclined portion and a raised portion
CN102089940A (en) Terminal fitting-equipped electric wire and method of manufacturing terminal fitting-equipped electric wire
WO2012106390A2 (en) Process and apparatus for nondestructive evaluation of the quality of a crimped wire connector
JP4323753B2 (en) Method of grasping the pressure contact state of the pressure contact terminal
US9863996B2 (en) Apparatus and process for testing and improving electrical and/or mechanical characteristics of an electrical connection
JPS63198268A (en) Wire compression bonding construction for connector terminal
JPH10154534A (en) Pressure contact terminal and design method therefor
JPH08211115A (en) Deterioration diagnostic apparatus for insulation coating of coated wire
CN105547551B (en) Device for assessing twisted polyethylene cable copper core and insulation interlayer aeration level
JPH041479B2 (en)
JP6850168B2 (en) Estimator of resistance value of crimping part of electric wire with terminal
Mallina Solderless wrapped connections: Part I—Structure and tools
JP3371360B2 (en) Apparatus for measuring stress relaxation of insulation displacement terminals
JPH10334963A (en) Pressure contact terminal and its design method
JP2021150187A (en) Estimation method of the number of core wire cutting of wire with terminal, determination method of threshold value used for determining quality of terminal crimp inspection, and terminal crimp inspection device
Uzun et al. Methods and devices used in determining the quality of electric wires terminal crimping
RU2256906C2 (en) Method and device for electric nondestructive inspection of current-conducting materials
Finc et al. Quality control of crimped joint contacts with conductors through thermography
JP2007285939A (en) Inspection device and method of semiconductor integrated circuit device
CN202815020U (en) Hook-type wire clamp
CN111289565B (en) Method and device for nondestructive testing of quality of conductive material based on continuously acquired information
JPH0730466U (en) Female terminal fittings for connectors
JPH0750567B2 (en) Conductor for equipment wiring
JP4030275B2 (en) Connection failure detection method when connecting the flat cable to the connection terminal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070219

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070223

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090605

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4323753

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees