JP4319292B2 - Method for producing tert-butoxycarbonyl chloride - Google Patents

Method for producing tert-butoxycarbonyl chloride Download PDF

Info

Publication number
JP4319292B2
JP4319292B2 JP21006499A JP21006499A JP4319292B2 JP 4319292 B2 JP4319292 B2 JP 4319292B2 JP 21006499 A JP21006499 A JP 21006499A JP 21006499 A JP21006499 A JP 21006499A JP 4319292 B2 JP4319292 B2 JP 4319292B2
Authority
JP
Japan
Prior art keywords
tert
chloride
boc
toluene
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21006499A
Other languages
Japanese (ja)
Other versions
JP2001089414A (en
Inventor
光正 高田
剛弘 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP21006499A priority Critical patent/JP4319292B2/en
Publication of JP2001089414A publication Critical patent/JP2001089414A/en
Application granted granted Critical
Publication of JP4319292B2 publication Critical patent/JP4319292B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Description

【0001】
【発明の属する技術分野】
本発明は、農医薬中間体などの有機化合物合成時の保護基としてよく使用される、tert-ブトキシカルボニルクロリド(BOC-クロリド)の製造方法に関し、またそれを用いた有機中間体の製造方法に関する。
【0002】
【従来の技術】
従来、BOC-クロリドの製造法としては、tert-ブチルアルコールとホスゲンをエーテル系溶媒下、ピリジンまたは2-もしくは3-ピコリンを塩基として用い、反応温度を-25〜-15℃、熟成温度-15〜-5℃で行う事により、80〜85%の収率でBOC-クロリドを得る方法(特開平10-114715)が知られている。
【0003】
【発明が解決しようとする課題】
農医薬中間体の保護基としてBOCを導入する場合、BOC2Oが用いられるが、BOC2Oは高価であるため、より安価にBOC化できる方法が求められていた。
BOC-クロリドはエーテル系溶媒での製造方法が知られているが、エーテル系溶媒では工業的に危険であり、また回収が難しいので、より工業的に有利な溶媒(例えばトルエン等)でのBOC-クロリドの合成が望まれていた。しかし、特開平10-114715に記載のピリジンまたは2-もしくは3-ピコリンを塩基として用いると、トルエン溶媒ではBOC-クロリドの収率は大幅に低下する事が判った。
【0004】
【課題を解決するための手段】
本発明者らは上記の課題について詳細に検討した結果、工業的に使用しやすいベンゼン系溶媒を用いても従来と同等以上の収率で目的物を容易に得られる条件を見い出し、本発明を完成するに至った。
【0005】
即ち、本発明は、tert-ブチルアルコールとホスゲンを、ベンゼン系溶媒中、式[I]
【化4】

Figure 0004319292
(式中、R1はハロゲン原子もしくはC2〜C4アルキルを表し、R2は水素原子、メチル基、エチル基を表す。)で表されるピリジン類の存在下、-40〜0℃で反応させる事を特徴とするtert-ブトキシカルボニルクロリドの製造方法である。
また、0℃以下で反応液を水で洗浄する事を特徴とするtert-ブトキシカルボニルクロリドの製造方法である。
また、上記方法で得られたtert-ブトキシカルボニルクロリドをもちいることを特徴とするアミン類、アミノ酸類、およびアルコール類のBOC化方法である。
【0006】
【発明の実施の形態】
1としては、フッ素原子、塩素原子、臭素原子等のハロゲン原子、
エチル、プロピル、イソプロピル、ブチル、イソブチル、tert-ブチル等のアルキル基が挙げられる。
本発明に使用されるピリジン類としては、具体的に2-エチルピリジン、5-エチル-2-ピコリンが挙げられる。
ベンゼン系溶媒としては、置換されていてもよいベンゼン、たとえばベンゼン、トルエン、キシレンが挙げられるがトルエンが好ましい。
反応のモル比は、tert-ブタノール1モルに対し、ホスゲン0.7〜1.5モルであり、より好ましくは0.9〜1.1 モルである。塩基は1.0〜3.0モル、好ましくは1.1〜1.3モルである。
反応温度については、-40〜0℃、好ましくは-25〜-5℃であり、その後反応の熟成を-20〜-5℃で行うと、比較的短い時間で反応を行う事が出来る。この際、温度が0℃より高くなると、BOC-クロリドが分解し、収率の低下をきたすため、好ましくない。
【0007】
反応は tert-ブチルアルコールとホスゲンをベンゼン系溶媒に溶解し、ベンゼン系溶媒に溶解したピリジン類を滴下させ、熟成する事により行われる。
【0008】
反応中に生じた塩基の塩酸塩は、濾別して取り除くこともできるが、工程の短縮、塩基の回収の効率上、0℃以下で水を反応溶媒に対して0.05〜100倍、好ましくは0.1〜1倍加え、水層を分離することによって、反応溶媒から取り除く方が有利である。水層中の塩基は、水分を除くことで再利用可能である。
【0009】
こうして得られたベンゼン系溶媒中のBOC-クロリドは溶媒とともに、農医薬中間体等の有機中間体の保護基として使用することが出来る。
該有機中間体としてはアミン類、アミノ酸類あるいはアルコール類が挙げられ、
アミン類としては、3−ヒドロキシピロリジン、ピペラジン誘導体、アミノチアゾリルペンテン酸等、
アミノ酸としては、アラニン、フェニルアラニン、トリプトファン、グルタミン酸、バリン、4-ヒドロキシプロリン、3-ヒドロキシピロリジン、アミノフェニル酪酸等、
アルコール類としては、フェノール等のフェノール系アルコールが挙げられる。
【0010】
【実施例】
以下に実施例を挙げ本発明を詳細に説明する。生成物についてはMS、NMR、HPLCで同定、定量を行った。
【0011】
比較例1(BOC-クロリドの製造)
ホスゲン20g(0.2mol)をtert-ブチルアルコール16.5g(0.22mol)含有トルエン溶液200mlに吹き込み、-20℃に冷却撹拌下、2-ピコリン19.0g(0.24mol)含有トルエン溶液60gを約1時間かけ、徐々に滴下した。その後、温度を-10℃まで上げ、ホスゲンが消失するまで約5時間熟成撹拌した。反応終了後、副生したピリジン塩酸塩を濾別して少量のトルエンで洗浄し、BOC-クロリドのトルエン溶液を収率50%(対tert-ブタノール)で得た。保存は-20℃のフリーザー中で行った。
【0012】
実施例1(BOC-クロリドの製造)
ホスゲン16.6g(0.168mol)をtert-ブチルアルコール11.9g(0.16mol)含有トルエン溶液160mlに吹き込み、-20℃に冷却撹拌下、5-エチル-2-ピコリン23.3g(0.192mol)含有トルエン溶液50gを約1時間かけ、徐々に滴下した。その後、温度を-10℃まで上げ、ホスゲンが消失するまで約2時間熟成撹拌した。反応終了後、副生したピリジン塩酸塩を濾別して少量のトルエンで洗浄し、BOC-クロリドのトルエン溶液を収率88%(対tert-ブタノール)で得た。保存は-20℃のフリーザー中で行った。
【0013】
実施例2(BOC-クロリドの製造)
ホスゲン16.6g(0.168mol)をtert-ブチルアルコール11.9g(0.16mol)含有メシチレン溶液160mlに吹き込み、-20℃に冷却撹拌下、5-エチル-2-ピコリン23.3g(0.192mol)含有メシチレン溶液50gを約1時間かけ、徐々に滴下した。その後、温度を-10℃まで上げ、ホスゲンが消失するまで約2時間熟成撹拌した。反応終了後、副生したピリジン塩酸塩を濾別して少量のメシチレンで洗浄し、BOC-クロリドのメシチレン溶液を収率84%(対tert-ブタノール)で得た。保存は-20℃のフリーザー中で行った。
【0014】
実施例3(BOC-クロリドの製造)
ホスゲン31.2g(0.315mol)をtert-ブチルアルコール22.2g(0.30mol)含有トルエン溶液300mlに吹き込み、-20℃に冷却撹拌下、5-エチル-2-ピコリン43.6g(0.360mol)含有トルエン溶液50gを約1時間かけ、徐々に滴下した。その後、-20℃で熟成を行い、ホスゲンが消失するまで約4時間熟成撹拌した。反応終了後、副生したピリジン塩酸塩を濾別して少量のトルエンで洗浄し、BOC-クロリドのトルエン溶液を収率90%(対tert-ブタノール)で得た。保存は-20℃のフリーザー中で行った。
【0015】
実施例4(BOC-クロリドの製造)
ホスゲン15.9g(0.16mol)をtert-ブチルアルコール11.9g(0.16mol)含有トルエン溶液160mlに吹き込み、-20℃に冷却撹拌下、2-エチルピリジン 20.6g(0.192mol)含有トルエン溶液50gを約1時間かけ、徐々に滴下した。その後、温度を-10℃まで上げ、ホスゲンが消失するまで約3時間熟成撹拌した。反応終了後、副生したピリジン塩酸塩を濾別して少量のトルエンで洗浄した。BOC-クロリドのトルエン溶液を収率91%(対tert-ブタノール)で得た。保存は-20℃のフリーザー中で行った。
【0016】
実施例5(BOC-クロリドの製造(水による塩基の除去))
ホスゲン31.2g(0.315mol)をtert-ブチルアルコール22.2g(0.30mol)含有トルエン溶液200mlに吹き込み、-5〜0℃(主に‐3℃)に冷却撹拌下、5-エチル-2-ピコリン43.6g(0.36mol)含有トルエン溶液78gを約1時間かけ、徐々に滴下した。その後、-5〜0℃(主に-2℃)で熟成を行い、ホスゲンが消失するまで約3時間熟成撹拌した。反応終了後、0℃に冷却下、冷却した水20mlを投入し、5分間攪拌すると副生した5-エチル-2-ピコリン塩酸塩が溶解する。5分間静置後、二層に分液し水層を分離する事で、ボッククロリドのトルエン溶液240.1g(21.0wt%)を収率80%(対tert-ブタノール)で得た。保存は-20℃のフリーザー中で行った。
また水層は28%苛性ソーダ水溶液55gを加え、アルカリ性(pH 13.7)にすると、二層に分液し、水層を分離する事で、回収5-エチル-2-ピコリン48.1g(純分87.5wt%、水分10.0wt%、トルエン2.5wt%)を回収率96.5%で得た。得られた回収5-エチル-2-ピコリンは共沸脱水により水分を除く事で再利用可能である。
【0017】
実施例6(BOC-クロリドの製造(水による塩基の除去))
ホスゲン29.7g(0.30mol)をtert-ブチルアルコール22.2g(0.30mol)含有トルエン溶液200mlに吹き込み、-5〜0℃(主に‐2℃)に冷却撹拌下、2-エチルピリジン35.4g(0.33mol)含有トルエン溶液70gを約1時間かけ、徐々に滴下した。その後、-5〜0℃(主に-1℃)で熟成を行い、ホスゲンが消失するまで約3時間熟成撹拌した。反応終了後、0℃に冷却下、冷却した水20mlを投入し、5分間攪拌すると副生した2-エチルピリジン塩酸塩が溶解する。5分間静置後、二層に分液した水層を分離する事で、ボッククロリドのトルエン溶液239.2g(22.1wt%)を収率85%(対tert-ブタノール)で得た。保存は-20℃のフリーザー中で行った。
また水層は28%苛性ソーダ水溶液51gを加え、アルカリ性(pH 13.8)にすると、二層に分液し、水層を分離する事で、回収2-エチルピリジン38.9g(純分84.9wt%、水分14.1wt%、トルエン0.9wt%)を回収率93.3%で得た。また水層をトルエン20mlで再抽出する事で回収率は96.3%まで向上した。得られた回収2-エチルピリジンは共沸脱水により水分を除く事で再利用可能である。
【0018】
実施例7(N-tert-ブトキシカルボニル-4-ヒドロキシプロリンの製造)
4-ヒドロキシプロリン3.9g(30mmol)を水30mlに溶解し、0℃に冷却攪拌下、ボッククロリドトルエン溶液31.5g(15.6wt%, 36mmol)を添加する。次に0℃で28%NaOH水溶液9.4g(66mmol)を約1時間かけて滴下し、0℃で3時間熟成攪拌した。反応液についてHPLC分析を行なうと、N-tert-ブトキシカルボニル-4-ヒドロキシプロリンの生成率は86.2%であった。反応終了後、反応液を分液し、得られた水層(pH8)は10%KHSO435mlを用いてpH2.5とする。この水溶液は酢酸エチル(計400ml)を用いて3回抽出し、得られた酢酸エチル層は硫酸マグネシウムにより脱水し、ろ過、濃縮した。濃縮液はヘキサン30mlを加え攪拌する事で結晶化した。得られた結晶はろ過し、30℃で3時間ポンプ乾燥する事でN-tert-ブトキシカルボニル-4-ヒドロキシプロリン5.6g(純度99.6%、m.p.124-125℃)、収率81%で得た。
【0019】
実施例8(N-tert-ブトキシカルボニル-4-ヒドロキシプロリンの製造)
4-ヒドロキシプロリン3.9g(30mmol)を水30mlに溶解し、8%NaOH水溶液33.0g(66mmol) を添加する。次に0℃に冷却攪拌下、ボッククロリドトルエン溶液31.7g(15.5wt%, 36mmol)を20分かけて滴下し、0℃で3時間熟成攪拌した。反応液についてHPLC分析を行なうと、N-tert-ブトキシカルボニル-4-ヒドロキシプロリンの生成率は75.1%であった。反応終了後、反応液を分液し、得られた水層(PH8)は10%KHSO435mlを用いてPH2.5とする。この水溶液は酢酸エチル(計400ml)を用いて3回抽出し、得られた酢酸エチル層は硫酸マグネシウムにより脱水し、ろ過、濃縮した。濃縮液はヘキサン30mlを加え攪拌する事で結晶化した。得られた結晶はろ過し、30℃で3時間ポンプ乾燥する事でN-tert-ブトキシカルボニル-4-ヒドロキシプロリン4.9g(純度99.7%、m.p.124-125℃)、収率70%で得た。
【0020】
実施例9(N-tert-ブトキシカルボニル-3-ヒドロキシピロリジンの製造)
4-ヒドロキシプロリン13.1g(100mmol)とメシチルオキシド0.49g(5mmol)をジグライム50mlに混和し、窒素気流下、155℃で4時間加熱還流を行なう。得られた反応液はウイドマー型精留管を用い、ジグライムを蒸留回収する(0.4KPa / 30〜35℃)。この3-ヒドロキシピロリジンが主成分である残留物に28%NaOH水溶液14.3g(100mmol)を添加し、4〜6℃に冷却攪拌下、ボッククロリドトルエン溶液93.4g(19.0wt%, 130mmol)を15分かけて滴下し、4〜6℃で3時間熟成攪拌した。反応終了後、反応液を分液し、得られたトルエン層は濃縮し、アイソパーG 50mlを加え攪拌する事で結晶化した。得られた結晶はろ過し、室温で3時間減圧乾燥する事で、N-tert-ブトキシカルボニル-3-ヒドロキシピロリジン16.1g(純度99.5%、m.p.62-63℃)を4-ヒドロキシプロリンより収率86%で得た。
【0021】
実施例10(N-tert-ブトキシカルボニル-3-ヒドロキシピロリジンの製造)
4-ヒドロキシプロリン26.2g(200mmol)とメシチルオキシド0.98g(10mmol)をジグライム90mlに混和し、窒素気流下、150℃で4時間加熱還流を行なう。得られた反応液を0℃に冷却し、塩酸ガスで飽和したイソプロパノール溶液10mlを滴下すると塩が析出し、これをろ過、ポンプ乾燥する事で3-ヒドロキシピロリジン塩酸塩(22.97g、収率93.8%)を得た。
この3-ヒドロキシピロリジン塩酸塩の半量11.48g(983mmol)に4〜6℃で、28%NaOH水溶液28.0g(196mmol)を添加し、4〜6℃に冷却攪拌下、ボッククロリドトルエン溶液116.0g(15.3wt%, 130mmol)を15分かけて滴下し、4〜6℃で3時間熟成攪拌した。反応終了後、反応液を分液し、得られたトルエン層は濃縮した。この濃縮液にアイソパーG 50mlを加え攪拌する事で結晶化した。得られた結晶はろ過し、室温で3時間減圧乾燥する事で、N-tert-ブトキシカルボニル-3-ヒドロキシピロリジン15.3g(純度99.7%、m.p.61-62℃)を4-ヒドロキシプロリンより収率81.9%で得た。
【0022】
【発明の効果】
本発明によれば、短時間、高収率でBOC-クロリドを製造する事が出来、またベンゼン系の溶媒を用いるため工業的規模でのBOC-クロリドの製造方法に適している。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing tert-butoxycarbonyl chloride (BOC-chloride), which is often used as a protecting group in the synthesis of organic compounds such as agricultural pharmaceutical intermediates, and also relates to a method for producing an organic intermediate using the same. .
[0002]
[Prior art]
Conventionally, BOC-chloride is produced by using tert-butyl alcohol and phosgene in an ether solvent, pyridine or 2- or 3-picoline as a base, a reaction temperature of -25 to -15 ° C, and an aging temperature of -15. A method of obtaining BOC-chloride in a yield of 80 to 85% by carrying out at -5 ° C (JP-A-10-114715) is known.
[0003]
[Problems to be solved by the invention]
When BOC is introduced as a protective group for an agricultural pharmaceutical intermediate, BOC 2 O is used. However, since BOC 2 O is expensive, a method capable of forming BOC at a lower cost has been demanded.
The production method of BOC-chloride with ether solvent is known, but since it is industrially dangerous and difficult to recover with ether solvent, BOC in a more industrially advantageous solvent (for example, toluene etc.) -Chloride synthesis was desired. However, it was found that when pyridine or 2- or 3-picoline described in JP-A-10-114715 was used as a base, the yield of BOC-chloride was significantly reduced in a toluene solvent.
[0004]
[Means for Solving the Problems]
As a result of examining the above problems in detail, the present inventors have found out the conditions under which a target product can be easily obtained with a yield equivalent to or higher than that in the past even when using an industrially easy-to-use benzene solvent. It came to be completed.
[0005]
That is, the present invention relates to tert-butyl alcohol and phosgene in a benzene solvent with the formula [I]
[Formula 4]
Figure 0004319292
(Wherein R 1 represents a halogen atom or C 2 to C 4 alkyl, and R 2 represents a hydrogen atom, a methyl group, or an ethyl group) in the presence of pyridines represented by −40 to 0 ° C. A method for producing tert-butoxycarbonyl chloride, characterized by reacting.
Further, the present invention is a method for producing tert-butoxycarbonyl chloride, wherein the reaction solution is washed with water at 0 ° C. or lower.
Further, the present invention is also a method for BOC formation of amines, amino acids, and alcohols characterized by using tert-butoxycarbonyl chloride obtained by the above method.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
R 1 is a halogen atom such as a fluorine atom, a chlorine atom or a bromine atom,
Alkyl groups such as ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl and the like can be mentioned.
Specific examples of pyridines used in the present invention include 2-ethylpyridine and 5-ethyl-2-picoline.
Examples of the benzene-based solvent include optionally substituted benzene, such as benzene, toluene, and xylene, with toluene being preferred.
The molar ratio of the reaction is 0.7 to 1.5 moles of phosgene, more preferably 0.9 to 1.1 moles per mole of tert-butanol. The base is 1.0 to 3.0 mol, preferably 1.1 to 1.3 mol.
The reaction temperature is −40 to 0 ° C., preferably −25 to −5 ° C. If the reaction is then aged at −20 to −5 ° C., the reaction can be performed in a relatively short time. At this time, if the temperature is higher than 0 ° C., BOC-chloride is decomposed and the yield is lowered, which is not preferable.
[0007]
The reaction is carried out by dissolving tert-butyl alcohol and phosgene in a benzene solvent, dropping pyridines dissolved in the benzene solvent, and aging.
[0008]
The hydrochloride of the base generated during the reaction can be removed by filtration. However, in terms of shortening the process and recovering the base, water is 0.05 to 100 times the reaction solvent at 0 ° C. or less, preferably It is advantageous to remove from the reaction solvent by adding 0.1 to 1 times and separating the aqueous layer. The base in the aqueous layer can be reused by removing moisture.
[0009]
The BOC-chloride in the benzene solvent thus obtained can be used together with the solvent as a protective group for organic intermediates such as agricultural pharmaceutical intermediates.
Examples of the organic intermediate include amines, amino acids, and alcohols.
Examples of amines include 3-hydroxypyrrolidine, piperazine derivatives, aminothiazolylpentenoic acid,
As amino acids, alanine, phenylalanine, tryptophan, glutamic acid, valine, 4-hydroxyproline, 3-hydroxypyrrolidine, aminophenylbutyric acid, etc.
Examples of alcohols include phenolic alcohols such as phenol.
[0010]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples. The product was identified and quantified by MS, NMR, and HPLC.
[0011]
Comparative Example 1 (Production of BOC-chloride)
20 g (0.2 mol) of phosgene was blown into 200 ml of toluene solution containing 16.5 g (0.22 mol) of tert-butyl alcohol, and 60 g of toluene solution containing 19.0 g (0.24 mol) of 2-picoline was cooled to -20 ° C over about 1 hour. , Gradually dropped. Thereafter, the temperature was raised to −10 ° C., and the mixture was aged and stirred for about 5 hours until phosgene disappeared. After completion of the reaction, by-product pyridine hydrochloride was filtered off and washed with a small amount of toluene to obtain a toluene solution of BOC-chloride in a yield of 50% (vs. tert-butanol). Storage was performed in a freezer at -20 ° C.
[0012]
Example 1 (Production of BOC-chloride)
16.6 g (0.168 mol) of phosgene was blown into 160 ml of toluene solution containing 11.9 g (0.16 mol) of tert-butyl alcohol, and 50 g of toluene solution containing 23.3 g (0.192 mol) of 5-ethyl-2-picoline was cooled and stirred at -20 ° C. Was gradually added dropwise over about 1 hour. Thereafter, the temperature was raised to −10 ° C., and the mixture was aged and stirred for about 2 hours until phosgene disappeared. After completion of the reaction, by-product pyridine hydrochloride was separated by filtration and washed with a small amount of toluene to obtain a BOC-chloride toluene solution in a yield of 88% (vs. tert-butanol). Storage was performed in a freezer at -20 ° C.
[0013]
Example 2 (Production of BOC-chloride)
16.6 g (0.168 mol) of phosgene was blown into 160 ml of mesitylene solution containing 11.9 g (0.16 mol) of tert-butyl alcohol, and 50 g of mesitylene solution containing 23.3 g (0.192 mol) of 5-ethyl-2-picoline was cooled to -20 ° C and stirred. Was gradually added dropwise over about 1 hour. Thereafter, the temperature was raised to −10 ° C., and the mixture was aged and stirred for about 2 hours until phosgene disappeared. After completion of the reaction, by-product pyridine hydrochloride was filtered off and washed with a small amount of mesitylene to obtain a mesitylene solution of BOC-chloride in a yield of 84% (vs. tert-butanol). Storage was performed in a freezer at -20 ° C.
[0014]
Example 3 (Production of BOC-chloride)
31.2 g (0.315 mol) of phosgene was blown into 300 ml of a toluene solution containing 22.2 g (0.30 mol) of tert-butyl alcohol, and 50 g of toluene solution containing 43.6 g (0.360 mol) of 5-ethyl-2-picoline was cooled and stirred at −20 ° C. Was gradually added dropwise over about 1 hour. Thereafter, aging was carried out at −20 ° C., and the mixture was aged and stirred for about 4 hours until phosgene disappeared. After completion of the reaction, by-product pyridine hydrochloride was filtered off and washed with a small amount of toluene to obtain a toluene solution of BOC-chloride in a yield of 90% (vs. tert-butanol). Storage was performed in a freezer at -20 ° C.
[0015]
Example 4 (Production of BOC-chloride)
15.9 g (0.16 mol) of phosgene was blown into 160 ml of toluene solution containing 11.9 g (0.16 mol) of tert-butyl alcohol, and about 1 of 50 g of toluene solution containing 20.6 g (0.192 mol) of 2-ethylpyridine was cooled and stirred at -20 ° C. It was gradually added dropwise over time. Thereafter, the temperature was raised to −10 ° C., and the mixture was aged and stirred for about 3 hours until phosgene disappeared. After completion of the reaction, by-product pyridine hydrochloride was filtered off and washed with a small amount of toluene. A toluene solution of BOC-chloride was obtained in 91% yield (vs. tert-butanol). Storage was performed in a freezer at -20 ° C.
[0016]
Example 5 (Production of BOC-chloride (removal of base with water))
31.2 g (0.315 mol) of phosgene was blown into 200 ml of a toluene solution containing 22.2 g (0.30 mol) of tert-butyl alcohol, and cooled to -5 to 0 ° C. (mainly −3 ° C.) with stirring and 5-ethyl-2-picoline 43.6 78 g of toluene solution containing g (0.36 mol) was gradually added dropwise over about 1 hour. Thereafter, aging was performed at −5 to 0 ° C. (mainly −2 ° C.), and the mixture was aged and stirred for about 3 hours until phosgene disappeared. After completion of the reaction, with cooling to 0 ° C., 20 ml of cooled water is added and stirred for 5 minutes to dissolve by-produced 5-ethyl-2-picoline hydrochloride. After standing for 5 minutes, the solution was separated into two layers and the aqueous layer was separated to obtain 240.1 g (21.0 wt%) of a toluene solution of box chloride in a yield of 80% (vs. tert-butanol). Storage was performed in a freezer at -20 ° C.
The aqueous layer is 55% of 28% sodium hydroxide aqueous solution and made alkaline (pH 13.7), and it is separated into two layers, and the aqueous layer is separated to recover 48.1 g of recovered 5-ethyl-2-picoline (pure 87.5 wt. %, Moisture 10.0 wt%, toluene 2.5 wt%) was obtained at a recovery rate of 96.5%. The obtained recovered 5-ethyl-2-picoline can be reused by removing water by azeotropic dehydration.
[0017]
Example 6 (Production of BOC-chloride (removal of base with water))
29.7 g (0.30 mol) of phosgene was blown into 200 ml of a toluene solution containing 22.2 g (0.30 mol) of tert-butyl alcohol, and 35.4 g (0.33 of 2-ethylpyridine) was cooled and stirred at -5 to 0 ° C (mainly -2 ° C). mol) -containing toluene solution (70 g) was gradually added dropwise over about 1 hour. Thereafter, aging was performed at -5 to 0 ° C (mainly -1 ° C), and the mixture was aged and stirred for about 3 hours until phosgene disappeared. After completion of the reaction, 20 ml of cooled water is added while cooling to 0 ° C., and stirred for 5 minutes to dissolve the by-produced 2-ethylpyridine hydrochloride. After standing for 5 minutes, the aqueous layer separated into two layers was separated to obtain 239.2 g (22.1 wt%) of a toluene solution of box chloride in a yield of 85% (vs. tert-butanol). Storage was performed in a freezer at -20 ° C.
In addition, the aqueous layer is made alkaline (pH 13.8) by adding 51 g of 28% caustic soda aqueous solution, and it is separated into two layers, and the aqueous layer is separated to recover 38.9 g of recovered 2-ethylpyridine (pure content 84.9 wt%, moisture 14.1 wt%, toluene 0.9 wt%) was obtained with a recovery rate of 93.3%. The recovery rate was improved to 96.3% by re-extracting the aqueous layer with 20 ml of toluene. The obtained recovered 2-ethylpyridine can be reused by removing water by azeotropic dehydration.
[0018]
Example 7 (Production of N-tert-butoxycarbonyl-4-hydroxyproline)
3.9 g (30 mmol) of 4-hydroxyproline is dissolved in 30 ml of water, and 31.5 g (15.6 wt%, 36 mmol) of a box chloride toluene solution is added with cooling and stirring at 0 ° C. Next, 9.4 g (66 mmol) of 28% NaOH aqueous solution was added dropwise at 0 ° C. over about 1 hour, and the mixture was aged and stirred at 0 ° C. for 3 hours. When the reaction mixture was analyzed by HPLC, the production rate of N-tert-butoxycarbonyl-4-hydroxyproline was 86.2%. After completion of the reaction, the reaction solution is separated, and the resulting aqueous layer (pH 8) is adjusted to pH 2.5 using 35 ml of 10% KHSO 4 . This aqueous solution was extracted three times with ethyl acetate (total 400 ml), and the resulting ethyl acetate layer was dehydrated with magnesium sulfate, filtered and concentrated. The concentrate was crystallized by adding 30 ml of hexane and stirring. The obtained crystals were filtered and pump-dried at 30 ° C. for 3 hours to obtain 5.6 g of N-tert-butoxycarbonyl-4-hydroxyproline (purity 99.6%, mp 124-125 ° C.) in a yield of 81%.
[0019]
Example 8 (Production of N-tert-butoxycarbonyl-4-hydroxyproline)
3.9 g (30 mmol) of 4-hydroxyproline is dissolved in 30 ml of water, and 33.0 g (66 mmol) of 8% NaOH aqueous solution is added. Next, 31.7 g (15.5 wt%, 36 mmol) of a box chloride toluene solution was added dropwise over 20 minutes with stirring at 0 ° C., and the mixture was aged and stirred at 0 ° C. for 3 hours. When the reaction mixture was analyzed by HPLC, the production rate of N-tert-butoxycarbonyl-4-hydroxyproline was 75.1%. After completion of the reaction, the reaction solution is separated, and the obtained aqueous layer (PH8) is adjusted to PH2.5 using 35 ml of 10% KHSO 4 . This aqueous solution was extracted three times with ethyl acetate (total 400 ml), and the resulting ethyl acetate layer was dehydrated with magnesium sulfate, filtered and concentrated. The concentrate was crystallized by adding 30 ml of hexane and stirring. The obtained crystals were filtered and pump-dried at 30 ° C. for 3 hours to obtain 4.9 g of N-tert-butoxycarbonyl-4-hydroxyproline (purity 99.7%, mp 124-125 ° C.) in a yield of 70%.
[0020]
Example 9 (Production of N-tert-butoxycarbonyl-3-hydroxypyrrolidine)
14.1 g (100 mmol) of 4-hydroxyproline and 0.49 g (5 mmol) of mesityl oxide are mixed with 50 ml of diglyme and heated under reflux at 155 ° C. for 4 hours under a nitrogen stream. The resulting reaction solution is recovered by distillation using a Widmer type rectification tube (0.4 KPa / 30 to 35 ° C.). To this residue containing 3-hydroxypyrrolidine as a main component, 14.3 g (100 mmol) of a 28% NaOH aqueous solution was added, and 93.4 g (19.0 wt%, 130 mmol) of a box chloride toluene solution was added to the mixture at 4 to 6 ° C. with cooling and stirring. The solution was added dropwise over a period of time, and aged and stirred at 4 to 6 ° C. for 3 hours. After completion of the reaction, the reaction solution was separated, and the resulting toluene layer was concentrated and crystallized by adding 50 ml of Isopar G and stirring. The obtained crystals were filtered and dried under reduced pressure at room temperature for 3 hours to obtain 16.1 g of N-tert-butoxycarbonyl-3-hydroxypyrrolidine (purity 99.5%, mp 62-63 ° C.) from 4-hydroxyproline in a yield of 86. Obtained in%.
[0021]
Example 10 (Production of N-tert-butoxycarbonyl-3-hydroxypyrrolidine)
4-Hydroxyproline (26.2 g, 200 mmol) and mesityl oxide (0.98 g, 10 mmol) are mixed with 90 ml of diglyme, and heated under reflux at 150 ° C. for 4 hours under a nitrogen stream. The obtained reaction solution was cooled to 0 ° C., and 10 ml of an isopropanol solution saturated with hydrochloric acid gas was added dropwise to precipitate a salt, which was filtered and pump-dried to give 3-hydroxypyrrolidine hydrochloride (22.97 g, yield 93.8). %).
Half of 11.48 g (983 mmol) of 3-hydroxypyrrolidine hydrochloride was added at 4-6 ° C., 28.0 g (196 mmol) of 28% NaOH aqueous solution was added, and cooled to 4-6 ° C., 116.0 g of bock chloride toluene solution ( 15.3 wt%, 130 mmol) was added dropwise over 15 minutes, and the mixture was aged and stirred at 4-6 ° C. for 3 hours. After completion of the reaction, the reaction solution was separated, and the resulting toluene layer was concentrated. The concentrated solution was crystallized by adding 50 ml of Isopar G and stirring. The obtained crystals were filtered and dried under reduced pressure at room temperature for 3 hours to obtain 15.3 g of N-tert-butoxycarbonyl-3-hydroxypyrrolidine (purity 99.7%, mp 61-62 ° C.) from 4-hydroxyproline in a yield of 81.9. Obtained in%.
[0022]
【The invention's effect】
According to the present invention, BOC-chloride can be produced in a high yield in a short time, and since a benzene-based solvent is used, it is suitable for a production method of BOC-chloride on an industrial scale.

Claims (3)

tert−ブチルアルコールとホスゲンを、ベンゼン、トルエン及びキシレンから選択されるベンゼン系溶媒中、式[I]
Figure 0004319292
(式中、R はC 〜Cアルキルを表し、Rは水素原子、メチル基又はエチル基を表す)で表されるピリジン類の存在下、−40〜0℃で反応させる事を特徴とするtert−ブトキシカルボニルクロリドの製造方法。
tert-Butyl alcohol and phosgene in a benzene-based solvent selected from benzene, toluene and xylene in the formula [I]
Figure 0004319292
(In the formula, R 1 represents C 2 to C 4 alkyl, and R 2 represents a hydrogen atom, a methyl group or an ethyl group) and is reacted at −40 to 0 ° C. in the presence of pyridines. A method for producing tert-butoxycarbonyl chloride, which is characterized.
tert−ブチルアルコールとホスゲンを、ベンゼン、トルエン及びキシレンから選択されるベンゼン系溶媒中、式[I]
Figure 0004319292
(式中、R はC 〜Cアルキルを表し、Rは水素原子、メチル基又はエチル基を表す)で表されるピリジン類の存在下、−40〜0℃で反応させ、更に0℃以下で反応液を水で洗浄する事を特徴とするtert−ブトキシカルボニルクロリドの製造方法。
tert-Butyl alcohol and phosgene in a benzene-based solvent selected from benzene, toluene and xylene in the formula [I]
Figure 0004319292
(Wherein R 1 represents C 2 to C 4 alkyl, and R 2 represents a hydrogen atom, a methyl group or an ethyl group) and is reacted at −40 to 0 ° C. in the presence of pyridines. A method for producing tert-butoxycarbonyl chloride, characterized in that the reaction solution is washed with water at 0 ° C. or lower.
ピリジン類が5−エチル−2−ピコリンもしくは2−エチルピリジンである請求項1又は2記載のtert−ブトキシカルボニルクロリドの製造方法。The method for producing tert-butoxycarbonyl chloride according to claim 1 or 2, wherein the pyridine is 5-ethyl-2-picoline or 2-ethylpyridine.
JP21006499A 1998-08-21 1999-07-26 Method for producing tert-butoxycarbonyl chloride Expired - Lifetime JP4319292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21006499A JP4319292B2 (en) 1998-08-21 1999-07-26 Method for producing tert-butoxycarbonyl chloride

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP25194198 1998-08-21
JP20426299 1999-07-19
JP10-251941 1999-07-19
JP11-204262 1999-07-19
JP21006499A JP4319292B2 (en) 1998-08-21 1999-07-26 Method for producing tert-butoxycarbonyl chloride

Publications (2)

Publication Number Publication Date
JP2001089414A JP2001089414A (en) 2001-04-03
JP4319292B2 true JP4319292B2 (en) 2009-08-26

Family

ID=27328342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21006499A Expired - Lifetime JP4319292B2 (en) 1998-08-21 1999-07-26 Method for producing tert-butoxycarbonyl chloride

Country Status (1)

Country Link
JP (1) JP4319292B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10361802B1 (en) 1999-02-01 2019-07-23 Blanding Hovenweep, Llc Adaptive pattern recognition based control system and method
US8352400B2 (en) 1991-12-23 2013-01-08 Hoffberg Steven M Adaptive pattern recognition based controller apparatus and method and human-factored interface therefore
US7966078B2 (en) 1999-02-01 2011-06-21 Steven Hoffberg Network media appliance system and method
US8364136B2 (en) 1999-02-01 2013-01-29 Steven M Hoffberg Mobile system, a method of operating mobile system and a non-transitory computer readable medium for a programmable control of a mobile system
CN115057778A (en) * 2022-07-28 2022-09-16 西安思科赛实业有限公司 Novel method for synthesizing di-tert-butyl dicarbonate

Also Published As

Publication number Publication date
JP2001089414A (en) 2001-04-03

Similar Documents

Publication Publication Date Title
JP2016528271A (en) □ Synthesis of biphenylalaninol via a novel intermediate
JP4149668B2 (en) Process for producing β-halogeno-α-aminocarboxylic acid, phenylcysteine derivative and its intermediate
JP4319292B2 (en) Method for producing tert-butoxycarbonyl chloride
JP3440129B2 (en) Method for producing glutamine derivative
JPH085912B2 (en) Process for producing N-formylaspartyl-phenylalanine or its methyl ester
JPH0764789B2 (en) Manufacturing method of methacrylic acid ester
JP2587336B2 (en) Method for producing bevantrol hydrochloride
WO2021130163A1 (en) A process for the synthesis of melphalan
JP4721339B2 (en) Method for producing N-alkoxycarbonylamino acid
JPH11349567A (en) Production of 3-amino-2-oxo-pyrrolidine, new intermediate and its use
JP3907787B2 (en) Method for producing benzoic acid derivative
JP2662287B2 (en) Method for separating α-L-aspartyl-L-phenylalanine methyl ester
JPH11322643A (en) Production of chloroalkyne and alkynylamine
JPH07252205A (en) Method for producing oxyamine compounds
JP2004238322A (en) Method for producing (r)-3-aminopentanenitrile methanesulfonic acid salt
JP2953553B2 (en) Method for producing N-alkoxycarbonyl amino acid ester
JP2002179612A (en) Method for producing 2,3-dibromosuccinic acid compound
EP0548560B1 (en) Process for the manufacturing of halomaleic and halofumaric esters
JP3257779B2 (en) Method for producing tartanyl acids
JPH08259519A (en) Production of alpha-aminoglycol and intermediate thereof
JP3107666B2 (en) Method for producing urethane compound
WO2023156675A1 (en) Process for purification of linagliptin
JP2852023B2 (en) Method for producing 2-fluorocyclopropylamine sulfonate and its chemical compound 2-fluorocyclopropyl isocyanate
JP4529116B2 (en) Method for producing high-purity tritylpiperazine derivative
JP3205975B2 (en) Method for producing pyrazinecarboxamide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090420

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090528

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4319292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term