JP4319280B2 - Calcium phosphate cement powder and calcium phosphate cement composition - Google Patents

Calcium phosphate cement powder and calcium phosphate cement composition Download PDF

Info

Publication number
JP4319280B2
JP4319280B2 JP6033499A JP6033499A JP4319280B2 JP 4319280 B2 JP4319280 B2 JP 4319280B2 JP 6033499 A JP6033499 A JP 6033499A JP 6033499 A JP6033499 A JP 6033499A JP 4319280 B2 JP4319280 B2 JP 4319280B2
Authority
JP
Japan
Prior art keywords
calcium phosphate
urea
powder
kneaded
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6033499A
Other languages
Japanese (ja)
Other versions
JP2000256115A (en
Inventor
武憲 澤村
昌晃 服部
雅彦 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP6033499A priority Critical patent/JP4319280B2/en
Publication of JP2000256115A publication Critical patent/JP2000256115A/en
Application granted granted Critical
Publication of JP4319280B2 publication Critical patent/JP4319280B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Dental Prosthetics (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Materials For Medical Uses (AREA)
  • Dental Preparations (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、医科用或いは歯科用のリン酸カルシウムセメント粉体及びリン酸カルシウムセメント組成物に関する。特に、尿素を含有するセメント粉体及び尿素を含む混練液を含有するセメント組成物に関する。本発明のセメント粉体及びセメント組成物は、優れた強度と生体活性とを併せ有する人工骨、人工関節及び人工歯根等を形成するための生体用セメントとして用いることができる。
【0002】
【従来の技術】
生体に用いられる医療用セメントとしては、現在までに各種の組成のものが数多く提案されている。特に、リン酸カルシウム系の生体用セメントでは、このセメントが硬化とともに生体活性な水酸アパタイトに転化するため、生体親和性に優れた硬化体を得ることができる。
【0003】
このリン酸カルシウム系の生体用セメントとしては、リン酸四カルシウムを用いたものが多く、米国特許明細書第4612053号等には、リン酸四カルシウムとリン酸水素カルシウムとを主成分とするセメントが開示されている。また、このようなリン酸カルシウムセメントの硬化特性は混練時の液量に大きく左右され、混練液が少ないほど硬化時間が短くなり、且つ強度の大きい硬化体が得られることが知られている(1990, Orthopaedic Ceramic Implant Vol. 10 p43-47)。
【0004】
しかし、混練時の液量が少ないと混練体の粘度が高くなって操作性が低下し、また、骨欠損部等へ充填した場合に、クラック或いは空隙を生じ、硬化体の強度の低下を招く結果となる。そのため、実用的には、十分な操作性を有する混練体を得るための最小限の混練液が必要となる。一方、工業用セメントの分野においては、操作性の低下を抑えつつ混練液を少なくするための添加剤として減水剤、AE減水剤などを用いることが知られている。しかし、これらは生体内における安全性については考慮されておらず、生体用セメントにおいて使用することは好ましくない。
【0005】
【発明が解決しようとする課題】
本発明は、上記の問題点を解決するものであり、リン酸カルシウムセメント粉体に対する混練液の量比、或いはリン酸カルシウムセメント組成物における混練液の量比が低くても、混練時の粘度の上昇が抑えられ、操作性に優れた混練体を得ることができるリン酸カルシウムセメント粉体及びリン酸カルシウムセメント組成物を提供することを目的とする。また、本発明は、硬化時間が短く、且つ強度の大きい硬化体が得られるセメント粉体及びセメント組成物を提供することを目的とする。
【0006】
【課題を解決するための手段】
第1発明のリン酸カルシウムセメント粉体は、リン酸カルシウム粉末と尿素とを含有し、上記リン酸カルシウムセメント粉末を100重量部とした場合に、上記尿素が0.1〜10重量部であることを特徴とする。また、第発明のリン酸カルシウムセメント組成物は、リン酸カルシウム粉末を含む粉体と、尿素を含む混練液とを含有し、上記混練液を100重量部とした場合に、上記尿素が0.1〜20重量部であることを特徴とする。
【0007】
第1及び第発明において、上記「尿素」は、医薬品の添加剤として使用されているものであり、生体に対する安全性、無毒性が既に保証されている。
【0008】
第1発明において、上記「リン酸カルシウムセメント粉末」を100重量部とした場合に、尿素の含有量は、「0.1〜10重量部」とする。また、第発明において、上記「混練液」を100重量部とした場合に、尿素の含有量は、「0.1〜20重量部」とする。尿素の含有量が、それぞれ下限未満の場合は、混練液として一般に用いられている水の量比を、尿素を含まない場合に比べて低くすると、十分に操作性に優れる混練体を得ることができず、成形型に充填した混練体に空隙を生ずることがある。一方、尿素の含有量が、それぞれ上限を越える場合は、混練体の硬化時間を十分に短くすることができず、硬化体の強度も向上しないため好ましくない。
【0009】
尿素の含有量は、第発明では、特に0.5〜8重量部、更には1〜5重量部とすることが好ましい。また、第発明では、特に0.5〜10重量部、更には1〜5重量部とすることが好ましい。この範囲の尿素を含有するリン酸カルシウム粉末、或いは混練液であれば、混練時の操作性に優れ、混練体は短時間で硬化し、且つ強度の大きい硬化体を得ることができる。尚、混練液として多用される水としては、特に純水を用いることが好ましく、また、水には、この種の混練液に従来より添加されている有機酸等を配合することもできる。
【0010】
リン酸カルシウムセメント粉体は、第発明のように、上記「多糖類」を含むものとすることができる。また、第発明のように、この多糖類を混練液に添加することもできる。このように、尿素と多糖類とを併用すれば、より少量の混練液によって、適度な粘性を有する混練体を得ることができ、その形態付与性を容易に向上させることができる。また、硬化時間を短縮することもでき、且つ強度の大きい硬化体とすることができる。この多糖類としては、各種の単糖類がポリグリコシル化し、高分子化したものを用いることができる。多糖類としては、特に、第及び第発明のように、上記「デキストラン」及び/又は上記「デキストラン硫酸塩」が好ましい。このデキストラン硫酸塩としては、デキストラン硫酸ナトリウム及びデキストラン硫酸カリウム等が特に好ましく、これらは1種のみを使用してもよいし、2種以上を併用することもできる。また、デキストランとその硫酸塩とを併用することもできる。このデキストラン及びその硫酸塩は、尿素と同様に水に易溶性であるため、混練液の主成分である水に容易に溶解し、均質な混練体とすることができる。
【0011】
これら多糖類の含有量は、第発明においては、リン酸カルシウム粉末を100重量部とした場合に、デキストランでは1〜10重量部、特に2〜8重量部とすることが好ましく、デキストラン硫酸塩では5〜25重量部、特に10〜20重量部とすることが好ましい。また、第発明においては、混練液を100重量部とした場合に、デキストランでは5〜30重量部、特に10〜25重量部とすることが好ましく、デキストラン硫酸塩では30〜60重量部、特に35〜55重量部とすることが好ましい。多糖類の含有量がこれらの範囲を下回る場合には、混練体が粘性に乏しく、形態付与が困難であり、多糖類を含有することによる特有の作用、効果が十分に得られない。また、これらの範囲を超える場合は、混練体の粘度が高くなりすぎる傾向にあり、形態付与が容易ではない
【0012】
尚、第1発明においては、多糖類を含む混練液を使用することもできる。この多糖類を含む混練液と、第発明のように、尿素及び多糖類を含有するセメント粉体とを用いる場合は、混練体の粘度及び形態付与性等を勘案し、多糖類の合計量を適量に調整する必要がある。また、第発明においては、多糖類を含む粉体を使用することもできる。この多糖類を含む粉体と、第発明のように、尿素及び多糖類を含む混練液とを用いる場合も、混練体の粘度及び形態付与性等を勘案し、多糖類の合計量を適量に調整する必要がある。
【0013】
第1発明のセメント粉体及び第発明のセメント組成物において、上記「リン酸カルシウム粉末」としては、リン酸四カルシウム、リン酸水素カルシウム、水酸アパタイト、α−リン酸三カルシウム及びβ−リン酸三カルシウム等の粉末を使用することができる。これらの粉末は1種のみを用いてもよいし、2種以上を併用してもよい。また、この粉末には、硫酸バリウム、次炭酸ビスマス等のX線造影剤を配合することができる。更に、硬化時間を短縮するためにフッ化物等を種結晶として添加することもできる。
【0014】
第1発明のセメント粉体及び第発明のセメント組成物において、上記「リン酸カルシウム粉末」としては、第及び第発明のように、「リン酸四カルシウム及びリン酸水素カルシウム」の粉末を主成分とするものが好適である。これら2種類の粉末の量比は特に限定されないが、モル比で8/2〜2/8、特に6/4〜4/6、さらには等量程度を使用することが好ましい。尚、この「主成分」とは、リン酸カルシウム粉末の全量を100重量部とした場合に、上記の2種類の粉末の合計量が60重量部以上、特に好ましくは80重量部以上であることを意味する。
【0015】
リン酸四カルシウム粉末の製法については特に限定されず、どのような方法によって製造した粉末も使用することができる。例えば、炭酸カルシウムとリン酸水素カルシウムとの等モル混合物を所定形状に成形した後、1450〜1550℃の温度範囲で焼成し、これを粉砕したものなどを使用することができる。また、リン酸水素カルシウム粉末としては、リン酸水素カルシウム二水和物或いは無水物として市販されているものをそのまま使用することができる。更に、この市販の二水和物を120℃程度の温度で加熱し、脱水したものを用いることもできるが、特に、これらに限定されるものではない。
【0016】
本発明のリン酸カルシウムセメント粉体は、尿素を含有し、また、本発明のリン酸カルシウムセメント組成物においては、その混練液は尿素を含む。これらのセメント粉体或いはセメント組成物を混練する際、尿素は、水とともに凝集したリン酸カルシウム粉末の粒子間に浸透し、粒子を分散させる作用を有する。このように粉末粒子がより容易に分散するため、混練液の量比を低くしても、混練体の粘度はそれほど高くはならず、混練時の操作性に優れる。また、混練液の量比を少し高くすることによって、混練体の粘度をより低くすることができ、骨欠損部或いは骨折部等への注射器による補填が容易となる。それによって患者への負担を軽減することができる。更に、炎症を起こすこともなく、良好な治癒が可能となる。
【0017】
更に、リン酸カルシウム粉末のみからなるセメントの場合、及び尿素を含まない混練液とした場合と同程度の粘度の混練体とするための混練液の量比を低くすることができる。そのため、より硬化時間を短くすることができ、且つ強度の大きい硬化体とすることができる。JIS T 6602に従って測定した硬化時間は10〜25分、特に10〜20分とすることができ、濡れ圧縮強度は500〜700kg/cm2、特に600〜700kg/cm2とすることができる。
【0018】
また、第及び第発明において、尿素に、適量のデキストラン及び/又はその硫酸塩等を併用したセメント粉体とすることによって、或いはデキストラン及び/又はその硫酸塩等を含む混練液を使用することによって、水に溶解した多糖類がリン酸カルシウム粉末の粒子間を接合する作用を有するため、混練体が適度な粘性を有するものとなる。それによって、より少ない混練液で十分に形態付与性に優れた混練体とすることができる。尚、本発明において、形態の付与とは、初期形状の付与及び補填後などにおける形状の修正、調整を併せ意味する。
【0019】
混練体の粘度は、リン酸カルシウム粉末と混練液との量比によって調整することもできるが、本発明では、尿素を使用しない場合と同程度の粘度の混練体を得るための混練液の量比を低くすることができる。この粉末と混練液との量比は、粉末100重量部に対して混練液を10〜25重量部程度とすることが好ましい。更に、この量比は、15〜25重量部、特に20重量部程度とすることがより好ましい。このように、本発明では、混練液の量比を低くすることができるが、混練液の量比が低すぎる場合は、混練体の粘度が高くなり、所定の形態を付与することが難しくなる。また、混練液の量比が高くなりすぎると、混練体の粘度が低くなって取り扱い易くはなるが、混練体が、体液との接触によって崩壊し易くなるため好ましくない。
【0020】
本発明のリン酸カルシウムセメント粉体或いはリン酸カルシウムセメント組成物を用いた混練体は、これのみを生体内に補填して人工骨、人工歯根等の用途に用いることができる。また、混練時に、骨形成因子、抗ガン剤及び抗生物質等を添加し、薬物徐放のための担体として利用することもできる。
【0021】
【発明の実施の形態】
以下、実施例によって本発明を詳しく説明する。
以下の実験例において、リン酸カルシウム粉末としては、リン酸四カルシウム粉末と、リン酸水素カルシウム無水物の粉末との等モル量を混合したものを用いた。また、尿素としては和光純薬株式会社製のものを使用した。更に、多糖類としては、デキストラン40(平均分子量;40000、名糖産業株式会社製、以下、「DEX」という。)及びデキストラン硫酸ナトリウム イオウ5(平均分子量;2000、名糖産業株式会社製、以下、「DSS」という。)を用いた。
【0022】
(1)セメント粉体に含有される尿素量等の検討
実験例1(セメント粉体が尿素を含有しない例)
リン酸カルシウム粉末をセメント粉体とし、これに混練液として純水を配合し、混練して混練体を得た。純水と粉体との重量比(この混練液とセメント粉体との量比を、以下、「L/P」と表す。)は0.21とした。しかし、混練体の粘度が高く、これを成形型に充填し、硬化させて得られた硬化体には多数の空隙が認められた。尚、この実験例において混練液を減量し、L/Pを0.19とした場合は混練することができなかった。
【0023】
実験例2(セメント粉体が少量の尿素を含有する例)
リン酸カルシウム粉末と、0.05重量部の尿素とをボールミルによって混合して調製されたリン酸カルシウムセメント粉体を用いた他は実験例1と同様にして混練し、混練体を得た。しかし、尿素が少ないため、この混練体の粘度は十分に低くはならず、これを成形型に充填し、硬化させて得られた硬化体には空隙が認められた。また、L/Pを0.19とした場合は混練が容易ではなかった。
【0024】
実験例3(セメント粉体が適量の尿素を含有する例)
0.1重量部の尿素を含有するセメント粉体を便用し、L/Pを0.19とした他は実験例2と同様にして混練し、混練体を得た。この混練体は、実験例2に比べてL/Pが低いにもかかわらず、成形型に容易に充填することができ、操作性に優れ、得られた硬化体に空隙は認められなかった。
【0025】
実験例4〜5(セメント粉体が適量の尿素を含有する例)
2重量部(実験例4)及び5重量部(実験例5)の尿素をそれぞれ含有するセメント粉体を使用し、L/Pを0.17とした他は実験例2と同様にして混練し、混練体を得た。これらの混練体は、L/Pが実験例3よりもさらに低いにもかかわらず、いずれも成形型に容易に充填することができ、操作性に優れ、得られた硬化体に空隙は認められなかった。
【0026】
実施例6(セメント粉体が適量をやや超えた尿素を含有する例)
尿素の含有量を第2発明の上限を超えて12重量部とした他は実験例4と同様にして混練し、混練体を得た。この混練体は、L/Pが低いにもかかわらず、成形型に容易に充填することができ、操作性に慢れ、得られた硬化体に空隙は認められなかった。但し、硬化時間が長くなり、圧縮強度も低下する傾向にあった。
【0027】
実験例7(セメント粉体が尿素を含有せず、L/Pが高い例)
L/Pを0.29と高くした他は実験例1と同様にして混練し、混練体を得た。このようにL/Pを高くすれぱ、純水のみからなる混練液であっても、混練体を成形型に容易に充填することができ、操作性に優れ、得られた硬化体に空隙は認められなかった。また、この混練体は粘度が低く、18ゲージの注射器によって押し出すことができた。しかし、この実験例7では、硬化時間が長く、且つ得られる硬化体の圧縮強度も大きく低下した。また、L/Pを0.25とした場合は、18ゲージの注射器によって押し出すことはできなかった。
【0028】
実験例8(セメント粉体が適量の尿素を含有し、L/Pがやや高い例)
4重量部の尿素を含有するセメント粉体を使用し、L/Pを0.25とした他は実験例2と同様にして混練し、混練体を得た。この混練体は、成形型に容易に充填することができ、操作性に優れ、得られた硬化体に空隙は認められなかった。また、この混練体は粘度が低く、18ゲージの注射器から押し出すことができた。但し、L/Pが高いため、硬化時間がやや長くなり、圧縮強度も低下する傾向にあった。
【0029】
実験例9〜12(セメント粉体が適量の尿素を含有し、且つ純水にDEX又はDSSが添加された混練液を用いた例)
実験例5のセメント粉体と、DEXを純水に3重量部(実験例9)、25重量部(実験例10)及び35重量部(実験例11)それぞれ溶解させた混練液、並びにDSSを純水に50重量部溶解させた混練液と、を各々用い、L/Pを0.19とした他は実験例2と同様にして混練し、混練体を得た。これらの混練体は、適度な粘度を有し、形態付与が容易であった。また、成形型への充填も容易であって、得られた硬化体に空隙は認められなかった。
【0030】
実験例13(セメント粉体が適量の尿素とDSSとを含有する例)
10重量部の尿素、及び10重量部のDSSを含有するセメント粉体を使用した他は実験例2と同様にして混練し、混練体を得た。この混練体は、適度な粘度を有し、形態付与が容易であった。また、成形型への充填も容易であって、得られた硬化体に空隙は認められなかった。
【0031】
実験例14(操作性、充填性及び形態付与性の評価)
実験例1〜13において調製した混練体を、内径6mm、高さ5mmの成形型に充填して成形し、得られた成形体を型から取り出し、直ちに37℃の擬似体液に浸漬した。その結果、実験例3〜6及び8〜13では、成形体は崩壊することなく形状を維待したまま硬化することが確認された。一方、リン酸カルシウム粉末のみからなるセメントを使用した実験例1及び7では、成形体が崩壊し、形状が維持されなかった。また、尿素の含有量が第2発明の下限値末満である実験例2でも、成形体が崩壊する傾向にあった。
【0032】
実験例15(硬化体の結晶構成相の確認)
実験例3〜6及び8〜13において調製した混練体を、温度37℃、相対湿度100%の雰囲気において硬化させた。硬化の時間は混練開始から1時間とした。得られた硬化体を37℃の擬似体液に23時間浸潰した後、X線回析法によって硬化体の結晶構成相を確認した。その結果、いずれの実験例においても水酸アパタイトとリン酸四カルシウムの回析ピークが確認された。図1に、実験例5の混練体を硬化させて得られた硬化体のX線回析のチャートを示す。
【0033】
実験例16(硬化時間及び圧縮強度の評価)
実験例1〜13において調製した混練体の硬化時間及び濡れ圧縮強度をJIST 6602に従って測定した。
表1に結果を示す。尚、表1おいて「PW」は純水を意味する。また、表1には、実験例1〜13の操作性及び充填性、並びに実験例9〜13の形態付与性を併せて示す。
【0034】
【表1】

Figure 0004319280
【0035】
表1の結果によれぱ、第発明に対応する量の尿素を含有するセメント粉体を便用した実験例3〜5では、硬化時間は17分以下と短く、且つ圧縮強度は600kg/cm以上と大きい。一方、リン酸カルシウム粉末のみからなるセメント粉体を便用した実験例1及び7、及び尿素の含有量が第発明の下限値未満である実験例2では、硬化時間が長くなる傾向にあり、圧縮強度も低いことが分かる。特に、セメント粉体が尿素を含有せず、L/Pが高い実験例7では、より硬化時間が長く、圧縮強度も大きく低下している。また、尿素の含有量が第発明の上限値を超える実験例6でも、硬化時間が長くなり、圧縮強度も低下している。更に、混練液として純水にDEX又はDSSを添加したものを用いた実験例9〜12、及びリン酸カルシウム粉末に尿素及びDSSを添加した実験例13では、いずれも硬化時間が短く、得られる硬化体は十分な圧縮強度を有しており、形態付与性にも優れていることが分かる。
【0036】
(2)純水に含有される尿素量等の検討
実験例17(純水が少量の尿素を含有する例)
純水に0.05重量部の尿素を溶解させて調製した混練液を、セメント粉体に配合して混練し、混練体を得た。L/Pは0.21とした。この混練体は粘度が高く、操作性にやや劣り、これを成形型に充填し、硬化させて得られた硬化体には空隙が認められた。
【0037】
実験例18(純水が適量の尿素を含有する例)
0.1重量部の尿素を含む混練液を便用した他は実験例17と同様にしてセメント粉体を混練し、混練体を得た。この混練体は粘度が低く、操作性は良好であった。また、成形型に容易に充填することができ、得られた硬化体に空隙は認められなかった。
【0038】
実験例19〜20(純水が適量の尿素を含有する例)
それぞれ1重量部(実験例19)及び10重量部(実験例20)の尿素を含む混練液を使用し、L/Pを0.19とした他は実験例17と同様にしてセメント粉体を混練し、混練体を得た。この混練体は粘度が低く、操作性は度好であった。また、成形型に容易に充填することができ、得られた硬化体に空隙は認められなかった。
【0039】
実験例21(純水が適量をやや超えた尿素を含有する例)
25重量部の尿素を含む混練液を便用し、L/Pを0.17とした他は実験例17と同様にしてセメント粉体を混練し、混練体を得た。この混練体は、操作性が良好であり、成形型への充填も客易であった。恒し、硬化時間が長くなり、圧縮強度も低下する傾向にあった。
【0040】
実験例22(純水が通量の尿素を含有し、L/Pがやや高い例)
20重量部の尿素を含む混練液を使用し、L/Pを0.23とした他は実験例17と同様にしてセメント粉体を混練し、混練体を得た。この混練体は粘度が低く、18ゲージの注射器によって押し出すことができた。但し、硬化時間がやや長くなり、圧縮強度も低下する傾向にあった。
【0041】
実験例23〜26(純水が適量の尿素とDEX又はDSSとを含有する例)
15重量部の尿素、並びにそれぞれ2重量部(実験例23)、20重量部(実験例24)及び33重量部(実験例25)のDEX、又は40重量部のDSS(実験例26)を含む混練液を使用し、L/Pを0.19とした他は実験例17と同様にしてセメント粉体を混練し、混練体を得た。これらの混練体はパテ状であり、操作性は良好であって、形態付与性に優れていた。また、成形型への充填も容易であって、得られた硬化体に空隙は認められなかった。
【0042】
実験例27(操作性、充填性及び形態付与性の評価)
実験例17〜26において調製した混練体を、内径6mm、高さ5mmの成形型に充填して成形し、得られた成形体を型から取り出し、直ちに37℃の擬似体液に浸潰した。その結果、実験例18〜26では、成形体は崩壌することなく形状を維待したまま硬化することが確認された。一方、尿素の含有量が第発明の下限値末満である実験例17では、成形体が崩壊する傾向にあった。
【0043】
実験例28(硬化体の結晶構成相の確認)
実験例17〜26において調製した混練体を、温度37℃、相対湿度100%の雰囲気において硬化させた。硬化の時間は混練開始から1時間とした。得られた硬化体を37℃の擬似体液に23時間浸潰した後、X線回析法によって硬化体の結品構成相を確認した。その結果、実験例17〜26のいずれにおいても水酸アパタイトとリン酸四カルシウムの回析ピークが確認された。図2に、実験例20の混練体を硬化させて得られた硬化体のX線回析のチャートを示す。
【0044】
実験例29(硬化時間及び圧縮強度の評価)
実験例17〜26において調製した混練体の硬化時間及び濡れ圧縮強度をJIS T 6602に従って測定した。
表2に結果を示す。尚、表2には、実験例17〜26の操作性及び充填性、並びに実験例23〜26の形態付与性を併せて示す。
【0045】
【表2】
Figure 0004319280
【0046】
表2の結果によれぱ、第発明に対応する含有量の尿素を含む混練液を使用した実験例18〜20及び22では、硬化時間は23分以下と短く、且つ圧縮強度は530kg/cm以上と大きい。一方、尿素の含有量が第発明の下限値末満である実験例17では、硬化時間が長く、圧縮強度も低いことが分かる。また、尿素の含有量が第発明の上限値を越える実験例21では、硬化時間が長くなり、圧縮強度も低下している。更に、混練液として純水に尿素及びDEX又はDSSを添加したものを用いた実験例23〜26では、いずれも硬化時間が短く、得られる硬化体は十分な圧縮強度を有しており、形態付与性にも優れていることが分かる。
【0047】
【発明の効果】
第1発明のリン酸カルシウムセメント粉体、及び第発明のリン酸カルシウムセメント組成物では、粉体に対する混練液の配合量が少なくても、混練時の粘度が低く、混練が容易であり、比較的短時間のうちに硬化させることができ、且つ得られる硬化体の強度も大きい。また、混練後、直ちに擬似体液と接触させても崩壊することがなく、形状が維持される。更に、第及び第発明、並びに第及び第発明のように、デキストラン及びその硫酸塩等の多糖類を併用することにより、より形態付与性に優れた混練体とすることができる。
【図面の簡単な説明】
【図1】実験例5の混練体を実験例14の条件によって硬化させて得られた硬化体のX線回折のチャートである。
【図2】実験例20の混練体を実験例27の条件によって硬化させて得られた硬化体のX線回折のチャートである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a medical or dental calcium phosphate cement powder and a calcium phosphate cement composition. In particular, the present invention relates to a cement composition containing a cement powder containing urea and a kneading liquid containing urea. The cement powder and cement composition of the present invention can be used as a biomedical cement for forming artificial bones, artificial joints, artificial tooth roots and the like having both excellent strength and bioactivity.
[0002]
[Prior art]
Many medical cements of various compositions have been proposed to date as medical cements used in living bodies. Particularly, in the case of calcium phosphate-based biomedical cement, this cement is converted into bioactive hydroxyapatite as it hardens, so that a cured product having excellent biocompatibility can be obtained.
[0003]
Many of these calcium phosphate-based biological cements use tetracalcium phosphate, and US Pat. No. 4612053 discloses a cement mainly composed of tetracalcium phosphate and calcium hydrogen phosphate. Has been. In addition, it is known that the curing characteristics of such calcium phosphate cements are greatly influenced by the amount of liquid during kneading, and the smaller the kneading liquid, the shorter the curing time and the higher the strength of the cured body (1990, Orthopaedic Ceramic Implant Vol. 10 p43-47).
[0004]
However, if the amount of liquid at the time of kneading is small, the viscosity of the kneaded body is increased and the operability is lowered, and when filled into a bone defect or the like, cracks or voids are generated, leading to a decrease in strength of the cured body. Result. Therefore, practically, a minimum kneading liquid for obtaining a kneaded body having sufficient operability is required. On the other hand, in the field of industrial cement, it is known to use a water reducing agent, an AE water reducing agent or the like as an additive for reducing the kneading liquid while suppressing a decrease in operability. However, these do not take into account safety in vivo and are not preferred for use in biological cement.
[0005]
[Problems to be solved by the invention]
The present invention solves the above problems, and suppresses an increase in viscosity at the time of kneading even if the amount ratio of the kneading liquid to the calcium phosphate cement powder or the amount ratio of the kneading liquid in the calcium phosphate cement composition is low. An object of the present invention is to provide a calcium phosphate cement powder and a calcium phosphate cement composition that can provide a kneaded body having excellent operability. Another object of the present invention is to provide a cement powder and a cement composition from which a cured product having a short curing time and a high strength can be obtained.
[0006]
[Means for Solving the Problems]
The calcium phosphate cement powder of the first invention contains calcium phosphate powder and urea, and the urea is 0.1 to 10 parts by weight when the calcium phosphate cement powder is 100 parts by weight . The calcium phosphate cement composition of the fifth invention contains a powder containing calcium phosphate powder and a kneading liquid containing urea, and when the kneading liquid is 100 parts by weight, the urea is 0.1-20. It is a weight part .
[0007]
In the first and fifth inventions, the above-mentioned “urea” is used as an additive for pharmaceuticals, and safety and non-toxicity for a living body are already guaranteed.
[0008]
In the first invention, when the “calcium phosphate cement powder” is 100 parts by weight, the urea content is “0.1 to 10 parts by weight”. In the fifth invention, when the “kneading liquid” is 100 parts by weight, the urea content is “0.1 to 20 parts by weight”. When the urea content is less than the lower limit, respectively, if the amount ratio of water generally used as a kneading liquid is lower than that in the case of not containing urea, a kneaded body having sufficiently excellent operability can be obtained. In some cases, voids may occur in the kneaded body filled in the mold. On the other hand, when the urea content exceeds the upper limit, the curing time of the kneaded body cannot be sufficiently shortened, and the strength of the cured body is not improved.
[0009]
In the first invention, the urea content is preferably 0.5 to 8 parts by weight, more preferably 1 to 5 parts by weight. In the fifth invention, it is particularly preferably 0.5 to 10 parts by weight, and more preferably 1 to 5 parts by weight. If the calcium phosphate powder or the kneading liquid contains urea in this range, the kneading body is excellent in operability during kneading, and the kneading body can be cured in a short time, and a cured body having high strength can be obtained. As water frequently used as the kneading liquid, it is particularly preferable to use pure water, and the water can be mixed with an organic acid or the like conventionally added to this kind of kneading liquid.
[0010]
The calcium phosphate cement powder may contain the “polysaccharide” as in the second invention. In addition, as in the sixth invention, this polysaccharide can also be added to the kneaded liquid. Thus, when urea and polysaccharides are used in combination, a kneaded body having an appropriate viscosity can be obtained with a smaller amount of kneading liquid, and the form-imparting property can be easily improved. In addition, the curing time can be shortened and a cured body having high strength can be obtained. As this polysaccharide, those in which various monosaccharides are polyglycosylated and polymerized can be used. As the polysaccharide, the “dextran” and / or the “dextran sulfate” is particularly preferable as in the third and seventh inventions. As the dextran sulfate, dextran sulfate sodium, dextran sulfate potassium and the like are particularly preferable, and these may be used alone or in combination of two or more. Moreover, dextran and its sulfate can also be used together. Since this dextran and its sulfate are easily soluble in water like urea, it can be easily dissolved in water, which is the main component of the kneading liquid, to form a homogeneous kneaded body.
[0011]
In the second invention, the content of these polysaccharides is preferably 1 to 10 parts by weight, particularly 2 to 8 parts by weight for dextran, and 5 for dextran sulfate when calcium phosphate powder is 100 parts by weight. It is preferable to set it to -25 weight part, especially 10-20 weight part. Further, in the sixth invention, when the kneading liquid is 100 parts by weight, it is preferably 5 to 30 parts by weight, particularly 10 to 25 parts by weight for dextran, and 30 to 60 parts by weight for dextran sulfate. It is preferable to set it as 35-55 weight part. When the content of the polysaccharide is below these ranges, the kneaded body is poor in viscosity and it is difficult to impart a form, and the specific actions and effects due to the inclusion of the polysaccharide cannot be sufficiently obtained. Moreover, when exceeding these ranges, it exists in the tendency for the viscosity of a kneaded body to become high too much, and form provision is not easy .
[0012]
In the first invention, a kneading liquid containing a polysaccharide can also be used. When using the kneading liquid containing this polysaccharide and the cement powder containing urea and polysaccharide as in the second invention, the total amount of polysaccharide is taken into consideration in consideration of the viscosity and form-providing properties of the kneaded body. It is necessary to adjust to an appropriate amount. In the fifth invention, a powder containing a polysaccharide can also be used. Even when using the powder containing the polysaccharide and the kneading liquid containing urea and the polysaccharide as in the sixth invention, the total amount of the polysaccharide is appropriately determined in consideration of the viscosity and form-providing property of the kneaded body. It is necessary to adjust to.
[0013]
In the cement powder of the first invention and the cement composition of the fifth invention, the “calcium phosphate powder” includes tetracalcium phosphate, calcium hydrogen phosphate, hydroxyapatite, α-tricalcium phosphate and β-phosphate. Powders such as tricalcium can be used. These powders may use only 1 type and may use 2 or more types together. Moreover, X-ray contrast agents, such as barium sulfate and bismuth carbonate, can be mix | blended with this powder. Furthermore, fluoride or the like can be added as a seed crystal in order to shorten the curing time.
[0014]
In the cement powder of the first invention and the cement composition of the fifth invention, the “calcium phosphate powder” is mainly composed of “tetracalcium phosphate and calcium hydrogen phosphate” as in the fourth and eighth inventions. What is made into a component is suitable. The amount ratio of these two kinds of powders is not particularly limited, but it is preferable to use a molar ratio of 8/2 to 2/8, particularly 6/4 to 4/6, and further equivalent. The “main component” means that the total amount of the above two kinds of powders is 60 parts by weight or more, particularly preferably 80 parts by weight or more when the total amount of calcium phosphate powder is 100 parts by weight. To do.
[0015]
The production method of the tetracalcium phosphate powder is not particularly limited, and a powder produced by any method can be used. For example, an equimolar mixture of calcium carbonate and calcium hydrogen phosphate can be formed into a predetermined shape, and then fired at a temperature range of 1450 to 1550 ° C. and pulverized. Moreover, as calcium hydrogenphosphate powder, what is marketed as calcium hydrogenphosphate dihydrate or an anhydride can be used as it is. Furthermore, this commercially available dihydrate can be heated and dehydrated at a temperature of about 120 ° C., but is not particularly limited thereto.
[0016]
The calcium phosphate cement powder of the present invention contains urea, and in the calcium phosphate cement composition of the present invention, the kneaded liquid contains urea. When kneading these cement powders or cement compositions, urea has a function of permeating between the particles of the calcium phosphate powder aggregated with water and dispersing the particles. Since the powder particles are thus more easily dispersed, the viscosity of the kneaded body does not increase so much even if the amount ratio of the kneading liquid is lowered, and the operability during kneading is excellent. Further, by slightly increasing the amount ratio of the kneaded liquid, the viscosity of the kneaded body can be lowered, and the bone defect or fracture can be easily compensated with a syringe. Thereby, the burden on the patient can be reduced. Furthermore, good healing is possible without causing inflammation.
[0017]
Furthermore, the amount ratio of the kneading liquid for obtaining a kneaded body having the same viscosity as that of a cement made of only calcium phosphate powder and a kneading liquid not containing urea can be lowered. Therefore, the curing time can be further shortened, and a cured body having high strength can be obtained. The curing time measured according to JIS T 6602 can be 10 to 25 minutes, particularly 10 to 20 minutes, and the wet compression strength can be 500 to 700 kg / cm 2 , particularly 600 to 700 kg / cm 2 .
[0018]
Further, in the second and sixth inventions, a kneading liquid containing dextran and / or a sulfate thereof, or the like is used by using cement powder in which an appropriate amount of dextran and / or a sulfate thereof is used in combination with urea. As a result, the polysaccharide dissolved in water has a function of joining the particles of the calcium phosphate powder, so that the kneaded body has an appropriate viscosity. Thereby, it is possible to obtain a kneaded body having a sufficiently excellent shape imparting property with a smaller kneading liquid. In the present invention, the provision of a form also means the correction and adjustment of the shape after the provision of the initial shape and the compensation.
[0019]
The viscosity of the kneaded body can be adjusted by the quantitative ratio between the calcium phosphate powder and the kneaded liquid, but in the present invention, the volume ratio of the kneaded liquid for obtaining a kneaded body having the same viscosity as when urea is not used. Can be lowered. The amount ratio of the powder to the kneading liquid is preferably about 10 to 25 parts by weight of the kneading liquid with respect to 100 parts by weight of the powder. Furthermore, the amount ratio is more preferably about 15 to 25 parts by weight, particularly about 20 parts by weight. As described above, in the present invention, the amount ratio of the kneading liquid can be lowered. However, when the amount ratio of the kneading liquid is too low, the viscosity of the kneaded body becomes high and it becomes difficult to impart a predetermined form. . On the other hand, if the amount ratio of the kneaded liquid is too high, the viscosity of the kneaded body becomes low and it becomes easy to handle, but the kneaded body tends to collapse due to contact with the body fluid, which is not preferable.
[0020]
The kneaded body using the calcium phosphate cement powder or the calcium phosphate cement composition of the present invention can be used for applications such as artificial bones and artificial roots by supplementing only this in vivo. Further, during kneading, an osteogenic factor, an anticancer agent, an antibiotic or the like can be added and used as a carrier for sustained drug release.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail by way of examples.
In the following experimental examples, the calcium phosphate powder used was a mixture of equimolar amounts of tetracalcium phosphate powder and calcium hydrogen phosphate anhydrous powder. Urea manufactured by Wako Pure Chemical Industries, Ltd. was used. Furthermore, as polysaccharides, dextran 40 (average molecular weight; 40,000, manufactured by Meisei Sangyo Co., Ltd., hereinafter referred to as “DEX”) and dextran sulfate sodium sulfur 5 (average molecular weight: 2000, manufactured by Meisei Sangyo Co., Ltd., as follows: , "DSS").
[0022]
(1) Example 1 of examination of the amount of urea contained in cement powder (example in which cement powder does not contain urea)
Calcium phosphate powder was used as cement powder, and pure water was blended therein as a kneading liquid and kneaded to obtain a kneaded body. The weight ratio of pure water to powder (the amount ratio of the kneaded liquid and cement powder is hereinafter referred to as “L / P”) was 0.21. However, the kneaded body has a high viscosity, and a large number of voids were observed in the cured body obtained by filling a mold and curing the kneaded body. In this experimental example, when the kneading liquid was reduced and L / P was 0.19, kneading could not be performed.
[0023]
Experimental Example 2 (Cement powder containing a small amount of urea)
A kneaded body was obtained by kneading in the same manner as in Experimental Example 1 except that calcium phosphate cement powder prepared by mixing calcium phosphate powder and 0.05 parts by weight of urea by a ball mill was used. However, since the amount of urea is small, the viscosity of the kneaded body is not sufficiently low, and voids are observed in the cured body obtained by filling the mold and curing. When L / P was 0.19, kneading was not easy.
[0024]
Experimental Example 3 (Cement powder containing an appropriate amount of urea)
Cement powder containing 0.1 part by weight of urea was used for convenience and kneaded in the same manner as in Experimental Example 2 except that L / P was 0.19 to obtain a kneaded body. Although this kneaded body had a lower L / P than that of Experimental Example 2, it could be easily filled into a mold, was excellent in operability, and no voids were observed in the obtained cured body.
[0025]
Experimental Examples 4 to 5 (examples where the cement powder contains an appropriate amount of urea)
Kneading was carried out in the same manner as in Experimental Example 2 except that cement powders containing 2 parts by weight (Experimental Example 4) and 5 parts by weight (Experimental Example 5) of urea were respectively used and L / P was set to 0.17. A kneaded body was obtained. Although these kneaded bodies have an L / P lower than that of Experimental Example 3, all of them can be easily filled in a mold, have excellent operability, and voids are observed in the obtained cured body. There wasn't.
[0026]
Example 6 (an example in which the cement powder contains urea slightly exceeding an appropriate amount)
A kneaded body was obtained by kneading in the same manner as in Experimental Example 4 except that the urea content was 12 parts by weight exceeding the upper limit of the second invention. Although this kneaded body has a low L / P, it can be easily filled into a mold, has excellent operability, and no voids are observed in the obtained cured body. However, the curing time tends to be long and the compressive strength tends to decrease.
[0027]
Experiment Example 7 (Cement powder does not contain urea and L / P is high)
A kneaded body was obtained by kneading in the same manner as in Experimental Example 1 except that L / P was increased to 0.29. In this way, even if the L / P is increased, even a kneading liquid consisting of pure water can easily fill the kneaded body into a mold, and is excellent in operability. I was not able to admit. Further, this kneaded body had a low viscosity and could be pushed out by an 18 gauge syringe. However, in Experimental Example 7, the curing time was long, and the compression strength of the obtained cured product was greatly reduced. Moreover, when L / P was set to 0.25, it was not able to be extruded with an 18 gauge syringe.
[0028]
Experimental Example 8 (Example in which cement powder contains an appropriate amount of urea and L / P is slightly high)
Using a cement powder containing 4 parts by weight of urea and setting L / P to 0.25, the mixture was kneaded in the same manner as in Experimental Example 2 to obtain a kneaded body. This kneaded body could be easily filled into a mold, was excellent in operability, and no voids were observed in the obtained cured body. Further, this kneaded body had a low viscosity and could be extruded from an 18 gauge syringe. However, since L / P is high, the curing time tends to be slightly longer and the compressive strength tends to decrease.
[0029]
Experimental Examples 9 to 12 (Examples using a kneading liquid in which cement powder contains an appropriate amount of urea and DEX or DSS is added to pure water)
Cement powder of Experimental Example 5, a kneading solution prepared by dissolving 3 parts by weight (Experimental Example 9), 25 parts by weight (Experimental Example 10) and 35 parts by weight (Experimental Example 11) of DEX in pure water, and DSS A kneaded liquid obtained by dissolving 50 parts by weight in pure water was used and kneaded in the same manner as in Experimental Example 2 except that L / P was set to 0.19 to obtain a kneaded body. These kneaded bodies had an appropriate viscosity and were easy to form. In addition, the mold was easily filled, and no voids were observed in the obtained cured product.
[0030]
Experimental Example 13 (Example in which cement powder contains appropriate amounts of urea and DSS)
A kneaded body was obtained by kneading in the same manner as in Experimental Example 2 except that cement powder containing 10 parts by weight of urea and 10 parts by weight of DSS was used. This kneaded body had an appropriate viscosity and was easy to give form. In addition, the mold was easily filled, and no voids were observed in the obtained cured product.
[0031]
Experimental Example 14 (Evaluation of operability, filling properties and formability)
The kneaded bodies prepared in Experimental Examples 1 to 13 were filled in a molding die having an inner diameter of 6 mm and a height of 5 mm and molded, and the obtained molded body was taken out from the mold and immediately immersed in a simulated body fluid at 37 ° C. As a result, in Experimental Examples 3 to 6 and 8 to 13, it was confirmed that the molded body was cured while maintaining its shape without collapsing. On the other hand, in Experimental Examples 1 and 7 using a cement made only of calcium phosphate powder, the molded body collapsed and the shape was not maintained. Further, in Experimental Example 2 in which the urea content was less than the lower limit of the second invention, the molded body tended to collapse.
[0032]
Experimental Example 15 (Confirmation of crystal constituent phase of cured body)
The kneaded bodies prepared in Experimental Examples 3 to 6 and 8 to 13 were cured in an atmosphere having a temperature of 37 ° C. and a relative humidity of 100%. The curing time was 1 hour from the start of kneading. The obtained cured body was immersed in a simulated body fluid at 37 ° C. for 23 hours, and then the crystal constituent phase of the cured body was confirmed by an X-ray diffraction method. As a result, diffraction peaks of hydroxyapatite and tetracalcium phosphate were confirmed in all the experimental examples. In FIG. 1, the chart of the X-ray diffraction of the hardening body obtained by hardening the kneading body of Experimental example 5 is shown.
[0033]
Experimental Example 16 (Evaluation of curing time and compressive strength)
The curing time and wet compressive strength of the kneaded bodies prepared in Experimental Examples 1 to 13 were measured according to JIST 6602.
Table 1 shows the results. In Table 1, “PW” means pure water. Table 1 also shows the operability and filling properties of Experimental Examples 1 to 13 and the form imparting properties of Experimental Examples 9 to 13.
[0034]
[Table 1]
Figure 0004319280
[0035]
According to the results of Table 1, in Experimental Examples 3 to 5 where the cement powder containing urea in an amount corresponding to the first invention is used, the curing time is as short as 17 minutes or less and the compressive strength is 600 kg / cm. 2 or larger. On the other hand, in Experimental Examples 1 and 7 in which cement powder consisting only of calcium phosphate powder is used and in Experimental Example 2 in which the urea content is less than the lower limit of the first invention, the setting time tends to be long and compression is required. It can be seen that the strength is also low. In particular, in Experimental Example 7 in which the cement powder does not contain urea and L / P is high, the curing time is longer and the compressive strength is greatly reduced. Moreover, also in Experimental Example 6 in which the urea content exceeds the upper limit of the first invention, the curing time is prolonged and the compressive strength is also lowered. Further, in Experimental Examples 9 to 12 in which DEX or DSS is added to pure water as the kneading liquid, and in Experimental Example 13 in which urea and DSS are added to the calcium phosphate powder, the cured product is obtained with a short curing time. It has a sufficient compressive strength, and it can be seen that the form-providing property is also excellent.
[0036]
(2) Examination experiment example 17 of urea amount contained in pure water (example in which pure water contains a small amount of urea)
A kneaded liquid prepared by dissolving 0.05 parts by weight of urea in pure water was blended into the cement powder and kneaded to obtain a kneaded body. L / P was set to 0.21. This kneaded body had a high viscosity and was slightly inferior in operability, and voids were observed in the cured body obtained by filling a mold and curing.
[0037]
Experimental Example 18 (Example in which pure water contains an appropriate amount of urea)
Cement powder was kneaded in the same manner as in Experimental Example 17 except that a kneading liquid containing 0.1 part by weight of urea was used to obtain a kneaded body. This kneaded body had low viscosity and good operability. Further, the mold could be easily filled, and no voids were observed in the obtained cured product.
[0038]
Experimental Examples 19 to 20 (Examples in which pure water contains an appropriate amount of urea)
A cement powder was prepared in the same manner as in Experimental Example 17 except that a kneading liquid containing 1 part by weight (Experimental Example 19) and 10 parts by weight (Experimental Example 20) of urea was used and L / P was set to 0.19. A kneaded body was obtained by kneading. This kneaded body had a low viscosity and was excellent in operability. Further, the mold could be easily filled, and no voids were observed in the obtained cured product.
[0039]
Experimental Example 21 (Example in which pure water contains urea slightly exceeding the appropriate amount)
Cement powder was kneaded in the same manner as in Experimental Example 17 except that a kneading liquid containing 25 parts by weight of urea was used and L / P was set to 0.17 to obtain a kneaded body. This kneaded body had good operability and was easily filled into a mold. There was a tendency for the curing time to become longer and the compressive strength to decrease.
[0040]
Experimental Example 22 (Example in which pure water contains a large amount of urea and L / P is slightly high)
Cement powder was kneaded in the same manner as in Experimental Example 17 except that a kneading liquid containing 20 parts by weight of urea was used and L / P was 0.23 to obtain a kneaded body. This kneaded body had a low viscosity and could be pushed out by an 18 gauge syringe. However, there was a tendency for the curing time to be slightly longer and the compressive strength to decrease.
[0041]
Experimental Examples 23 to 26 (examples in which pure water contains an appropriate amount of urea and DEX or DSS)
15 parts by weight of urea and 2 parts by weight (Experimental Example 23), 20 parts by weight (Experimental Example 24) and 33 parts by weight (Experimental Example 25), respectively, or 40 parts by weight of DSS (Experimental Example 26) Cement powder was kneaded in the same manner as in Experimental Example 17 except that the kneading liquid was used and L / P was set to 0.19 to obtain a kneaded body. These kneaded bodies were putty-like, operability was good, and form imparting property was excellent. In addition, the mold was easily filled, and no voids were observed in the obtained cured product.
[0042]
Experimental Example 27 (Evaluation of operability, filling properties and formability)
The kneaded bodies prepared in Experimental Examples 17 to 26 were filled into a mold having an inner diameter of 6 mm and a height of 5 mm and molded, and the obtained molded body was taken out from the mold and immediately immersed in a simulated body fluid at 37 ° C. As a result, in Experimental Examples 18 to 26, it was confirmed that the molded body was cured while maintaining its shape without collapsing. On the other hand, in Experimental Example 17 in which the urea content was less than the lower limit of the first invention, the molded body tended to collapse.
[0043]
Experimental Example 28 (Confirmation of crystal constituent phase of cured body)
The kneaded bodies prepared in Experimental Examples 17 to 26 were cured in an atmosphere at a temperature of 37 ° C. and a relative humidity of 100%. The curing time was 1 hour from the start of kneading. The obtained cured product was immersed in a simulated body fluid at 37 ° C. for 23 hours, and then the constituent phase of the cured product was confirmed by an X-ray diffraction method. As a result, diffraction peaks of hydroxyapatite and tetracalcium phosphate were confirmed in any of Experimental Examples 17 to 26. In FIG. 2, the chart of the X-ray diffraction of the hardening body obtained by hardening the kneaded body of Experimental Example 20 is shown.
[0044]
Experimental Example 29 (Evaluation of curing time and compressive strength)
The curing time and wet compressive strength of the kneaded bodies prepared in Experimental Examples 17 to 26 were measured according to JIS T 6602.
Table 2 shows the results. Table 2 also shows the operability and filling properties of Experimental Examples 17 to 26 and the form imparting properties of Experimental Examples 23 to 26.
[0045]
[Table 2]
Figure 0004319280
[0046]
According to the results of Table 2, in Experimental Examples 18 to 20 and 22 using the kneading liquid containing urea corresponding to the fifth invention, the curing time is as short as 23 minutes or less and the compressive strength is 530 kg / cm. 2 or larger. On the other hand, in Experimental Example 17 in which the urea content is less than the lower limit of the fifth invention, it can be seen that the curing time is long and the compressive strength is low. Further, in Experimental Example 21 in which the urea content exceeds the upper limit of the fifth invention, the curing time is long and the compressive strength is also lowered. Furthermore, in Experimental Examples 23 to 26 using pure water with urea and DEX or DSS added as the kneading liquid, the curing time is short, and the resulting cured body has sufficient compressive strength. It can be seen that the impartability is also excellent.
[0047]
【The invention's effect】
In the calcium phosphate cement powder of the first invention and the calcium phosphate cement composition of the fifth invention, even when the blending amount of the kneading liquid with respect to the powder is small, the viscosity at the time of kneading is low, kneading is easy, and the time is relatively short. Can be cured, and the strength of the resulting cured product is also high. Moreover, even if it contacts with a simulated body fluid immediately after kneading | mixing, it will not collapse and a shape will be maintained. Furthermore, like 2nd and 3rd invention and 6th and 7th invention, it can be set as the kneaded body which was excellent in the form provision property by using together polysaccharides, such as dextran and its sulfate.
[Brief description of the drawings]
1 is an X-ray diffraction chart of a cured body obtained by curing a kneaded body of Experimental Example 5 under the conditions of Experimental Example 14. FIG.
2 is an X-ray diffraction chart of a cured body obtained by curing the kneaded body of Experimental Example 20 under the conditions of Experimental Example 27. FIG.

Claims (8)

リン酸カルシウム粉末と尿素とを含有するリン酸カルシウムセメント粉体であって、
上記リン酸カルシウムセメント粉末を100重量部とした場合に、上記尿素が0.1〜10重量部であることを特徴とするリン酸カルシウムセメント粉体。
A calcium phosphate cement powder containing calcium phosphate powder and urea ,
The calcium phosphate cement powder, wherein the urea is 0.1 to 10 parts by weight when the calcium phosphate cement powder is 100 parts by weight.
多糖類を含有する請求項1記載のリン酸カルシウムセメント粉体。  The calcium phosphate cement powder according to claim 1, comprising a polysaccharide. 上記多糖類が、デキストラン及びデキストラン硫酸塩のうちの少なくとも一方である請求項記載のリン酸カルシウムセメント粉体。The calcium phosphate cement powder according to claim 2 , wherein the polysaccharide is at least one of dextran and dextran sulfate. 上記リン酸カルシウム粉末の主成分が、リン酸四カルシウム及びリン酸水素カルシウムである請求項1乃至のうちのいずれか1項に記載のリン酸カルシウムセメント粉体。The calcium phosphate cement powder according to any one of claims 1 to 3 , wherein the main components of the calcium phosphate powder are tetracalcium phosphate and calcium hydrogen phosphate. リン酸カルシウム粉末を含む粉体と、尿素を含む混練液とを含有するリン酸カルシウムセメント組成物であって、
上記混練液を100重量部とした場合に、上記尿素が0.1〜20重量部であることを特徴とするリン酸カルシウムセメント組成物。
A calcium phosphate cement composition containing a powder containing calcium phosphate powder and a kneading liquid containing urea ,
The calcium phosphate cement composition, wherein the urea is 0.1 to 20 parts by weight when the kneading liquid is 100 parts by weight.
上記混練液が多糖類を含む請求項記載のリン酸カルシウムセメント組成物。The calcium phosphate cement composition according to claim 5 , wherein the kneading liquid contains a polysaccharide. 上記多糖類が、デキストラン及びデキストラン硫酸塩のうちの少なくとも一方である請求項記載のリン酸カルシウムセメント組成物。The calcium phosphate cement composition according to claim 6 , wherein the polysaccharide is at least one of dextran and dextran sulfate. 上記リン酸カルシウム粉末の主成分が、リン酸四カルシウム及びリン酸水素カルシウムである請求項乃至のうちのいずれか1項に記載のリン酸カルシウムセメント組成物。The calcium phosphate cement composition according to any one of claims 5 to 7 , wherein the main components of the calcium phosphate powder are tetracalcium phosphate and calcium hydrogen phosphate.
JP6033499A 1999-03-08 1999-03-08 Calcium phosphate cement powder and calcium phosphate cement composition Expired - Fee Related JP4319280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6033499A JP4319280B2 (en) 1999-03-08 1999-03-08 Calcium phosphate cement powder and calcium phosphate cement composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6033499A JP4319280B2 (en) 1999-03-08 1999-03-08 Calcium phosphate cement powder and calcium phosphate cement composition

Publications (2)

Publication Number Publication Date
JP2000256115A JP2000256115A (en) 2000-09-19
JP4319280B2 true JP4319280B2 (en) 2009-08-26

Family

ID=13139180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6033499A Expired - Fee Related JP4319280B2 (en) 1999-03-08 1999-03-08 Calcium phosphate cement powder and calcium phosphate cement composition

Country Status (1)

Country Link
JP (1) JP4319280B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4256622B2 (en) * 2002-05-07 2009-04-22 日本特殊陶業株式会社 Calcium phosphate porous body manufacturing method and calcium phosphate porous body manufacturing apparatus
JP2003321281A (en) * 2002-05-07 2003-11-11 Ngk Spark Plug Co Ltd Porous calcium phosphate body

Also Published As

Publication number Publication date
JP2000256115A (en) 2000-09-19

Similar Documents

Publication Publication Date Title
JP5307547B2 (en) Two-phase cement precursor system for bone repair
JPH07206489A (en) Calcium phosphate cement composition, its preparation and its method of application
JPH0222113A (en) Production of calcium phosphate mineral
JP4215884B2 (en) Calcium phosphate cement and calcium phosphate cement composition
US20220395613A1 (en) Settable bone void filler
JPH10248915A (en) Calcium phosphate cement curing solution and composition for calcium phosphate cement cured object
EP1622843B1 (en) Premixed self-hardening bone graft pastes
JP4319280B2 (en) Calcium phosphate cement powder and calcium phosphate cement composition
JP3965249B2 (en) Calcium phosphate cement and calcium phosphate cement composition
KR20140043061A (en) Composition containing injectable self-hardened apatite cement
JP3987220B2 (en) Fast-setting calcium phosphate cement
JP2807819B2 (en) Hardening glue for root canal filling
JPH0585914A (en) Curing type paste material
JP4116791B2 (en) Curing time control method of hydration hardening type calcium phosphate paste
JP3423951B2 (en) Calcium phosphate hardened powder
JPS61236644A (en) Calcium phosphate hardenable composition
JPH0793941B2 (en) Manufacturing method of biological hard tissue repair material
JP2000169199A (en) Quick-hardening calcium phosphate cement
JP5777141B2 (en) Composition and method for producing bone or tooth filler using the same
JP3634945B2 (en) Fast-hardening calcium phosphate cement and method for producing the same
JP4224234B2 (en) Curing speed control method of hydration hardening type calcium phosphate paste for medical or dental use
JP2626811B2 (en) Curable glue root canal filling material
JPH07114804B2 (en) Medical curable composition
JP3125016B2 (en) Curable material
JP2002291866A (en) Calcium phosphate cement powder and calcium phosphate cement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090528

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees