JP4318928B2 - Fuel reformer and engine system incorporating the same - Google Patents

Fuel reformer and engine system incorporating the same Download PDF

Info

Publication number
JP4318928B2
JP4318928B2 JP2003036169A JP2003036169A JP4318928B2 JP 4318928 B2 JP4318928 B2 JP 4318928B2 JP 2003036169 A JP2003036169 A JP 2003036169A JP 2003036169 A JP2003036169 A JP 2003036169A JP 4318928 B2 JP4318928 B2 JP 4318928B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
exhaust gas
passage
chamber
reforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003036169A
Other languages
Japanese (ja)
Other versions
JP2004244268A (en
Inventor
英男 河村
Original Assignee
財団法人シップ・アンド・オーシャン財団
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人シップ・アンド・オーシャン財団 filed Critical 財団法人シップ・アンド・オーシャン財団
Priority to JP2003036169A priority Critical patent/JP4318928B2/en
Publication of JP2004244268A publication Critical patent/JP2004244268A/en
Application granted granted Critical
Publication of JP4318928B2 publication Critical patent/JP4318928B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • Y02P20/121

Description

【0001】
【発明の属する技術分野】
この発明は,排気ガス中に含まれるCO2 を利用して天然ガスを排気ガスの熱エネルギによって改質する燃料改質装置及びそれを組み込んだエンジンシステムに関する。
【0002】
【従来の技術】
天然ガスは,その主成分がメタン(CH4 )であることが知られている。燃料のCH4 は,発熱量が大きく,自然界に多く存在するので,将来の石油代替燃料として期待されている。即ち,天然ガスを燃料とするガスエンジンでは,排気ガスが極めてクリーンであり,一般のディーゼルエンジンでは500ppm以上の窒素酸化物が排出されるが,ガスエンジンでは10ppm以下と極めて少なくなる。また,ガスエンジンを燃焼させると,同一エネルギー当たりの二酸化炭素の排出量は石油燃料と比較して30%以上少なくなり,将来の公害対策エンジンの燃料として極めて有望といえる。従来,ガスエンジンは,コージェネレーションシステム等として開発が進められている。コージェネレーションシステムは,動力を発電機で電気エネルギーとして取り出し,排気ガスエネルギが有する熱を熱交換器で水を加熱して温水にし,該温水を給湯用として利用している。
【0003】
従来,天然ガスを燃料とするエンジンが知られている(例えば,特許文献1,2参照)。しかしながら,天然ガスを用いたガスエンジンの最大の欠点は,天然ガス燃料が気体燃料であるので,天然ガス燃料を燃費の良いディーゼル燃焼させることが難しいことである。即ち,ディーゼル燃焼では,圧縮された空気中に燃料を吹き込むが,その燃料を圧縮された空気圧以上の圧力に圧縮しないと,燃焼室に燃料を噴射することができない。従って,燃料を圧縮して高圧にするために多くの仕事を要し,必ずしも燃費が良くならない。また,圧縮された空気中に燃料が噴射された場合,気体同士では中々混合が良好に行われず,良好な燃焼を確保できずに燃費も改良されず,窒素酸化物も少なくならない。
【0004】
また,天然ガスを改質した燃料を用いるガスエンジンが知られている。該ガスエンジンに組み込まれた燃料改質装置は,天然ガス主成分のCH4 を熱分解してCOとH2 の改質燃料に転化させ,燃料による熱効率を改善すると共に排気ガス中のCO2 を熱分解に使用し,NOX の発生を抑制するものである。燃料改質装置は,排気ガスパイプ内に排気ガス通路を形成する排気ガス通路体を配置し,排気ガスパイプの外側にガス燃料が流れるガス燃料ケースを配置し,ガス燃料ケース内にガス燃料通路を形成する多孔質セラミックスから成る多孔質部材を配置し,多孔質部材の表面にCH4 とCO2 をCOとH2 の改質燃料に変換させる作用を有する触媒を被覆し,更にガス燃料パイプの外周に断熱材を配置したものである(例えば,特許文献3参照)。
【特許文献1】
特開平6−108865号公報(第1頁)
【特許文献2】
特開平6−101495号公報(第1頁)
【特許文献3】
特開平11−93777号公報(第1頁)
【0005】
【発明が解決しようとする課題】
ところで,天然ガスを触媒の下で排気ガス熱エネルギを利用して熱分解して改質させ,H2 とCOとに変換し,改質燃料を燃料とするエンジンでは,その熱効率が30%以上向上する可能性がある。天然ガスを二酸化炭素と反応させ,改質させる場合に,改質反応温度が高いので,天然ガスを十分に反応させることが困難である。特に,エンジンのように,排気ガスの温度が700℃〜600℃程度では,この傾向が著しく現れる。しかしながら,排気ガス温度が低く,天然ガスの改質反応温度が低ければ低いほど,燃料改質装置の実現性が高くなる。天然ガスの主成分であるメタンの反応性を試験してみると,天然ガスのCO2 による改質温度よりも,水蒸気による改質温度の方が200℃以上低い状態である。また,CO2 による天然ガスの改質は,800℃付近で80%の改質率,水蒸気による天然ガスの改質では,600℃で80%の改質率であることが分かった。そこで,天然ガスのこれらのガスによる改質は,それぞれに合致した触媒を用いて天然ガスを反応させた時に,これらの改質率が高く成ることが分かった。
【0006】
本発明者は,これらの課題を考慮した天然ガス改質装置を開発して先に出願した(例えば,特願平2002−132557号参照)。該天然ガス改質装置は,排気ガス中のCO2 を捕捉すると共に排気ガスが有する熱エネルギを利用して天然ガスを触媒を用いて反応させ,改質率をアップし,燃料の熱量を増加させてエンジンの熱効率を向上させるものである。上記天然ガス改質装置は,排気ガス中に含まれるCO2 ,外部から供給するH2 O,及び排気ガス中に含まれるO2 を用いて,それぞれに適合した触媒の存在下で天然ガスとCO2 ,H2 Oを順次に反応させて天然ガスを改質燃料に変換するものである。
【0007】
しかしながら,燃料改質装置は,エンジンの燃焼後の排気ガスから炭酸ガス(CO2 )を分離し回収する機能,分離した炭酸ガスと天然ガスのメタン(CH4 )を触媒の存在下で反応させて天然ガスをH2 とCOの改質燃料に改質させる機能,水蒸気(H2 O)とメタンを触媒下で反応させる機能を要求されるものであり,これらの機能は高効率の熱交換器を用いて作用させる必要がある。これらの機能を出来る限り効率良く達成できる装置を,コンパクトに構成するには次の各条件をクリアする必要がある。
【0008】
1.排気ガスから炭酸ガスを回収し,離脱させるためには,炭酸ガスと反応する物質を薄膜状に配置し,排気ガスと接触させ,吸着させる。炭酸ガスの脱離には吸着反応した物質を加熱し,分離させる。
2.上記反応を連続した状態で効率良く実行させるには出来るだけコンパクトな吸着装置を2セット準備し,吸着と脱離とを交互に繰り返して行う必要がある。
3.吸着層は表面積が極めて大きい多孔質金属材を用い,その表面に粒子状物質を吸着し易いアルミナ,ジルコニア等をディッピングにより被覆し,その表面にジルコニウム酸リチウム等の吸着脱離作用を有する吸着剤を付着させる。
4.吸着層と隔絶した隣接する場所に排気ガス通路を設け,吸着剤から炭酸ガスを脱離させる時には,高温排気ガスを通過させて吸着層の温度を上げて短時間に吸着剤から炭酸ガスを脱離させる。
5.吸着層と熱交換層とは隔壁を挟んで隔壁に溶着された粗さの異なる多孔質金属を配置し,熱の授受をスムーズに進行させる。
6.一対の炭酸ガス吸着脱離室の下流には,燃料改質室を配置し,炭酸ガスの脱離が進行している側の炭酸ガス吸着脱離室に高温の排気ガスを流し,次いで,燃料改質通路に排気ガスを流して天然ガスを改質し,燃料改質通路では連続作用であるので,温度の変動がないようになる。
7.炭酸ガスを用いて天然ガスを改質させる第1改質室の後流に,水蒸気を用いて天然ガスを改質させる第2改質室を配置し,第2改質室には高温の水蒸気が導入される。
8.燃料改質室を出た高温排気ガスは,排気ガス中の炭酸ガスを吸着するため,他方の炭酸ガス吸着脱離室へ送り込まれ,吸着剤に炭酸ガスが吸着される。
9.高温排気ガス通路では,上流からの排気ガスが開閉バルブによって通路を切り換えられ,炭酸ガスの吸引,圧送をポンプによって行い,2つの炭酸ガス吸着脱離室に取り付けられた通路と開閉バルブの切り換えを上記作用に合わせて実施する仕組みになっている。
10.天然ガスの供給は,炭酸ガス側と水蒸気側の両方からエンジンの負荷条件によってその量を制御して実行する。
【0009】
【課題を解決するための手段】
この発明の目的は,上記の各条件を満たすものであり,例えば,エンジンに組み込んで天然ガスを改質するものであり,排気ガス中に含まれているCO2 をジルコニウム酸リチウム(Li2 ZrO3 ),ゼオライト等の粒子を用いて吸着脱離し,脱離されたCO2 を用いて排気ガスの熱エネルギを利用して天然ガス中のCH4 をCO2 ,水蒸気によって改質する場合に,CO2 ,水蒸気に適合した触媒の存在の下で,天然ガスをCOとH2 に熱分解して改質燃料に改質し,改質燃料を用いてエンジンを駆動する燃料改質装置及びそれを組み込んだエンジンシステムを提供することである。
【0010】
この発明は,天然ガスを排気ガスの熱エネルギーを用いて改質燃料に変換することから成る燃料改質装置において,
前記排気ガス中の炭酸ガスを低温時に吸着し且つ高温時に脱離する吸着剤をコーティングした多孔質金属を配置した低温排気ガス通路と多孔質金属が配置された高温排気ガス通路とを隔壁で区画した複数個の室群から成る一対のパッケージを構成する第1と第2の炭酸ガス吸着脱離室,前記炭酸ガス吸着脱離室の下流側に配置された前記排気ガス中の前記炭酸ガスを用いて多孔質金属にコーティングされた第1触媒の存在下で前記天然ガスと前記炭酸ガスとを反応させて前記天然ガスを前記改質燃料に変換する触媒室でなる改質通路と多孔質金属から成る排気ガス通路を隔壁で区画された複数個の室群から成る第1改質室,及び前記第1改質室の下流に配置された外部からの水蒸気を用いて多孔質金属にコーティングされた第2触媒の存在下で前記天然ガスと前記水蒸気とを反応させて前記天然ガスを前記改質燃料に変換する触媒層でなる改質通路と多孔質金属から成る排気ガス通路を隔壁で区画された複数個の室群から成る第2改質室が設けられており,
前記炭酸ガス吸着脱離室は,前記高温排気ガス通路と炭酸ガス吸着脱離通路を構成する前記低温排気ガス通路とが前記隔壁を介して交互に積層され,互いに通路が導通しないように分離されて前記室群を構成しており,
前記第1と第2の改質室では,前記排気ガス通路を構成する前記多孔質金属と前記触媒をコーティングした前記多孔質金属とは前記隔壁に密着溶着されていると共に前記触媒層は気密性のある前記室群のセルに収納されて前記改質通路が連通していることを特徴とする燃料改質装置に関する。
【0011】
また,この燃料改質装置は,前記エンジンからの前記排気ガスが流れる排気管は2つの分岐管に分岐し,前記分岐管には開閉バルブがそれぞれ配設され,前記分岐管は前記炭酸ガス吸着脱離室の前記高温排気ガス通路側にそれぞれ接続され,前記炭酸ガス吸着脱離室の前記低温排気ガス通路側には前記第1改質室に連通するポンプと開閉バルブを備えた炭酸ガス抽出通路が設けられ,前記排気ガスは前記第2改質室の下流から流入して前記低温排気ガス通路を通って排出される。
【0012】
また,前記エンジンからの前記排気ガスは一方の前記炭酸ガス吸着脱離室の前記高温炭酸ガス通路に流入して熱エネルギーを前記炭酸ガス吸着脱離通路の前記低温排気ガス通路に与えて前記吸着剤に吸着している前記炭酸ガスを脱離させ,脱離した前記炭酸ガスを前記開閉バルブの開放と主に前記ポンプを駆動して前記炭酸ガス抽出通路を通じて前記第1改質室の前記改質通路に送り込み,また,前記第1改質室の前記排気ガス通路に流入した前記排気ガスは前記改質通路に前記熱エネルギーを与えて天然ガス供給通路から供給された天然ガスを前記炭酸ガスの存在下において改質する。
【0013】
前記第1改質室には,開閉バルブを備えた天然ガス供給通路が軸方向に流れる前記排気ガス通路と直交する方向に接続され,前記第2改質室には,開閉バルブを備えた水蒸気供給通路が軸方向に流れる前記排気ガス通路と直交する方向に接続され,各前記排気ガス通路は気密性が確保されるようにシールされている。
【0014】
前記第1改質室の前記排気ガス通路からの前記排気ガスは前記第2改質室の前記排気ガス通路に流入し,前記第1改質室の前記改質通路から前記第2改質室の前記改質通路に流入した前記改質燃料と未改質燃料は前記第2改質室の前記改質通路に水蒸気供給通路から供給された水蒸気の存在下において更に改質され,該改質燃料は前記エンジンに供給される。
【0015】
前記第2改質室の前記排気ガス通路から流出した前記排気ガスは他方の前記炭酸ガス吸着脱離室の前記低温排気ガス通路に流入し,前記低温排気ガス通路を流れる前記排気ガス中の炭酸ガスは前記吸着剤によって吸着され,前記炭酸ガスが吸着排除された前記排気ガスは水蒸気と熱交換器を通じて外部に排気又はEGRガスとして前記エンジンに供給される。
【0016】
また,この燃料改質装置は,一方の前記炭酸ガス吸着脱離室の前記炭酸ガス吸着脱離通路の前記多孔質金属に付着された前記吸着剤から炭酸ガスを脱離させる動作と他方の前記炭酸ガス吸着脱離室の前記炭酸ガス吸着脱離通路の前記多孔質金属に前記炭酸ガスを吸着させる動作とを交互に実行させるため,前記分岐管の開閉バルブを交互に切り換え作動し,前記エンジンからの前記排気ガスを他方の前記炭酸ガス吸着脱離室の前記高温排気ガス通路に送り込み,それによって一方の前記炭酸ガス吸着脱離室の前記低温排気ガス通路の前記多孔質金属に前記炭酸ガスを吸着させ,他方の前記炭酸ガス吸着脱離室の前記低温排気ガス通路の前記多孔質金属から前記炭酸ガスを脱離させることを所定時間毎に反復させる。
【0017】
前記炭酸ガス吸着脱離室は前記排気ガスの熱エネルギーが放熱しないように断熱層で遮蔽され,前記炭酸ガス吸着脱離室の前記炭酸ガス吸着脱離通路の前記多孔質金属に担持された前記吸着剤は前記多孔質金属の表面に接合されたジルコニウム酸リチウムの粒子であり,前記排気ガスの350℃〜500℃の低温時には前記排気ガス中の前記炭酸ガスを吸着し,前記排気ガスの700℃〜750℃の高温時には前記炭酸ガスを脱離する。
【0018】
前記天然ガスと前記炭酸ガスとの反応に寄与する前記第1触媒は,Pt,Ru,Rh,CeO2 ,Niである。また,前記天然ガスと前記水蒸気との反応に寄与する前記第2触媒は,Ni,Pt,Ru,Rhである。
【0019】
また,この発明は,前記燃料改質装置はエンジンからの排気ガスは送り込まれる排気タービンの後流に配設され,前記エンジンからの前記排気ガスが前記排気タービンで仕事をした後に前記燃料改質装置に送り込まれ,前記排気ガスは前記燃料改質装置で炭酸ガスが吸着され,前記炭酸ガスが排除された排気ガスは熱交換器を通じて外部に排気されると共に一部はEGRとして前記エンジンに供給されることを特徴とするエンジンシステムに関する。
【0020】
天然ガスの一部は前記エンジンの副室に供給され,残部は前記燃料改質装置に送り込まれてH2 とCOとから成る改質燃料に改質され,前記改質燃料は前記エンジンの主室に送り込まれる。
【0021】
前記排気タービンはシャフトの一端に取り付けられ,前記シャフトの他端には蒸気タービンが取り付けられ,前記シャフトには発電機が配設され,前記蒸気タービンには前記燃料改質装置の後流に設けられた熱交換器で加熱された水蒸気の一部が送り込まれ,前記蒸気の残部は前記燃料改質装置へ送り込まれて前記天然ガスを改質する前記水蒸気として機能する。
【0022】
前記発電機で発電された電力は,前記エンジンにブーストを送り込むコンプレッサを駆動したり,前記エンジンの出力や補機を駆動する出力として消費されるものである。
【0023】
前記蒸気タービンで仕事をした前記水蒸気は復水器に送り込まれて水に変換され,前記水は別の熱交換器において前記エンジンのオイルを冷却し,前記オイルで加熱された前記水は前記燃料改質装置の後流の前記熱交換器に送り込まれて水蒸気に変換される。
【0024】
この燃料改質装置は,上記のように構成されているので,排気ガスをいずれか一方の炭酸ガス吸着脱離室へ送り込む作用が一対の開閉バルブの開閉を切り換えるのみであり,炭酸ガス吸着脱離室についてのシールが極めて有利であり,また,エンジンからの排気ガスをいずれか一方の開閉バルブを開放して一方の炭酸ガス吸着脱離室へ送り込んで吸着剤に吸着された炭酸ガスを脱離させ,脱離した炭酸ガスを改質室へ送り込み,炭酸ガスを天然ガスの改質に寄与させることができ,また,他方の開閉バルブを閉鎖して他方の炭酸ガス吸着脱離室に改質室で熱エネルギを放出して低温になった排気ガスが送り込まれ,排気ガス中の炭酸ガスが吸着剤で吸着され,炭酸ガスが除去された排気ガスは燃料改質装置の後流の熱交換器に送り込まれ,上記のこれらの一連の作動を連続して行うことができ,天然ガスを改質し,改質燃料をエンジンの駆動に使用することができる。
また,このエンジンシステムは,上記のように構成され,上記の燃料改質装置を組み込んでいるので,天然ガス燃料を有効に利用でき,出力をアップでき,発電機で電力を有効に発電させ,トータルの熱効率を大幅にアップさせることができる。
【0025】
【発明の実施の形態】
以下,図面を参照して,この発明による燃料改質装置及びこれを組み込んだエンジンシステムの実施例を説明する。この燃料改質装置は,天然ガスを排気ガスの熱エネルギーを用いて改質燃料に変換し,改質燃料をエンジンに供給して燃焼させるエンジンシステムに組み込んで適用されるものである。
【0026】
この発明による燃料改質装置1は,特に,エンジン2から放出される排気ガス(EG)中に含まれる炭酸ガス(CO2 ),及びエンジン2の外部から供給される水蒸気(H2 O)を用いて,炭酸ガス及び水蒸気に合致した触媒の存在下で天然ガス(CNG)と炭酸ガス及び水蒸気とを順次に反応させて天然ガスをH2 とCOの改質燃料に変換することを特徴とするものである。燃料改質装置1は,エンジン2に使用される天然ガスの主成分であるCH4 をH2 とCOとの改質燃料に改質して熱効率を向上させるものであり,構造が簡単であってシール性の良好で小形に構成することができる。しかも,このエンジンシステムは,燃料改質装置1を組み込んで,排気ガスが有する熱エネルギを有効に利用し,上記熱エネルギと排気ガス中に含まれるCO2 を捕捉して利用して天然ガスを改質した改質燃料を用いて熱効率を改善することができるものである。
【0027】
燃料改質装置1において,排気ガスからの炭酸ガスの吸着脱離する吸着剤73としては,例えば,低温排気ガス通路52内の多孔質金属88の表面にコーティングされたジルコニウム酸リチウム(Li2 Zr4 3 )及び/又はゼオライト等を用いることができ,特に,ジルコニウム酸リチウムが有効である。また,天然ガスと炭酸ガスとの反応に寄与する触媒93(第1触媒)は,第1改質室22の天然ガス・炭酸ガス通路即ち改質通路57内の多孔質金属90の表面に分散付着された白金(Pt),ルテニウム(Ru),ロジウム(Rh),酸化セリウム(CeO2 ),ニッケル(Ni)等の微粒子である。天然ガスと水蒸気との反応に寄与する触媒94(第2触媒)は,第2改質室23の天然ガス・水蒸気通路即ち改質通路59内の多孔質金属92の表面に分散付着されたニッケル(Ni),白金(Pt),ルテニウム(Ru),ロジウム(Rh)等の微粒子である。
【0028】
燃料改質装置1は,天然ガスの改質温度の高い順からCO2 ,次いで水蒸気(H2 O)を用いて反応させ,改質率を大幅に向上させたものである。例えば,第1改質室22では,Pt,Ru,Niを触媒としてCO2 を用いて天然ガスの全体の改質率を最も悪い条件で反応したとして50%にする。第1改質室22では,炭酸ガス改質であるので,その上流の炭酸ガス吸着脱離室20,21ではCO2 を吸着させる吸着剤73が必要である。CO2 の吸着では,種々のものが提案されているが,吸着剤73としてはゼオライト及び/又はジルコニウム酸リチウムが優れた特性を持っている。そこで,燃料改質装置1では,低温になった排気ガス中に含まれるCO2 を吸着剤73で反応吸着し,吸着されたCO2 を高温の排気ガスの熱エネルギで吸着剤73から離脱させ,離脱した炭酸ガスを改質室へ送り込んで天然ガスの改質に利用する。
ジルコニウム酸リチウムについて,化学式を示すと次のとおりである。
排気ガス温度が350℃〜500℃(例えば,300℃付近)では,排気ガス中の炭酸ガスを吸着する。
Li2 ZrO3 +CO2 →ZrO2 +Li2 CO3
また,排気ガス温度が700℃〜750℃(例えば,700℃付近)では,吸着剤に吸着された炭酸ガスが脱離される。
ZrO2 +Li2 CO3 →Li2 ZrO3 +CO2
即ち,排気ガス温度が300℃付近では,Li2 ZrO3 がCO2 と反応し,酸化ジルコニウム炭酸リチウムとなり,排気ガス温度が700℃付近ではジルコニウム酸リチウムとCO2 になる。
【0029】
燃料改質装置1は,炭酸ガス吸着脱離室21(20)内の多孔質金属の表面に分散付着されたゼオライト及び/又はジルコニウム酸リチウムと排気ガス中の炭酸ガス(CO2 )を吸着反応させるために,炭酸ガス吸着脱離室21(20)の排気ガス通路52に温度の下がった低温排気ガスを第2改質室23から流入させる。炭酸ガス吸着脱離室21(20)では吸着剤73に排気ガス中の炭酸ガスが吸着される。他方の炭酸ガス吸着脱離室20(21)では高温の排気ガスが多孔質金属が充填された排気ガス通路51を通り,吸着剤73に吸着されたCO2 が吸着剤73から離脱する。
【0030】
図1を参照して,この発明によるエンジンシステムの一実施例について説明する。エンジン2から排出された排気ガスは,排気管76を通じて排気タービン3に送り込まれる。排気タービン3で仕事をした排気ガスは排気管26を通じて後述の燃料改質装置1へ送り込まれる。高温の排気ガスは,燃料改質装置1において排気ガス中の炭酸ガスが吸着されると共に,天然ガスを改質するため熱エネルギが消費される。燃料改質装置1で仕事をして炭酸ガスが除去された低温の排気ガスは,排気ガス通路47を通じて熱交換器6に送り込まれる。低温の排気ガスは,熱交換器6で水と熱交換され,更に温度を低下させて排気ガス通路77に排出され,切換バルブ12に切り換えによって外部に排気されるか,又はEGR通路78を通ってEGR装置14に送りこまれる。EGR装置14は,排気ガスの流量を制御して空気に混合し,次いで,空気とEGRガスとはブースト通路86を通じてエンジン2に供給される。
【0031】
天然ガスは,その一部が天然ガス供給源7から天然ガス供給通路79を通じてエンジン2の副室(図示せず)へ送り込まれ,副室での着火燃焼,特に着火に寄与する。また,天然ガスの大部分は天然ガス供給通路42を通って燃料改質装置1へ送り込まれ,天然ガスは炭酸ガス,次いで水蒸気と共に触媒93,94の存在下でH2 とCOの改質燃料に改質され,改質燃料供給通路46を通じてエンジン2の主室(図示せず)に送り込まれて着火燃焼する。この時,天然ガス供給通路42と改質燃料供給通路46とは熱交換器15を通り,天然ガスは,改質燃料の熱エネルギを供給されて温度上昇して燃料改質装置1へ供給される。
【0032】
排気タービン3は,シャフト19の一端に取り付けられ,シャフト19の他端には蒸気タービン5が取り付けられ,更に,シャフト19には発電機4が配設されている。蒸気タービン5には,燃料改質装置1の後流に設けられた熱交換器6で加熱された水蒸気の一部が送り込まれ,蒸気タービン5を駆動する。また,熱交換器6からの水蒸気の残部が燃料改質装置1へ送り込まれ,該水蒸気は天然ガスを改質する物質として機能する。発電機4で発電された電力は,エンジン2にブーストを送り込むコンプレッサ10を駆動したり,エンジン2,水ポンプ11,コンプレッサ10,補機等の出力13として消費される。コンプレッサ10は,発電機4で発電された電力で駆動されるモータ18によって駆動される。
【0033】
また,蒸気タービン5で仕事をした水蒸気は,蒸気通路80を通じて復水器8に送り込まれて水に変換され,水は熱交換器9においてエンジン2のオイルを冷却し,オイルで加熱された水は燃料改質装置1の後流の熱交換器6に送り込まれて水蒸気に変換される。エンジン2を冷却して加熱されたオイルは,オイル循環路84を通じて熱交換器9に送り込まれ,オイル自体は熱交換器9で冷却され,水ポンプ11によって水通路82を通じて送り込まれた水は加熱され,高温の水や蒸気に変換される。復水器8は,水供給源17からの水が水通路81を通じて供給され,該水によって蒸気タービン5から排出された蒸気/水を冷却する作用をする。復水器8で冷却された水は,水ポンプ11の駆動によって水通路82を通じて熱交換器9,次いで水・蒸気通路85を通じて熱交換器6へ供給され,熱交換器6で高温の水蒸気に変換される。熱交換器6で変換された水蒸気はその一部が水蒸気供給通路43を通じて燃料改質装置1へ送り込まれ,水蒸気の大部分は蒸気タービン5へ水蒸気通路83を通じて送り込まれる。即ち,蒸気タービン5,復水器8,熱交換器9,6は,一種のランキンサイクルを構成している。
【0034】
次に,図2〜図4を参照して,このエンジンシステムに組み込まれる燃料改質装置1を説明する。燃料改質装置1は,排気ガス流れの上流側に配置された排気ガス中の炭酸ガスを低温時に吸着し且つ高温時に脱離する吸着剤73をコーティングした多孔質金属が配置された隔壁32で区画した一対のパッケージを構成する第1と第2の炭酸ガス吸着脱離室20,21,炭酸ガス吸着脱離室20,21の下流側に配置された排気ガス中の炭酸ガスを用いて多孔質金属90にコーティングされた第1触媒93の存在下で天然ガスと炭酸ガスとを反応させて天然ガスを改質燃料に変換する第1改質室22,及び第1改質室22の下流に配置された外部からの水蒸気を用いて多孔質金属92にコーティングされた第2触媒94の存在下で天然ガスと水蒸気とを反応させて天然ガスを改質燃料に変換する第2改質室23を有している。
【0035】
エンジン2からの排気ガスが流れる排気管26は,2つの分岐管27,28に分岐し,分岐管27,28には開閉バルブ29,30がそれぞれ配設されている。分岐管27,28は,炭酸ガス吸着脱離室20,21にそれぞれ接続され,炭酸ガス吸着脱離室20,21は,ポンプ24,25を備えた炭酸ガス通路49,50と排気ガス通路31とを通じて第1改質室22に接続されている。炭酸ガス吸着脱離室20,21には,出口に設けられたバルブ69,70の開閉によって炭酸ガス通路49,50に排気ガスが流されるように構成されている。また,炭酸ガス通路49,50には,炭酸ガス導入バルブ67,68が設けられている。コントロールの指令で炭酸ガス導入バルブ67,68が開放してポンプ24,25が作動することによって,炭酸ガス吸着脱離室20,21から炭酸ガス通路49,50を通じて炭酸ガスが第1改質室22へ送り込まれる。
【0036】
炭酸ガス吸着脱離室20,21は,図3に示すように,複数個の室群から成るパッケージを構成し,多孔質金属87が室内に配設された複数の排気ガス通路51と,多孔質金属88が室内に配設された複数の炭酸ガス吸着脱離通路52とが隔壁55を介して交互に積層されている。図3では,遮蔽板が存在する通路には斜線無しで示し,ガスが通過する通路には斜線を付し,多孔質金属87,88及び多孔質金属87,88に付着した吸着剤73が剥き出しになっている触媒部入口74,75を示している。炭酸ガス吸着脱離室20,21は,構造的には全く同一のパッケージを構成しており,分岐管27,28から高温の排気ガスが炭酸ガス吸着脱離室20,21の高温排気ガス通路51に送り込まれるか,排気ガス通路33,34から低温の排気ガスが低温排気ガス通路52に送り込まれるかによって,炭酸ガスを吸着剤73に脱離するか又は吸着するかの差異が生じるだけである。炭酸ガス吸着脱離室20,21の高温排気ガス通路51にエンジン2からの高温の排気ガスを分岐管27,28を通じて送り込む場合には,開閉バルブ29,30を開放(図2では開閉バルブ29を開放)し,また,低温の排気ガスを排気ガス通路33,34を通じて低温排気ガス通路52に送り込む場合には,開閉バルブ29,30を閉鎖(図2では開閉バルブ29を閉鎖)する。
【0037】
第1と第2の改質室22,23は,図4に示すように,複数個の室群に構成されており,多孔質金属89〜92が室内にそれぞれ配設された複数の排気ガス通路56,58と触媒室でなる改質通路57,59とが隔壁60を介して交互に積層されている。また,触媒93,94は,改質通路57,59においてセルに収容されている。図4では,遮蔽板が存在してガスが通過できない領域には斜線無しで示し,ガスが通過する通路には斜線を付し,多孔質金属87〜92及び触媒93,94が収容された改質通路57,59に触媒部入口74,75が開口している。
【0038】
第1改質室22には,開閉バルブ44を備えた天然ガス供給通路42が軸方向に流れる排気ガス通路56と直交する方向に接続されている。また,第2改質室23には,開閉バルブ45を備えた水蒸気供給通路59が軸方向に流れる排気ガス通路58と直交する方向に接続されている。いずれの通路も互いに区画された多数の室群即ちセル群を構成して互いに気密性が確保できるようにシールされている。
【0039】
エンジン2からの排気ガスは,例えば,図2に示すように,開閉バルブ29が開放している一方の炭酸ガス吸着脱離室20の高温の炭酸ガス通路51に流入して熱エネルギーを炭酸ガス吸着脱離通路52に与えて吸着剤73に吸着している炭酸ガスを脱離させ,脱離した炭酸ガスが第1改質室22の改質通路57に送り込まれる。また,第1改質室22の排気ガス通路56に流入した排気ガスは天然ガス・炭酸ガス通路即ち改質通路57に熱エネルギーを与えて天然ガス供給通路42から供給された天然ガスを炭酸ガスの存在下において改質する。
【0040】
第1改質室22の排気ガス通路56から流出した排気ガスは,第2改質室23の排気ガス通路58に流入し,第1改質室22から流出した改質燃料と未改質燃料とは第2改質室23の水蒸気・炭酸ガス通路即ち改質通路59に流入し,第2改質室23の排気ガス通路57に流入した排気ガスは改質通路59に熱エネルギーを与えて未改質燃料を第2改質室23の改質通路59に水蒸気供給通路43から供給された水蒸気の存在下において改質され,改質燃料をエンジン2に供給するように構成されている。
【0041】
第2改質室23の排気ガス通路57から流出した低温になった排気ガスは,他方の炭酸ガス吸着脱離室21の低温の排気ガス通路52に流入する。熱エネルギーを放出して低温になった排気ガスは炭酸ガスが触媒の存在下において吸着剤73によって吸着され,炭酸ガスが吸着排除された排気ガスは熱交換器6を通じて外部に排気されるか又はEGR通路78へ送り込まれてエンジン2にEGRガスとして供給される。
【0042】
一方の炭酸ガス吸着脱離室20の炭酸ガス吸着脱離通路即ち高温排気ガス通路52の多孔質金属88から炭酸ガスが脱離し,他方の炭酸ガス吸着脱離室21の炭酸ガス吸着脱離通路52の多孔質金属88に炭酸ガスを吸着させる。ここで,分岐管27,28の開閉バルブ29,30を切り換え,エンジン2からの排気ガスを他方の炭酸ガス吸着脱離室21の排気ガス通路51に送り込み,他方の炭酸ガス吸着脱離室21の炭酸ガス吸着脱離通路即ち低温排気ガス通路52の多孔質金属88から炭酸ガスを脱離させ,一方の炭酸ガス吸着脱離室20に低温の排気ガスを導入して炭酸ガス吸着脱離通路52の多孔質金属88に炭酸ガスを吸着させるように作動する。
【0043】
炭酸ガス吸着脱離室20,21は,排気ガスの熱エネルギーが放熱しないように断熱層で遮蔽され,炭酸ガス吸着脱離室20,21の炭酸ガス吸着脱離通路52の多孔質金属88に担持された吸着剤73は,多孔質金属88の表面に接合されたジルコニウム酸リチウムの粒子であり,排気ガスの350℃〜500℃の低温時には排気ガス中の炭酸ガスを吸着し,排気ガスの700℃〜750℃の高温時には炭酸ガスを脱離するようになっている。
【0044】
図5には,燃料改質装置1の具体的な実施例が示されている。図5では,図2に示した燃料改質装置1と基本的には同一の構成であるので,同一部品には同一の符号を付し,重複する説明は省略する。燃料改質装置1は,全体的には,外側ハウジング64内に収容されている。開閉バルブ29,30は,コントローラの指令でアクチュエータ65,66によってそれぞれ開閉作動されるように構成されている。また,炭酸ガス導入バルブ67,68は,コントローラの指令でソレノイド71,72によってそれぞれ開閉作動されるように構成されている。
【0045】
燃料改質装置1については,図2〜図5に示すように,ガスの流れは構成されている。低温排気ガスは,排気ガス通路33,34から炭酸ガス吸着脱離室20,21の側方に設けられた集合部54を通じて炭酸ガス吸着脱離室20,21の低温排気ガス通路52に供給される。炭酸ガスが除去された排気ガスは,炭酸ガス吸着脱離室20,21の低温排気ガス通路52から炭酸ガス吸着脱離室20,21の側方に設けられた集合部53を通じて排気ガス通路35,36へ排出される。また,天然ガス供給通路42は,第1改質室22の側方に設けられた集合部61に接続され,天然ガスは天然ガス供給通路42から集合部61を通じて積層された改質通路57へ導入される。水蒸気供給通路43は,第2改質室23の側方に設けられた集合部62に接続され,水蒸気は水蒸気供給通路43から集合部62を通じて積層された改質通路59へ導入される。更に,改質燃料は,第2改質室23の改質通路59から第2改質室23の側方に設けられた集合部63を通じて改質燃料供給通路46へ送りだされる。
【0046】
【発明の効果】
この発明による燃料改質装置及びエンジンシステムは,上記のように構成されているので,燃料改質装置そのものが極めてコンパクトに構成され,炭酸ガス吸着脱離室が回転等の移動をしない構造であるので,シール性を向上させることができる。また,天然ガスの主成分であるCH4 は炭酸ガス,次いで水蒸気の存在によって触媒の助けでCOとH2 との改質燃料に極めて効率的に改質される。また,吸着剤としては,特に,ジルコニウム酸リチウムの粒子を多孔質金属の表面に付着させるだけで,低温の排気ガス中から炭酸ガスを吸着でき,また,高温の排気ガスから熱エネルギを授受するのみで,炭酸ガスを脱離させることができる。また,このエンジンシステムでは,上記の燃料改質装置を組み込んでいるので,天然ガスが改質された改質燃料を,例えば,主室に供給してエンジンで燃焼されて熱効率を向上させることができ,また,天然ガスを副室に供給することによって着火燃焼がスムーズに実行することができる。
【図面の簡単な説明】
【図1】 この発明によるエンジンシステムの一実施例を示す概略説明図である。
【図2】 図1のエンジンシステムに組み込まれる燃料改質装置を示す概略説明図である。
【図3】 図2の燃料改質装置における炭酸ガス吸着脱離室を示す概略斜視図である。
【図4】 図2の燃料改質装置における第1改質室と第2改質室を示す概略斜視図である。
【図5】 この発明による燃料改質装置の具体的な実施例を示す概略説明図である。
【符号の説明】
1 燃料改質装置
2 エンジン
3 排気タービン
4 発電機
5 蒸気タービン
6 熱交換器(燃料改質装置の後流)
7 天然ガス供給源
8 復水器
9,15 熱交換器
10 コンプレッサ
11,24,25 ポンプ
12 切換えバルブ(排気ガス用)
13 出力(補機等)
14 EGR装置
16,17 水供給源
18 モータ
19 シャフト
20,21 炭酸ガス吸着脱離室
22 第1改質室
23 第2改質室
26 排気管
27,28 分岐管
29,30,38,39,40,41,44,45 開閉バルブ
31,33,34,35,36,37,47 排気ガス通路
32,55,60 隔壁
42 天然ガス供給通路
43 水蒸気供給通路
46 改質燃料供給通路(エンジンへ)
48 仕切板
49,50 炭酸ガス供給通路
51 高温排気ガス通路(炭酸ガス吸着脱離室内)
52 低温排気ガス通路(炭酸ガス吸着脱離室内)
56 排気ガス通路(第1改質室内の高温排気ガス用)
57 天然ガス・炭酸ガス通路(改質通路)
58 排気ガス通路(第2改質室内の高温排気ガス用)
59 水蒸気・炭酸ガス通路(改質通路)
64 外側ハウジング
67,68 炭酸ガス導入バルブ
69,70 排気ガス用バルブ
73 吸着剤
74,75 触媒部入口
87,88,89,90,91,92 多孔質金属
93,94 触媒
[0001]
BACKGROUND OF THE INVENTION
  This invention relates to CO contained in exhaust gas.2The present invention relates to a fuel reformer for reforming natural gas by the thermal energy of exhaust gas using an engine and an engine system incorporating the fuel reformer.
[0002]
[Prior art]
  Natural gas is mainly composed of methane (CHFour) Is known. Fuel CHFourBecause of its large calorific value and abundant nature, it is expected as a future alternative fuel for oil. That is, in a gas engine using natural gas as a fuel, exhaust gas is extremely clean, and in a general diesel engine, nitrogen oxides of 500 ppm or more are discharged, but in a gas engine, it is extremely low as 10 ppm or less. In addition, when a gas engine is burned, the amount of carbon dioxide emissions per energy is 30% or less less than that of petroleum fuel, which is extremely promising as a fuel for future anti-pollution engines. Conventionally, a gas engine has been developed as a cogeneration system. In the cogeneration system, motive power is extracted as electric energy by a generator, heat of exhaust gas energy is heated by a heat exchanger to make hot water, and the hot water is used for hot water supply.
[0003]
  Conventionally, an engine using natural gas as fuel is known (for example, see Patent Documents 1 and 2). However, the biggest drawback of a gas engine using natural gas is that it is difficult to burn the natural gas fuel with good fuel consumption because the natural gas fuel is a gaseous fuel. That is, in diesel combustion, fuel is blown into compressed air, but the fuel cannot be injected into the combustion chamber unless the fuel is compressed to a pressure higher than the compressed air pressure. Therefore, a lot of work is required to compress the fuel to a high pressure, and the fuel efficiency is not necessarily improved. In addition, when fuel is injected into compressed air, gas cannot be mixed well, gas cannot be ensured, fuel consumption is not improved, and nitrogen oxides are not reduced.
[0004]
  Gas engines using natural gas-modified fuel are also known. The fuel reformer incorporated in the gas engine is a natural gas main component CH.FourPyrolysis of CO and H2To improve the thermal efficiency of the fuel and reduce the CO in the exhaust gas.2Is used for pyrolysis, NOXIs to suppress the occurrence of. The fuel reformer includes an exhaust gas passage body that forms an exhaust gas passage in the exhaust gas pipe, a gas fuel case through which the gas fuel flows outside the exhaust gas pipe, and a gas fuel passage formed in the gas fuel case. A porous member made of porous ceramic is disposed, and CH is formed on the surface of the porous member.FourAnd CO2CO and H2A catalyst having an action of converting to a reformed fuel is coated, and a heat insulating material is disposed on the outer periphery of the gas fuel pipe (see, for example, Patent Document 3).
[Patent Document 1]
          JP-A-6-108865 (first page)
[Patent Document 2]
          JP-A-6-101495 (first page)
[Patent Document 3]
          Japanese Patent Laid-Open No. 11-93777 (first page)
[0005]
[Problems to be solved by the invention]
  By the way, natural gas is thermally decomposed and reformed using exhaust gas thermal energy under the catalyst, and H2In an engine that converts it into CO and uses reformed fuel as fuel, its thermal efficiency may be improved by 30% or more. When natural gas is reacted with carbon dioxide and reformed, the reforming reaction temperature is high, so it is difficult to sufficiently react natural gas. In particular, when the temperature of the exhaust gas is about 700 ° C. to 600 ° C. as in an engine, this tendency appears remarkably. However, the lower the exhaust gas temperature and the lower the natural gas reforming reaction temperature, the higher the feasibility of the fuel reformer. When we tested the reactivity of methane, the main component of natural gas,2The reforming temperature by steam is lower by 200 ° C. or more than the reforming temperature by. CO2It was found that the reforming of natural gas by 80% has a reforming rate of 80% at around 800 ° C, and the reforming of natural gas by steam has a reforming rate of 80% at 600 ° C. Therefore, it was found that the reforming of natural gas with these gases increases the reforming rate when natural gas is reacted using a catalyst that matches each of them.
[0006]
  The present inventor has developed a natural gas reforming apparatus that takes these problems into consideration and filed an application earlier (see, for example, Japanese Patent Application No. 2002-132557). The natural gas reformer is a CO 2 in exhaust gas.2In addition, the thermal energy of the exhaust gas is used to react with natural gas using a catalyst to increase the reforming rate and increase the heat quantity of the fuel, thereby improving the thermal efficiency of the engine. The natural gas reformer is a CO 2 contained in exhaust gas.2, H supplied from outside2O and O contained in exhaust gas2Using natural gas and CO in the presence of a suitable catalyst.2, H2Natural gas is converted into reformed fuel by sequentially reacting O.
[0007]
  However, the fuel reformer uses carbon dioxide (CO2) from the exhaust gas after combustion of the engine.2), And the separated carbon dioxide and natural gas methane (CHFour) In the presence of a catalyst to convert natural gas to H2The function of reforming to reformed fuel of CO and CO, steam (H2O) and the function of reacting methane in the presence of a catalyst are required, and these functions must be performed using a highly efficient heat exchanger. To make a device that can achieve these functions as efficiently as possible in a compact configuration, the following conditions must be cleared.
[0008]
  1. In order to recover and separate carbon dioxide from the exhaust gas, a substance that reacts with the carbon dioxide gas is arranged in a thin film, brought into contact with the exhaust gas, and adsorbed. For desorption of carbon dioxide, the adsorbed material is heated and separated.
  2. In order to efficiently execute the above reaction in a continuous state, it is necessary to prepare two sets of adsorption devices that are as compact as possible and to repeat adsorption and desorption alternately.
  3. The adsorption layer uses a porous metal material with a very large surface area, and the surface is coated with alumina, zirconia, etc. that easily adsorbs particulate matter by dipping, and the surface has an adsorption / desorption action such as lithium zirconate To attach.
  4). When an exhaust gas passage is provided at an adjacent location separated from the adsorption layer, and carbon dioxide is desorbed from the adsorbent, the high temperature exhaust gas is passed through to raise the temperature of the adsorption layer, and the carbon dioxide is removed from the adsorbent in a short time. Let go.
  5). The adsorption layer and the heat exchange layer are arranged with porous metal having different roughness welded to the partition across the partition to smoothly transfer heat.
  6). A fuel reforming chamber is arranged downstream of the pair of carbon dioxide adsorption / desorption chambers, and a high-temperature exhaust gas is allowed to flow into the carbon dioxide adsorption / desorption chamber on the side where the desorption of carbon dioxide gas proceeds. Exhaust gas is allowed to flow through the reforming passage to reform the natural gas. Since the fuel reforming passage is a continuous action, there is no temperature fluctuation.
  7. A second reforming chamber for reforming natural gas using water vapor is disposed downstream of the first reforming chamber for reforming natural gas using carbon dioxide gas, and high-temperature steam is contained in the second reforming chamber. Is introduced.
  8). The high-temperature exhaust gas exiting the fuel reforming chamber adsorbs carbon dioxide in the exhaust gas, and is sent to the other carbon dioxide adsorption / desorption chamber, where carbon dioxide is adsorbed by the adsorbent.
  9. In the high-temperature exhaust gas passage, the exhaust gas from the upstream is switched by an open / close valve, and the suction and pumping of carbon dioxide gas is performed by a pump, and the passage attached to the two carbon dioxide adsorption / desorption chambers and the open / close valve are switched. The system is implemented in accordance with the above actions.
  10. The supply of natural gas is executed by controlling the amount depending on the engine load conditions from both the carbon dioxide gas side and the water vapor side.
[0009]
[Means for Solving the Problems]
  An object of the present invention is to satisfy the above-mentioned conditions, for example, to reform natural gas by being incorporated in an engine, and CO contained in exhaust gas.2Lithium zirconate (Li2ZrOThree), Adsorbed and desorbed using particles such as zeolite, and desorbed CO2CH in natural gas using the heat energy of exhaust gasFourCO2When reforming with steam, CO2, In the presence of water vapor compatible catalyst, natural gas is converted to CO and H2It is intended to provide a fuel reforming apparatus which is thermally decomposed into reformed fuel, drives the engine using the reformed fuel, and an engine system incorporating the fuel reformer.
[0010]
  This invention uses natural gas exhaust gas heat energyIn a fuel reformer consisting of converting to reformed fuel,
  A partition wall divides a low-temperature exhaust gas passage in which a porous metal coated with an adsorbent that adsorbs carbon dioxide in the exhaust gas at a low temperature and desorbs at a high temperature and a high-temperature exhaust gas passage in which the porous metal is arranged. The first and second carbon dioxide adsorption / desorption chambers constituting a pair of packages composed of a plurality of chamber groups, and the carbon dioxide in the exhaust gas disposed downstream of the carbon dioxide adsorption / desorption chamber A reforming passage comprising a catalyst chamber for reacting the natural gas with the carbon dioxide gas to convert the natural gas into the reformed fuel in the presence of the first catalyst coated with the porous metal, and the porous metal A porous metal is coated with a first reforming chamber composed of a plurality of chamber groups partitioned by partition walls, and water vapor from the outside disposed downstream of the first reforming chamber. In the presence of a second catalyst A reforming passage formed of a catalyst layer for reacting the natural gas with the water vapor to convert the natural gas into the reformed fuel and an exhaust gas passage made of a porous metal from a plurality of chamber groups partitioned by partition walls. A second reforming chamber comprisingAnd
  The carbon dioxide adsorption / desorption chamber is separated such that the high-temperature exhaust gas passage and the low-temperature exhaust gas passage constituting the carbon dioxide adsorption / desorption passage are alternately stacked via the partition walls, and the passage is not conducted to each other. The room group,
  In the first and second reforming chambers, the porous metal constituting the exhaust gas passage and the porous metal coated with the catalyst are closely welded to the partition wall and the catalyst layer is airtight. The reforming passage is communicated by being housed in a cell of the chamber group withThe present invention relates to a fuel reforming apparatus.
[0011]
  In the fuel reformer, an exhaust pipe through which the exhaust gas from the engine flows is branched into two branch pipes, and an open / close valve is provided in each branch pipe, and the branch pipe is provided with the carbon dioxide adsorption Carbon dioxide gas extraction connected to the high temperature exhaust gas passage side of the desorption chamber, and provided with a pump and an open / close valve connected to the first reforming chamber on the low temperature exhaust gas passage side of the carbon dioxide adsorption / desorption chamber A passage is provided, and the exhaust gas flows from the downstream of the second reforming chamber and is exhausted through the low temperature exhaust gas passage.
[0012]
  Further, the exhaust gas from the engine flows into the high-temperature carbon dioxide passage of one of the carbon dioxide adsorption / desorption chambers and gives thermal energy to the low-temperature exhaust gas passage of the carbon dioxide adsorption / desorption passage. The carbon dioxide gas adsorbed on the agent is desorbed, and the desorbed carbon dioxide gas is opened in the open / close valve and the pump is driven mainly to drive the reforming of the first reforming chamber through the carbon dioxide gas extraction passage. The exhaust gas that is fed into the gas passage and flows into the exhaust gas passage of the first reforming chamber gives the thermal energy to the reforming passage and converts the natural gas supplied from the natural gas supply passage to the carbon dioxide gas. Reforming in the presence of.
[0013]
  The first reforming chamber is connected to a natural gas supply passage having an opening / closing valve in a direction perpendicular to the exhaust gas passage flowing in the axial direction, and the second reforming chamber has a water vapor having an opening / closing valve. The supply passage is connected in a direction orthogonal to the exhaust gas passage flowing in the axial direction, and each exhaust gas passage is sealed so as to ensure airtightness.
[0014]
  The exhaust gas from the exhaust gas passage of the first reforming chamber flows into the exhaust gas passage of the second reforming chamber, and from the reforming passage of the first reforming chamber to the second reforming chamber. The reformed fuel and the unreformed fuel that have flowed into the reforming passage are further reformed in the presence of steam supplied from the steam supply passage to the reforming passage of the second reforming chamber, Fuel is supplied to the engine.
[0015]
  The exhaust gas flowing out from the exhaust gas passage of the second reforming chamber flows into the low temperature exhaust gas passage of the other carbon dioxide adsorption / desorption chamber, and the carbon dioxide in the exhaust gas flowing through the low temperature exhaust gas passage. The gas is adsorbed by the adsorbent, and the exhaust gas from which the carbon dioxide gas is adsorbed and removed is supplied to the engine as exhaust gas or EGR gas through steam and a heat exchanger.
[0016]
  The fuel reformer further comprises an operation of desorbing carbon dioxide from the adsorbent attached to the porous metal in the carbon dioxide adsorption / desorption passage of one of the carbon dioxide adsorption / desorption chambers and the other. In order to alternately execute the operation of adsorbing the carbon dioxide gas to the porous metal in the carbon dioxide adsorption / desorption passage of the carbon dioxide adsorption / desorption chamber, the open / close valve of the branch pipe is alternately switched and operated. The exhaust gas from the other carbon dioxide gas adsorption / desorption chamber is fed into the high-temperature exhaust gas passage so that the carbon dioxide gas flows into the porous metal in the low-temperature exhaust gas passage of the one carbon dioxide adsorption / desorption chamber. And the desorption of the carbon dioxide gas from the porous metal in the low-temperature exhaust gas passage of the other carbon dioxide adsorption / desorption chamber is repeated every predetermined time.
[0017]
  The carbon dioxide adsorption / desorption chamber is shielded by a heat insulating layer so that the heat energy of the exhaust gas is not dissipated, and is supported on the porous metal in the carbon dioxide adsorption / desorption passage of the carbon dioxide adsorption / desorption chamber. The adsorbent is lithium zirconate particles bonded to the surface of the porous metal, and adsorbs the carbon dioxide gas in the exhaust gas when the exhaust gas has a low temperature of 350 ° C. to 500 ° C. The carbon dioxide gas is desorbed at a high temperature of 750C to 750C.
[0018]
  The first catalyst contributing to the reaction between the natural gas and the carbon dioxide gas is Pt, Ru, Rh, CeO.2, Ni.Also,The second catalyst that contributes to the reaction between the natural gas and the water vapor is Ni, Pt, Ru, Rh.
[0019]
  Further, according to the present invention, the fuel reformer is disposed downstream of an exhaust turbine into which exhaust gas from an engine is sent, and the fuel reformer is operated after the exhaust gas from the engine has worked in the exhaust turbine. The exhaust gas is fed into the apparatus, carbon dioxide gas is adsorbed by the fuel reformer, and the exhaust gas from which the carbon dioxide gas has been removed is exhausted to the outside through a heat exchanger and partly supplied to the engine as EGR The present invention relates to an engine system.
[0020]
  Part of the natural gas is supplied to the sub chamber of the engine, and the remaining part is fed into the fuel reformer and H2The reformed fuel is reformed into reformed fuel composed of CO and CO, and the reformed fuel is fed into the main chamber of the engine.
[0021]
  The exhaust turbine is attached to one end of a shaft, a steam turbine is attached to the other end of the shaft, a generator is disposed on the shaft, and the steam turbine is provided downstream of the fuel reformer. A part of the steam heated by the heat exchanger is sent in, and the remainder of the steam is sent to the fuel reformer and functions as the steam to reform the natural gas.
[0022]
  The electric power generated by the generator is consumed as an output for driving a compressor that sends a boost to the engine, or an output for driving the engine or an auxiliary machine.
[0023]
  The steam that has worked in the steam turbine is sent to a condenser to be converted to water, the water cools the engine oil in another heat exchanger, and the water heated by the oil is used as the fuel. It is sent to the heat exchanger downstream of the reformer and converted into steam.
[0024]
  Since this fuel reformer is configured as described above, the action of sending exhaust gas to one of the carbon dioxide adsorption / desorption chambers only switches between opening and closing of the pair of on-off valves, and carbon dioxide adsorption / desorption is performed. Sealing the separation chamber is extremely advantageous, and exhaust gas from the engine is opened to one of the carbon dioxide adsorption / desorption chambers by opening one of the open / close valves to remove the carbon dioxide adsorbed by the adsorbent. The carbon dioxide gas released and released can be fed into the reforming chamber to contribute to the reforming of natural gas, and the other open / close valve can be closed to change to the other carbon dioxide adsorption / desorption chamber. The exhaust gas, which has been cooled down due to the release of thermal energy in the pristine chamber, is sent in, the carbon dioxide in the exhaust gas is adsorbed by the adsorbent, and the exhaust gas from which the carbon dioxide has been removed is the heat downstream of the fuel reformer. Sent to the exchanger and above Of can be continuously performed these series of operation, the natural gas reforming, can be used reformed fuel to drive the engine.
  In addition, this engine system is configured as described above and incorporates the fuel reformer described above, so that natural gas fuel can be used effectively, the output can be increased, and the generator can effectively generate electric power, The total thermal efficiency can be greatly increased.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
  Embodiments of a fuel reformer and an engine system incorporating the same according to the present invention will be described below with reference to the drawings. This fuel reformer is applied by being incorporated in an engine system that converts natural gas into reformed fuel using the thermal energy of exhaust gas, and supplies the reformed fuel to the engine for combustion.
[0026]
  In particular, the fuel reformer 1 according to the present invention includes carbon dioxide (CO) contained in exhaust gas (EG) discharged from the engine 2.2) And water vapor supplied from the outside of the engine 2 (H2O) is used to sequentially react natural gas (CNG) with carbon dioxide and water vapor in the presence of a catalyst that matches carbon dioxide and water vapor to convert the natural gas into H.2And converted into a reformed fuel of CO. The fuel reformer 1 is a main component of natural gas used for the engine 2.FourH2The fuel is reformed into a reformed fuel of CO and CO to improve the thermal efficiency, and the structure is simple, the sealing property is good, and the size can be reduced. In addition, this engine system incorporates the fuel reformer 1 to effectively use the thermal energy of the exhaust gas, and the above-mentioned thermal energy and the CO contained in the exhaust gas.2The thermal efficiency can be improved by using a reformed fuel obtained by reforming natural gas by capturing and utilizing.
[0027]
  In the fuel reformer 1, as the adsorbent 73 that adsorbs and desorbs carbon dioxide from the exhaust gas, for example, lithium zirconate (Li) coated on the surface of the porous metal 88 in the low-temperature exhaust gas passage 52 is used.2ZrFourOThree) And / or zeolite or the like, and lithium zirconate is particularly effective. The catalyst 93 (first catalyst) that contributes to the reaction between natural gas and carbon dioxide is dispersed on the surface of the porous metal 90 in the natural gas / carbon dioxide passage in the first reforming chamber 22, that is, the reforming passage 57. Deposited platinum (Pt), ruthenium (Ru), rhodium (Rh), cerium oxide (CeO)2), Nickel (Ni) and other fine particles. The catalyst 94 (second catalyst) that contributes to the reaction between natural gas and water vapor is nickel that is dispersed and attached to the surface of the porous metal 92 in the natural gas / water vapor passage in the second reforming chamber 23, that is, the reforming passage 59. Fine particles such as (Ni), platinum (Pt), ruthenium (Ru), rhodium (Rh).
[0028]
  The fuel reformer 1 is configured so that the natural gas reforming temperature is increased in descending order.2, Then water vapor (H2O) was used for the reaction to greatly improve the reforming rate. For example, in the first reforming chamber 22, CO is used with Pt, Ru, Ni as a catalyst.2The total reforming rate of natural gas is set to 50% assuming that it has reacted under the worst conditions. Since the first reforming chamber 22 is carbon dioxide gas reforming, the carbon dioxide adsorption / desorption chambers 20 and 21 upstream thereof are CO.2An adsorbent 73 that adsorbs the water is required. CO2Various types of adsorption have been proposed. As the adsorbent 73, zeolite and / or lithium zirconate have excellent characteristics. Therefore, in the fuel reformer 1, the CO contained in the exhaust gas at a low temperature is used.2Is adsorbed by adsorbent 73 and adsorbed CO2Is removed from the adsorbent 73 by the heat energy of the high-temperature exhaust gas, and the released carbon dioxide gas is sent to the reforming chamber and used for reforming the natural gas.
  The chemical formula for lithium zirconate is as follows.
  When the exhaust gas temperature is 350 ° C. to 500 ° C. (for example, around 300 ° C.), carbon dioxide in the exhaust gas is adsorbed.
      Li2ZrOThree+ CO2→ ZrO2+ Li2COThree
  Further, when the exhaust gas temperature is 700 ° C. to 750 ° C. (for example, around 700 ° C.), the carbon dioxide gas adsorbed by the adsorbent is desorbed.
      ZrO2+ Li2COThree→ Li2ZrOThree+ CO2
  That is, when the exhaust gas temperature is around 300 ° C., Li2ZrOThreeIs CO2Reacts with zirconium oxide lithium carbonate, and when the exhaust gas temperature is around 700 ° C, lithium zirconate and CO2become.
[0029]
  The fuel reformer 1 includes zeolite and / or lithium zirconate dispersed and attached to the surface of the porous metal in the carbon dioxide adsorption / desorption chamber 21 (20) and carbon dioxide (CO2) in the exhaust gas.2) Is caused to flow from the second reforming chamber 23 into the exhaust gas passage 52 of the carbon dioxide adsorption / desorption chamber 21 (20). In the carbon dioxide adsorption / desorption chamber 21 (20), the adsorbent 73 adsorbs carbon dioxide in the exhaust gas. In the other carbon dioxide adsorption / desorption chamber 20 (21), high-temperature exhaust gas passes through the exhaust gas passage 51 filled with porous metal, and is adsorbed by the adsorbent 73.2Is released from the adsorbent 73.
[0030]
  An embodiment of an engine system according to the present invention will be described with reference to FIG. The exhaust gas discharged from the engine 2 is sent to the exhaust turbine 3 through the exhaust pipe 76. The exhaust gas that has worked in the exhaust turbine 3 is sent to the fuel reformer 1 described later through the exhaust pipe 26. The high temperature exhaust gas is adsorbed with carbon dioxide in the exhaust gas in the fuel reformer 1 and consumes thermal energy to reform the natural gas. The low-temperature exhaust gas from which carbon dioxide gas has been removed by working in the fuel reformer 1 is sent to the heat exchanger 6 through the exhaust gas passage 47. The low-temperature exhaust gas is heat-exchanged with water in the heat exchanger 6, further lowered in temperature, discharged to the exhaust gas passage 77, exhausted to the outside by switching to the switching valve 12, or passed through the EGR passage 78. To the EGR device 14. The EGR device 14 controls the flow rate of the exhaust gas to mix it with air, and then the air and the EGR gas are supplied to the engine 2 through the boost passage 86.
[0031]
  Part of the natural gas is sent from the natural gas supply source 7 to the sub chamber (not shown) of the engine 2 through the natural gas supply passage 79 and contributes to ignition combustion, particularly ignition in the sub chamber. Further, most of the natural gas is fed into the fuel reformer 1 through the natural gas supply passage 42, and the natural gas is H 2 in the presence of the catalysts 93 and 94 together with carbon dioxide and then water vapor.2The fuel is reformed into the reformed fuel of CO and fed into the main chamber (not shown) of the engine 2 through the reformed fuel supply passage 46 and ignited and combusted. At this time, the natural gas supply passage 42 and the reformed fuel supply passage 46 pass through the heat exchanger 15, and the natural gas is supplied with the thermal energy of the reformed fuel and the temperature thereof is increased and supplied to the fuel reformer 1. The
[0032]
  The exhaust turbine 3 is attached to one end of a shaft 19, the steam turbine 5 is attached to the other end of the shaft 19, and the generator 4 is disposed on the shaft 19. A part of the steam heated by the heat exchanger 6 provided downstream of the fuel reformer 1 is sent to the steam turbine 5 to drive the steam turbine 5. Further, the remaining steam from the heat exchanger 6 is sent to the fuel reformer 1, and the steam functions as a substance that reforms natural gas. Electric power generated by the generator 4 is consumed as an output 13 of the engine 2, the water pump 11, the compressor 10, an auxiliary machine, or the like, driving the compressor 10 that sends boost to the engine 2. The compressor 10 is driven by a motor 18 that is driven by the electric power generated by the generator 4.
[0033]
  Further, the steam that has worked in the steam turbine 5 is sent to the condenser 8 through the steam passage 80 and converted into water, and the water cools the oil of the engine 2 in the heat exchanger 9 and the water heated by the oil. Is sent to the heat exchanger 6 downstream of the fuel reformer 1 and converted into steam. The oil heated by cooling the engine 2 is sent to the heat exchanger 9 through the oil circulation path 84, the oil itself is cooled by the heat exchanger 9, and the water sent through the water passage 82 by the water pump 11 is heated. And converted to hot water or steam. The condenser 8 is supplied with water from the water supply source 17 through the water passage 81, and functions to cool the steam / water discharged from the steam turbine 5 by the water. The water cooled by the condenser 8 is supplied to the heat exchanger 9 through the water passage 82 and then to the heat exchanger 6 through the water / steam passage 85 by driving the water pump 11, and converted into high-temperature steam by the heat exchanger 6. Converted. A part of the steam converted by the heat exchanger 6 is sent to the fuel reformer 1 through the steam supply passage 43, and most of the steam is sent to the steam turbine 5 through the steam passage 83. That is, the steam turbine 5, the condenser 8, and the heat exchangers 9 and 6 constitute a kind of Rankine cycle.
[0034]
  Next, the fuel reformer 1 incorporated in the engine system will be described with reference to FIGS. The fuel reformer 1 includes a partition wall 32 on which a porous metal coated with an adsorbent 73 that adsorbs carbon dioxide in exhaust gas disposed upstream of the exhaust gas flow at low temperatures and desorbs at high temperatures is disposed. The first and second carbon dioxide adsorption / desorption chambers 20 and 21 and the carbon dioxide adsorption / desorption chambers 20 and 21 constituting the paired compartmented packages are porous using carbon dioxide in the exhaust gas. The first reforming chamber 22 for converting natural gas into reformed fuel by reacting natural gas and carbon dioxide in the presence of the first catalyst 93 coated with the porous metal 90, and downstream of the first reforming chamber 22 A second reforming chamber for converting natural gas into reformed fuel by reacting natural gas with water vapor in the presence of the second catalyst 94 coated on the porous metal 92 using water vapor from the outside disposed in 23.
[0035]
  An exhaust pipe 26 through which exhaust gas from the engine 2 flows is branched into two branch pipes 27 and 28, and open / close valves 29 and 30 are provided in the branch pipes 27 and 28, respectively. The branch pipes 27 and 28 are connected to the carbon dioxide adsorption / desorption chambers 20 and 21, respectively. The carbon dioxide adsorption / desorption chambers 20 and 21 include carbon dioxide gas passages 49 and 50 including pumps 24 and 25 and an exhaust gas passage 31. And is connected to the first reforming chamber 22. The carbon dioxide adsorption / desorption chambers 20 and 21 are configured such that exhaust gas flows through the carbon dioxide passages 49 and 50 by opening and closing valves 69 and 70 provided at the outlets. Carbon dioxide gas introduction valves 67 and 68 are provided in the carbon dioxide gas passages 49 and 50. When the carbon dioxide gas introduction valves 67 and 68 are opened by the control command and the pumps 24 and 25 are operated, the carbon dioxide gas flows from the carbon dioxide gas adsorption / desorption chambers 20 and 21 through the carbon dioxide gas passages 49 and 50 into the first reforming chamber. 22 is sent.
[0036]
  As shown in FIG. 3, the carbon dioxide adsorption / desorption chambers 20 and 21 constitute a package composed of a plurality of chamber groups, a plurality of exhaust gas passages 51 in which a porous metal 87 is disposed in the chamber, A plurality of carbon dioxide adsorbing / desorbing passages 52 in which a porous metal 88 is disposed in the room are alternately stacked via partition walls 55. In FIG. 3, the passage where the shielding plate exists is shown without hatching, the passage through which gas passes is hatched, and the porous metal 87, 88 and the adsorbent 73 attached to the porous metal 87, 88 are exposed. The catalyst part inlets 74 and 75 which are are shown. The carbon dioxide adsorption / desorption chambers 20 and 21 are structurally identical in package, and high-temperature exhaust gas from the branch pipes 27 and 28 passes through the high-temperature exhaust gas passages of the carbon dioxide adsorption / desorption chambers 20 and 21. The only difference is whether the carbon dioxide gas is desorbed or adsorbed to the adsorbent 73 depending on whether it is sent to 51 or low temperature exhaust gas is sent from the exhaust gas passages 33 and 34 to the low temperature exhaust gas passage 52. is there. When high-temperature exhaust gas from the engine 2 is fed into the high-temperature exhaust gas passage 51 of the carbon dioxide adsorption / desorption chambers 20 and 21 through the branch pipes 27 and 28, the on-off valves 29 and 30 are opened (in FIG. When the low-temperature exhaust gas is sent to the low-temperature exhaust gas passage 52 through the exhaust gas passages 33 and 34, the on-off valves 29 and 30 are closed (the on-off valve 29 is closed in FIG. 2).
[0037]
  As shown in FIG. 4, the first and second reforming chambers 22 and 23 are configured in a plurality of chamber groups, and a plurality of exhaust gases in which porous metals 89 to 92 are respectively disposed in the chamber. The passages 56 and 58 and the reforming passages 57 and 59 formed of the catalyst chamber are alternately stacked via the partition wall 60. Further, the catalysts 93 and 94 are accommodated in the cells in the reforming passages 57 and 59. In FIG. 4, the region where the gas cannot pass due to the presence of the shielding plate is shown without hatching, and the passage through which the gas passes is hatched, so that the porous metal 87 to 92 and the catalysts 93 and 94 are accommodated. Catalyst part inlets 74 and 75 are opened in the mass passages 57 and 59.
[0038]
  A natural gas supply passage 42 having an opening / closing valve 44 is connected to the first reforming chamber 22 in a direction orthogonal to an exhaust gas passage 56 that flows in the axial direction. Further, a steam supply passage 59 provided with an opening / closing valve 45 is connected to the second reforming chamber 23 in a direction orthogonal to the exhaust gas passage 58 flowing in the axial direction. Each of the passages is sealed so as to form a large number of chamber groups, that is, cell groups partitioned from each other so as to ensure airtightness.
[0039]
  For example, as shown in FIG. 2, the exhaust gas from the engine 2 flows into a high-temperature carbon dioxide gas passage 51 of one carbon dioxide adsorption / desorption chamber 20 with an open / close valve 29 opened to convert the thermal energy into carbon dioxide gas. Carbon dioxide gas supplied to the adsorption / desorption passage 52 and adsorbed on the adsorbent 73 is desorbed, and the desorbed carbon dioxide gas is sent into the reforming passage 57 of the first reforming chamber 22. Further, the exhaust gas flowing into the exhaust gas passage 56 of the first reforming chamber 22 gives thermal energy to the natural gas / carbon dioxide passage, that is, the reforming passage 57, and the natural gas supplied from the natural gas supply passage 42 is converted into carbon dioxide gas. Reforming in the presence of.
[0040]
  The exhaust gas flowing out from the exhaust gas passage 56 of the first reforming chamber 22 flows into the exhaust gas passage 58 of the second reforming chamber 23, and the reformed fuel and unreformed fuel that flow out of the first reforming chamber 22. The exhaust gas that has flowed into the steam / carbon dioxide gas passage of the second reforming chamber 23, that is, the reforming passage 59, and the exhaust gas that has flowed into the exhaust gas passage 57 of the second reforming chamber 23 gives thermal energy to the reforming passage 59. The unreformed fuel is reformed into the reforming passage 59 of the second reforming chamber 23 in the presence of the steam supplied from the steam supply passage 43, and the reformed fuel is supplied to the engine 2.
[0041]
  The low-temperature exhaust gas flowing out from the exhaust gas passage 57 of the second reforming chamber 23 flows into the low-temperature exhaust gas passage 52 of the other carbon dioxide adsorption / desorption chamber 21. The exhaust gas that has become low temperature due to the release of heat energy is adsorbed by the adsorbent 73 in the presence of the catalyst, and the exhaust gas from which carbon dioxide has been adsorbed and eliminated is exhausted to the outside through the heat exchanger 6 or The gas is fed into the EGR passage 78 and supplied to the engine 2 as EGR gas.
[0042]
  Carbon dioxide is desorbed from the carbon dioxide adsorption / desorption passage in one carbon dioxide adsorption / desorption chamber 20, that is, the porous metal 88 in the high-temperature exhaust gas passage 52, and the carbon dioxide adsorption / desorption passage in the other carbon dioxide adsorption / desorption chamber 21. Carbon dioxide gas is adsorbed on the 52 porous metal 88. Here, the open / close valves 29 and 30 of the branch pipes 27 and 28 are switched, the exhaust gas from the engine 2 is sent into the exhaust gas passage 51 of the other carbon dioxide adsorption / desorption chamber 21, and the other carbon dioxide adsorption / desorption chamber 21. Carbon dioxide adsorption / desorption passage, that is, carbon dioxide gas is desorbed from the porous metal 88 in the low-temperature exhaust gas passage 52, and low-temperature exhaust gas is introduced into one carbon dioxide adsorption / desorption chamber 20 to produce a carbon dioxide adsorption / desorption passage. The 52 porous metals 88 are operated to adsorb carbon dioxide gas.
[0043]
  The carbon dioxide adsorption / desorption chambers 20, 21 are shielded by a heat insulating layer so that the heat energy of the exhaust gas is not dissipated, and the carbon dioxide adsorption / desorption chambers 52, 21 have a porous metal 88 in the carbon dioxide adsorption / desorption passage 52. The adsorbent 73 carried is lithium zirconate particles bonded to the surface of the porous metal 88, and adsorbs carbon dioxide in the exhaust gas when the exhaust gas is at a low temperature of 350 ° C. to 500 ° C. Carbon dioxide gas is desorbed at a high temperature of 700 ° C. to 750 ° C.
[0044]
  FIG. 5 shows a specific embodiment of the fuel reformer 1. In FIG. 5, the configuration is basically the same as that of the fuel reformer 1 shown in FIG. 2, and thus the same components are denoted by the same reference numerals and redundant description is omitted. The fuel reformer 1 is accommodated in the outer housing 64 as a whole. The on-off valves 29 and 30 are configured to be opened and closed by actuators 65 and 66, respectively, according to a command from the controller. The carbon dioxide gas introduction valves 67 and 68 are configured to be opened and closed by solenoids 71 and 72, respectively, in accordance with a controller command.
[0045]
  As for the fuel reformer 1, the gas flow is configured as shown in FIGS. The low-temperature exhaust gas is supplied from the exhaust gas passages 33 and 34 to the low-temperature exhaust gas passage 52 of the carbon dioxide adsorption / desorption chambers 20 and 21 through the collecting portion 54 provided on the side of the carbon dioxide adsorption / desorption chambers 20 and 21. The The exhaust gas from which the carbon dioxide gas has been removed passes from the low temperature exhaust gas passage 52 of the carbon dioxide adsorption / desorption chambers 20 and 21 to the exhaust gas passage 35 through the collecting portion 53 provided on the side of the carbon dioxide adsorption / desorption chambers 20 and 21. , 36. Further, the natural gas supply passage 42 is connected to a collecting portion 61 provided on the side of the first reforming chamber 22, and the natural gas passes from the natural gas supply passage 42 to the reforming passage 57 stacked through the collecting portion 61. be introduced. The steam supply passage 43 is connected to a collecting portion 62 provided on the side of the second reforming chamber 23, and steam is introduced from the steam supply passage 43 through the collecting portion 62 to the reforming passage 59 stacked. Further, the reformed fuel is sent from the reforming passage 59 of the second reforming chamber 23 to the reformed fuel supply passage 46 through the collecting portion 63 provided on the side of the second reforming chamber 23.
[0046]
【The invention's effect】
  Since the fuel reformer and the engine system according to the present invention are configured as described above, the fuel reformer itself is very compact, and the carbon dioxide adsorption / desorption chamber does not rotate or move. Therefore, the sealing performance can be improved. In addition, CH, which is the main component of natural gasFourCO and H with the aid of a catalyst in the presence of carbon dioxide and then water vapor2The reformed fuel is extremely efficiently reformed. In addition, as an adsorbent, carbon dioxide gas can be adsorbed from low-temperature exhaust gas only by attaching lithium zirconate particles to the surface of the porous metal, and heat energy is transferred from high-temperature exhaust gas. The carbon dioxide gas can be desorbed only with this. In addition, the engine system incorporates the fuel reformer described above, so that the reformed fuel obtained by reforming natural gas can be supplied to the main chamber and burned in the engine to improve the thermal efficiency. In addition, ignition and combustion can be performed smoothly by supplying natural gas to the sub chamber.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view showing an embodiment of an engine system according to the present invention.
FIG. 2 is a schematic explanatory view showing a fuel reformer incorporated in the engine system of FIG. 1;
3 is a schematic perspective view showing a carbon dioxide adsorption / desorption chamber in the fuel reformer of FIG. 2; FIG.
4 is a schematic perspective view showing a first reforming chamber and a second reforming chamber in the fuel reformer of FIG. 2; FIG.
FIG. 5 is a schematic explanatory view showing a specific embodiment of the fuel reformer according to the present invention.
[Explanation of symbols]
  1 Fuel reformer
  2 Engine
  3 Exhaust turbine
  4 Generator
  5 Steam turbine
  6 Heat exchanger (the downstream of the fuel reformer)
  7 Natural gas supply sources
  8 Condenser
  9,15 heat exchanger
  10 Compressor
  11, 24, 25 pump
  12 Switching valve (for exhaust gas)
  13 Output (auxiliary machine etc.)
  14 EGR equipment
  16, 17 Water source
  18 Motor
  19 Shaft
  20, 21 Carbon dioxide adsorption / desorption chamber
  22 First reforming chamber
  23 Second reforming chamber
  26 Exhaust pipe
  27, 28 Branch pipe
  29, 30, 38, 39, 40, 41, 44, 45 Open / close valve
  31, 33, 34, 35, 36, 37, 47 Exhaust gas passage
  32, 55, 60 Bulkhead
  42 Natural gas supply passage
  43 Steam supply passage
  46 Reformed fuel supply passage (to engine)
  48 divider
  49, 50 Carbon dioxide supply passage
  51 High-temperature exhaust gas passage (carbon dioxide adsorption / desorption chamber)
  52 Low-temperature exhaust gas passage (carbon dioxide adsorption / desorption chamber)
  56 Exhaust gas passage (for high-temperature exhaust gas in the first reforming chamber)
  57 Natural gas / CO2 passage (reforming passage)
  58 Exhaust gas passage (for high-temperature exhaust gas in the second reforming chamber)
  59 Steam / CO2 passage (reformation passage)
  64 Outer housing
  67,68 Carbon dioxide gas introduction valve
  69,70 Valve for exhaust gas
  73 Adsorbent
  74,75 Catalyst inlet
  87, 88, 89, 90, 91, 92 Porous metal
  93,94 catalyst

Claims (15)

天然ガスを排気ガスの熱エネルギーを用いて改質燃料に変換することから成る燃料改質装置において,
前記排気ガス中の炭酸ガスを低温時に吸着し且つ高温時に脱離する吸着剤をコーティングした多孔質金属を配置した低温排気ガス通路と多孔質金属が配置された高温排気ガス通路とを隔壁で区画した複数個の室群から成る一対のパッケージを構成する第1と第2の炭酸ガス吸着脱離室,前記炭酸ガス吸着脱離室の下流側に配置された前記排気ガス中の前記炭酸ガスを用いて多孔質金属にコーティングされた第1触媒の存在下で前記天然ガスと前記炭酸ガスとを反応させて前記天然ガスを前記改質燃料に変換する触媒室でなる改質通路と多孔質金属から成る排気ガス通路を隔壁で区画された複数個の室群から成る第1改質室,及び前記第1改質室の下流に配置された外部からの水蒸気を用いて多孔質金属にコーティングされた第2触媒の存在下で前記天然ガスと前記水蒸気とを反応させて前記天然ガスを前記改質燃料に変換する触媒層でなる改質通路と多孔質金属から成る排気ガス通路を隔壁で区画された複数個の室群から成る第2改質室が設けられており,
前記炭酸ガス吸着脱離室は,前記高温排気ガス通路と炭酸ガス吸着脱離通路を構成する前記低温排気ガス通路とが前記隔壁を介して交互に積層され,互いに通路が導通しないように分離されて前記室群を構成されており,
前記第1と第2の改質室では,前記排気ガス通路を構成する前記多孔質金属と前記触媒をコーティングした前記多孔質金属とは前記隔壁に密着溶着されていると共に前記触媒層は気密性のある前記室群のセルに収納されて前記改質通路が連通していることを特徴とする燃料改質装置。
In a fuel reformer comprising converting natural gas into reformed fuel using the thermal energy of exhaust gas ,
A partition wall divides a low-temperature exhaust gas passage in which a porous metal coated with an adsorbent that adsorbs carbon dioxide in the exhaust gas at a low temperature and desorbs at a high temperature and a high-temperature exhaust gas passage in which the porous metal is arranged. The first and second carbon dioxide adsorption / desorption chambers constituting a pair of packages composed of a plurality of chamber groups, and the carbon dioxide in the exhaust gas disposed downstream of the carbon dioxide adsorption / desorption chamber A reforming passage comprising a catalyst chamber for reacting the natural gas with the carbon dioxide gas to convert the natural gas into the reformed fuel in the presence of the first catalyst coated with the porous metal, and the porous metal A porous metal is coated with a first reforming chamber composed of a plurality of chamber groups partitioned by partition walls, and water vapor from the outside disposed downstream of the first reforming chamber. In the presence of a second catalyst A reforming passage formed of a catalyst layer for reacting the natural gas with the water vapor to convert the natural gas into the reformed fuel and an exhaust gas passage made of a porous metal from a plurality of chamber groups partitioned by partition walls. A second reforming chamber is provided ,
The carbon dioxide adsorption / desorption chamber is separated such that the high-temperature exhaust gas passage and the low-temperature exhaust gas passage constituting the carbon dioxide adsorption / desorption passage are alternately stacked via the partition walls, and the passage is not conducted to each other. The room group is composed of
In the first and second reforming chambers, the porous metal constituting the exhaust gas passage and the porous metal coated with the catalyst are closely welded to the partition wall and the catalyst layer is airtight. A fuel reforming apparatus, wherein the reforming passage is communicated with a chamber of the chamber group .
前記エンジンからの前記排気ガスが流れる排気管は2つの分岐管に分岐し,前記分岐管には開閉バルブがそれぞれ配設され,前記分岐管は前記炭酸ガス吸着脱離室の前記高温排気ガス通路側にそれぞれ接続され,前記炭酸ガス吸着脱離室の前記低温排気ガス通路側には前記第1改質室に連通するポンプと開閉バルブを備えた炭酸ガス抽出通路が設けられ,前記排気ガスは前記第2改質室の下流から流入して前記低温排気ガス通路を通って排出されることを特徴とする請求項1に記載の燃料改質装置。The exhaust pipe through which the exhaust gas from the engine flows is branched into two branch pipes, each of which has an open / close valve, and the branch pipe is the high-temperature exhaust gas passage of the carbon dioxide adsorption / desorption chamber. A carbon dioxide gas extraction passage having a pump communicating with the first reforming chamber and an open / close valve is provided on the low temperature exhaust gas passage side of the carbon dioxide adsorption / desorption chamber. 2. The fuel reformer according to claim 1, wherein the fuel reformer is discharged from the downstream of the second reforming chamber and discharged through the low-temperature exhaust gas passage. 前記エンジンからの前記排気ガスは一方の前記炭酸ガス吸着脱離室の前記高温炭酸ガス通路に流入して熱エネルギーを前記炭酸ガス吸着脱離通路の前記低温排気ガス通路に与えて前記吸着剤に吸着している前記炭酸ガスを脱離させ,脱離した前記炭酸ガスを前記開閉バルブの開放と主に前記ポンプを駆動して前記炭酸ガス抽出通路を通じて前記第1改質室の前記改質通路に送り込み,また,前記第1改質室の前記排気ガス通路に流入した前記排気ガスは前記改質通路に前記熱エネルギーを与えて天然ガス供給通路から供給された天然ガスを前記炭酸ガスの存在下において改質することを特徴とする請求項に記載の燃料改質装置。The exhaust gas from the engine flows into the high-temperature carbon dioxide passage of one of the carbon dioxide adsorption / desorption chambers and gives thermal energy to the low-temperature exhaust gas passage of the carbon dioxide adsorption / desorption passage to the adsorbent. The adsorbed carbon dioxide gas is desorbed, and the desorbed carbon dioxide gas is opened in the open / close valve and the pump is mainly driven to drive the reforming passage of the first reforming chamber through the carbon dioxide extraction passage. The exhaust gas flowing into the exhaust gas passage of the first reforming chamber gives the thermal energy to the reforming passage, and the natural gas supplied from the natural gas supply passage is converted into the presence of the carbon dioxide gas. The fuel reformer according to claim 2 , wherein reforming is performed below. 前記第1改質室には,開閉バルブを備えた天然ガス供給通路が軸方向に流れる前記排気ガス通路と直交する方向に接続され,前記第2改質室には,開閉バルブを備えた水蒸気供給通路が軸方向に流れる前記排気ガス通路と直交する方向に接続され,各前記排気ガス通路は気密性が確保されるようにシールされていることを特徴とする請求項1又は2に記載の燃料改質装置。The first reforming chamber is connected to a natural gas supply passage having an opening / closing valve in a direction perpendicular to the exhaust gas passage flowing in the axial direction, and the second reforming chamber has a water vapor having an opening / closing valve. supply path connected in a direction orthogonal to the exhaust gas passage flowing in the axial direction, according to claim 1 or 2 wherein each said exhaust gas passage, characterized in that it is sealed so that air tightness is ensured Fuel reformer. 前記第1改質室の前記排気ガス通路からの前記排気ガスは前記第2改質室の前記排気ガス通路に流入し,前記第1改質室の前記改質通路から前記第2改質室の前記改質通路に流入した前記改質燃料と未改質燃料は前記第2改質室の前記改質通路に水蒸気供給通路から供給された水蒸気の存在下において更に改質され,前記改質燃料は前記エンジンに供給されることを特徴とする請求項1〜のいずれか1項に記載の燃料改質装置。The exhaust gas from the exhaust gas passage of the first reforming chamber flows into the exhaust gas passage of the second reforming chamber, and from the reforming passage of the first reforming chamber to the second reforming chamber. wherein the reformed fuel and un-reformed fuel flowing into the reforming passage is further modified in the presence of steam supplied from the steam supply passage to the reforming passage of the second reforming chamber, the reforming of The fuel reformer according to any one of claims 1 to 4 , wherein fuel is supplied to the engine. 前記第2改質室の前記排気ガス通路から流出した前記排気ガスは他方の前記炭酸ガス吸着脱離室の前記低温排気ガス通路に流入し,前記低温排気ガス通路を流れる前記排気ガス中の炭酸ガスは前記吸着剤によって吸着され,前記炭酸ガスが吸着排除された前記排気ガスは水蒸気と熱交換器を通じて外部に排気又はEGRガスとして前記エンジンに供給されることを特徴とする請求項1〜のいずれか1項に記載の燃料改質装置。The exhaust gas flowing out from the exhaust gas passage of the second reforming chamber flows into the low temperature exhaust gas passage of the other carbon dioxide adsorption / desorption chamber, and the carbon dioxide in the exhaust gas flowing through the low temperature exhaust gas passage. gas is adsorbed by the adsorbent, according to claim 1 to 5 wherein the carbon dioxide gas, characterized in that to be supplied to the engine as exhaust or EGR gas to the outside through the exhaust gas steam and heat exchangers eliminated adsorbed serial mounting of the fuel reformer any to one of. 一方の前記炭酸ガス吸着脱離室の前記炭酸ガス吸着脱離通路の前記多孔質金属に付着された前記吸着剤から炭酸ガスを脱離させる動作と他方の前記炭酸ガス吸着脱離室の前記炭酸ガス吸着脱離通路の前記多孔質金属に前記炭酸ガスを吸着させる動作とを交互に実行させるため,前記分岐管の開閉バルブを交互に切り換え作動し,前記エンジンからの前記排気ガスを他方の前記炭酸ガス吸着脱離室の前記高温排気ガス通路に送り込み,それによって一方の前記炭酸ガス吸着脱離室の前記低温排気ガス通路の前記多孔質金属に前記炭酸ガスを吸着させ,他方の前記炭酸ガス吸着脱離室の前記低温排気ガス通路の前記多孔質金属から前記炭酸ガスを脱離させることを所定時間毎に反復させることを特徴とする請求項1〜のいずれか1項に記載の燃料改質装置。The operation of desorbing carbon dioxide from the adsorbent adhering to the porous metal in the carbon dioxide adsorption / desorption passage in one carbon dioxide adsorption / desorption chamber and the carbon dioxide in the other carbon dioxide adsorption / desorption chamber In order to alternately perform the operation of adsorbing the carbon dioxide gas to the porous metal in the gas adsorption / desorption passage, the opening and closing valves of the branch pipes are alternately switched to operate the exhaust gas from the engine on the other side. The carbon dioxide gas is fed into the high-temperature exhaust gas passage of the carbon dioxide adsorption / desorption chamber, thereby adsorbing the carbon dioxide gas to the porous metal in the low-temperature exhaust gas passage of one of the carbon dioxide adsorption / desorption chambers, and the other carbon dioxide gas The fuel according to any one of claims 1 to 6 , wherein desorption of the carbon dioxide gas from the porous metal in the low-temperature exhaust gas passage of the adsorption / desorption chamber is repeated every predetermined time. Material reformer. 前記炭酸ガス吸着脱離室は前記排気ガスの熱エネルギーが放熱しないように断熱層で遮蔽され,前記炭酸ガス吸着脱離室の前記炭酸ガス吸着脱離通路の前記多孔質金属に担持された前記吸着剤は前記多孔質金属の表面に接合されたジルコニウム酸リチウムの粒子であり,前記排気ガスの350℃〜500℃の低温時には前記排気ガス中の前記炭酸ガスを吸着し,前記排気ガスの700℃〜750℃の高温時には前記炭酸ガスを脱離することを特徴とする請求項1〜のいずれか1項に記載の燃料改質装置。The carbon dioxide adsorption / desorption chamber is shielded by a heat insulating layer so that the heat energy of the exhaust gas is not dissipated, and is supported on the porous metal in the carbon dioxide adsorption / desorption passage of the carbon dioxide adsorption / desorption chamber. The adsorbent is lithium zirconate particles bonded to the surface of the porous metal, and adsorbs the carbon dioxide gas in the exhaust gas when the exhaust gas has a low temperature of 350 ° C. to 500 ° C. The fuel reformer according to any one of claims 1 to 7 , wherein the carbon dioxide gas is desorbed at a high temperature of 750C to 750C. 前記天然ガスと前記炭酸ガスとの反応に寄与する前記第1触媒は,Pt,Ru,Rh,CeO2 ,Niであることを特徴とする請求項1〜のいずれか1項に記載の燃料改質装置。Said first catalyst contributes to the reaction between the carbon dioxide and the natural gas, Pt, Ru, Rh, fuel according to any one of claims 1-8, characterized in that the CeO 2, Ni Reformer. 前記天然ガスと前記水蒸気との反応に寄与する前記第2触媒は,Ni,Pt,Ru,Rhであることを特徴とする請求項1〜のいずれか1項に記載の燃料改質装置。The fuel reformer according to any one of claims 1 to 9 , wherein the second catalyst contributing to the reaction between the natural gas and the water vapor is Ni, Pt, Ru, or Rh. 請求項1〜10のいずれか1項に記載の前記燃料改質装置はエンジンからの排気ガスは送り込まれる排気タービンの後流に配設され,前記エンジンからの前記排気ガスが前記排気タービンで仕事をした後に前記燃料改質装置に送り込まれ,前記排気ガスは前記燃料改質装置で炭酸ガスが吸着され,前記炭酸ガスが排除された排気ガスは熱交換器を通じて外部に排気されると共に一部はEGRとして前記エンジンに供給されることを特徴とするエンジンシステム。The fuel reformer according to any one of claims 1 to 10 , wherein the exhaust gas from the engine is disposed downstream of an exhaust turbine to which the exhaust gas is sent, and the exhaust gas from the engine works in the exhaust turbine. The exhaust gas is fed into the fuel reformer, and the exhaust gas is adsorbed with carbon dioxide by the fuel reformer, and the exhaust gas from which the carbon dioxide is excluded is exhausted to the outside through a heat exchanger and partially Is supplied to the engine as EGR. 天然ガスの一部は前記エンジンの副室に供給され,残部は前記燃料改質装置に送り込まれてH2 とCOとから成る改質燃料に改質され,前記改質燃料は前記エンジンの主室に送り込まれることを特徴とする請求項11に記載のエンジンシステム。Part of the natural gas is supplied to the sub chamber of the engine, and the remaining part is sent to the fuel reformer to be reformed into reformed fuel composed of H 2 and CO. The reformed fuel is the main fuel of the engine. The engine system according to claim 11 , wherein the engine system is fed into a chamber. 前記排気タービンはシャフトの一端に取り付けられ,前記シャフトの他端には蒸気タービンが取り付けられ,前記シャフトには発電機が配設され,前記蒸気タービンには前記燃料改質装置の後流に設けられた熱交換器で加熱された水蒸気の一部が送り込まれ,前記蒸気の残部は前記燃料改質装置へ送り込まれて前記天然ガスを改質する前記水蒸気として機能することを特徴とする請求項11又は12に記載のエンジンシステム。The exhaust turbine is attached to one end of a shaft, a steam turbine is attached to the other end of the shaft, a generator is disposed on the shaft, and the steam turbine is provided downstream of the fuel reformer. A part of the steam heated by the heat exchanger is sent, and the remainder of the steam is sent to the fuel reformer and functions as the steam for reforming the natural gas. The engine system according to 11 or 12 . 前記発電機で発電された電力は,前記エンジンにブーストを送り込むコンプレッサを駆動したり,前記エンジンの出力や補機を駆動する出力として消費されることを特徴とする請求項13に記載のエンジンシステム。14. The engine system according to claim 13 , wherein the electric power generated by the generator is consumed as an output for driving a compressor that sends boost to the engine, or an output for driving the engine or an auxiliary machine. . 前記蒸気タービンで仕事をした前記水蒸気は復水器に送り込まれて水に変換され,前記水は別の熱交換器において前記エンジンのオイルを冷却し,前記オイルで加熱された前記水は前記燃料改質装置の後流の前記熱交換器に送り込まれて水蒸気に変換されることを特徴とする請求項13又は14に記載のエンジンシステム。The steam that has worked in the steam turbine is sent to a condenser to be converted to water, the water cools the engine oil in another heat exchanger, and the water heated by the oil is used as the fuel. The engine system according to claim 13 or 14 , wherein the engine system is sent to the heat exchanger downstream of the reformer and converted into steam.
JP2003036169A 2003-02-14 2003-02-14 Fuel reformer and engine system incorporating the same Expired - Fee Related JP4318928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003036169A JP4318928B2 (en) 2003-02-14 2003-02-14 Fuel reformer and engine system incorporating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003036169A JP4318928B2 (en) 2003-02-14 2003-02-14 Fuel reformer and engine system incorporating the same

Publications (2)

Publication Number Publication Date
JP2004244268A JP2004244268A (en) 2004-09-02
JP4318928B2 true JP4318928B2 (en) 2009-08-26

Family

ID=33021342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003036169A Expired - Fee Related JP4318928B2 (en) 2003-02-14 2003-02-14 Fuel reformer and engine system incorporating the same

Country Status (1)

Country Link
JP (1) JP4318928B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7059130B2 (en) * 2002-02-13 2006-06-13 Ship & Ocean Foundation Heat exchanger applicable to fuel-reforming system and turbo-generator system
KR100834173B1 (en) 2007-05-09 2008-06-02 이정일 The burner of reactor for reforming the natural gas into clean energy
JP5998043B2 (en) * 2012-12-26 2016-09-28 株式会社日立製作所 Engine combined system

Also Published As

Publication number Publication date
JP2004244268A (en) 2004-09-02

Similar Documents

Publication Publication Date Title
JP6356728B2 (en) Solid oxide fuel cell high efficiency reforming recirculation system
US5943859A (en) Natural gas reforming apparatus, oxygen eliminating apparatus provided in the same apparatus, and natural gas reforming apparatus-carrying gas engine
KR102087881B1 (en) Apparatus and method for oxy-combustion of fuels in internal combustion engines
JP2005534604A (en) Method and apparatus for generating pressurized air using reformed gas from a fuel reformer
US20020142208A1 (en) Energy efficient gas separation for fuel cells
AU780651B2 (en) Energy efficient gas separation for fuel cells
CA2094129A1 (en) Process and installation for the combined generation of electrical and mechanical energy
JP4393002B2 (en) Gas engine
EP1237218A2 (en) Fuel cell system incorporating pressure control
US20070044657A1 (en) Fuel cell systems and methods for passively increasing hydrogen recovery through vacuum-assisted pressure swing adsorption
WO2006080544A1 (en) Apparatus and method for hydrogen generation
CN110739471A (en) Cogeneration system based on reforming hydrogen production device and fuel cell
JP5154800B2 (en) Synthesis gas generation for NOx regeneration combined with auxiliary power generation in fuel cells
JP4318928B2 (en) Fuel reformer and engine system incorporating the same
JPH0845523A (en) Fuel cell/gas turbine combined generation system
Wang et al. Comparison of the exergy efficiency of four power generation systems from methane using fuel cells
JP3617276B2 (en) Natural gas reformer and gas engine equipped with the device
JPS60258862A (en) Fuel cell generation system
JP2005030243A (en) Fuel reforming device
JP3484931B2 (en) Gas engine with natural gas reformer
JP3620239B2 (en) Oxygen removing device in natural gas reformer and gas engine equipped with the device
JP2002098010A (en) Natural gas reforming engine system and its driving method
JP2001152846A (en) Engine equipped with fuel-reforming device
JP3546234B2 (en) Solid oxide fuel cell / internal combustion type Stirling engine combined system
JP4102080B2 (en) Fuel reformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090306

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090323

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090527

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees