JP4316854B2 - Optically active polyhydric phenol derivative, method for producing the same, and use thereof - Google Patents

Optically active polyhydric phenol derivative, method for producing the same, and use thereof Download PDF

Info

Publication number
JP4316854B2
JP4316854B2 JP2002304859A JP2002304859A JP4316854B2 JP 4316854 B2 JP4316854 B2 JP 4316854B2 JP 2002304859 A JP2002304859 A JP 2002304859A JP 2002304859 A JP2002304859 A JP 2002304859A JP 4316854 B2 JP4316854 B2 JP 4316854B2
Authority
JP
Japan
Prior art keywords
formula
optically active
derivative represented
methyl
dimer derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002304859A
Other languages
Japanese (ja)
Other versions
JP2004149414A (en
Inventor
純二 稲永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2002304859A priority Critical patent/JP4316854B2/en
Publication of JP2004149414A publication Critical patent/JP2004149414A/en
Application granted granted Critical
Publication of JP4316854B2 publication Critical patent/JP4316854B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明の下記式(1)
【0002】
【化7】

Figure 0004316854
(式中、Aはメトキシメチル基を示す。)
又は下記式(2)
【0003】
【化8】
Figure 0004316854
(式中、Aはメトキシメチル基を示す。)
で示される光学活性1,1’−ビ−2−ナフチル−2量体誘導体、及び下記式(3)
【0004】
【化9】
Figure 0004316854
又は下記式(4)
【0005】
【化10】
Figure 0004316854
で示される光学活性1,1’−ビ−2−ナフトール−2量体誘導体は、各種有機合成中間体及び不斉合成反応触媒素子として有用である。
【0006】
【従来の技術】
本発明の上記式(1)又は式(2)で示される光学活性1,1’−ビ−2−ナフチル−2量体誘導体、及び上記式(3)又は式(4)で示される光学活性1,1’−ビ−2−ナフトール−2量体誘導体は、従来知られていない新規化合物である。
【0007】
一方、光学活性1,1’−ビ−2−ナフトール又はその核置換誘導体を用いた光学活性化合物の識別剤や、不斉合成反応触媒素子としての利用は数多く知られている(例えば、特許文献1参照)。しかしながら、それらは、充分な性能(例えば、高い光学選択性や高い反応性等)を発揮しない場合がある。
【0008】
【特許文献1】
特開平11−240865号公報
【0009】
【発明が解決しようとする課題】
本発明の目的は、工業的に有用な新規光学異性体識別剤の提供すること、並びに新規不斉合成反応触媒素子及びそれを用いた不斉合成反応触媒を提供することである。
【0010】
【課題を解決するための手段】
本発明者は、光学識別剤、及び不斉合成反応触媒素子として有用な化合物の創製を目指し鋭意検討した結果、本発明の光学活性1,1’−ビ−2−ナフトール−2量体誘導体を見出し、本発明を完成させるに至った。
【0011】
すなわち、本発明は、
▲1▼:上記式(1)又は式(2)で示される光学活性1,1’−ビ−2−ナフチル−2量体誘導体、及びその製造方法
▲2▼:上記式(3)又は式(4)で示される光学活性1,1’−ビ−2−ナフトール−2量体誘導体、及びその製造方法、並びに
▲3▼:上記式(3)又は式(4)で示される光学活性1,1’−ビ−2−ナフトール−2量体誘導体の用途である。
【0012】
本発明を以下詳細に説明する。
【0013】
本発明の上記式(1)及び式(2)で示される光学活性1,1’−ビ−2−ナフチル−2量体誘導体、並びに上記式(3)及び式(4)で示される光学活性1,1’−ビ−2−ナフトール−2量体誘導体の製造方法については、特に限定するものではないが、例えば、以下の方法により製造することができる。
【0014】
本発明の上記式(1)で示される光学活性1,1’−ビ−2−ナフチル−2量体誘導体は、(R)−2,2’−ビス(メトキシメトキシ)−3−ヨウド−1,1’−ビナフチルを2量化させることにより容易に製造することができる。例えば、(R)−1,1’−ビ−2−ナフトールを原料とし、水素化ナトリウムでナトリウム塩とした後、クロロメチルメチルエーテルと反応させ(R)−1,1’−ビナフチル−2,2’−ジイル ビス(メトキシメチル)エーテルとし、次いで、tert−ブチルリチウム及びヨウ素で3位をヨウ素化し(R)−2,2’−ビス(メトキシメトキシ)−3−ヨウド−1,1’−ビナフチルを得、さらにこれをビス(トリフェニルフォスフィン)ニッケル(II)ブロマイド存在下、亜鉛粉末で反応させることにより得ることができる。
【0015】
本発明の上記式(2)で示される光学活性1,1’−ビ−2−ナフチル−2量体誘導体は、(S)−2,2’−ビス(メトキシメトキシ)−3−ヨウド−1,1’−ビナフチルを2量化することにより容易に製造することができる。例えば、(S)−1,1’−ビ−2−ナフトールを原料とする以外は、上記式(1)で示される光学活性1,1’−ビ−2−ナフトール−2量体の製造と同様の操作により得ることができる。
【0016】
本発明の式(3)で示される光学活性1,1’−ビ−2−ナフトール−2量体誘導体は、上記式(1)で示される光学活性1,1’−ビ−2−ナフチル−2量体誘導体を原料とし、これを酸で処理することにより得ることができる。
【0017】
本発明の式(4)で示される光学活性1,1’−ビ−2−ナフトール−2量体誘導体は、上記式(2)で示される光学活性1,1’−ビ−2−ナフトール−2量体誘導体を原料とし、これを酸で処理することにより得ることができる。
【0018】
上記式(3)又は式(4)で示される光学活性1,1’−ビ−2−ナフチル−2量体誘導体の製造にあたり、使用する酸としては特に限定するものではないが、例えば、塩酸、硫酸等が挙げられる。
【0019】
本発明の上記式(3)又は式(4)で示される光学活性1,1’−ビ−2−ナフトール−2量体誘導体の用途としては、特に限定するものではないが、例えば、光学活性化合物の識別剤、不斉合成反応触媒素子等として使用可能である。なお、本発明において、不斉合成反応触媒素子とは、不斉合成反応触媒を構成する配位子を意味する。
【0020】
本発明の上記式(3)又は式(4)で示される光学活性1,1’−ビ−2−ナフトール−2量体誘導体を光学活性化合物の識別剤として使用する場合は、具体的には、NMRのシフト試薬としての利用のほか、シリカゲル等の担体に担持した光学異性体分離剤、さらにそれをカラムに充填することからなる光学異性体分離カラム等として用いることができる。
【0021】
本発明の上記式(3)又は式(4)で示される光学活性1,1’−ビ−2−ナフトール−2量体誘導体をNMRのシフト試薬として用いる場合は、処理する基質に対して、本発明の上記式(3)又は式(4)で示される化合物を0.1〜5モル量比混合し、重クロロホルム等の溶剤に溶解させ、NMR測定装置で測定する。
【0022】
本発明の上記式(3)又は式(4)で示される光学活性1,1’−ビ−2−ナフトール−2量体誘導体をNMRのシフト試薬として用いる場合に、適用可能な基質としては、不斉中心を有する化合物であれば特に限定されない。例えば、1−フェニルエチルアミン等の光学活性アミン類、フェニルアラニン等の光学活性アミノ酸類、メチル フェニルスルフォキシド、メチル (4−メチルフェニル)スルフォキシド、メチル (4−メトキシフェニル)スルフォキシド、メチル(4−アミノフェニル)スルフォキシド、メチル 4−ニトロフェニルスルフォキシド等の光学活性スルフォキシド類、1,1’−ビ−2−ナフトール等の光学活性フェノール類等の分離同定に用いることができる。
【0023】
本発明の上記式(3)又は式(4)で示される光学活性1,1’−ビ−2−ナフトール−2量体誘導体を不斉合成反応触媒素子として用いる場合、適用反応は使用する金属種により異なり、特に限定するものではないが、例えば、不斉アルドール縮合反応、不斉エポキシ化反応、不斉ディールス・アルダー環化反応、不斉ヘテロ・ディールス・アルダー環化反応、不斉還元反応、不斉プロトン化反応、不斉ニトロアルドール反応、不斉マイケル付加反応、不斉ヒドロフォスフォニル化反応、不斉酸化反応、不斉マイケル−アルドール反応等の等量又は触媒的不斉誘起反応に利用可能であり、高い反応性を示し、また生成物に高い光学純度を与える。また、動的不斉制御による光学分割用触媒原料としても使用可能である。
【0024】
本発明の不斉合成反応触媒は、上記式(3)又は式(4)で示される光学活性1,1’−ビ−2−ナフトール−2量体誘導体と、金属アルコキシド類又は金属ハロゲン化物からなる。
【0025】
具体的には、上記式(3)又は式(4)で示される光学活性1,1’−ビ−2−ナフトール−2量体誘導体と、金属アルコキシド類、ハロゲン化金属アルコキシド又は金属ハロゲン化物を当量で反応させて得られる金属錯体からなる不斉合成反応触媒や、上記式(3)又は式(4)で示される光学活性1,1’−ビ−2−ナフトール−2量体誘導体と、金属アルコキシド類、ハロゲン化金属アルコキシド、又は金属ハロゲン化物を当量で反応させて得られる金属錯体を還元剤により還元することにより得られる不斉合成反応触媒が好適な例として挙げられる。金属アルコキシド類、ハロゲン化金属アルコキシド、又は金属ハロゲン化物中の金属種としてはチタンが特に好ましく、このような金属錯体は、下記式(5)又は式(6)
【0026】
【化11】
Figure 0004316854
【化12】
Figure 0004316854
(式中、Xは水酸基、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基又はハロゲン原子を示す。)
で示される構造を有する。
【0027】
以下に、本発明の不斉合成反応触媒素子、及び不斉合成反応触媒を用いた具体的な反応例を示す。
【0028】
まず、本発明の上記式(3)又は式(4)で示される光学活性1,1’−ビ−2−ナフトール−2量体誘導体を不斉酸化反応触媒素子として用いた、スルフィド類の触媒的不斉酸化反応について、以下に説明する。
【0029】
スルフィド類の不斉酸化反応に用いる場合、本発明の上記式(3)又は式(4)で示される光学活性1,1’−ビ−2−ナフトール−2量体誘導体と金属アルコキシド類を当量で反応させ、金属錯体を形成した後、これを不斉合成反応触媒として用い、スルフィド類と酸化剤を反応させる。
【0030】
スルフィド類の不斉酸化反応に用いる場合に、適用可能な金属アルコキシド類としては、特に限定するものではないが、具体的には、チタン(IV)テトライソプロポキシドが好ましく、これを、本発明の上記式(3)又は式(4)で示される光学活性1,1’−ビ−2−ナフトール−2量体誘導体に対して、2モル使用して金属錯体を形成させる。このようにして得られた不斉合成反応触媒は反応活性を高めるために適量の水で処理した後、反応に用いられる。
【0031】
スルフィド類の不斉酸化反応に当って、不斉合成反応触媒の使用量は反応に使用するスルフィド類に対して1〜100モル%の範囲で使用可能であるが、通常は5〜40モル%程度使用する。
【0032】
スルフィド類の不斉酸化反応に当って、適用可能な基質としては、特に限定するものではないが、具体的には、メチル フェニルスルフィド、メチル (4−メチルフェニル)スルフィド、メチル (4−メトキシフェニル)スルフィド、メチル (4−アミノフェニル)スルフィド、メチル 4−ニトロフェニルスルフィド等が挙げられる。
【0033】
スルフィド類の不斉酸化反応に当って、酸化剤としては、特に限定するものではないが、具体的には、tert−ブチルヒドロパーオキシド、クメンヒドロパーオキシド等が好ましく、使用量としては、反応に用いるスルフィド類に対して、通常1〜3モル量使用する。
【0034】
スルフィド類の不斉酸化反応に当っての反応溶剤としては、反応に不活性な溶剤であればあらゆるものが適用可能であり、特に限定するものではないが、具体的には、ジクロロメタン、クロロホルム、ベンゼン、トルエン、テトラヒドロフラン(以下、THFと略す)等であり、使用量としては、反応に用いるスルフィド類に対して、5〜100倍重量程度使用する。
【0035】
スルフィド類の不斉酸化反応に当っての反応温度及び時間としては、通常−78〜20℃の温度範囲で実施可能であるが、好ましくは−40〜0℃の温度範囲で、5〜48時間程度反応させることにより反応は完結する。
【0036】
本発明の上記式(3)又は式(4)で示される光学活性1,1’−ビ−2−ナフトール−2量体誘導体とチタン(IV)イソプロポキシドからなる触媒は、ラセミ体のスルホキシド類に対しての動的不斉制御による光学分割に使用することも可能であり、ラセミ体のスルフォキシド類を選択的に酸化し、高光学純度のスルフォキシド類を得ることができる。
【0037】
本発明において、動的不斉制御による光学分割に適用可能な基質としては具体的には、メチル フェニルスルフォキシド、メチル (4−メチルフェニル)スルフォキシド、メチル (4−メトキシフェニル)スルフォキシド、メチル (4−アミノフェニル)スルフォキシド、メチル 4−ニトロフェニルスルフォキシド等である。
【0038】
本発明において、動的不斉制御による光学分割を行う場合の反応条件としては、酸化剤を反応に具するスルフォキシド類に対して0.4〜0.6モル量使用する以外は、スルフィド類の不斉酸化条件と同じ条件下で実施する。
【0039】
次に、本発明の上記式(3)又は式(4)で示される光学活性1,1’−ビ−2−ナフトール−2量体誘導体を不斉酸化反応触媒素子として用いた、不斉ピナコールカップリング反応によるヒドロヒダントイン類の製造について以下に説明する。
【0040】
不斉ピナコールカップリング反応に用いる場合、本発明の上記式(3)又は式(4)で示される光学活性1,1’−ビ−2−ナフトール−2量体誘導体と金属アルコキシド類を当量で反応させ、金属錯体を形成した後、これを不斉合成反応触媒として用い、ベンズアルデヒド類を反応させる。
【0041】
不斉ピナコールカップリングに用いる場合に適用可能な金属アルコキシド類としては、特に限定するものではないが、具体的には、チタン(II)ジイソプロポキシドが好ましく、本発明の上記式(3)又は式(4)で示される光学活性1,1’−ビ−2−ナフトール−2量体誘導体に対して、2モル量のチタン(IV)テトライソプロポキシドを反応させ、金属錯体を形成した後、これを還元剤により還元して調製された不斉合成反応触媒が特に好ましい。還元剤としては、過剰の金属マンガンが好ましく、10〜100時間程度還元することにより上記触媒を調製することができる。
【0042】
還元剤の使用量としては、不斉ピナコールカップリングに用いる触媒の性能は、還元剤の使用量により異なるため、特に限定するものではないが、例えば、本発明の上記式(3)又は式(4)で示される光学活性1,1’−ビ−2−ナフトール−2量体誘導体とチタン(IV)テトライソプロポキシドからなる金属錯体に対して、通常0.5〜10モル量程度使用する。
【0043】
不斉ピナコールカップリングに際しての不斉合成反応触媒の使用量は、反応に用いるアルデヒド類に対して1〜100モル%の範囲で使用可能であるが、通常は5〜40モル%程度使用する。
【0044】
不斉ピナコールカップリングに際しての適用可能な基質としては、特に限定するものではないが、具体的には、ベンズアルデヒド、4−メチルベンズアルデヒド、4−メトキシベンズアルデヒド、4−メトキシベンズアルデヒド、4−アミノベンズアルデヒド等が挙げられる。
【0045】
不斉ピナコールカップリングに際しての反応溶剤としては、反応に不活性な溶剤であればあらゆるものが適用可能であり、特に限定するものではないが、具体的には、ジクロロメタン、クロロホルム、ベンゼン、トルエン、THF等であり、使用量としては、反応に用いるスルフィド類に対して、5〜100倍重量程度使用する。
【0046】
不斉ピナコールカップリングに際しての反応温度及び時間としては、通常−90〜10℃の温度範囲で実施可能であるが、好ましくは−80〜0℃の温度範囲で、1〜48日間程度反応させることにより反応は完結する。
【0047】
本発明の触媒を用いて、不斉酸化反応、動的不斉制御による光学分割又は不斉ピナコールカップリング反応を行うに際しては、必要に応じて、ゼオライトを用いてもよく、具体的には、モレキュラシーブス−4Aを反応に用いる基質に対して、1〜100倍重量程度使用する。
【0048】
【発明の効果】
本発明によれば、不斉識別剤及び不斉合成反応触媒素子として有用な化合物が提供され、各種不斉合成反応への利用が可能であり、工業的にも極めて有意義である。
【0049】
【実施例】
以下、実施例により本発明を具体的に説明するが、本発明は実施例のみに限定されるものではない。なお化合物の分析については下記機器を使用し実施した。
【0050】
1H−NMR及び13C−NMR測定)
JEOL製JMN−EX 400(400及び100MHz)で実施。
【0051】
(赤外吸光測定)
JASCO製FT/IR−420で実施。
【0052】
(元素分析)
九州大学元素分析センターに依頼し実施。
【0053】
(質量分析)
島津製作所製GC−MS QP−5000及びJEOL製JMS−HX110Aで実施。
【0054】
高分解能質量分析はJEOL製JMS−HX100Aで実施。
【0055】
(光学純度)
島津製作所製LC−9A又はLC−10ATVP、ダイセル製カラムCHIRALCEL OB−H(0.46mmID×250mmL)、検出器島津製作所製SPD−6A及びSPD10AVで実施。
【0056】
(比旋光度)
堀場製作所製SEPA−300で実施。
【0057】
参考例1 (R)−1,1’−ビナフチル−2,2’−ジイル ビス(ジメトキシメチル)エーテルの調製
アルゴン雰囲気下、攪拌子を備えた500mlのナス型フラスコに(R)−(+)−1,1’−ビ−2−ナフトール(30.0g,105mmol)及びN,N−ジメチルフォルムアミド(200ml)を仕込み、氷浴上で0℃に冷却の後、これに水素化ナトリウム(60%油性、12.6g,0.314mol)を加え10分攪拌し、次いで室温に戻し30分さらに攪拌した。次に再度0℃に冷却の後、クロロメチルメチル エーテル(24.4g,0.303mol)を加え15分攪拌の後、室温に戻しさらに2時間反応を行った。
【0058】
反応終了後、飽和食塩水を添加、酢酸エチルで抽出、得られた有機相を水で洗浄、硫酸マグネシウムで乾燥、ろ過、濃縮し、目的物の(R)−1,1’−ビナフチル−2,2’−ジイル ビス(ジメトキシメチル)エーテル(39.2g、103mmol)を定量的に得た。
【0059】
(分析結果)
1H NMR(CDCl3)σ7.95(d,J=8.79Hz,ArH,2H),7.87(d,J=8.06Hz,ArH,2H),7.57(d,J=9.03Hz,ArH,2H),7.36−7.32(m,ArH,2H),7.24−7.20(m,ArH,2H),7.15(d,ArH,2H),5.03(dd,J=6.84,42.97Hz,−OCH2−,4H),3.14(s,−OCH3,6H)。
【0060】
参考例2 (R)−(+)−2,2’−ジ(メトキシメトキシ)−3−ヨウド−1,1’−ビナフチルの調製
アルゴン雰囲気下、攪拌子を備えた300mlのナス型フラスコに参考例1で得られた(R)−1,1’−ビナフチル−2,2’−ジイル ビス(ジメトキシメチル)エーテル(10.2g,27.4mmol)及びTHF(100ml)を仕込み、−78℃に冷却した後、これにtert−ブチルリチウム(1.48M−n−ペンタン溶液,18.5ml,27.4mmol)を加え、3時間攪拌した。次いでこれに同温度でヨウ素(6.94g,27.4mmol)を加え、さらに同温度で13時間反応を行った。
【0061】
反応終了後、−78℃の反応混合物に飽和の塩化アンモニウム水溶液を添加した。次いで室温に戻し、酢酸エチルで抽出し、得られた有機相を飽和のチオ硫酸ナトリウム水溶液で洗浄し、硫酸マグネシウムで乾燥、ろ過、濃縮し、シリカゲルカラムクロマトグラフィーで精製することにより目的物の(R)−(+)−2,2’−ジ(メトキシメトキシ)−3−ヨウド−1,1’−ビナフチル(10.0g,20.0mmol)を白色固体とし得た(収率73%)。
【0062】
(分析結果)
1H NMR(CDCl3)σ8.52(s,ArH,1H),7.96(d,J=9.03Hz,ArH,1H),7.86(d,J=8.30Hz,ArH,1H),7.78(d,J=8.06Hz,ArH,1H),7.58(d,J=9.03Hz,ArH,1H),7.41−7.34(m,ArH,2H),7.30−7.23(m,ArH,2H),7.18−7.13(m,ArH,2H),5.09(dd,J=6.84,37.84Hz,−OCH2−,2H),4.71(dd,J=5.37,16.60Hz,−OCH2−,2H),3.19(s,−OCH3,3H),2.71(s,−OCH3,3H)。
【0063】
実施例1 3,3−ビス{(R)−2,2’−ジ(メトキシメトキシ)−1,1’−ビナフチル}[略称(R,R)−テトラキス(メトキシメトキシ)−ビスビナフチル]の調製
アルゴン雰囲気下、攪拌子を備えた50mlのナス型フラスコにビス(トリフェニルフォスフィン)ニッケル(II)ブロマイド(448mg,0.60mmol)、亜鉛粉末(265mg,4.05mmol)及びTHF(15ml)を加え、室温で30分攪拌の後、溶液の変色を確認の後、これに参考例2で得られた(R)−(+)−2,2’−ジ(メトキシメトキシ)−3−ヨウド−1,1’−ビナフチル(1.02g,2.04mmol)を添加し、さらに油浴上、50℃で13時間反応を行った。
【0064】
反応終了後、シリカゲルを添加、ろ過、残査を酢酸エチルで洗浄、ろ液及び洗浄液を合わせて濃縮、シリカゲルカラムクロマトグラフィーで精製することにより目的物(R,R)−テトラキス(メトキシメトキシ)−ビスビナフチル(0.61g,0.82mmol)を白色固体として得た(収率80%)。
【0065】
(分析結果)
外観:白色固体
1H NMR(400MHz,CDCl3)σ8.18(s,ArH,2H),7.96(d,J=9.03Hz,ArH,2H),7.93(d,J=10.3Hz,ArH,2H),7.86(d,J=8.30Hz,ArH,2H),7.60(d,J=9.03Hz,ArH,2H),7.41(t,J=6.59Hz,ArH,2H),7.39−7.19(m,ArH,10H),5.14−5.05(brm,−OCH2−,4H),4.45−4.44(brm,−OCH2−,4H),3.22(s,−OCH3,6H),2.28(brs,−OCH3,6H)
HRMS−FAB(m/z):[M]+
計算値 746.288 (C48428
測定値 746.288。
【0066】
実施例2 3,3−ビス{(R)−2,2’−ジヒドロキシ−1,1’−ビナフチル}[略称(R,R)−ビスバイノールの調製]
アルゴン雰囲気下、攪拌子を備えた50mlのナス型フラスコに、実施例1で得られた(R,R)−テトラキス(メトキシメトキシ)−ビスビナフチル(2.1g,2.81mmol)、トルエン(8ml)、メタノール(4ml)及び濃塩酸(35%,2ml)を加え、油浴上、50℃で6時間反応を行った。
【0067】
反応終了後、飽和炭酸水素ナトリウム水溶液で中和、酢酸エチルで抽出、硫酸マグネシウムで乾燥、ろ過、濃縮し、目的物の(R,R)−ビスバイノール(1.85g,2.80mmol)を白色固体として得た(収率:定量的)。
【0068】
(分析結果)
外観:白色固体
融点:296.2−296.4℃
比旋光度[α]D 22=+303.45°(C=1.00,THF)
1H NMR(400MHz,CDCl3)σ8.20(s,ArH,2H),7.97(d,J=8.79Hz,ArH,2H),7.94(d,J=9.03Hz,ArH,2H),7.87(d,J=8.06Hz,ArH,2H),7.45−7.18(m,ArH,14H),5.60(s,−OH,2H),5.23(s,−OH,2H)
13C NMR(100MHz,CDCl3)σ111.49,112.47,117.78,123.91,124.25,124.42,124.58,127.39,127.55,127.62,128.38,128.50(2C),129.38,129.51,131.26,132.55,133.42,150.56,152.57
IR(KBr):3481,3423,3057,1620,1594,1499,1469,1428,1381,1362,1346,1322,1263,1208,1174,1146,1027,963,893,862,827,787,745,681,614,535cm-1
HRMS−FAB(m/z):[M]+
計算値 570.183 (C40264
測定値 570.190
元素分析 C40264
計算値 C,84.02;H,4.64
測定値 C,84.19;H,4.59。
【0069】
実施例3 (R,R)−ビスバイノールのNMRシフト試薬としての利用−1実施例2で調製した(R,R)−ビスバイノール(4.1mg,0.007mmol)及びラセミのメチル フェニルスルフォキシド(1mg,0.007mmol)を1.5mlの重クロロホルム(CDCl3,1.5ml)に溶解させ、この内0.4mlをNMR用サンプルチューブに入れ、20分超音波照射した後、NMR測定を行った。メチル基のシフト値はσ’=2.6465及びσ”=2.6005で、△σ=0.046であった。
【0070】
実施例4 (R,R)−ビスバイノールのNMRシフト試薬としての利用−2(R,R)−ビスバイノール(4.1mg,0.007mmol)を、(R,R)−ビスバイノール(2.1mg,0.0035mmol)に替えた以外、実施例3と同じ操作で測定を行った。メチル基のシフト値はσ’=2.6850及びσ”=2.6730で、△σ=0.022であった。
【0071】
比較例1
(R,R)−ビスバイノールに替えて、(R)−1,1’−ビ−2,2’−ナフトール(2.1mg,0.007mmol)に替えた以外、実施例3と同じ操作で測定を行ったところ、△σ=0.01であった。
【0072】
実施例5〜実施例8 (R,R)−ビスバイノールのNMRシフト試薬としての利用−3
実施例3と同じ操作で、表1中に示した化合物に対して等量の(R,R)−ビスバイノールを用い、NMRの測定を行った。結果を表1中にあわせて示す。
【0073】
【表1】
Figure 0004316854
実施例9 スルフィドの不斉酸化反応への利用−1
アルゴン下、攪拌子を備えた10mlの丸底フラスコに(R,R)−ビスバイノール(9.7mg,0.017mmol)、モレキュラシーブス−4A(18mg)及びチタン(IV)テトラプロポキシド(9.8mg,0.034mmol)を加え、室温で1時間攪拌の後、アルゴン下で調製した水−ジクロロメタン(0.6μL−0.5ml)を加え、さらに1時間攪拌した。
【0074】
これにメチル フェニルスルホキシド(20μL,0.17mmol)を添加し、30分攪拌後、−78℃に冷却し、アルゴン下で調製したクメンヒドロパーオキシド(40μL,0.27mmol)のジクロロメタン(0.9ml)溶液を加え、さらに同温度で28時間反応を行った。
【0075】
反応終了後、飽和食塩水を添加し、シリカゲルショートカラム及びシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=6/1,vol/vol)で精製し目的物のメチル フェニルスルホキシド(17.4mg,0.14mmol)を収率52%で得た。
【0076】
ダイセル製キラルセルOD(ヘキサン/イソプロパノール=9/1,vol/vol)での光学純度測定結果は26%eeで、S体が優先していた(保持時間R体:31.5min,S体44.1min)
実施例10 スルフィドの不斉酸化反応への利用−2
反応温度を−20℃にした以外は、実施例9と同じ装置、試剤を用い、同じ操作で反応を行った。
【0077】
精製後、目的物を収率60%、49%eeで得た。
【0078】
実施例11 スルフォキサイドの動的不斉制御による光学分割
メチル フェニルスルフィドをメチル フェニルスルホキシドとし、クメンヒドロパーオキシドの使用量を1/2量にした以外は、実施例9と同じ装置を用い、同じ操作で12時間反応を行った。
【0079】
精製後、メチル フェニルスルホキシドを収率32%、光学純度49%ee(S体優先)で得た。
【0080】
実施例12 不斉ピナコールカップリング反応への利用
(1)チタン(II)−(R,R)−ビスバイノールの調製
アルゴン下、攪拌子を備えた50mlのナス型フラスコに(R,R)−ビスバイノール(389mg,0.68mmol)、THF(20ml)、モレキュラシーブス−4A(750mg)及びジイソプロポキシチタン(II)クロライド(322mg,1.36MMOL)を加え、室温で1時間攪拌後、これにマンガン(74.7mg,1.36mmol)を加え、40時間攪拌を行った。
【0081】
(2)ピナコールカップリング反応
攪拌子を備えた50mlのナス型フラスコに、(1)で調製した反応剤の溶液部分(0.68mmol/L)の4ml、モレキュラシーブス−4A(60.5mg)を入れ−78℃に冷却した後、これにベンズアルデヒド(27.6μL,0.272mmol)とTHF(1.4mL)を添加し、同温度で10日間反応を行った。
【0082】
反応終了後、50%KOH水溶液を添加し、塩基性シリカゲルショートカラムクロマトグラフィー、シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチ=4/1,vol/vol)で精製することにより目的物のヒドロベンゾイン(20.0mg,0.094mol)を収率69%で得た。
【0083】
得られたヒドロベンゾインはダイセル製キラルパックADカラム(ヘキサン/エタノール=9/1,vol/vol)で分析することにより、dl体/meso体=78/22(mol/mol)、dl体の光学純度は87%eeであった(保持時間:(S,S)体27.6min、(R,R)体34.4min、meso体41.4min)。
【0084】
実施例13〜実施例17
実施例12と同じ反応装置を用い、(R,R)−ビスバイノールを0.5等量用い、表2中に示した条件下10日間反応を行った。結果を表2にあわせて示す。
【0085】
【表2】
Figure 0004316854
比較例2〜比較例4
実施例12と同じ反応装置を用い、(R,R)−ビスバイノール0.5等量を(R)−1,1’−ビ−2−ナフトール1.0等量に替え、表3に示した条件下反応を行った。結果を表3中にあわせて示す。
【0086】
【表3】
Figure 0004316854
[0001]
BACKGROUND OF THE INVENTION
The following formula (1) of the present invention
[0002]
[Chemical 7]
Figure 0004316854
(In the formula, A represents a methoxymethyl group.)
Or the following formula (2)
[0003]
[Chemical 8]
Figure 0004316854
(In the formula, A represents a methoxymethyl group.)
An optically active 1,1'-bi-2-naphthyl-dimer derivative represented by formula (3):
[0004]
[Chemical 9]
Figure 0004316854
Or the following formula (4)
[0005]
[Chemical Formula 10]
Figure 0004316854
The optically active 1,1′-bi-2-naphthol-dimer derivative represented by the formula is useful as various organic synthesis intermediates and asymmetric synthesis reaction catalyst elements.
[0006]
[Prior art]
The optically active 1,1′-bi-2-naphthyl-dimer derivative represented by the above formula (1) or formula (2) of the present invention and the optical activity represented by the above formula (3) or formula (4) The 1,1′-bi-2-naphthol dimer derivative is a novel compound that has not been known so far.
[0007]
On the other hand, there are many known applications of optically active compounds that use optically active 1,1′-bi-2-naphthol or its nucleus-substituted derivatives, and as asymmetric synthesis reaction catalytic elements (for example, patent documents). 1). However, they may not exhibit sufficient performance (for example, high optical selectivity and high reactivity).
[0008]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-240865
[0009]
[Problems to be solved by the invention]
An object of the present invention is to provide an industrially useful novel optical isomer discriminating agent, and to provide a novel asymmetric synthesis reaction catalyst element and an asymmetric synthesis reaction catalyst using the same.
[0010]
[Means for Solving the Problems]
As a result of intensive studies aimed at creating compounds useful as optical discriminating agents and asymmetric synthesis reaction catalytic elements, the present inventor has obtained the optically active 1,1′-bi-2-naphthol-dimer derivative of the present invention. The headline and the present invention have been completed.
[0011]
That is, the present invention
{Circle around (1)} Optically active 1,1′-bi-2-naphthyl-dimer derivative represented by the above formula (1) or formula (2), and production method thereof
{Circle around (2)} Optically active 1,1′-bi-2-naphthol-dimer derivative represented by the above formula (3) or formula (4), its production method, and
(3): Use of the optically active 1,1'-bi-2-naphthol-dimer derivative represented by the above formula (3) or (4).
[0012]
The present invention is described in detail below.
[0013]
Optically active 1,1′-bi-2-naphthyl dimer derivatives represented by the above formulas (1) and (2) of the present invention, and optical activity represented by the above formulas (3) and (4) Although it does not specifically limit about the manufacturing method of a 1,1'- bi- 2-naphthol dimer derivative, For example, it can manufacture with the following method.
[0014]
The optically active 1,1′-bi-2-naphthyl dimer derivative represented by the above formula (1) of the present invention is (R) -2,2′-bis (methoxymethoxy) -3-iodo-1. , 1′-binaphthyl can be easily produced by dimerization. For example, (R) -1,1′-bi-2-naphthol is used as a raw material, converted into a sodium salt with sodium hydride, then reacted with chloromethyl methyl ether, and (R) -1,1′-binaphthyl-2, 2'-diyl bis (methoxymethyl) ether, then iodinated at the 3-position with tert-butyllithium and iodine (R) -2,2'-bis (methoxymethoxy) -3-iodo-1,1'- Binaphthyl can be obtained and further can be obtained by reacting with zinc powder in the presence of bis (triphenylphosphine) nickel (II) bromide.
[0015]
The optically active 1,1′-bi-2-naphthyl-2 dimer derivative represented by the above formula (2) of the present invention is (S) -2,2′-bis (methoxymethoxy) -3-iodo-1. , 1′-binaphthyl can be easily produced by dimerization. For example, except that (S) -1,1′-bi-2-naphthol is used as a raw material, the optically active 1,1′-bi-2-naphthol dimer represented by the above formula (1) is produced. It can be obtained by a similar operation.
[0016]
The optically active 1,1′-bi-2-naphthol dimer derivative represented by the formula (3) of the present invention is an optically active 1,1′-bi-2-naphthyl-deformant represented by the above formula (1). It can be obtained by using a dimer derivative as a raw material and treating it with an acid.
[0017]
The optically active 1,1′-bi-2-naphthol dimer derivative represented by the formula (4) of the present invention is an optically active 1,1′-bi-2-naphthol-derivative represented by the above formula (2). It can be obtained by using a dimer derivative as a raw material and treating it with an acid.
[0018]
In the production of the optically active 1,1′-bi-2-naphthyl-2 dimer derivative represented by the above formula (3) or formula (4), the acid used is not particularly limited. And sulfuric acid.
[0019]
The use of the optically active 1,1′-bi-2-naphthol-2 dimer derivative represented by the above formula (3) or (4) of the present invention is not particularly limited. It can be used as a compound discriminating agent, an asymmetric synthesis reaction catalyst element, or the like. In the present invention, the asymmetric synthesis reaction catalyst element means a ligand constituting the asymmetric synthesis reaction catalyst.
[0020]
When the optically active 1,1′-bi-2-naphthol-2 dimer derivative represented by the above formula (3) or formula (4) of the present invention is used as a discriminating agent for an optically active compound, specifically, In addition to use as a shift reagent for NMR, it can be used as an optical isomer separation agent supported on a carrier such as silica gel, and an optical isomer separation column comprising filling the column with it.
[0021]
When the optically active 1,1′-bi-2-naphthol-2 dimer derivative represented by the above formula (3) or formula (4) of the present invention is used as an NMR shift reagent, The compound represented by the above formula (3) or formula (4) of the present invention is mixed in an amount of 0.1 to 5 molar ratio, dissolved in a solvent such as deuterated chloroform, and measured with an NMR measuring apparatus.
[0022]
When the optically active 1,1′-bi-2-naphthol-2 dimer derivative represented by the above formula (3) or formula (4) of the present invention is used as an NMR shift reagent, as an applicable substrate, The compound is not particularly limited as long as it is a compound having an asymmetric center. For example, optically active amines such as 1-phenylethylamine, optically active amino acids such as phenylalanine, methyl phenyl sulfoxide, methyl (4-methylphenyl) sulfoxide, methyl (4-methoxyphenyl) sulfoxide, methyl (4-amino) It can be used for separation and identification of optically active sulfoxides such as phenyl) sulfoxide and methyl 4-nitrophenylsulfoxide, and optically active phenols such as 1,1′-bi-2-naphthol.
[0023]
When the optically active 1,1′-bi-2-naphthol-dimer derivative represented by the above formula (3) or formula (4) of the present invention is used as an asymmetric synthesis reaction catalyst element, the applicable reaction is a metal to be used. It varies depending on the species and is not particularly limited. For example, asymmetric aldol condensation reaction, asymmetric epoxidation reaction, asymmetric Diels-Alder cyclization reaction, asymmetric hetero-Diels-Alder cyclization reaction, asymmetric reduction reaction , Asymmetric protonation reaction, asymmetric nitroaldol reaction, asymmetric Michael addition reaction, asymmetric hydrophosphonylation reaction, asymmetric oxidation reaction, asymmetric Michael-aldol reaction, etc. Can be used to provide high reactivity and give the product a high optical purity. It can also be used as a catalyst material for optical resolution by dynamic asymmetric control.
[0024]
The asymmetric synthesis reaction catalyst of the present invention comprises an optically active 1,1′-bi-2-naphthol-dimer derivative represented by the above formula (3) or formula (4) and a metal alkoxide or a metal halide. Become.
[0025]
Specifically, an optically active 1,1′-bi-2-naphthol-dimer derivative represented by the above formula (3) or formula (4), a metal alkoxide, a metal halide alkoxide, or a metal halide. An asymmetric synthesis reaction catalyst comprising a metal complex obtained by reacting with an equivalent amount, an optically active 1,1′-bi-2-naphthol-dimer derivative represented by the above formula (3) or formula (4), Preferable examples include asymmetric synthesis reaction catalysts obtained by reducing metal complexes obtained by reacting metal alkoxides, metal halide alkoxides, or metal halides in equivalent amounts with a reducing agent. Titanium is particularly preferable as the metal species in the metal alkoxides, halogenated metal alkoxides, or metal halides. Such metal complexes are represented by the following formula (5) or formula (6).
[0026]
Embedded image
Figure 0004316854
Embedded image
Figure 0004316854
(In the formula, X represents a hydroxyl group, a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group or a halogen atom.)
It has the structure shown by.
[0027]
Specific examples of the reaction using the asymmetric synthesis reaction catalyst element of the present invention and the asymmetric synthesis reaction catalyst are shown below.
[0028]
First, a catalyst of sulfides using the optically active 1,1′-bi-2-naphthol-dimer derivative represented by the above formula (3) or formula (4) of the present invention as an asymmetric oxidation reaction catalyst element. The asymmetric oxidation reaction will be described below.
[0029]
When used in the asymmetric oxidation reaction of sulfides, the optically active 1,1′-bi-2-naphthol-2 dimer derivative represented by the above formula (3) or formula (4) of the present invention is equivalent to the metal alkoxide. After forming a metal complex, this is used as an asymmetric synthesis reaction catalyst to react sulfides with an oxidizing agent.
[0030]
When used for the asymmetric oxidation reaction of sulfides, applicable metal alkoxides are not particularly limited, but specifically, titanium (IV) tetraisopropoxide is preferable, and this is the present invention. A metal complex is formed using 2 moles of the optically active 1,1′-bi-2-naphthol-2 dimer derivative represented by the above formula (3) or (4). The asymmetric synthesis reaction catalyst thus obtained is used in the reaction after being treated with an appropriate amount of water in order to enhance the reaction activity.
[0031]
In the asymmetric oxidation reaction of sulfides, the amount of the asymmetric synthesis reaction catalyst used can be in the range of 1 to 100 mol% with respect to the sulfides used in the reaction, but usually 5 to 40 mol%. Use about.
[0032]
In the asymmetric oxidation reaction of sulfides, applicable substrates are not particularly limited, but specific examples include methyl phenyl sulfide, methyl (4-methylphenyl) sulfide, methyl (4-methoxyphenyl). ) Sulfide, methyl (4-aminophenyl) sulfide, methyl 4-nitrophenyl sulfide and the like.
[0033]
In the asymmetric oxidation reaction of sulfides, the oxidizing agent is not particularly limited, but specifically, tert-butyl hydroperoxide, cumene hydroperoxide, etc. are preferable, In general, it is used in an amount of 1 to 3 moles relative to the sulfides used in the above.
[0034]
As the reaction solvent for the asymmetric oxidation reaction of sulfides, any solvent can be used as long as it is inert to the reaction, and is not particularly limited. Specifically, dichloromethane, chloroform, Benzene, toluene, tetrahydrofuran (hereinafter abbreviated as THF), and the like are used in an amount of about 5 to 100 times the weight of sulfides used in the reaction.
[0035]
The reaction temperature and time for the asymmetric oxidation reaction of sulfides can be generally carried out in the temperature range of −78 to 20 ° C., but preferably in the temperature range of −40 to 0 ° C. for 5 to 48 hours. The reaction is completed by reacting to some extent.
[0036]
The catalyst comprising the optically active 1,1′-bi-2-naphthol dimer derivative represented by the above formula (3) or formula (4) and titanium (IV) isopropoxide of the present invention is a racemic sulfoxide. It is also possible to use it for optical resolution by dynamic asymmetric control on a class, and selectively oxidize racemic sulfoxides to obtain sulfoxides with high optical purity.
[0037]
In the present invention, specific examples of substrates applicable to optical resolution by dynamic asymmetric control include methyl phenyl sulfoxide, methyl (4-methylphenyl) sulfoxide, methyl (4-methoxyphenyl) sulfoxide, methyl ( 4-aminophenyl) sulfoxide, methyl 4-nitrophenyl sulfoxide and the like.
[0038]
In the present invention, the reaction conditions for performing optical resolution by dynamic asymmetry control include the use of sulfides except that the oxidizing agent is used in an amount of 0.4 to 0.6 mol relative to the sulfoxides included in the reaction. It is carried out under the same conditions as the asymmetric oxidation conditions.
[0039]
Next, an asymmetric pinacol using the optically active 1,1′-bi-2-naphthol-dimer derivative represented by the above formula (3) or (4) of the present invention as an asymmetric oxidation reaction catalyst element The production of hydrohydantoins by a coupling reaction will be described below.
[0040]
When used in the asymmetric pinacol coupling reaction, the optically active 1,1′-bi-2-naphthol-2 dimer derivative represented by the above formula (3) or formula (4) of the present invention and the metal alkoxide are used in an equivalent amount. After reacting to form a metal complex, this is used as an asymmetric synthesis reaction catalyst to react with benzaldehydes.
[0041]
The metal alkoxides applicable when used for asymmetric pinacol coupling are not particularly limited. Specifically, titanium (II) diisopropoxide is preferable, and the above formula (3) of the present invention is preferred. Alternatively, the optically active 1,1′-bi-2-naphthol-2 dimer derivative represented by the formula (4) was reacted with 2 mol of titanium (IV) tetraisopropoxide to form a metal complex. Thereafter, an asymmetric synthesis reaction catalyst prepared by reducing this with a reducing agent is particularly preferred. As the reducing agent, excess metal manganese is preferable, and the catalyst can be prepared by reducing for about 10 to 100 hours.
[0042]
The amount of the reducing agent used is not particularly limited because the performance of the catalyst used for the asymmetric pinacol coupling varies depending on the amount of the reducing agent used. For example, the above formula (3) or formula ( 4) About 0.5 to 10 moles of the metal complex composed of the optically active 1,1′-bi-2-naphthol dimer derivative and titanium (IV) tetraisopropoxide shown in 4) .
[0043]
The amount of the asymmetric synthesis reaction catalyst used in the asymmetric pinacol coupling can be used in the range of 1 to 100 mol% with respect to the aldehydes used in the reaction, but usually about 5 to 40 mol% is used.
[0044]
The applicable substrate for asymmetric pinacol coupling is not particularly limited, and specific examples include benzaldehyde, 4-methylbenzaldehyde, 4-methoxybenzaldehyde, 4-methoxybenzaldehyde, 4-aminobenzaldehyde and the like. Can be mentioned.
[0045]
As the reaction solvent for the asymmetric pinacol coupling, any solvent that is inert to the reaction can be applied, and is not particularly limited. Specifically, dichloromethane, chloroform, benzene, toluene, For example, THF is used, and the amount used is about 5 to 100 times the weight of the sulfides used in the reaction.
[0046]
The reaction temperature and time for the asymmetric pinacol coupling can be generally carried out in the temperature range of −90 to 10 ° C., but preferably in the temperature range of −80 to 0 ° C. for about 1 to 48 days. This completes the reaction.
[0047]
When performing an asymmetric oxidation reaction, an optical resolution by dynamic asymmetric control or an asymmetric pinacol coupling reaction using the catalyst of the present invention, a zeolite may be used, if necessary, specifically, Molecular sieves-4A is used in an amount of about 1 to 100 times the weight of the substrate used in the reaction.
[0048]
【The invention's effect】
According to the present invention, a compound useful as an asymmetric discriminating agent and an asymmetric synthesis reaction catalyst element is provided, can be used for various asymmetric synthesis reactions, and is extremely significant industrially.
[0049]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited only to an Example. In addition, about the analysis of the compound, it implemented using the following apparatus.
[0050]
(1H-NMR and13C-NMR measurement)
Implemented with JMN's JMN-EX 400 (400 and 100 MHz).
[0051]
(Infrared absorption measurement)
Implemented with FT / IR-420 made by JASCO.
[0052]
(Elemental analysis)
Requested by Kyushu University Elemental Analysis Center.
[0053]
(Mass spectrometry)
Performed with Shimadzu GC-MS QP-5000 and JEOL JMS-HX110A.
[0054]
High resolution mass spectrometry is performed with JMS-HX100A manufactured by JEOL.
[0055]
(Optical purity)
Performed with Shimadzu LC-9A or LC-10ATVP, Daicel column CHIRALCEL OB-H (0.46 mm ID × 250 mmL), detector Shimadzu SPD-6A and SPD10AV.
[0056]
(Specific rotation)
Conducted with SEPA-300 manufactured by Horiba.
[0057]
Reference Example 1 Preparation of (R) -1,1'-binaphthyl-2,2'-diyl bis (dimethoxymethyl) ether
(R)-(+)-1,1′-bi-2-naphthol (30.0 g, 105 mmol) and N, N-dimethylformamide (200 ml) were added to a 500 ml eggplant-shaped flask equipped with a stirrer under an argon atmosphere. ) And cooled to 0 ° C. on an ice bath, sodium hydride (60% oily, 12.6 g, 0.314 mol) was added thereto and stirred for 10 minutes, then returned to room temperature and further stirred for 30 minutes. Next, after cooling again to 0 ° C., chloromethyl methyl ether (24.4 g, 0.303 mol) was added, and the mixture was stirred for 15 minutes, then returned to room temperature, and further reacted for 2 hours.
[0058]
After completion of the reaction, saturated brine was added, extraction was performed with ethyl acetate, and the resulting organic phase was washed with water, dried over magnesium sulfate, filtered, and concentrated to obtain the desired product (R) -1,1′-binaphthyl-2. , 2′-diyl bis (dimethoxymethyl) ether (39.2 g, 103 mmol) was obtained quantitatively.
[0059]
(result of analysis)
1H NMR (CDCl3) σ 7.95 (d, J = 8.79 Hz, ArH, 2H), 7.87 (d, J = 8.06 Hz, ArH, 2H), 7.57 (d, J = 9.03 Hz) , ArH, 2H), 7.36-7.32 (m, ArH, 2H), 7.24-7.20 (m, ArH, 2H), 7.15 (d, ArH, 2H), 5.03 (Dd, J = 6.84, 42.97 Hz, -OCH2-, 4H), 3.14 (s, -OCHThree, 6H).
[0060]
Reference Example 2 Preparation of (R)-(+)-2,2'-di (methoxymethoxy) -3-iodo-1,1'-binaphthyl
(R) -1,1′-binaphthyl-2,2′-diyl bis (dimethoxymethyl) ether (10.2 g, obtained in Reference Example 1) was placed in a 300 ml eggplant-shaped flask equipped with a stirrer under an argon atmosphere. 27.4 mmol) and THF (100 ml) were charged and cooled to −78 ° C., tert-butyllithium (1.48 M-n-pentane solution, 18.5 ml, 27.4 mmol) was added thereto, and the mixture was stirred for 3 hours. did. Next, iodine (6.94 g, 27.4 mmol) was added thereto at the same temperature, and a reaction was further performed at the same temperature for 13 hours.
[0061]
After completion of the reaction, a saturated aqueous solution of ammonium chloride was added to the reaction mixture at -78 ° C. Subsequently, the temperature is returned to room temperature, and extraction with ethyl acetate is performed. The obtained organic phase is washed with a saturated aqueous sodium thiosulfate solution, dried over magnesium sulfate, filtered, concentrated, and purified by silica gel column chromatography to obtain the desired product ( R)-(+)-2,2′-di (methoxymethoxy) -3-iodo-1,1′-binaphthyl (10.0 g, 20.0 mmol) was obtained as a white solid (yield 73%).
[0062]
(result of analysis)
11 H NMR (CDClThree) Σ 8.52 (s, ArH, 1H), 7.96 (d, J = 9.03 Hz, ArH, 1H), 7.86 (d, J = 8.30 Hz, ArH, 1H), 7.78 ( d, J = 8.06 Hz, ArH, 1H), 7.58 (d, J = 9.03 Hz, ArH, 1H), 7.41-7.34 (m, ArH, 2H), 7.30-7 .23 (m, ArH, 2H), 7.18-7.13 (m, ArH, 2H), 5.09 (dd, J = 6.84, 37.84 Hz, -OCH2−, 2H), 4.71 (dd, J = 5.37, 16.60 Hz, −OCH2-, 2H), 3.19 (s, -OCHThree, 3H), 2.71 (s, -OCHThree, 3H).
[0063]
Example 1 Preparation of 3,3-bis {(R) -2,2'-di (methoxymethoxy) -1,1'-binaphthyl} [abbreviation (R, R) -tetrakis (methoxymethoxy) -bisbinaphthyl]
Under an argon atmosphere, bis (triphenylphosphine) nickel (II) bromide (448 mg, 0.60 mmol), zinc powder (265 mg, 4.05 mmol) and THF (15 ml) were placed in a 50 ml eggplant-shaped flask equipped with a stir bar. In addition, after stirring at room temperature for 30 minutes, after confirming the color change of the solution, (R)-(+)-2,2′-di (methoxymethoxy) -3-iodo- obtained in Reference Example 2 was added thereto. 1,1′-binaphthyl (1.02 g, 2.04 mmol) was added, and the reaction was further carried out at 50 ° C. for 13 hours in an oil bath.
[0064]
After completion of the reaction, silica gel was added, filtered, the residue was washed with ethyl acetate, the filtrate and washings were combined, concentrated, and purified by silica gel column chromatography to obtain the desired product (R, R) -tetrakis (methoxymethoxy)- Bisbinaphthyl (0.61 g, 0.82 mmol) was obtained as a white solid (yield 80%).
[0065]
(result of analysis)
Appearance: White solid
11 H NMR (400 MHz, CDClThree) Σ 8.18 (s, ArH, 2H), 7.96 (d, J = 9.03 Hz, ArH, 2H), 7.93 (d, J = 10.3 Hz, ArH, 2H), 7.86 ( d, J = 8.30 Hz, ArH, 2H), 7.60 (d, J = 9.03 Hz, ArH, 2H), 7.41 (t, J = 6.59 Hz, ArH, 2H), 7.39. -7.19 (m, ArH, 10H), 5.14-5.05 (brm, -OCH2-, 4H), 4.45-4.44 (brm, -OCH2-, 4H), 3.22 (s, -OCHThree, 6H), 2.28 (brs, -OCHThree, 6H)
HRMS-FAB (m / z): [M] +
Calculated value 746.288 (C48H42O8)
Found 746.288.
[0066]
Example 2 3,3-bis {(R) -2,2'-dihydroxy-1,1'-binaphthyl} [Preparation of (R, R) -bisbinol]
(R, R) -tetrakis (methoxymethoxy) -bisbinaphthyl (2.1 g, 2.81 mmol) obtained in Example 1 and toluene (8 ml) were placed in a 50 ml eggplant-shaped flask equipped with a stirrer under an argon atmosphere. ), Methanol (4 ml) and concentrated hydrochloric acid (35%, 2 ml) were added, and the reaction was carried out at 50 ° C. for 6 hours in an oil bath.
[0067]
After completion of the reaction, the reaction mixture was neutralized with a saturated aqueous sodium hydrogen carbonate solution, extracted with ethyl acetate, dried over magnesium sulfate, filtered and concentrated to give (R, R) -bisbinol (1.85 g, 2.80 mmol) as a white solid. (Yield: quantitative).
[0068]
(result of analysis)
Appearance: White solid
Melting point: 296.2-296.4 ° C
Specific rotation [α]D twenty two= + 303.45 ° (C = 1.00, THF)
11 H NMR (400 MHz, CDClThree) Σ8.20 (s, ArH, 2H), 7.97 (d, J = 8.79 Hz, ArH, 2H), 7.94 (d, J = 9.03 Hz, ArH, 2H), 7.87 ( d, J = 8.06 Hz, ArH, 2H), 7.45-7.18 (m, ArH, 14H), 5.60 (s, -OH, 2H), 5.23 (s, -OH, 2H) )
13C NMR (100 MHz, CDClThree) 111.49, 112.47, 117.78, 123.91, 124.25, 124.42, 124.58, 127.39, 127.55, 127.62, 128.38, 128.50 (2C) ), 129.38, 129.51, 131.26, 132.55, 133.42, 150.56, 152.57.
IR (KBr): 3481, 3423, 3057, 1620, 1594, 1499, 1469, 1428, 1381, 1362, 1346, 1322, 1263, 1208, 1174, 1146, 1027, 963, 893, 862, 827, 787, 745 , 681,614,535cm-1
HRMS-FAB (m / z): [M] +
Calculated value 570.183 (C40H26OFour)
Measured value 570.190
Elemental analysis C40H26OFour
Calculated C, 84.02; H, 4.64
Measurements C, 84.19; H, 4.59.
[0069]
Example 3 Utilization of (R, R) -bisbinol as NMR Shifting Reagent-1 (R, R) -bisbinol (4.1 mg, 0.007 mmol) prepared in Example 2 and racemic methyl phenylsulfoxide ( 1 mg, 0.007 mmol) with 1.5 ml deuterated chloroform (CDClThree, 1.5 ml), 0.4 ml of this was placed in an NMR sample tube, subjected to ultrasonic irradiation for 20 minutes, and then subjected to NMR measurement. The shift values of the methyl group were σ ′ = 2.6465 and σ ″ = 2.6005, and Δσ = 0.046.
[0070]
Example 4 Utilization of (R, R) -bisbinol as NMR shift reagent-2 (R, R) -bisbinol (4.1 mg, 0.007 mmol) was converted to (R, R) -bisbinol (2.1 mg, 0 Measurement was carried out in the same manner as in Example 3, except that it was changed to. The shift values of the methyl group were σ ′ = 2.6850 and σ ″ = 2.6730, and Δσ = 0.022.
[0071]
Comparative Example 1
Measured in the same manner as in Example 3, except that (R) -1,1′-bi-2,2′-naphthol (2.1 mg, 0.007 mmol) was used instead of (R, R) -bisbinol. As a result, Δσ = 0.01.
[0072]
Examples 5 to 8 (R, R) -Bisbinol as an NMR shift reagent-3
In the same manner as in Example 3, NMR measurement was performed using an equivalent amount of (R, R) -bisbinol to the compounds shown in Table 1. The results are also shown in Table 1.
[0073]
[Table 1]
Figure 0004316854
Example 9 Utilization of sulfide for asymmetric oxidation-1
(R, R) -bisbinol (9.7 mg, 0.017 mmol), molecular sieves-4A (18 mg) and titanium (IV) tetrapropoxide (9.8 mg) in a 10 ml round bottom flask equipped with a stir bar under argon. , 0.034 mmol) was added, and the mixture was stirred at room temperature for 1 hour, and then water-dichloromethane (0.6 μL-0.5 ml) prepared under argon was added, and the mixture was further stirred for 1 hour.
[0074]
Methyl phenyl sulfoxide (20 μL, 0.17 mmol) was added thereto, stirred for 30 minutes, cooled to −78 ° C., and cumene hydroperoxide (40 μL, 0.27 mmol) in dichloromethane (0.9 ml) prepared under argon. ) The solution was added and the reaction was further carried out at the same temperature for 28 hours.
[0075]
After completion of the reaction, saturated brine was added, and the product was purified by silica gel short column and silica gel column chromatography (hexane / ethyl acetate = 6/1, vol / vol) to obtain the target methyl phenyl sulfoxide (17.4 mg, 0.14 mmol). ) Was obtained in a yield of 52%.
[0076]
The optical purity measurement result with Daicel Chiral Cell OD (hexane / isopropanol = 9/1, vol / vol) was 26% ee, and S form preferentially (retention time R form: 31.5 min, S form 44. 1 min)
Example 10 Use of sulfide for asymmetric oxidation-2
The reaction was performed by the same operation using the same apparatus and reagents as in Example 9 except that the reaction temperature was −20 ° C.
[0077]
After purification, the desired product was obtained with a yield of 60% and 49% ee.
[0078]
Example 11 Optical Resolution by Dynamic Asymmetric Control of Sulfoxide
The reaction was carried out for 12 hours in the same manner as in Example 9 except that methyl phenyl sulfide was changed to methyl phenyl sulfoxide and the amount of cumene hydroperoxide used was halved.
[0079]
After purification, methyl phenyl sulfoxide was obtained in a yield of 32% and an optical purity of 49% ee (S-form priority).
[0080]
Example 12 Use for asymmetric pinacol coupling reaction
(1) Preparation of titanium (II)-(R, R) -bisbinol
(R, R) -Bisbinol (389 mg, 0.68 mmol), THF (20 ml), Molecular Sieves-4A (750 mg) and diisopropoxytitanium (II) chloride in a 50 ml eggplant-shaped flask equipped with a stir bar under argon (322 mg, 1.36 MMOL) was added and stirred at room temperature for 1 hour, and then manganese (74.7 mg, 1.36 mmol) was added thereto, followed by stirring for 40 hours.
[0081]
(2) Pinacol coupling reaction
In a 50 ml eggplant-shaped flask equipped with a stir bar, 4 ml of the solution portion (0.68 mmol / L) of the reactant prepared in (1) and Molecular Sieves-4A (60.5 mg) were placed and cooled to -78 ° C. Thereafter, benzaldehyde (27.6 μL, 0.272 mmol) and THF (1.4 mL) were added thereto, and the reaction was performed at the same temperature for 10 days.
[0082]
After completion of the reaction, a 50% aqueous KOH solution was added, and the product was purified by basic silica gel short column chromatography and silica gel column chromatography (hexane / ethyl acetate = 4/1, vol / vol) to obtain the target hydrobenzoin (20 0.0 mg, 0.094 mol) was obtained with a yield of 69%.
[0083]
The obtained hydrobenzoin was analyzed with a Daicel Chiral Pack AD column (hexane / ethanol = 9/1, vol / vol), and dl-form / meso-form = 78/22 (mol / mol), dl-form optical The purity was 87% ee (retention time: (S, S) isomer 27.6 min, (R, R) isomer 34.4 min, meso isomer 41.4 min).
[0084]
Examples 13 to 17
Using the same reaction apparatus as in Example 12, 0.5 equivalent of (R, R) -bisbinol was used, and the reaction was carried out for 10 days under the conditions shown in Table 2. The results are shown in Table 2.
[0085]
[Table 2]
Figure 0004316854
Comparative Example 2 to Comparative Example 4
Using the same reactor as in Example 12, 0.5 equivalent of (R, R) -bisbinol was changed to 1.0 equivalent of (R) -1,1′-bi-2-naphthol and shown in Table 3. The reaction was carried out under conditions. The results are also shown in Table 3.
[0086]
[Table 3]
Figure 0004316854

Claims (16)

下記式(1)又は式(2)で示される光学活性1,1’−ビ−2−ナフチル−2量体誘導体。
Figure 0004316854
(式中、Aはメトキシメチル基を示す。)
Figure 0004316854
(式中、Aはメトキシメチル基を示す。)
An optically active 1,1′-bi-2-naphthyl-dimer derivative represented by the following formula (1) or formula (2).
Figure 0004316854
(In the formula, A represents a methoxymethyl group.)
Figure 0004316854
(In the formula, A represents a methoxymethyl group.)
(R)−2,2’−ビス(メトキシメトキシ)−3−ヨウド−1,1’−ビナフチルをビス(トリフェニルフォスフィン)ニッケル(II)ブロマイド存在下、亜鉛粉末で反応させることにより2量化することを特徴とする請求項1に記載の式(1)で示される光学活性1,1’−ビ−2−ナフチル−2量体誘導体の製造方法。(R) -2,2′-bis (methoxymethoxy) -3-iodo-1,1′-binaphthyl is dimerized by reacting with zinc powder in the presence of bis (triphenylphosphine) nickel (II) bromide. A process for producing an optically active 1,1′-bi-2-naphthyl-dimer derivative represented by the formula (1) according to claim 1. (S)−2,2’−ビス(メトキシメトキシ)−3−ヨウド−1,1’−ビナフチルをビス(トリフェニルフォスフィン)ニッケル(II)ブロマイド存在下、亜鉛粉末で反応させることにより2量化することを特徴とする請求項1の記載の式(2)で示される光学活性1,1’−ビ−2−ナフチル−2量体誘導体の製造方法。Dimerization of (S) -2,2′-bis (methoxymethoxy) -3-iodo-1,1′-binaphthyl by reaction with zinc powder in the presence of bis (triphenylphosphine) nickel (II) bromide A process for producing an optically active 1,1′-bi-2-naphthyl-dimer derivative represented by the formula (2) according to claim 1. 下記式(3)又は式(4)で示される光学活性1,1’−ビ−2−ナフトール−2量体誘導体。
Figure 0004316854
Figure 0004316854
An optically active 1,1′-bi-2-naphthol-dimer derivative represented by the following formula (3) or formula (4).
Figure 0004316854
Figure 0004316854
請求項1に記載の式(1)で示される光学活性1,1’−ビ−2−ナフチル−2量体誘導体を酸で処理することを特徴とする請求項4に記載の式(3)で示される光学活性1,1’−ビ−2−ナフトール−2量体誘導体の製造方法。The optically active 1,1′-bi-2-naphthyl dimer derivative represented by the formula (1) according to claim 1 is treated with an acid, wherein the formula (3) according to claim 4 is treated. A method for producing an optically active 1,1′-bi-2-naphthol-dimer derivative represented by the formula: 請求項1に記載の式(2)で示される光学活性1,1’−ビ−2−ナフチル−2量体誘導体を酸で処理することを特徴とする請求項4に記載の式(4)で示される光学活性1,1’−ビ−2−ナフトール−2量体誘導体の製造方法。The optically active 1,1′-bi-2-naphthyl dimer derivative represented by the formula (2) according to claim 1 is treated with an acid, wherein the formula (4) according to claim 4 is treated. A method for producing an optically active 1,1′-bi-2-naphthol-dimer derivative represented by the formula: 請求項4に記載の式(3)又は式(4)で示される光学活性1,1’−ビ−2−ナフトール−2量体誘導体からなるNMR測定用シフト試薬。A shift reagent for NMR measurement comprising the optically active 1,1'-bi-2-naphthol-dimer derivative represented by formula (3) or formula (4) according to claim 4. 請求項4に記載の式(3)又は式(4)で示される光学活性1,1’−ビ−2−ナフトール−2量体誘導体と、金属アルコキシド、ハロゲン化金属アルコキシド又は金属ハロゲン化物からなる不斉合成反応触媒。An optically active 1,1′-bi-2-naphthol-dimer derivative represented by the formula (3) or the formula (4) according to claim 4 and a metal alkoxide, a metal halide alkoxide, or a metal halide. Asymmetric synthesis reaction catalyst. 請求項4に記載の式(3)又は式(4)で示される光学活性1,1’−ビ−2−ナフトール−2量体誘導体と、金属アルコキシド類、ハロゲン化金属アルコキシド又は金属ハロゲン化物を当量で反応させて得られる金属錯体からなる不斉合成反応触媒。An optically active 1,1′-bi-2-naphthol-dimer derivative represented by the formula (3) or the formula (4) according to claim 4 and a metal alkoxide, a metal halide alkoxide, or a metal halide. An asymmetric synthesis reaction catalyst comprising a metal complex obtained by reacting at an equivalent amount. 請求項4に記載の式(3)又は式(4)で示される光学活性1,1’−ビ−2−ナフトール−2量体誘導体と、金属アルコキシド類、ハロゲン化金属アルコキシド、又は金属ハロゲン化物を当量で反応させて得られる金属錯体を、金属マンガンにより10〜100時間還元することにより得られる不斉合成反応触媒。The optically active 1,1′-bi-2-naphthol-dimer derivative represented by the formula (3) or the formula (4) according to claim 4 and a metal alkoxide, a metal halide alkoxide, or a metal halide An asymmetric synthesis reaction catalyst obtained by reducing a metal complex obtained by reacting at an equivalent amount with metal manganese for 10 to 100 hours . 金属アルコキシドが、チタン(IV)テトライソプロポキシドであることを特徴とする請求項8乃至請求項10のいずれかに記載の不斉合成反応触媒。11. The asymmetric synthesis reaction catalyst according to claim 8 , wherein the metal alkoxide is titanium (IV) tetraisopropoxide. ハロゲン化金属アルコキシドが、ジイソプロポキシチタン(II)クロライドであることを特徴とする請求項8乃至請求項10のいずれかに記載の不斉合成反応触媒。11. The asymmetric synthesis reaction catalyst according to claim 8 , wherein the metal halide alkoxide is diisopropoxy titanium (II) chloride. 下記式(5)又は下記式(6)で示される金属錯体からなる不斉合成反応触媒。
Figure 0004316854
Figure 0004316854
(式中、Xは水酸基、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基又はハロゲン原子を示す。)
An asymmetric synthesis reaction catalyst comprising a metal complex represented by the following formula (5) or the following formula (6).
Figure 0004316854
Figure 0004316854
(In the formula, X represents a hydroxyl group, a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group or a halogen atom.)
請求項8乃至請求項13のいずれかに記載の不斉合成反応触媒存在下、スルフィド類を不斉酸化する光学活性スルフォキシド類の製造方法であって、スルフィド類が、メチル フェニルスルフィド、メチル (4−メチルフェニル)スルフィド、メチル (4−メトキシフェニル)スルフィド、メチル (4−アミノフェニル)スルフィド、及びメチル 4−ニトロフェニルスルフィドからなる群より選択され、使用する酸化剤が、tert−ブチルヒドロパーオキシド又はクメンヒドロパーオキシドであり、かつ使用する反応溶剤が、ジクロロメタン、クロロホルム、ベンゼン、トルエン、及びTHFからなる群より選択されることを特徴とする光学活性スルフォキシド類の製造方法 A method for producing optically active sulfoxides for asymmetric oxidation of sulfides in the presence of the catalyst for asymmetric synthesis reaction according to any one of claims 8 to 13 , wherein the sulfides are methyl phenyl sulfide, methyl (4 -Methylphenyl) sulfide, methyl (4-methoxyphenyl) sulfide, methyl (4-aminophenyl) sulfide, and methyl 4-nitrophenylsulfide, and the oxidizing agent used is tert-butyl hydroperoxide Or a process for producing optically active sulfoxides, wherein the reaction solvent is cumene hydroperoxide and the reaction solvent used is selected from the group consisting of dichloromethane, chloroform, benzene, toluene, and THF . 請求項8乃至請求項13のいずれかに記載の不斉合成反応触媒存在下、スルフォキシド類を、動的不斉制御により選択的に酸化する光学活性スルフォキシド類の製造方法であって、スルフォキシド類が、メチル フェニルスルフォキシド、メチル (4−メチルフェニル)スルフォキシド、メチル (4−メトキシフェニル)スルフォキシド、メチル (4−アミノフェニル)スルフォキシド、及びメチル 4−ニトロフェニルスルフォキシドからなる群より選択され、使用する酸化剤が、tert−ブチルヒドロパーオキシド又はクメンヒドロパーオキシドであり、かつ使用する反応溶剤が、ジクロロメタン、クロロホルム、ベンゼン、トルエン、及びTHFからなる群より選択されることを特徴とする光学活性スルフォキシド類の製造方法 A method for producing optically active sulfoxides, wherein sulfoxides are selectively oxidized by dynamic asymmetric control in the presence of the asymmetric synthesis reaction catalyst according to any one of claims 8 to 13 , wherein the sulfoxides are , Methyl phenyl sulfoxide, methyl (4-methylphenyl) sulfoxide, methyl (4-methoxyphenyl) sulfoxide, methyl (4-aminophenyl) sulfoxide, and methyl 4-nitrophenyl sulfoxide, An optical system characterized in that the oxidizing agent used is tert-butyl hydroperoxide or cumene hydroperoxide and the reaction solvent used is selected from the group consisting of dichloromethane, chloroform, benzene, toluene and THF. A method for producing active sulfoxides . 請求項8乃至請求項13のいずれかに記載の不斉合成反応触媒存在下、ベンズアルデヒド類を不斉カップリングさせる光学活性ヒドロベンゾイン類の製造方法であって、ベンズアルデヒド類が、ベンズアルデヒド、4−メチルベンズアルデヒド、4−メトキシベンズアルデヒド、4−メトキシベンズアルデヒド、及び4−アミノベンズアルデヒドからなる群より選択され、かつ使用する反応溶剤が、ジクロロメタン、クロロホルム、ベンゼン、トルエン、及びTHFからなる群より選択されることを特徴とする光学活性ヒドロベンゾイン類の製造方法A method for producing optically active hydrobenzoins in which benzaldehydes are asymmetrically coupled in the presence of an asymmetric synthesis reaction catalyst according to any one of claims 8 to 13, wherein the benzaldehydes are benzaldehyde, 4-methyl Selected from the group consisting of benzaldehyde, 4-methoxybenzaldehyde, 4-methoxybenzaldehyde, and 4-aminobenzaldehyde, and the reaction solvent used is selected from the group consisting of dichloromethane, chloroform, benzene, toluene, and THF. A method for producing an optically active hydrobenzoin .
JP2002304859A 2002-09-05 2002-10-18 Optically active polyhydric phenol derivative, method for producing the same, and use thereof Expired - Fee Related JP4316854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002304859A JP4316854B2 (en) 2002-09-05 2002-10-18 Optically active polyhydric phenol derivative, method for producing the same, and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002260651 2002-09-05
JP2002304859A JP4316854B2 (en) 2002-09-05 2002-10-18 Optically active polyhydric phenol derivative, method for producing the same, and use thereof

Publications (2)

Publication Number Publication Date
JP2004149414A JP2004149414A (en) 2004-05-27
JP4316854B2 true JP4316854B2 (en) 2009-08-19

Family

ID=32472987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002304859A Expired - Fee Related JP4316854B2 (en) 2002-09-05 2002-10-18 Optically active polyhydric phenol derivative, method for producing the same, and use thereof

Country Status (1)

Country Link
JP (1) JP4316854B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102858787B (en) * 2010-03-09 2014-09-03 国立大学法人东北大学 Bisphosphate compound and asymmetric reaction using same

Also Published As

Publication number Publication date
JP2004149414A (en) 2004-05-27

Similar Documents

Publication Publication Date Title
JP4264418B2 (en) Ruthenium complexes as (preliminary) catalysts for metathesis reactions
WO2006093269A1 (en) Optically active ammonium salt compound, production intermediate thereof and method for producing same
KR20020073495A (en) Method for the preparation of citalopram
JP4316854B2 (en) Optically active polyhydric phenol derivative, method for producing the same, and use thereof
WO2005073156A1 (en) Process for production of optically active hydroxymethylated compounds
JP3441344B2 (en) Method for producing optically active titanium alkoxide complex
JP5665041B2 (en) Iodonium compound, production method thereof, functionalized spirocyclic compound and production method thereof
WO2013081034A1 (en) Halogenation catalyst and method for producing same
JPH08245664A (en) Optically active asymmetric diphosphine and method for obtaining optically active substance in the presence of the same compound
US20100217040A1 (en) 2, 2', 6, 6'- tetrasubstituted aminophosphine ligand and its synthesis method
CN109666041B (en) Chiral monophosphine ligand HP-Phos with diphenyl ether skeleton, preparation method and application thereof
JP2021176823A (en) Manufacturing method of dibenzo[g,p] chrysene derivative and novel dibenzo[g,p] chrysene derivative
JP4725757B2 (en) Binaphthol phosphate derivatives and use thereof
JP2007203269A (en) Asymmetric catalyst
CN115466199B (en) Method for dehydrogenating and esterifying aldehyde and aryl phenol through light/nickel double-catalytic system
JP2002145842A (en) Optically active cobalt (ii), cobalt (iii) complex and production complex thereof
JP4572372B2 (en) Method for producing optically active quaternary carbon-containing compound
KR20120100823A (en) Process for the enantioselective synthesis of landiolol
US11084835B2 (en) 2,3-bisphosphinopyrazine derivative, method for producing same, transition metal complex, asymmetric catalyst, and method for producing organic boron compound
WO2024034666A1 (en) Ruthenium complex, method for producing same, catalyst composition, oxidation method and method for producing oxygen-containing compound
JPH08217775A (en) New crown thioether and its transition metallic complex and production of optically active alcohol using the same
US7563916B2 (en) Process for producing an alcohol or a silyl ether thereof
JP4605321B2 (en) Optically active oxazoline compound and method for producing optically active allyl alcohol derivative using the compound
JP3890404B2 (en) Ligand and asymmetric catalyst using the same
JP4386626B2 (en) Novel chiral metal complex solid catalyst, intermediates thereof, method for producing them, and method for producing asymmetric epoxy compound using the catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090521

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees