JP4316688B2 - Substituted binaphthyl compound and process for producing the same - Google Patents

Substituted binaphthyl compound and process for producing the same Download PDF

Info

Publication number
JP4316688B2
JP4316688B2 JP18461996A JP18461996A JP4316688B2 JP 4316688 B2 JP4316688 B2 JP 4316688B2 JP 18461996 A JP18461996 A JP 18461996A JP 18461996 A JP18461996 A JP 18461996A JP 4316688 B2 JP4316688 B2 JP 4316688B2
Authority
JP
Japan
Prior art keywords
compound
binaphthyl
mmol
binaphthyl compound
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18461996A
Other languages
Japanese (ja)
Other versions
JPH1029958A (en
Inventor
謙二 鈴木
栄暢 梁川
雅夫 嶋田
征巳 小沢
洋子 大國
隆 尾田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to JP18461996A priority Critical patent/JP4316688B2/en
Publication of JPH1029958A publication Critical patent/JPH1029958A/en
Application granted granted Critical
Publication of JP4316688B2 publication Critical patent/JP4316688B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、オレフィン化合物から光学活性なエポキシ化合物を得る不斉エポキシ化反応において、光学活性サレンマンガン錯体触媒の中間体であるサリチルアルデヒド化合物の前駆物質となる新規な置換ビナフチル化合物及びその製造法に関する。
【0002】
【従来の技術】
光学活性なエポキシ化合物は、医・農薬の中間体として重要である。
プロキラルなオレフィン化合物から光学活性なエポキシ化合物を製造する方法としては、例えば、特開平7-285983号公報、USP 5,420,314、Tetrahedron, 50,11827 (1994) 等の香月等の方法があり、これらは光学活性なサレンマンガン錯体を使用して触媒的不斉エポキシ化反応を行なう優れた方法である。
【0003】
光学活性なサレンマンガン錯体触媒は、ジアミン化合物、サリチルアルデヒド化合物及びマンガン塩から合成されている。
サリチルアルデヒド化合物は、ビナフトールをモノトリフレート体としてフェニルグリニャールでクロスカップリング反応を行い、遊離のヒドロキシ基をメトキシメチル基として保護後、t−ブチルリチウムでα位をリチオ化してホルミル化、脱保護して合成されている。
【0004】
又、ベンゼン環上のヒドロキシ基のα位に、選択的にホルミル基を導入する方法として、J. Chem. Soc. Perkin I, 1980, 1862 には、ホルムアルデヒド/ベース/ルイス酸を使用する遊離のヒドロキシ基のα位のホルミル化法、J. Org. Chem., 59, 1939 (1994) には、ヘキサメチレンテトラミンを使用するDuff反応が記載されている。
【0005】
【発明が解決しようとする課題】
しかし、香月等の方法は、遊離のヒドロキシ基の保護に発癌性等の問題があるクロロメチルメチルエーテルを使用していること、ホルミル化反応に発火性等があり取扱いに問題があるt−ブチルリチウムを使用していること、反応温度が−78℃と極低温であること等、効率的な製造法とは言えない。
【0006】
又、本発明のメトキシ基を有するビナフチル化合物について、ホルムアルデヒド/ベース/ルイス酸を使用する方法、Duff反応等を検討したが、いずれも反応が進行しないか低収率で満足のいく結果は得られなかった。
【0007】
【課題を解決するための手段】
本発明者等は、上記問題点を解決すべくサリチルアルデヒド化合物の前駆体の製造法について鋭意検討した結果、新規なメトキシ基を有するビナフチル化合物のホミルミル反応に、リチオ化剤として工業的に取扱いが容易なn−ブチルリチウムが使用可能なことを見出し、本発明を完成するに至った。
【0008】
即ち、本発明は、式(1)
【0009】
【化4】

Figure 0004316688
【0010】
〔式中、R1及びR2は、独立に水素原子、ハロゲン原子、C1〜C4アルキル基、C1〜C4アルコキシ基、ニトロ基又はシアノ基を意味し、
1、A2、A3、A4及びA5は、独立に水素原子、C1〜C4アルキル基、C1〜C4アルコキシ基を意味し、
ビナフチル部分はラセミ体でも光学活性体でもよい。〕
で表わされる置換ビナフチル化合物及び
式(2)
【0011】
【化5】
Figure 0004316688
【0012】
〔式中、ビナフチル部分はラセミ体でも光学活性体でもよく、R1、R2、A1、A2、A3、A4及びA5は、前記に同じ。〕
で表わされるビナフチル化合物を、
n−ブチルリチウムでリチオ化後、ホルミル化剤と反応させることを特徴とする
式(1)
【0013】
【化6】
Figure 0004316688
【0014】
〔式中、ビナフチル部分はラセミ体でも光学活性体でもよく、R1、R2、A1、A2、A3、A4及びA5は、前記に同じ。〕
で表わされる置換ビナフチル化合物の製造法に関するものである。
【0015】
【発明の実施の形態】
以下、更に詳細に本発明を説明する。
先ず、置換基R1、R2、A1、A2、A3、A4及びA5について説明する。
1〜C4アルキル基としては、メチル基、エチル基、n−プロピル基,i−プロピル基、n−ブチル基、i−ブチル基、sec−ブチル基、tert−ブチル基等が挙げられる。
【0016】
1〜C4アルコキシ基としては、メトキシ基、エトキシ基、n−プロポキシ基,i−プロポキシ基、n−ブトキシ基、i−ブトキシ基、sec−ブトキシ基、tert−ブトキシ基等が挙げられる。
以下、更に詳細に本発明を説明する。
リチオ化試剤であるn−ブチルリチウムの使用量は、式(2)のビナフチル化合物に対して当量〜10当量の範囲、好ましくは、当量〜3当量の範囲がよい。
【0017】
又、配位子の存在下、リチオ化を行うとリチオ化の収率が向上する。
配位子としては、テトラメチルエチレンジアミン、テトラメチルプロピレンジアミン、ジイソプロピルアミン、テトラメチル尿素、ジメチルプロピレン尿素、ヘキサメチルホスホリックトリアミド(HMPA)等が挙げられ、好ましくは、テトラメチルエチレンジアミン、テトラメチルプロピレンジアミンが挙げられる。
【0018】
配位子の使用量としては、式(2)のビナフチル化合物に対して0.1モル倍〜10倍モルの範囲、好ましくは、1モル倍〜5モル倍の範囲がよい。
ホルミル化剤としては、N,N−ジメチルホルムアミド、N,N−メチルフェニルホルムアミド、ギ酸メチル、オルトギ酸メチル、亜リン酸トリメチル、N−ホルミルモルホリン、N−ホルミルピペリジン等が挙げられ、好ましくは、N,N−ジメチルホルムアミド、N,N−メチルフェニルホルムアミド、N−ホルミルモルホリンが挙げられる。
【0019】
ホルミル化剤の使用量は、n−ブチルリチウムに対して、等モル〜10倍モルの範囲、好ましくは、等モル〜5倍モルの範囲がよい。
反応溶媒としては、反応に関与しないものであれば特に制限はなく、例えば、ベンゼン、トルエン、キシレン、メシチレン、クロルベンゼン、o−ジクロルベンゼン等の芳香族炭化水素類、n−ヘキサン、シクロヘキサン、n−オクタン、n−デカン等の脂肪族炭化水素類、ジクロロメタン、ジクロロエタン、クロロホルム、四塩化炭素等のハロゲン化炭化水素類、テトラヒドロフラン、テトラヒドロピラン、ジエチルエーテル、t−ブチルメチルエーテル、ジメトキシエタン等のエーテル類等が挙げられ、好ましくは、ヘキサン、テトラヒドロフラン、テトラヒドロピラン、ジエチルエーテル等が挙げられ、特に、テトラヒドロピランがよい。
【0020】
更に、これらの溶媒は、単独又は組合せて使用することもできる。
反応温度は、通常−100℃から使用する溶媒の沸点まで可能であるが、好ましくは−50℃から50℃の範囲、更に−20℃〜30℃の範囲がよい。
反応時間は、通常0.1〜1000時間である。
反応終了後は、水を加えて適当な溶媒により目的物を抽出し、溶媒を減圧濃縮して粗製物を得るか、又は適当な溶媒から目的物を固体として析出させて粗製物を得ることができる。
【0021】
更に、再結晶又はシリカゲルカラムクロマトグラフィー等の常法による精製を行なうことにより、純粋な式(1)の置換ビナフチル化合物を得ることができる。
【0022】
【実施例】
以下、実施例を挙げて更に詳しく説明するが、本発明はこれらに限定されるものではない。
実施例1
【0023】
【化7】
Figure 0004316688
【0024】
アルゴン雰囲気下、テトラヒドロピラン100g中に、ビナフチル化合物(1)10.0g(27.7ミリモル)を加えて溶解し、0℃に冷却した。
次に、テトラメチルエチレンジアミン12.9g(110.8ミリモル)を加えた後、n−ブチルリチウムのn−ヘキサン溶液33.1ml(1.69M/n−ヘキサン、55.4ミリモル)を滴下し、0℃で5時間攪拌した。
【0025】
この反応液に、0℃でN,N−ジメチルホルムアミド4.9g(67.0ミリモル)を滴下し、25℃で2時間攪拌した。
反応液に、1規定塩酸40gを加え、有機層を分液し、更に1規定塩酸40gで有機層を洗浄後、有機層を減圧下濃縮して、粗製物13gを得た。
この粗製物を、液体クロマトグラフ(カラム:Inertsil ODS−24.6φ×250mm、カラム温度:40℃、溶離液:アセトニトリル/水=3/1(酢酸0.1%)、流量:1.0ml/min.、検出:UV254nm)を使用して内標定量したところ、置換ビナフチル化合物(2)9.1g(収率85%)が含まれていた。
【0026】
この粗製物に、トルエン3.3gを加え、加熱溶解後、n−ヘプタン8.0gを加え室温まで冷却し、結晶を析出させた。
得られた結晶をろ別して、純粋な置換ビナフチル化合物(2)8.2gを得た。
Figure 0004316688
実施例2
アルゴン雰囲気下、テトラヒドロピラン10ml中に、ビナフチル化合物(1)1.0g(2.7ミリモル)を加えて溶解し、−10℃に冷却した。
【0027】
次に、テトラメチルエチレンジアミン0.8ml(5.3ミリモル)を加えて、n−ブチルリチウムのn−ヘキサン溶液3.5ml(1.69M/n−ヘキサン、5.9ミリモル)を滴下し、−10℃で6時間攪拌した。
この反応液に、−10℃でN,N−ジメチルホルムアミド0.65ml(8.4ミリモル)を滴下し、25℃で2時間攪拌した。
【0028】
反応液に、1規定塩酸を加え、有機層を分液後、有機層を実施例1と同様に内標定量したところ、置換ビナフチル化合物(2)0.62g(収率58%)及びビナフチル化合物(1)0.38g(回収率38%)が含まれていた。
実施例3
アルゴン雰囲気下、テトラヒドロピラン10ml中に、ビナフチル化合物(1)1.0g(2.7ミリモル)を加えて溶解し、−20℃に冷却した。
【0029】
次に、テトラメチルエチレンジアミン0.8ml(5.3ミリモル)を加えて、n−ブチルリチウムのn−ヘキサン溶液3.5ml(1.69M/n−ヘキサン、5.9ミリモル)を滴下し、−20℃で4時間攪拌した。
この反応液に、−10℃でN,N−ジメチルホルムアミド0.65ml(8.4ミリモル)を滴下し、25℃で2時間攪拌した。
【0030】
反応液に、1規定塩酸を加え、有機層を分液後、有機層を実施例1と同様に内標定量したところ、置換ビナフチル化合物(2)0.37g(収率34%)及びビナフチル化合物(1)0.56g(回収率56%)が含まれていた。
実施例4
アルゴン雰囲気下、テトラヒドロピラン10ml中に、ビナフチル化合物(1)1.0g(2.7ミリモル)を加えて溶解し、25℃でテトラメチルエチレンジアミン0.8ml(5.3ミリモル)を加えて、n−ブチルリチウムのn−ヘキサン溶液3.5ml(1.69M/n−ヘキサン、5.9ミリモル)を滴下し、25℃で15時間攪拌した。
【0031】
この反応液に、N,N−ジメチルホルムアミド0.65ml(8.4ミリモル)を滴下し、25℃で2時間攪拌した。
反応液に、1規定塩酸を加え、有機層を分液後、有機層を実施例1と同様に内標定量したところ、置換ビナフチル化合物(2)0.83g(収率77%)及びビナフチル化合物(1)0.1g(回収率9%)が含まれていた。
実施例5
アルゴン雰囲気下、テトラヒドロピラン10ml中に、ビナフチル化合物(1)1.0g(2.7ミリモル)を加えて溶解し、0℃に冷却した。
【0032】
次に、テトラメチルエチレンジアミン1.6ml(10.6ミリモル)を加えて、n−ブチルリチウムのn−ヘキサン溶液3.5ml(1.69M/n−ヘキサン、5.9ミリモル)を滴下し、0℃で3時間攪拌した。
この反応液に、0℃でN−ホルミルモルホリン0.85ml(8.4ミリモル)を滴下して、25℃で2時間攪拌した。
【0033】
反応液に、1規定塩酸を加え、有機層を分液後、有機層を実施例1と同様に内標定量したところ、置換ビナフチル化合物(2)0.82g(収率76%)及びビナフチル化合物(1)0.22g(回収率22%)が含まれていた。
実施例6
アルゴン雰囲気下、テトラヒドロピラン10ml中に、ビナフチル化合物(1)1.0g(2.7ミリモル)を加えて溶解し、0℃に冷却した。
【0034】
次に、テトラメチルエチレンジアミン1.6ml(10.6ミリモル)を加えて、n−ブチルリチウムのn−ヘキサン溶液3.5ml(1.69M/n−ヘキサン、5.9ミリモル)を滴下し、0℃で3時間攪拌した。
この反応液に、0℃でN−ホルミルピペリジン0.93ml(8.4ミリモル)を滴下して、25℃で2時間攪拌した。
【0035】
反応液に、1規定塩酸を加え、有機層を分液後、有機層を実施例1と同様に内標定量したところ、置換ビナフチル化合物(2)0.75g(収率70%)及びビナフチル化合物(1)0.17g(回収率17%)が含まれていた。
実施例7
【0036】
【化8】
Figure 0004316688
【0037】
実施例1のビナフチル化合物(1)を、光学活性な(R)−ビナフチル化合物(3)に代えた他は、実施例1と同様に反応及び後処理を行ない、透明で黄色の光学活性な(R)−置換ビナフチル化合物(4)8.5g(収率80%)を得た。
Figure 0004316688
参考例
【0038】
【化9】
Figure 0004316688
【0039】
アルゴン雰囲気下、1,2−ジクロルエタン30ml中に、無水塩化アルミニウム2.69g(20.2ミリモル)を加え、更に置換ビナフチル化合物(2)5.14g(純度90%、11.9ミリモル)を1,2−ジクロルエタン20mlに溶解させた溶液を加え、25℃で3時間攪拌した。
この反応液に、氷冷下1規定塩酸30gを加えて有機層を分液し、水洗後、有機層を減圧濃縮し粗製物5.12gを得た。
【0040】
この粗製物を内標定量したところ、目的物のサリチルアルデヒド化合物(5)4.22g(収率95%)が含まれていた。
【0041】
【発明の効果】
本発明により、式(2)のビナフチル化合物から、光学活性サレンマンガン錯体触媒の中間体であるサリチルアルデヒド化合物の前駆物質として有用な新規な式(1)の置換ビナフチル化合物を容易に製造することができる。
尚、式(1)の置換ビナフチル化合物より、脱メチル化反応を経由してサリチル化合物を容易に製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel substituted binaphthyl compound that is a precursor of a salicylaldehyde compound that is an intermediate of an optically active salen manganese complex catalyst in an asymmetric epoxidation reaction for obtaining an optically active epoxy compound from an olefin compound, and a method for producing the same .
[0002]
[Prior art]
Optically active epoxy compounds are important as intermediates for medicine and agricultural chemicals.
Examples of a method for producing an optically active epoxy compound from a prochiral olefin compound include, for example, Katsuki et al., Such as JP-A-7-285983, USP 5,420,314, Tetrahedron, 50 , 11827 (1994), and the like. This is an excellent method for carrying out catalytic asymmetric epoxidation reaction using an optically active salen manganese complex.
[0003]
The optically active salen manganese complex catalyst is synthesized from a diamine compound, a salicylaldehyde compound and a manganese salt.
The salicylaldehyde compound is obtained by cross-coupling reaction with phenyl Grignard using binaphthol as a monotriflate, protecting the free hydroxy group as a methoxymethyl group, and then lithiating the α position with t-butyllithium to formylate and deprotect Are synthesized.
[0004]
As a method for selectively introducing a formyl group into the α-position of the hydroxy group on the benzene ring, J. Chem. Soc. Perkin I, 1980 , 1862 includes a free formaldehyde / base / Lewis acid. A method for formylation of the α-position of a hydroxy group, J. Org. Chem., 59 , 1939 (1994), describes a Duff reaction using hexamethylenetetramine.
[0005]
[Problems to be solved by the invention]
However, the method of Katsuki et al. Uses chloromethyl methyl ether which has a problem such as carcinogenicity in protecting a free hydroxy group, and there is a problem in handling because the formylation reaction is ignitable. It cannot be said that it is an efficient manufacturing method, such as using butyl lithium and the reaction temperature being as low as -78 ° C.
[0006]
In addition, for the binaphthyl compound having a methoxy group of the present invention, a method using formaldehyde / base / Lewis acid, a Duff reaction, etc. were studied, but none of the reactions proceeded or satisfactory results were obtained with low yield. There wasn't.
[0007]
[Means for Solving the Problems]
As a result of intensive studies on a method for producing a precursor of a salicylaldehyde compound in order to solve the above-mentioned problems, the present inventors have industrially handled it as a lithiating agent for the homilmill reaction of a binaphthyl compound having a novel methoxy group. The inventors have found that easy n-butyllithium can be used, and have completed the present invention.
[0008]
That is, the present invention provides the formula (1)
[0009]
[Formula 4]
Figure 0004316688
[0010]
[Wherein, R 1 and R 2 independently represent a hydrogen atom, a halogen atom, a C 1 -C 4 alkyl group, a C 1 -C 4 alkoxy group, a nitro group or a cyano group;
A 1 , A 2 , A 3 , A 4 and A 5 independently represent a hydrogen atom, a C 1 -C 4 alkyl group, a C 1 -C 4 alkoxy group,
The binaphthyl moiety may be racemic or optically active. ]
A substituted binaphthyl compound represented by the formula (2)
[0011]
[Chemical formula 5]
Figure 0004316688
[0012]
[Wherein the binaphthyl moiety may be racemic or optically active, and R 1 , R 2 , A 1 , A 2 , A 3 , A 4 and A 5 are the same as above. ]
A binaphthyl compound represented by
Formula (1), characterized by reacting with a formylating agent after lithiation with n-butyllithium
[0013]
[Chemical 6]
Figure 0004316688
[0014]
[Wherein the binaphthyl moiety may be racemic or optically active, and R 1 , R 2 , A 1 , A 2 , A 3 , A 4 and A 5 are the same as above. ]
The present invention relates to a process for producing a substituted binaphthyl compound represented by the formula:
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
First, the substituents R 1 , R 2 , A 1 , A 2 , A 3 , A 4 and A 5 will be described.
The C 1 -C 4 alkyl group, a methyl group, an ethyl group, n- propyl group, i- propyl, n- butyl group, i- butyl group, sec- butyl group, etc. tert- butyl group.
[0016]
The C 1 -C 4 alkoxy group, a methoxy group, an ethoxy group, n- propoxy group, i- propoxy, n- butoxy, i- butoxy, sec- butoxy, tert- butoxy and the like.
Hereinafter, the present invention will be described in more detail.
The amount of n-butyllithium used as the lithiation reagent is in the range of 10 to 10 equivalents, preferably in the range of 3 to 3 equivalents, relative to the binaphthyl compound of formula (2).
[0017]
Further, when lithiation is performed in the presence of a ligand, the yield of lithiation is improved.
Examples of the ligand include tetramethylethylenediamine, tetramethylpropylenediamine, diisopropylamine, tetramethylurea, dimethylpropyleneurea, hexamethylphosphoric triamide (HMPA), and preferably tetramethylethylenediamine, tetramethylpropylene. Examples include diamines.
[0018]
As the usage-amount of a ligand, the range of 0.1 mol times-10 times mol with respect to the binaphthyl compound of Formula (2), Preferably the range of 1 mol times-5 mol times is good.
Examples of the formylating agent include N, N-dimethylformamide, N, N-methylphenylformamide, methyl formate, methyl orthoformate, trimethyl phosphite, N-formylmorpholine, N-formylpiperidine, and the like. N, N-dimethylformamide, N, N-methylphenylformamide, N-formylmorpholine can be mentioned.
[0019]
The amount of the formylating agent to be used is in the range of equimolar to 10-fold mol, preferably in the range of equimolar to 5-fold mol with respect to n-butyllithium.
The reaction solvent is not particularly limited as long as it does not participate in the reaction. For example, aromatic hydrocarbons such as benzene, toluene, xylene, mesitylene, chlorobenzene, o-dichlorobenzene, n-hexane, cyclohexane, Aliphatic hydrocarbons such as n-octane and n-decane, halogenated hydrocarbons such as dichloromethane, dichloroethane, chloroform, carbon tetrachloride, tetrahydrofuran, tetrahydropyran, diethyl ether, t-butyl methyl ether, dimethoxyethane, etc. Examples include ethers, preferably hexane, tetrahydrofuran, tetrahydropyran, diethyl ether and the like, and tetrahydropyran is particularly preferable.
[0020]
Furthermore, these solvents can be used alone or in combination.
The reaction temperature is usually from −100 ° C. to the boiling point of the solvent to be used.
The reaction time is usually 0.1 to 1000 hours.
After completion of the reaction, water is added and the target product is extracted with an appropriate solvent, and the solvent is concentrated under reduced pressure to obtain a crude product, or the target product is precipitated as a solid from an appropriate solvent to obtain a crude product. it can.
[0021]
Furthermore, a pure substituted binaphthyl compound of the formula (1) can be obtained by purification by a conventional method such as recrystallization or silica gel column chromatography.
[0022]
【Example】
EXAMPLES Hereinafter, although an Example is given and it demonstrates in detail, this invention is not limited to these.
Example 1
[0023]
[Chemical 7]
Figure 0004316688
[0024]
Under an argon atmosphere, 10.0 g (27.7 mmol) of the binaphthyl compound (1) was added and dissolved in 100 g of tetrahydropyran and cooled to 0 ° C.
Next, after adding 12.9 g (110.8 mmol) of tetramethylethylenediamine, 33.1 ml (1.69 M / n-hexane, 55.4 mmol) of n-hexane solution of n-butyllithium was added dropwise, Stir at 0 ° C. for 5 hours.
[0025]
To this reaction solution, 4.9 g (67.0 mmol) of N, N-dimethylformamide was added dropwise at 0 ° C., and the mixture was stirred at 25 ° C. for 2 hours.
To the reaction mixture was added 40 g of 1N hydrochloric acid, and the organic layer was separated. The organic layer was washed with 40 g of 1N hydrochloric acid, and then concentrated under reduced pressure to obtain 13 g of a crude product.
This crude product was subjected to liquid chromatography (column: Inertsil ODS-24.6φ × 250 mm, column temperature: 40 ° C., eluent: acetonitrile / water = 3/1 (acetic acid 0.1%), flow rate: 1.0 ml / min., detection: UV254 nm), and 9.1 g (yield 85%) of the substituted binaphthyl compound (2) was contained.
[0026]
To this crude product was added 3.3 g of toluene, and after dissolution by heating, 8.0 g of n-heptane was added and cooled to room temperature to precipitate crystals.
The obtained crystal was separated by filtration to obtain 8.2 g of a pure substituted binaphthyl compound (2).
Figure 0004316688
Example 2
Under an argon atmosphere, 1.0 g (2.7 mmol) of the binaphthyl compound (1) was added and dissolved in 10 ml of tetrahydropyran and cooled to −10 ° C.
[0027]
Next, 0.8 ml (5.3 mmol) of tetramethylethylenediamine was added, and 3.5 ml of an n-hexane solution of n-butyllithium (1.69 M / n-hexane, 5.9 mmol) was added dropwise. Stir at 10 ° C. for 6 hours.
To this reaction solution, 0.65 ml (8.4 mmol) of N, N-dimethylformamide was added dropwise at −10 ° C., and the mixture was stirred at 25 ° C. for 2 hours.
[0028]
1N Hydrochloric acid was added to the reaction mixture, and the organic layer was separated, and the organic layer was quantified in the same manner as in Example 1. As a result, 0.62 g (yield 58%) of the substituted binaphthyl compound (2) and the binaphthyl compound were obtained. (1) 0.38 g (recovery rate 38%) was contained.
Example 3
Under an argon atmosphere, 1.0 g (2.7 mmol) of the binaphthyl compound (1) was added and dissolved in 10 ml of tetrahydropyran and cooled to -20 ° C.
[0029]
Next, 0.8 ml (5.3 mmol) of tetramethylethylenediamine was added, and 3.5 ml of an n-hexane solution of n-butyllithium (1.69 M / n-hexane, 5.9 mmol) was added dropwise. Stir at 20 ° C. for 4 hours.
To this reaction solution, 0.65 ml (8.4 mmol) of N, N-dimethylformamide was added dropwise at −10 ° C., and the mixture was stirred at 25 ° C. for 2 hours.
[0030]
1N Hydrochloric acid was added to the reaction mixture, and the organic layer was separated. The organic layer was quantified in the same manner as in Example 1. As a result, 0.37 g (yield 34%) of the substituted binaphthyl compound (2) and the binaphthyl compound were obtained. (1) 0.56 g (recovery rate 56%) was contained.
Example 4
Under an argon atmosphere, 1.0 g (2.7 mmol) of the binaphthyl compound (1) is added and dissolved in 10 ml of tetrahydropyran, and 0.8 ml (5.3 mmol) of tetramethylethylenediamine is added at 25 ° C. -3.5 ml (1.69 M / n-hexane, 5.9 mmol) of n-hexane solution of butyllithium was added dropwise, and the mixture was stirred at 25 ° C for 15 hours.
[0031]
To this reaction solution, 0.65 ml (8.4 mmol) of N, N-dimethylformamide was added dropwise and stirred at 25 ° C. for 2 hours.
1N Hydrochloric acid was added to the reaction mixture, and the organic layer was separated, and the organic layer was quantified in the same manner as in Example 1. As a result, 0.83 g (yield 77%) of the substituted binaphthyl compound (2) and the binaphthyl compound were obtained. (1) 0.1 g (recovery rate 9%) was contained.
Example 5
Under an argon atmosphere, 1.0 g (2.7 mmol) of the binaphthyl compound (1) was added and dissolved in 10 ml of tetrahydropyran and cooled to 0 ° C.
[0032]
Next, 1.6 ml (10.6 mmol) of tetramethylethylenediamine was added, and 3.5 ml (1.69 M / n-hexane, 5.9 mmol) of n-hexane solution of n-butyllithium was added dropwise. Stir at 0 ° C. for 3 hours.
To this reaction solution, 0.85 ml (8.4 mmol) of N-formylmorpholine was added dropwise at 0 ° C., and the mixture was stirred at 25 ° C. for 2 hours.
[0033]
1N hydrochloric acid was added to the reaction solution, the organic layer was separated, and the organic layer was internally standardized in the same manner as in Example 1. As a result, 0.82 g (yield 76%) of the substituted binaphthyl compound (2) and the binaphthyl compound were obtained. (1) 0.22 g (22% recovery rate) was included.
Example 6
Under an argon atmosphere, 1.0 g (2.7 mmol) of the binaphthyl compound (1) was added and dissolved in 10 ml of tetrahydropyran and cooled to 0 ° C.
[0034]
Next, 1.6 ml (10.6 mmol) of tetramethylethylenediamine was added, and 3.5 ml (1.69 M / n-hexane, 5.9 mmol) of n-hexane solution of n-butyllithium was added dropwise. Stir at 0 ° C. for 3 hours.
To this reaction solution, 0.93 ml (8.4 mmol) of N-formylpiperidine was added dropwise at 0 ° C., and the mixture was stirred at 25 ° C. for 2 hours.
[0035]
1N Hydrochloric acid was added to the reaction mixture, and the organic layer was separated, and the organic layer was quantified in the same manner as in Example 1. As a result, 0.75 g (yield 70%) of the substituted binaphthyl compound (2) and the binaphthyl compound were obtained. (1) 0.17 g (17% recovery rate) was included.
Example 7
[0036]
[Chemical 8]
Figure 0004316688
[0037]
The reaction and post-treatment were performed in the same manner as in Example 1 except that the binaphthyl compound (1) in Example 1 was replaced with the optically active (R) -binaphthyl compound (3), and a transparent yellow optically active ( 8.5 g (yield 80%) of R) -substituted binaphthyl compound (4) were obtained.
Figure 0004316688
Reference example [0038]
[Chemical 9]
Figure 0004316688
[0039]
Under an argon atmosphere, 2.69 g (20.2 mmol) of anhydrous aluminum chloride was added to 30 ml of 1,2-dichloroethane, and 5.14 g (purity 90%, 11.9 mmol) of a substituted binaphthyl compound (2) was added. Then, a solution dissolved in 20 ml of 2-dichloroethane was added and stirred at 25 ° C. for 3 hours.
To this reaction solution, 30 g of 1N hydrochloric acid was added under ice-cooling to separate the organic layer. After washing with water, the organic layer was concentrated under reduced pressure to obtain 5.12 g of a crude product.
[0040]
When this crude product was quantified internally, 4.22 g (yield 95%) of the target salicylaldehyde compound (5) was contained.
[0041]
【The invention's effect】
According to the present invention, a novel substituted binaphthyl compound of the formula (1) that is useful as a precursor of a salicylaldehyde compound that is an intermediate of an optically active salen manganese complex catalyst can be easily produced from a binaphthyl compound of the formula (2). it can.
In addition, a salicyl compound can be easily produced from a substituted binaphthyl compound of the formula (1) via a demethylation reaction.

Claims (5)

式(1)
Figure 0004316688
〔式中、R 1 、R 2 、A 1 、A2、A3、A4及びA5は水素原子を意味し、ビナフチル部分はラセミ体でも光学活性体でもよい。〕で表わされる置換ビナフチル化合物。
Formula (1)
Figure 0004316688
[Wherein R 1 , R 2 , A 1 , A 2 , A 3 , A 4 and A 5 represent a hydrogen atom, and the binaphthyl moiety may be a racemate or an optically active substance. ] The substituted binaphthyl compound represented by this.
式(2)
Figure 0004316688
〔式中、R1、R2、A1、A2、A3、A4及びA5は水素原子を意味し、ビナフチル部分はラセミ体でも光学活性体でもよい。〕で表わされるビナフチル化合物を、−20℃〜30℃において、n−ブチルリチウムでリチオ化後、ホルミル化剤と反応させることを特徴とする式(1)
Figure 0004316688
〔式中、ビナフチル部分はラセミ体でも光学活性体でもよく、R1、R2、A1、A2、A3、A4及びA5は、前記に同じ。〕で表わされる置換ビナフチル化合物の製造法。
Formula (2)
Figure 0004316688
[Wherein R 1 , R 2 , A 1 , A 2 , A 3 , A 4 and A 5 represent a hydrogen atom, and the binaphthyl moiety may be a racemate or an optically active substance. A naphthyl compound represented by the formula (1) is lithiated with n -butyllithium at −20 ° C. to 30 ° C. and then reacted with a formylating agent.
Figure 0004316688
[Wherein the binaphthyl moiety may be racemic or optically active, and R 1 , R 2 , A 1 , A 2 , A 3 , A 4 and A 5 are the same as above. ] The manufacturing method of the substituted binaphthyl compound represented by this.
テトラメチルエチレンジアミンの存在下、リチオ化することを特徴とする請求項2記載の製造法。 3. The process according to claim 2, wherein the lithiation is carried out in the presence of tetramethylethylenediamine. ホルミル化剤がN,N−ジメチルホルムアミドである請求項2記載の製造法。 The process according to claim 2, wherein the formylating agent is N, N-dimethylformamide. 反応溶媒がテトラヒドロピランである請求項2記載の製造法。 The process according to claim 2, wherein the reaction solvent is tetrahydropyran.
JP18461996A 1996-07-15 1996-07-15 Substituted binaphthyl compound and process for producing the same Expired - Fee Related JP4316688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18461996A JP4316688B2 (en) 1996-07-15 1996-07-15 Substituted binaphthyl compound and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18461996A JP4316688B2 (en) 1996-07-15 1996-07-15 Substituted binaphthyl compound and process for producing the same

Publications (2)

Publication Number Publication Date
JPH1029958A JPH1029958A (en) 1998-02-03
JP4316688B2 true JP4316688B2 (en) 2009-08-19

Family

ID=16156410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18461996A Expired - Fee Related JP4316688B2 (en) 1996-07-15 1996-07-15 Substituted binaphthyl compound and process for producing the same

Country Status (1)

Country Link
JP (1) JP4316688B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115521193A (en) * 2022-09-30 2022-12-27 陕西蒲城海泰新材料产业有限责任公司 Industrial preparation method of 3,3',6,6' -tetramethoxy-2,2 ' -binaphthyl

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2090830B (en) * 1980-12-18 1984-09-26 Wellcome Found Formyl ether derivatives
JP2734457B2 (en) * 1994-02-23 1998-03-30 日産化学工業株式会社 Asymmetric epoxidation reaction

Also Published As

Publication number Publication date
JPH1029958A (en) 1998-02-03

Similar Documents

Publication Publication Date Title
Bandini et al. The First Catalytic Enantioselective Nozaki–Hiyama Reaction
KR20110081188A (en) Process for preparing 2-alkyl-3-aroyl-5-nitro-benzofurans
CN110041174B (en) EBINOL axis chiral compound and synthetic method and application thereof
CN112920221B (en) Chiral phosphoric acid with spiro-bis-dihydrobenzothiole skeleton and preparation method and application thereof
JP3586288B2 (en) Preparation of biphenyl derivatives
CN114478608A (en) Silicon-center chiral aryl silane and preparation method thereof
Quattropani et al. Enantioselective deprotonation/electrophile addition reactions of tricarbonyl (phenyl carbamate) chromium complexes
JP4316688B2 (en) Substituted binaphthyl compound and process for producing the same
US20040068140A1 (en) Preparation of mandelic acid derivatives
Guan et al. Palladium-catalyzed synthesis of indene derivatives via propargylic carbonates with in situ generated organozinc compounds
US7439400B2 (en) Amino alcohol ligand and its use in preparation of chiral proparglic tertiary alcohols and tertiary amines via enantioselective addition reaction
CN113444057B (en) Single chiral arm aminophenol sulfonamide ligand and application thereof in asymmetric catalysis
US7078531B2 (en) Process for obtaining enantiomers of thienylazolylalcoxyethanamines
US6486347B2 (en) Preparation of phosphine ligands
US7109349B2 (en) Process for obtaining Cizolirtine and its enantiomers
JPH10504307A (en) Process for producing a novel diisopinocampheyl chloroborane
US7173139B2 (en) Enantioselective 1,4-addition of aromatic nucleophiles to α,β-unsaturated aldehydes using chiral organic catalysts
JP4114262B2 (en) Ferrocenylaminophosphine and catalyst containing the phosphine
JP3915140B2 (en) Binaphthyl compound and process for producing the same
JP4380160B2 (en) Process for producing 7-quinolinyl-3,5-dihydroxyhept-6-enoic acid ester
JP2002145842A (en) Optically active cobalt (ii), cobalt (iii) complex and production complex thereof
JP4593289B2 (en) Quaternary ammonium bifluoride compound and method for producing nitroalcohol using the same
JP4951250B2 (en) Imidazole-based compound-palladium complex catalyst and method for producing aromatic olefin compound using the same catalyst
JP3680341B2 (en) Process for producing optically active 1,1'-bis (1-hydroxyalkyl) metallocene
Lockhart Carbenes and binaphthyls in asymmetric catalysis

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060718

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061026

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061214

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees