JP4316680B2 - High performance impulse ink ejection method and impulse ink ejection apparatus - Google Patents

High performance impulse ink ejection method and impulse ink ejection apparatus Download PDF

Info

Publication number
JP4316680B2
JP4316680B2 JP54580998A JP54580998A JP4316680B2 JP 4316680 B2 JP4316680 B2 JP 4316680B2 JP 54580998 A JP54580998 A JP 54580998A JP 54580998 A JP54580998 A JP 54580998A JP 4316680 B2 JP4316680 B2 JP 4316680B2
Authority
JP
Japan
Prior art keywords
tail
time
pulse
transducer
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP54580998A
Other languages
Japanese (ja)
Other versions
JP2001518030A (en
Inventor
エム. スタンゴ,クリストファー
ジェイ. ミラー,ノーマ
エル. ロジャース,ロバート
エス. タマリン,チャールズ
Original Assignee
トライデント インターナショナル,インコーポレイティド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トライデント インターナショナル,インコーポレイティド filed Critical トライデント インターナショナル,インコーポレイティド
Publication of JP2001518030A publication Critical patent/JP2001518030A/en
Application granted granted Critical
Publication of JP4316680B2 publication Critical patent/JP4316680B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04581Control methods or devices therefor, e.g. driver circuits, control circuits controlling heads based on piezoelectric elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04588Control methods or devices therefor, e.g. driver circuits, control circuits using a specific waveform
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04596Non-ejecting pulses

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Coating Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

技術分野
本発明は様々な形態の変換器のエネルギに応答してインクのような流体の小滴を噴射するドロップオンディマンド(drop-on-demand)またはインパルス流体噴射に関する。
背景技術
インパルス流体噴射またはインパルスインク噴射はインクのような流体の小滴をチャンバからインク噴射装置のオリフィスを介して噴射するように設計され駆動される。多くの用途では、インク噴射装置を高性能で、すなわち高速且つ射程距離を長くして作動させる必要はない。しかしながら、工業用の用途を含む多くの用途では高性能なインク噴射装置が必要とされている。
例えば、様々な工業用インクジェットの用途では、高解像度になるような点(ドット)を目標物に作り出すために小滴の大きさが比較的小さく維持されている間に小滴がインクジェットのオリフィスから多少の距離にある目標物に到達するように、小滴を高速で且つ射程距離を長くして噴射することが非常に重要である。このようにするためには、小滴の頭部と尾部とが互いに結び付けられたまま比較的高速な等しい速度で進むことが重要である。
従来の技術では、高速で且つ射程距離を長くすることは困難であった。例えば、米国特許第4,646,106号に開示されているタイプのインクジェット印刷ヘッドの膨張型の圧電変換器では、25kHzから50kHzの流体のヘルムホルツ振動数とこれに匹敵する圧電縦振動モード共振振動数とを用いて周波数反応に関して高い性能がられる。しかしながら、形成された小滴はこの小滴の速度を遅くする可能性のある長い尾部を有し、また射程距離は最高の性能を得られない。
米国特許第4,523,201号および米国特許第4,523,200号には小滴の尾部を早く切り離すように設計された幅の長い第一のパルスと幅の短い第二のパルスとを有する電圧波形で駆動せしめられる同様な印刷ヘッドを開示されている。しかしながら、ここに開示された装置は50kHz以下のヘルムホルツ振動数で作動するように設計されており、そして射程距離が向上した高速の小滴を生成するために尾部を切り離す高調波振動数を起こすことの効果が開示されていない。それどころか第二のパルスの照準をほとんど改善していない。
図1A〜図1Fを参照すると、図1Aは駆動波形を線図的に示しており、図1B〜図1Fには時間上の様々な点でのインクジェット装置を示している。図1Aには、駆動波形を縦座標に電圧、横座標に時間をとって示した。時間Aでは、図1Bに示したようにインクジェット装置は静止した状態で、また変換器10は電圧が加えられていない状態で維持され、予め定められた量のインク12がオリフィス16の後部のチャンバ14に入れられている。図1Aに示した時間Bでは、図示したように変換器10が電圧パルス17により駆動され、これにより変換器10の長さが短くなり、したがってチャンバ14内のインク12の量が増加し、図示した位置にオリフィス16内のメニスカスが引き込まれる。
図1Aの時間Cに対応した図1Cに示したように、変換器10に適用されていた電圧が下がると変換器10が膨張し始める。その結果、チャンバ14内の或る量のインク12は収縮され始め、図1Dに示したようにオリフィス16を通ってメニスカス18を前進させる。時間Cから僅かに後で時間Dの前において、図1Eに示したように、変換器10は図1Eに示したようにほぼ静止した状態に戻り、帯部21を有する小滴20がオリフィス16で形成され始める。図1Aの時間Dに対応する図1Fにおいて、小滴20は小滴20に結び付けられた遅く進む尾部22を有しながらオリフィス16から多少の距離だけ進む。図1Fに示したように、尾部22はチャンバ14内の或る量のインク12が図1Bに示した状態に戻る前にオリフィス16のメニスカス18から切り離される。図1Fからすぐにわかるように、尾部22と頭部20とが目標物への移動中に結びついたままであると想定すると、尾部22は引き延ばされて、目標物上に”上塗り”状態を作り出してしまう。尾部22は頭部の速度に比べて相対的に遅く移動し、これが尾部22を長くさせ、そして尾部22を分割させ、よって目標物までの射程距離の全長が減少する。
米国特許第4,459,601号、第4,509,059号、第4,646,106号および第4,697,193号に開示されたタイプの従来の装置では、インクジェット装置は約40kHzのヘルムホルツ共振振動数と約45kHzの圧力縦振動モード共振振動数に特徴付けられる。メニスカスに形成された尾部は約45kHzの圧力乱れを受ける。ゆえに、尾部はサイクル中の速度が負である間にこの乱れに応答して図1Fのように切り離され、これにより非常に小さい加速度成分を提供し、したがって頭部の速度は速く且つ尾部の速度は遅くなり、よって尾部は長い印刷ギャップを超えるほど長くなり、結果として印刷の質を低下させることになる。
発明の開示
本発明によれば高速の小滴が流体噴射装置から噴射される高性能な流体噴射の方法および流体噴射装置が提供される。
さらに本発明によれば小滴が長い射程距離を有するような高性能な流体噴射方法および流体噴射装置が提供される。
本発明ではさらに、インパルス流体噴射装置の作動方法が提供され、この流体ジェット装置はチャンバと該チャンバから小滴を噴射するオリフィスと共振振動数および高調波振動数を有する変換器とを具備する。作動方法は変換器の共振振動数を起こすために変換器に連結された一つの幅のエネルギパルスを発生する工程を具備する。小滴の噴射は一つのエネルギパルスに応答して小滴が頭部とこの頭部に結び付けられた尾部とを有するように行われる。変換器に連結された別の幅の別のエネルギパルスであって、高調波振動数を起こさせるために上記一つのエネルギパルスより実質的に短いエネルギパルスが発生せしめられる。頭部に結び付けられた尾部は別のエネルギパルスに応答して小滴の頭部から切り離される。その結果、頭部と尾部の残りの部分とは目標物に向かって共に進む。
本発明の好適な実施例において、別のパルスは時間的に一つのパルスの後に発生せしめられる。本発明の別の好適な実施例において別のパルスは時間的に一つのパルスの前に発生せしめられる。
本発明の別の重要な特徴によれば、頭部とこの頭部に結び付けられた尾部とを有する流体またはインクの小滴は少なくとも20ピコリットルを具備し、好適には60ピコリットル以上であり、また好適には秒速6メートル以上の速度で進み、さらに好適には移動距離または射程距離が少なくとも6.4mm(0.25インチ)であり、好適には12.7mm(0.5インチ)以上である。
本発明の更なる重要な特徴によれば、変換器は50kHz以上、好適には75kHz以上の共振振動数と150kHz以上、好適には200kHz以上の高調波振動数を有する。
本発明の別の重要な特徴によれば、流体噴射チャンバまたはインク噴射チャンバは好適には50kHz以上のヘルムホルツ振動数を有する容量である。
好適な実施例において、一つのパルスの幅は5マイクロ秒以上100マイクロ秒以下であり、別のパルスの幅は0.5マイクロ秒以上6マイクロ秒以下である。一つのパルスと別のパルスとの間の遅延時間は1マイクロ秒以上5マイクロ秒以下である。
【図面の簡単な説明】
図1A〜図1Fは上述した従来技術の線図および部分略図である。
図2Aは本発明の好適な実施例の流体噴射装置またはインク噴射装置を駆動するための波形である。
図2A’は本発明の別の好適な実施例の流体噴射装置またはインク噴射装置を駆動するための別の波形である。
図2Bは図2Aまたは図2A’の波形により駆動される本発明の流体噴射装置またはインク噴射装置の部分略図であり、小滴がインク噴射装置から現れる時を示している。
図2Cは流体噴射装置またはインク噴射装置の部分略図であり、僅かに時間が経過した後の図2Bの装置を示している。
図3は本発明を実行するのに使用される噴射印刷機の部分概略図/ブロック線図である。
図4は本発明の別の実施例で使用される別の電圧波形である。
図4aは使用されるさらに別の波形である。
図5は図3の信号発生器により駆動される縦振動モードの圧電変換器と直列の抵抗を示す回路図であり、この信号発生器は本発明により企画された様々な波形を使用する。
図6は射程距離が長くて高速な小滴を得る駆動波形に重ねられた変換器の共振振動数と高調波とを示す。
発明を実施するための最良の形態
図2Aを参照すると、本発明の一実施例における圧電変換器の電圧駆動波形を示す。時間Aの後に時間Bと時間Cとの間に一つのパルス23が発生せしめられ、そして圧電変換器に適用され、さらにこのパルス23は図1Bおよび図1Cに示したように圧電変換器を収縮させる。しかしながら、図1Aの従来技術の電圧波形とは違って、時間Eで始まり時間Fで終わる幅の短い別のパルスがパルス23の後すぐに続く。本発明によれば、時間Bと時間Cとの間のパルスは圧電共振振動を起こし、一方、時間Eと時間Fとの間の別の短いパルスは圧電変換器の高調波振動を起こす。高調波振動は高い加速成分と、図2Bおよび図2Cを参照して後述するように図1Fに示した従来技術のように尾部が形成されるのを防止するのに十分な振幅とを有する。
図2Bに示したように、時間Bと時間Cとの間のパルス23によりチャンバ14内のインク12に繋がっている小滴が図1Eに示した従来技術のオリフィスと同様なオリフィス16から外に押される。しかしながら、図2Aに示した時間Eと時間Fとの間の短いパルス25は圧電共振振動の高調波を起こし、図2Bに示したように細長い尾部が帯部22から形成されるのを防止し、図2Cに示したように図1Fに示した細長い尾部22に比べて短い尾部22を有するほぼ球状の小滴20を作り出す。
本発明では、高い共振振動数を有するので圧電変換器10が選択される。圧電変換器10の共振振動数は50kHzを超え、好適には75kHz以上であり、さらに90〜300kHzが好ましく、好適な実施例を代表している。時間Eと時間Fとの間の追従するパルスにより起こされる高調波振動数は150kHzを超え、また好適には200kHzを超え、好適な実施例では235kHzが使用される。好適な実施例では、共振振動数は90〜300kHzであり、高調波は235〜800kHzであるので、時間Bと時間Cとの間のパルス23は好適には14.5マイクロ秒であり、このパルスがメニスカス18内のインクブラックを従来技術の図1Cに示した位置まで引張る。時間Bと時間Cとの間のパルス23の後に時間Cと時間Eとの間の好適には1.5マイクロ秒の不感時間が続き、さらにこの後に235kHzの高調波を起こすために時間Eと時間Fとの間の3.0マイクロ秒の幅の短いパルスが続く。振動数が235kHzである高調波共振は高い加速成分を有する圧力波を作り出し、この圧力波は上述したようにインクが流れ出した時にオリフィス内のインク流れを乱す。その結果、尾部の形成は非常に影響を受け、尾部は従来の一つのパルスを利用する方法よりずっと早い段階でメニスカス18から切り離される。ここでの液体の表面張力は小滴を一まとまりに維持し、そして短い尾部を小滴の頭部の速度と等しい速度まで加速できるほど大きいので短い尾部22は小滴20の頭部と共に進むことができる。
本発明の別の重要な特徴によれば、液体共振振動数を増加させることにより小滴の射程距離が改善される。例えば、液体共振振動数またはヘルムホルツ振動数を45kHzから90kHzに増加させ、これに対応して圧電変換器の励振固有振動数を45kHzから90kHzに増加させると、頭部が6.5ミリ秒で進んでいる状態で小滴の尾部の速度が4.5ミリ秒から5.5ミリ秒に上がり、小滴の射程距離が少なくとも75パーセントほど増加する。例えば235kHzの高調波共振振動を起こすために幅の短い別のパルスを加えることで、小滴の尾部は尾部速度を秒速6.5〜7メートルに増加するのに十分なほど早く切り離される。このことによりインク小滴の射程距離がほぼ200パーセントほど増加せしめられることになる。
長いパルスの前または後に短いパルスを使用して早く小滴を切り離し且つ尾部を短くする同じ高調波振動を起こせることは明らかである。図2A’に示したように時間Bと時間Cとの間の長いパルスの前に時間Gと時間Hとの間に短いパルス27を発生する。その結果、長いパルス23の後に続く短いパルス27は高調波振動数を、すなわち150kHzを超え、好適な実施例では235kHz程の振動数を起こすことができるので、同じ効果がある。
図3には、図2Bおよび図2Cに示したタイプの複数の流体装置または噴射装置を有するシステムを示し、このシステムでは図3に拡大して示されたオリフィス16がヘッド24に組み込まれている。ヘッド24は電源28および電圧調整器30に接続せしめられた一つの信号発生器26により駆動される。タイミング回路32がヘッド24に組み込まれた流体噴射装置またはインク噴射装置の圧電変換器に駆動用の電圧パルスを発生するために信号発生器に接続され、ヘッド24は上述したタイプの長いパルスとその前または後の短いパルスとを有する。
図3に示したように、小滴20はコンベア38で搬送された目標物または対象36に向かって矢印34で示した方向に噴射される。多くの用途では、ヘッド24を目標物36から僅かに離すことが望まれまたは必要である。したがって本発明に従って高分解能を有する小滴および精度を得るために長い射程距離を有し且つ尾部がほとんどないまたは尾部がない高速な小滴を得ることは重要である。
本発明は特定のタイプの波形に制限されないことは明らかである。波形は方形または矩形である必要はなく、図4に示したように鋸歯状でも良く、また長いパルス37と短いパルス39との間の電圧はゼロにする必要はなく実質的に長いパルスと短いパルスの最高点より小さい振幅にすればよい。この観点で、図4に示した時間Iと時間Jとの間の長いパルスは時間Kと時間Lとの間の短いパルス39のようにほぼ三角形である。さらに、長いパルスと短いパルスとを分け隔てる時間Jと時間Kとの間の時間は時間Kと時間Lとの間の短いパルスの後に続く電圧のように変化するゼロではない電圧という点に特徴がある。この効果は時間Iと時間Jとの間の長いパルスで圧電変換器の励振固有振動または共振振動を起こし、時間Kと時間Lとの間の短いパルスで高調波振動数を起こすことにある。もちろん、前述のように短いパルスは図4の波形の長いパルスの前および後のどちらでも良い。図4aには別のパルス37aおよび37bが示されており、ここでは短いパルスが長いパルスの後に続く。
前述のように、図2A、図2A’、図4、図4Aの波形を使用した好適な実施例は長いパルスが14.5マイクロ秒で短いパルスが3.0マイクロ秒である。他の実施例では圧電変換器の共振振動数に依存して異なった幅を有してもよい。例えば、幅の長いパルスを5マイクロ秒〜100マイクロ秒とし、幅の短いパルスを0.5マイクロ秒〜6マイクロ秒としてもよい。同様に、パルス間の時間も0.1マイクロ秒〜5マイクロ秒の間で変えることができる。
図4を参照すると、ここで述べる波形は特に安定した性能が得られることが望ましい。図4の波形を得るためには圧電変換器と直列な抵抗を有することが望ましい。この観点で図5を参照すると、少なくとも100オームの抵抗40が電極42と電極44との間に配置された圧電変換器10と直列に接続される。図に示したように、圧電変換器10は図2Bと図2Cに示したように膨張と縮小をする縦振動モードの変換器であり、この圧電変換器10の長さは15mm(0.6インチ)以下である。圧電変換器10はダイアフラム46を介してチャンバ14に接続される。チャンバ14内に通ずる流入孔48を示した。好適な実施例において、チャンバ14は50kHz以上の、好ましくは90kHzのヘルムホルツ共振振動数を確実にするのに十分なほどの小さい容量しか有しておらず、このチャンバ14は1997年3月25日提出の米国特許出願第08/828,758号に示された印刷ヘッド内で実施化されており、これは参照して本願の一部を構成する。さらに、図5に示した特別なインパルスインク噴射に関する詳細は米国特許第4,697,193号に記載されており、参照して本願の一部を構成するが、50kHzを超えるヘルムホルツ振動数はこの特許には開示されていない。
図6では、図2Bおよび図2Cに示した流体噴射装置のチャンバ圧力に図4aに示した電圧波形に類似した電圧波形を重ねて示した。ここで装置の共振振動数に対応したチャンバ圧力の変化は基本的に長いパルス37bの結果である減衰正弦であり、この減衰正弦は装置の高調波を起こす短いパルス39bの結果である小さい波を伴う。装置の高調波に対応した小さい波は段部50のような形状をしており、この段部50は短いパルス39bの後縁52と一致し、図2Cに示したような小さい小滴を作り出すために小滴の尾部を切り離す。その結果、小滴は高速でさらに遠くまで進むことができるようになり、すなわち射程距離が増加することになる。
小滴の尾部を加速して且つこの尾部が減速されないことを確実にするために変換器の高調波が起こされなければならないことは明らかである。圧電変換器の共振振動数と高調波との間に適切な関係を示すために、図6を参照すると、共振振動数は概して正弦曲線形状48により示され、高調波振動数は正弦波形50により示され、この正弦波形50には特定の高調波振動が起こるようなパルスのタイミングで適切に間隔を空けられる。この高調波振動数と共振振動数との関係は尾部が切り離されることと、小滴にとどまった尾部の残りの部分が小滴頭部に加速されることを確実にし、従って射程距離と速度が改善される。特定の変換器および特定の波形を示したが、流体またはインクが変換器として働くバブルジェットを含む様々な装置で本発明を実施してもよいことは明らかである。加えて、本発明を別の形状および形態の変換器で実行しても良く、すなわち必ずしも縦振動モードの膨張型変換器でなくてもよい。例えば複数のベンダ(bender)と壁を共有した複数の変換器とを用いていもよい。さらに、特定の駆動波形を電圧パルスではなくエネルギパルスとし、高調波と同様に共振振動数を起こすことを確実にする適切な時間で変換器を作動および停止してもよい。最後に、流体はインクでなくてもよく、例えば計量のような様々な目的のために小滴状で噴射されなければならない流体でもよい。
TECHNICAL FIELD This invention relates to drop-on-demand or impulse fluid ejection that ejects droplets of fluid, such as ink, in response to the energy of various forms of transducers.
Background Art Impulse fluid ejection or impulse ink ejection is designed and driven to eject droplets of fluid, such as ink, from a chamber through an orifice of an ink ejection device. In many applications, it is not necessary to operate the ink ejector with high performance, i.e., high speed and long range. However, many applications, including industrial applications, require high performance ink ejectors.
For example, in various industrial inkjet applications, the droplets can be removed from the inkjet orifice while the droplet size is kept relatively small to create a high resolution dot (dot) on the target. It is very important to eject the droplets at high speed and with a long range so as to reach the target at some distance. In order to do this, it is important that the head and tail of the droplets travel at a relatively fast, equal speed while being tied together.
In the prior art, it was difficult to increase the range at high speed. For example, an expansion type piezoelectric transducer of an ink jet print head of the type disclosed in US Pat. No. 4,646,106 uses a Helmholtz frequency of a fluid of 25 kHz to 50 kHz and a piezoelectric longitudinal vibration mode resonance frequency comparable thereto. High performance in terms of frequency response. However, the droplets that are formed have a long tail that can slow the speed of the droplets, and range is not the best performance.
U.S. Pat.No. 4,523,201 and U.S. Pat.No. 4,523,200 are similarly driven by a voltage waveform with a first long pulse and a second short pulse designed to quickly break the tail of the droplet. A print head is disclosed. However, the device disclosed herein is designed to operate at a Helmholtz frequency of 50 kHz or less, and generates harmonic frequencies that detach the tail to produce high speed droplets with improved range. The effect of is not disclosed. On the contrary, the aim of the second pulse is hardly improved.
Referring to FIGS. 1A-1F, FIG. 1A shows drive waveforms diagrammatically, and FIGS. 1B-1F show ink jet devices at various points in time. In FIG. 1A, the drive waveform is shown with voltage on the ordinate and time on the abscissa. At time A, as shown in FIG. 1B, the ink jet device is stationary and the transducer 10 is maintained with no voltage applied, and a predetermined amount of ink 12 is placed in the chamber behind the orifice 16. 14 At time B shown in FIG. 1A, the transducer 10 is driven by a voltage pulse 17 as shown, which shortens the length of the transducer 10 and therefore increases the amount of ink 12 in the chamber 14. The meniscus in the orifice 16 is drawn into the position.
As shown in FIG. 1C corresponding to time C in FIG. 1A, the converter 10 starts to expand when the voltage applied to the converter 10 decreases. As a result, a certain amount of ink 12 in chamber 14 begins to contract, causing meniscus 18 to advance through orifice 16 as shown in FIG. 1D. Slightly after time C and before time D, as shown in FIG. 1E, the transducer 10 returns to a substantially stationary state, as shown in FIG. Begins to form. In FIG. 1F, corresponding to time D in FIG. 1A, the droplet 20 travels some distance from the orifice 16 with a slow-tailing tail 22 associated with the droplet 20. As shown in FIG. 1F, the tail 22 is disconnected from the meniscus 18 of the orifice 16 before an amount of ink 12 in the chamber 14 returns to the state shown in FIG. 1B. As can be readily seen from FIG. 1F, assuming that the tail 22 and the head 20 remain connected during movement to the target, the tail 22 is stretched to create an “overcoat” state on the target. I will create it. The tail 22 moves relatively slowly compared to the speed of the head, which lengthens the tail 22 and divides the tail 22, thus reducing the total range distance to the target.
In prior art devices of the type disclosed in U.S. Pat. Characterized. The tail formed on the meniscus is subjected to a pressure disturbance of about 45 kHz. Therefore, the tail is disconnected as shown in FIG. 1F in response to this disturbance while the speed during the cycle is negative, thereby providing a very small acceleration component, so the head speed is fast and the tail speed is high. Slows down, so that the tail becomes longer beyond a long print gap, resulting in poor print quality.
DISCLOSURE OF THE INVENTION According to the present invention, a high-performance fluid ejection method and fluid ejection device in which high-speed droplets are ejected from a fluid ejection device are provided.
Furthermore, the present invention provides a high-performance fluid ejecting method and fluid ejecting apparatus in which a droplet has a long range.
The present invention further provides a method of operating an impulse fluid ejection device, the fluid jet device comprising a chamber, an orifice for ejecting a droplet from the chamber, and a transducer having a resonant frequency and a harmonic frequency. The method of operation comprises the step of generating an energy pulse of a width coupled to the transducer to cause a resonant frequency of the transducer. The droplet ejection is performed in response to one energy pulse so that the droplet has a head and a tail connected to the head. Another energy pulse of another width coupled to the transducer is generated that is substantially shorter than the one energy pulse to cause a harmonic frequency. The tail associated with the head is detached from the head of the droplet in response to another energy pulse. As a result, the head and the rest of the tail travel together toward the target.
In the preferred embodiment of the present invention, another pulse is generated after one pulse in time. In another preferred embodiment of the invention, another pulse is generated before one pulse in time.
According to another important feature of the invention, the fluid or ink droplet having a head and a tail attached to the head comprises at least 20 picoliters, preferably more than 60 picoliters. And preferably travels at a speed of at least 6 meters per second, more preferably has a moving distance or range of at least 6.4 mm (0.25 inches), preferably 12.7 mm (0.5 inches) or more. It is.
According to a further important feature of the invention, the transducer has a resonant frequency of 50 kHz or higher, preferably 75 kHz or higher and a harmonic frequency of 150 kHz or higher, preferably 200 kHz or higher.
According to another important feature of the invention, the fluid ejection chamber or ink ejection chamber is preferably a volume having a Helmholtz frequency of 50 kHz or higher.
In a preferred embodiment, the width of one pulse is not less than 5 microseconds and not more than 100 microseconds, and the width of another pulse is not less than 0.5 microseconds and not more than 6 microseconds. The delay time between one pulse and another pulse is not less than 1 microsecond and not more than 5 microseconds.
[Brief description of the drawings]
1A-1F are a diagram and partial schematic diagram of the prior art described above.
FIG. 2A is a waveform for driving a fluid ejecting apparatus or an ink ejecting apparatus according to a preferred embodiment of the present invention.
FIG. 2A 'is another waveform for driving a fluid ejection device or ink ejection device of another preferred embodiment of the present invention.
FIG. 2B is a partial schematic diagram of the fluid ejection device or ink ejection device of the present invention driven by the waveform of FIG. 2A or 2A ′, showing when a droplet emerges from the ink ejection device.
FIG. 2C is a partial schematic diagram of a fluid ejection device or ink ejection device, showing the device of FIG. 2B after a slight amount of time.
FIG. 3 is a partial schematic / block diagram of a jet printer used to practice the present invention.
FIG. 4 is another voltage waveform used in another embodiment of the present invention.
FIG. 4a is yet another waveform used.
FIG. 5 is a circuit diagram showing resistance in series with a longitudinal vibration mode piezoelectric transducer driven by the signal generator of FIG. 3, which uses the various waveforms planned by the present invention.
FIG. 6 shows the resonant frequency and harmonics of the transducer superimposed on the drive waveform to obtain high speed droplets with long range.
BEST MODE FOR CARRYING OUT THE INVENTION Referring to FIG. 2A, a voltage drive waveform of a piezoelectric transducer in one embodiment of the present invention is shown. After time A, a pulse 23 is generated between time B and time C and applied to the piezoelectric transducer, which further contracts the piezoelectric transducer as shown in FIGS. 1B and 1C. Let However, unlike the prior art voltage waveform of FIG. 1A, another short pulse that begins at time E and ends at time F immediately follows pulse 23. According to the present invention, the pulse between time B and time C causes piezoelectric resonance vibration, while another short pulse between time E and time F causes harmonic vibration of the piezoelectric transducer. The harmonic vibration has a high acceleration component and an amplitude sufficient to prevent the tail from forming as in the prior art shown in FIG. 1F as described below with reference to FIGS. 2B and 2C.
As shown in FIG. 2B, a drop between time B and time C causes a droplet connected to ink 12 in chamber 14 to exit out of orifice 16 similar to the prior art orifice shown in FIG. 1E. Pressed. However, the short pulse 25 between time E and time F shown in FIG. 2A causes harmonics of the piezoelectric resonance vibration and prevents the narrow tail from being formed from the band 22 as shown in FIG. 2B. As shown in FIG. 2C, it produces a substantially spherical droplet 20 having a short tail 22 compared to the elongated tail 22 shown in FIG. 1F.
In the present invention, the piezoelectric transducer 10 is selected because it has a high resonance frequency. The resonance frequency of the piezoelectric transducer 10 exceeds 50 kHz, preferably 75 kHz or more, more preferably 90 to 300 kHz, and represents a preferred embodiment. The harmonic frequency caused by the following pulse between time E and time F exceeds 150 kHz, and preferably exceeds 200 kHz, and in the preferred embodiment 235 kHz is used. In the preferred embodiment, the resonant frequency is 90-300 kHz and the harmonic is 235-800 kHz, so the pulse 23 between time B and time C is preferably 14.5 microseconds, A pulse pulls the ink black in the meniscus 18 to the position shown in prior art FIG. 1C. A pulse 23 between time B and time C is followed by a dead time of preferably 1.5 microseconds between time C and time E, followed by time E and time E to generate a harmonic of 235 kHz. A short pulse of 3.0 microseconds in width with time F follows. The harmonic resonance with a frequency of 235 kHz creates a pressure wave with a high acceleration component, and this pressure wave disturbs the ink flow in the orifice when the ink flows out as described above. As a result, tail formation is greatly affected, and the tail is disconnected from the meniscus 18 much earlier than the conventional method utilizing a single pulse. The surface tension of the liquid here is large enough to keep the droplets together and to accelerate the short tail to a speed equal to the velocity of the droplet head, so that the short tail 22 travels with the droplet 20 head. Can do.
According to another important feature of the present invention, the range of the droplet is improved by increasing the liquid resonance frequency. For example, when the liquid resonance frequency or Helmholtz frequency is increased from 45 kHz to 90 kHz, and the excitation natural frequency of the piezoelectric transducer is increased from 45 kHz to 90 kHz correspondingly, the head advances in 6.5 milliseconds. In this state, the velocity of the droplet tail increases from 4.5 milliseconds to 5.5 milliseconds, and the droplet range increases by at least 75 percent. For example, by applying another pulse with a short width to cause harmonic resonance oscillation at 235 kHz, the tail of the droplet is cut off fast enough to increase the tail speed to 6.5-7 meters per second. This increases the range of the ink droplets by approximately 200 percent.
It is clear that a short pulse can be used before or after a long pulse to cause the same harmonic oscillation to quickly break the droplet and shorten the tail. As shown in FIG. 2A ′, a short pulse 27 is generated between time G and time H before a long pulse between time B and time C. As a result, the short pulse 27 that follows the long pulse 23 has the same effect because it can cause harmonic frequencies above 150 kHz, in the preferred embodiment, as high as 235 kHz.
FIG. 3 shows a system having a plurality of fluidic devices or jetting devices of the type shown in FIGS. 2B and 2C, in which the orifice 16 shown enlarged in FIG. . The head 24 is driven by a single signal generator 26 connected to a power supply 28 and a voltage regulator 30. A timing circuit 32 is connected to the signal generator to generate a driving voltage pulse in a piezoelectric transducer of a fluid ejection device or ink ejection device incorporated in the head 24. The head 24 is connected to a long pulse of the type described above and its With a short pulse before or after.
As shown in FIG. 3, the droplets 20 are ejected in the direction indicated by the arrow 34 toward the target or object 36 conveyed by the conveyor 38. In many applications, it may be desirable or necessary to move the head 24 slightly away from the target 36. It is therefore important to obtain droplets with high resolution and high speed droplets with long range and little or no tail in order to obtain accuracy according to the present invention.
Obviously, the present invention is not limited to a particular type of waveform. The waveform need not be square or rectangular, but may be serrated as shown in FIG. 4, and the voltage between the long pulse 37 and the short pulse 39 need not be zero and is substantially long and short. The amplitude may be smaller than the highest point of the pulse. In this regard, the long pulse between time I and time J shown in FIG. 4 is approximately triangular, as is the short pulse 39 between time K and time L. Furthermore, the time between time J and time K separating the long and short pulses is characterized by a non-zero voltage that varies like the voltage following the short pulse between time K and time L. There is. The effect is that a long pulse between time I and time J causes an excitation natural vibration or resonance vibration of the piezoelectric transducer, and a short pulse between time K and time L causes a harmonic frequency. Of course, as described above, the short pulse may be before or after the long pulse having the waveform shown in FIG. FIG. 4a shows another pulse 37a and 37b, where a short pulse follows a long pulse.
As mentioned above, the preferred embodiment using the waveforms of FIGS. 2A, 2A ′, 4 and 4A has a long pulse of 14.5 microseconds and a short pulse of 3.0 microseconds. Other embodiments may have different widths depending on the resonant frequency of the piezoelectric transducer. For example, a long pulse may be 5 microseconds to 100 microseconds, and a short pulse may be 0.5 microseconds to 6 microseconds. Similarly, the time between pulses can also vary between 0.1 microseconds and 5 microseconds.
Referring to FIG. 4, it is desirable that the waveform described here can obtain particularly stable performance. In order to obtain the waveform of FIG. 4, it is desirable to have a resistor in series with the piezoelectric transducer. Referring to FIG. 5 in this regard, at least a 100 ohm resistor 40 is connected in series with the piezoelectric transducer 10 disposed between the electrode 42 and the electrode 44. As shown in the figure, the piezoelectric transducer 10 is a longitudinal vibration mode transducer that expands and contracts as shown in FIGS. 2B and 2C, and the length of the piezoelectric transducer 10 is 15 mm (0.6 mm). Inches) or less. The piezoelectric transducer 10 is connected to the chamber 14 via a diaphragm 46. An inflow hole 48 leading into the chamber 14 is shown. In a preferred embodiment, the chamber 14 has a volume small enough to ensure a Helmholtz resonant frequency of 50 kHz or higher, preferably 90 kHz, which chamber 14 March 25, 1997. It has been implemented in the printhead shown in filed US patent application Ser. No. 08 / 828,758, which is incorporated herein by reference. Further details regarding the special impulse ink ejection shown in FIG. 5 are described in US Pat. No. 4,697,193, which forms a part of this application with reference to Helmholtz frequencies above 50 kHz disclosed in this patent. It has not been.
In FIG. 6, a voltage waveform similar to the voltage waveform shown in FIG. 4A is shown superimposed on the chamber pressure of the fluid ejection device shown in FIGS. 2B and 2C. Here, the change in chamber pressure corresponding to the resonant frequency of the device is basically a damped sine that is the result of a long pulse 37b, which is a small wave that is the result of a short pulse 39b that causes the harmonics of the device. Accompany. A small wave corresponding to the harmonics of the device is shaped like a step 50, which coincides with the trailing edge 52 of the short pulse 39b, producing a small droplet as shown in FIG. 2C. For this purpose, the tail of the droplet is cut off. As a result, the droplets can travel further at high speed, i.e. the range is increased.
It is clear that transducer harmonics must be caused to accelerate the droplet tail and ensure that this tail is not decelerated. To illustrate the proper relationship between the resonant frequency and harmonics of a piezoelectric transducer, referring to FIG. 6, the resonant frequency is generally indicated by a sinusoidal shape 48 and the harmonic frequency is indicated by a sinusoidal waveform 50. As shown, this sinusoidal waveform 50 is appropriately spaced with the timing of the pulses such that specific harmonic oscillations occur. This relationship between the harmonic frequency and the resonant frequency ensures that the tail is cut off and that the rest of the tail that stays in the droplet is accelerated to the droplet head, thus reducing the range and speed. Improved. Although a particular transducer and a particular waveform have been shown, it is clear that the present invention may be implemented in a variety of devices including a bubble jet where fluid or ink acts as a transducer. In addition, the present invention may be implemented with transducers of other shapes and forms, i.e. not necessarily in an inflatable transducer in longitudinal vibration mode. For example, a plurality of benders and a plurality of converters sharing a wall may be used. Furthermore, the particular drive waveform may be an energy pulse rather than a voltage pulse, and the transducer may be activated and deactivated at an appropriate time to ensure that a resonant frequency occurs as well as the harmonics. Finally, the fluid need not be ink, but may be fluid that must be ejected in droplets for various purposes such as metering.

Claims (1)

チャンバと、該チャンバから小滴を噴射するためのオリフィスと、共振振動数および高調波振動数を有する変換器とを具備するインパルス流体噴射装置を作動させる方法であって、
前記変換器に第一の幅の一つのエネルギパルスを印加して該変換器に共振振動数の振動を起こさせ、該共振振動数の振動に応答して、頭部と該頭部に結び付けられた尾部とを有する小滴を、該尾部がチャンバ内の液体と一体的な状態で噴出させる工程と、
前記変換器に別の幅の別のエネルギパルスであって前記一つのエネルギパルスより幅が短い別の幅の別のエネルギパルスを発生させて高調波振動数の振動を起こさせる工程とを具備し、
前記高調波振動数の振動は、前記尾部が前記チャンバ内の液体から切り離されると共に前記頭部と前記尾部とが目標物に向かって同一の速度で進むように前記チャンバ内の液体に圧力波を発生させる、方法。
A method of operating an impulse fluid ejection device comprising a chamber, an orifice for ejecting droplets from the chamber, and a transducer having a resonant frequency and a harmonic frequency comprising:
Applying an energy pulse of a first width to the transducer to cause the transducer to oscillate at a resonant frequency, and in response to the resonant frequency, the head is coupled to the head. Ejecting a droplet having a tail with the tail integral with the liquid in the chamber;
Causing the transducer to generate another energy pulse having a different width and having a different width shorter than the one energy pulse to cause a vibration at a harmonic frequency. ,
The vibration at the harmonic frequency causes a pressure wave to flow in the liquid in the chamber so that the tail is separated from the liquid in the chamber and the head and tail travel at the same speed toward the target. How to generate.
JP54580998A 1997-03-25 1998-03-20 High performance impulse ink ejection method and impulse ink ejection apparatus Expired - Fee Related JP4316680B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/823,718 1997-03-25
US08/823,718 US6126259A (en) 1997-03-25 1997-03-25 Method for increasing the throw distance and velocity for an impulse ink jet
PCT/US1998/005429 WO1998042517A1 (en) 1997-03-25 1998-03-20 High performance impulse ink jet method and apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009023839A Division JP4971379B2 (en) 1997-03-25 2009-02-04 High performance impulse ink ejection method and impulse ink ejection apparatus

Publications (2)

Publication Number Publication Date
JP2001518030A JP2001518030A (en) 2001-10-09
JP4316680B2 true JP4316680B2 (en) 2009-08-19

Family

ID=25239530

Family Applications (2)

Application Number Title Priority Date Filing Date
JP54580998A Expired - Fee Related JP4316680B2 (en) 1997-03-25 1998-03-20 High performance impulse ink ejection method and impulse ink ejection apparatus
JP2009023839A Expired - Fee Related JP4971379B2 (en) 1997-03-25 2009-02-04 High performance impulse ink ejection method and impulse ink ejection apparatus

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2009023839A Expired - Fee Related JP4971379B2 (en) 1997-03-25 2009-02-04 High performance impulse ink ejection method and impulse ink ejection apparatus

Country Status (9)

Country Link
US (1) US6126259A (en)
EP (1) EP1003643B1 (en)
JP (2) JP4316680B2 (en)
AU (1) AU727508B2 (en)
CA (1) CA2283665C (en)
DE (1) DE69811904T2 (en)
IL (1) IL131911A (en)
NO (1) NO994643D0 (en)
WO (1) WO1998042517A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002001952A (en) * 2000-06-20 2002-01-08 Matsushita Electric Ind Co Ltd Ink jet head and ink jet type recording device
US6302505B1 (en) * 2000-07-28 2001-10-16 Hewlett-Packard Company Printing system that utilizes continuous and non-continuous firing frequencies
US6513897B2 (en) 2000-12-29 2003-02-04 3M Innovative Properties Co. Multiple resolution fluid applicator and method
US6390600B1 (en) 2001-04-30 2002-05-21 Hewlett-Packard Company Ink jet device having variable ink ejection
US7281778B2 (en) * 2004-03-15 2007-10-16 Fujifilm Dimatix, Inc. High frequency droplet ejection device and method
US8491076B2 (en) * 2004-03-15 2013-07-23 Fujifilm Dimatix, Inc. Fluid droplet ejection devices and methods
US7417970B2 (en) * 2004-06-02 2008-08-26 Interdigital Technology Corporation Configuring an interworking wireless local area network user equipment to access a 3GPP system
WO2006074016A2 (en) * 2004-12-30 2006-07-13 Fujifilm Dimatix, Inc. Ink jet printing
US20060223909A1 (en) * 2005-03-31 2006-10-05 Illinois Tool Works Inc. Faster drying inkjet ink for porous and non-porous printing
JP5117026B2 (en) * 2005-12-05 2013-01-09 株式会社リコー Image forming apparatus
JP5034309B2 (en) * 2006-05-15 2012-09-26 富士ゼロックス株式会社 Droplet discharge device
US7988247B2 (en) 2007-01-11 2011-08-02 Fujifilm Dimatix, Inc. Ejection of drops having variable drop size from an ink jet printer
GB2492760A (en) 2011-07-08 2013-01-16 Domino Printing Sciences Plc Controlling the throw distance of inkjet inks

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1544493A (en) * 1975-09-05 1979-04-19 Ibm Apparatus for liquid droplet generation
DE2555749C3 (en) * 1975-12-11 1980-09-11 Olympia Werke Ag, 2940 Wilhelmshaven Device for damping the backflow of the ink in the nozzle of an ink jet head
JPS5615365A (en) * 1979-07-18 1981-02-14 Fujitsu Ltd Driving method for ink jet recorder
US4509059A (en) * 1981-01-30 1985-04-02 Exxon Research & Engineering Co. Method of operating an ink jet
US4459601A (en) * 1981-01-30 1984-07-10 Exxon Research And Engineering Co. Ink jet method and apparatus
US4697193A (en) * 1981-01-30 1987-09-29 Exxon Printing Systems, Inc. Method of operating an ink jet having high frequency stable operation
US4646106A (en) * 1982-01-04 1987-02-24 Exxon Printing Systems, Inc. Method of operating an ink jet
US4558328A (en) * 1982-10-26 1985-12-10 Victor Company Of Japan, Ltd. High resolution thermal ink transfer printer
US4523201A (en) * 1982-12-27 1985-06-11 Exxon Research & Engineering Co. Method for improving low-velocity aiming in operating an ink jet apparatus
US4523200A (en) * 1982-12-27 1985-06-11 Exxon Research & Engineering Co. Method for operating an ink jet apparatus
US4563689A (en) * 1983-02-05 1986-01-07 Konishiroku Photo Industry Co., Ltd. Method for ink-jet recording and apparatus therefor
US4540573A (en) * 1983-07-14 1985-09-10 New York Blood Center, Inc. Undenatured virus-free biologically active protein derivatives
CA1259853A (en) * 1985-03-11 1989-09-26 Lisa M. Schmidle Multipulsing method for operating an ink jet apparatus for printing at high transport speeds
IT1182478B (en) * 1985-07-01 1987-10-05 Olivetti & Co Spa PILOTING AND CANCELLATION CIRCUIT OF REFLECTED WAVES FOR AN INK JET PRINT HEAD
JPH0473155A (en) * 1990-07-13 1992-03-09 Seiko Epson Corp Driving method for on-demand type ink jet head
JP2783206B2 (en) * 1995-08-23 1998-08-06 日本電気株式会社 Inkjet printer device

Also Published As

Publication number Publication date
EP1003643A1 (en) 2000-05-31
AU727508B2 (en) 2000-12-14
NO994643L (en) 1999-09-24
US6126259A (en) 2000-10-03
AU6570498A (en) 1998-10-20
EP1003643A4 (en) 2000-05-31
CA2283665C (en) 2007-01-09
WO1998042517A1 (en) 1998-10-01
JP4971379B2 (en) 2012-07-11
JP2009269018A (en) 2009-11-19
EP1003643B1 (en) 2003-03-05
CA2283665A1 (en) 1998-10-01
IL131911A (en) 2004-05-12
DE69811904T2 (en) 2003-08-28
NO994643D0 (en) 1999-09-24
DE69811904D1 (en) 2003-04-10
JP2001518030A (en) 2001-10-09
IL131911A0 (en) 2001-03-19

Similar Documents

Publication Publication Date Title
JP4971379B2 (en) High performance impulse ink ejection method and impulse ink ejection apparatus
US5164740A (en) High frequency printing mechanism
JP5567347B2 (en) Variable-size droplet ejection from inkjet printers
JP3896830B2 (en) Droplet discharge head, driving method thereof, and droplet discharge apparatus
JP3283597B2 (en) Inkjet printer
JP4765491B2 (en) Ink jet recording head driving method, ink jet recording head, and image recording apparatus
JPS61206662A (en) Method of driving ink jet head
KR101603807B1 (en) Method and apparatus to provide variable drop size ejection by dampening pressure inside a pumping chamber
JPS5962158A (en) Drop on-demand type ink jet printer
JPH0777802B2 (en) High resolution printing method using associated ink droplets in a continuous inkjet printer
JPH0419026B2 (en)
JPH06171080A (en) Ink jet recording device
JPH08174823A (en) Ink-jet type print head and its driving method
JP4576910B2 (en) Inkjet printhead driving method
JP3755569B2 (en) Ink jet recording head driving method and circuit thereof
JPS629433B2 (en)
JP2001315330A (en) Ink drop projector
JP3546929B2 (en) Driving method of ink jet recording head and ink jet recording apparatus
US6513914B2 (en) Liquid discharging head, method for manufacturing liquid discharging head, and liquid discharging apparatus
JP4379963B2 (en) Driving method of on-demand type multi-nozzle inkjet head
JP2004188932A (en) Driving method for inkjet head
JP2005231174A (en) Driving method of ink ejector
JPH01275148A (en) Ink jet recording method
Bupara et al. Droplet Formation And Shape At High Velocities In A Drop-On-Demand Ink Jet
JPH01275147A (en) Ink jet recording method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080512

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080812

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090105

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090521

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees