JP4316293B2 - Driving method of tuning fork type angular velocity sensor element - Google Patents

Driving method of tuning fork type angular velocity sensor element Download PDF

Info

Publication number
JP4316293B2
JP4316293B2 JP2003143174A JP2003143174A JP4316293B2 JP 4316293 B2 JP4316293 B2 JP 4316293B2 JP 2003143174 A JP2003143174 A JP 2003143174A JP 2003143174 A JP2003143174 A JP 2003143174A JP 4316293 B2 JP4316293 B2 JP 4316293B2
Authority
JP
Japan
Prior art keywords
tuning fork
voltage
angular velocity
electrodes
velocity sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003143174A
Other languages
Japanese (ja)
Other versions
JP2004347398A (en
Inventor
昌裕 吉松
隆宏 大塚
秀亮 松戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP2003143174A priority Critical patent/JP4316293B2/en
Publication of JP2004347398A publication Critical patent/JP2004347398A/en
Application granted granted Critical
Publication of JP4316293B2 publication Critical patent/JP4316293B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はコリオリの力を利用した音叉型角速度センサ素子(以下、角速度センサ素子とする)の駆動方法を産業上の技術分野とし、特に斜め振動による雑音成分を電気的に低減した駆動方法に関する。
【0002】
【従来の技術】
(発明の背景)音叉型角速度センサ素子は、位置制御や誘導装置例えばカメラやカーナビに適用される。このようなものの一つに、圧電材特に貼り合わせ型の水晶を用いたものがあり、さらなる高感度及び生産性が求められている。
【0003】
(従来技術の一例)第7図は一従来例を説明する角速度センサ素子の図である。
【0004】
角速度センサ素子は音叉型水晶振動子(音叉型振動子とする)1を基礎として構成される。音叉型振動子1は結晶軸(XYZ)のZ軸に主面が直交あるいは概ね直交したZカット板からなり、音叉基部2から一対の音叉腕3(ab)を延出する。ここでは、±X軸を逆方向とした二枚の音叉状水晶片1(ab)を直接接合によって貼り合わせてなる。
【0005】
一対の音叉腕3(ab)のそれぞれには、音叉振動を駆動してコリオリの力を検出する電極4、5が設けられる。ここでは、第8図の結線図に示したように、一対の音叉腕3(ab)の各内側面に設けた第1電極4a、5aを接続し、各外側面に設けた第2電極4b、5bを接続して、それぞれ第1及び第2センサ端子S1、S2を導出する。
【0006】
また、一方の音叉腕3a(図の右側)の表面に設けた第3電極4cと、他方の音叉腕3b(図の左側)の裏面に設けた第4電極5dとは共通接続して、第1駆動端子D1が導出する。そして、一方の音叉腕3aの裏面に設けた第4電極4dからは第2駆動端子D2が導出する。さらに、他方の音叉腕3bの表面に設けた第3電極5cからはモニタ端子Mが導出する。
【0007】
このようなものでは、第1及び第2センサ端子S1、S2には、第9図に示したように直流の基準電圧E0が印加され、各音叉腕3(ab)の両側面の電位を一定にする。そして、第1及び第2駆動端子D1、D2には、基準電圧E0を中心値として互いに逆相となる交流電圧V1、V2を印加する。これにより、X軸の極性を逆として接合しているので、一方の音叉腕3aでは表裏面と内外側面との間に生ずる電界によって、Y軸方向に内側面が伸張(縮小)すると外側面が縮小(伸張)して左右方向に屈曲振動する。
【0008】
また、他方の音叉腕3bでは、裏面に印加される交流電圧によって内外側面のいずれか一方が伸張又は縮小して屈曲するとともに、音叉構造であることから一方の音叉腕3aに応答して逆向きの屈曲振動する。したがって、一対の音叉腕3(ab)は互いに逆向きの水平方向に音叉振動する。
【0009】
そして、音叉振動中にY軸を中心とした回転力が加わると、一対の音叉腕3(ab)は板面に直交する互いに反対方向に屈曲振動、即ち水平振動に対して直交する互いに逆向きの垂直振動を生ずる。そして、各音叉腕3(ab)の両側面に回転力に応じた電荷を発生する。なお、各音叉腕3(ab)の両側面間での電荷の符号は逆となる。具体的には、各音叉腕3(ab)の内側面の第1電極4a、5aが同極性、外側面の第2電極4b、5bが同極性となる。
【0010】
そして、各音叉腕3(ab)の第1と第2電極4(ab)、5(ab)には連続的に変化する電荷が収拾され、基準電圧E0に交流分として重畳し、第1及び第2センサ端子S1、S2に検出される。そして、振動周波数に応答した図示しない同期検波等によって交流分(電荷量)を検出し、回転角を計測する。なお、モニタ端子Mは音叉振動によって誘起される電荷量を検出し、振動振幅量(変位量)を一定の基準値とするために設けられる。
【0011】
【発明が解決しようとする課題】
(従来技術の問題点)しかしながら、上記構成の角速度センサ素子では、一対の音叉腕3(ab)は音叉振動の際、第10図の矢印P−Pで示す水平方向に必ずしも振動することなく、製造に起因した断面形状の非対称性から同矢印Q−Qで示す斜め方向に所謂斜め振動する。したがって、斜め振動における垂直方向のベクトル成分によって、コリオリの力とは無関係に電荷が発生し、不要信号としてセンサ端子S1、S2に検出される。これにより、角速度が及んでいない場合にも、角速度が及んでいるような誤信号を生じる。
【0012】
このため、通常では、角速度センサ素子毎に斜め振動による不要信号を検出する。そして、一対の音叉腕3(ab)を数回となく繰り返して研削(トリミング)し、斜め振動を抑制すべく調整していた。しかし、この場合には、トリミング工程に多くの時間を要し、生産性の低下を招く問題があった。
【0013】
(発明の目的)本発明は音叉の加工誤差に起因した不要信号の影響を軽減できる
角速度センサ素子の駆動方法を提供することを目的とする。
【0014】
【課題を解決するための手段】
本件に係る請求項1の発明では、音叉状水晶片からなる少なくとも一方の音叉腕の4面に電極を設けて両主面の表面電極及び裏面電極から基準電圧とした両側面電極、前記他方の音叉腕の表面電極又は裏面電極によって検出される前記音叉振動の振幅によるモニタ電圧に基づいた交流電圧を印加し、前記一方と他方の音叉腕とを音叉振動するとともに、コリオリの力によって生ずる電荷を少なくとも他方の音叉腕の両側面に設けたセンサ電極によって検出する音叉型角速度センサ素子の駆動方法において、前記表面電極から前記両側面に印加される交流電圧は前記モニタ電圧に前記モニタ電圧を小さくした整流電圧を加えた非対称電圧とし、前記裏面電極から前記両側面に印加される交流電圧は前記非対称電圧の位相を180°異ならせた非対称電圧とし、前記音叉腕の表面電極及び裏面電極から両側面の電極に印加する交流電圧の大きさを異ならせた構成とする。これにより、音叉腕の両主面から両側面に向かう電界及び表面側と裏面側の屈曲量も異なる。したがって、音叉腕は斜め振動を生ずる。このことから、加工誤差に起因した機械的な斜め振動に応じて、交流電圧の大きさを異ならせれば電子的に斜め振動を相殺(抑制)できる。
【0015】
同請求項2の発明では、前記音叉型角速度センサ素子は結晶軸(XYZ)の±X軸を逆向きにした2枚の音叉状水晶片を貼り合わせてなり、前記音叉腕の両主面から両側面に印加される交流電圧は互いに逆相とする。これにより、2枚の音叉状水晶片を貼り合わせた角速度センサ素子で斜め振動を抑制できる。
【0016】
同請求項3の発明では、前記音叉型角速度センサ素子は1枚の音叉状水晶片からなり、前記音叉腕の両主面から両側面に印加される交流電圧は互いに同相とする。これにより、単板からなる角速度センサ素子で斜め振動を抑制できる。同請求項4の発明では、前記交流電圧の大きさの異ならせ方は、前記音叉の加工誤差に起因して前記音叉に生じる斜め方向振動を相殺又は抑圧できる条件とする。
【0017】
【第1実施例】
第1図は本発明の第1実施例の駆動方法を説明する角速度センサ素子の結線図を示した上面図である。なお、前従来例と同一部分には同番号を付与してその説明は簡略又は省略する。
【0018】
角速度センサ素子は、前述したように2枚の音叉状水晶片1(ab)を貼り合せてなり、音叉基部2及び一対の音叉腕3(ab)を有する音叉型振動子からなる(前第7図参照)。各音叉腕3(ab)の内外側面には基準電圧E0の印加される第1及び第2電極4(ab)、5(ab)を有し、第1及び第2電極同士4a、5a及び4b、5bが共通接続してセンサ端子S1、S2に導出する。
【0019】
また、一方の音叉腕3aの表裏面には駆動端子D1、D2に接続して互いに逆相の交流電圧V1、V2の印加される第3及び第4電極4(cd)を有し、他方の音叉腕3bの表面にはモニタ端子Mに接続した第3電極5cを、裏面には一方の音叉腕3aの表面の第3電極4cに接続した第4電極5dを有する(前第8図と同一)。
【0020】
そして、この実施例では、特に第2図に示したように、第1及び第2駆動端子D1、D2から一方の音叉腕3aの第3及び第4電極(表裏面電極)4(cd)に印加する交流電圧V1、V2は、前述同様に基準電圧E0を中心とし互いに逆相とし、ここではさらに電圧レベル(振幅レベル)を異にする。
【0021】
このようなものでは、先ず、一方の音叉腕3aの第3電極(表面電極)4cには、駆動端子D1から半周期の大電圧が、第4電極(裏面電極)4dには逆相の小電圧が印加されると、第3図(a)に示したように、貼り合せによる表面側水晶1bの屈曲量は大きく、裏面側水晶1aの屈曲量は小さくなる。したがって、先の半周期では貼り合わせた2枚の水晶片1(ab)各々の伸張及び縮小量が異なるので、音叉腕3aは例えば電極4c側へ偏る成分をもった斜め方向の変位をする。
【0022】
次に、一方の音叉腕3aの第3電極(表面電極)4cには次の半周期の小電圧が、第4電極(裏面電極)4dには逆相の大電圧が印加されると、第3図(b)に示したように、貼り合せによる表面側水晶1bの屈曲量は小さく、裏面側水晶1aの屈曲量は大きくなる。したがって、次の半周期では例えば電極4d側へ偏る成分を持った斜め方向の変位をする。これらのことから、第4図に示したように、交流電圧の一周期では斜め方向に振動する。
【0023】
このような駆動法であれば、加工誤差に基づく音叉型振動子の斜め振動による電荷量を相殺するように、駆動端子D1、D2に逆位相で大きさの異なる交流電圧を印加すれば、斜め振動を抑制して水平振動を維持できる。要するに、機械的な斜め振動を電子的に抑制できる。例えば駆動端子D1に印加する交流電圧V1は以下にして形成される。
【0024】
すなわち、先ず、第5図(a)に示したように、モニタ端子Mの電荷量から音叉振動を一定の振幅とする交流電圧V0を生成する。次に、交流電圧V0の振幅レベルを小さくした調整電圧A0を得る「同図(b)」。次に、調整電圧A0の−側を反転した整流電圧A1を得る「同図(c)」。最後に、交流電圧V0に整流電圧A1を加え、正負間で振幅の異なる非対称の交流電圧V1を得る「同図(d)」。
【0025】
なお、調整電圧A0(整流電圧A1)は斜め振動に応じて振幅が決定される。また、駆動端子D2に印加する交流電圧V2は、交流電圧V1の位相を180度ずらすことによって得られる。これらのことから、加工誤差に起因した不要信号の影響が小さい角速度センサ素子を得られる。また、研削等のトリミングに比較し、電子的に制御するので要する時間も短くして生産性を高められる。
【0026】
【第2実施例】
第6図は本発明の第2実施例の駆動方法を説明する角速度センサ素子の結線図を示した上面図である。なお、第1実施例と同一部分の説明は簡略又は省略する。
【0027】
第1実施例では2枚の水晶片1(ab)を貼り合せた音叉型振動子での例を説明したが、第2実施例は一枚(単板)の音叉状水晶片からなる音叉型振動子での例である。この例では、一方の音叉腕3aを音叉振動の駆動用として、他方の音叉腕3bをコリオリの力による垂直振動の検出用とする。
【0028】
すなわち、一方の音叉腕3aの両側面電極を共通接続して基準電圧E0を印加する。そして、駆動端子D1、D2から、同相として大きさの異なる交流電圧V1、V2を表裏面電極に印加する。また、他方の音叉腕3bの内側面電極は例えば基準電圧E0(あるいはアース電位)に設定し、外側面に設けた分割電極との間で垂直振動による電荷をセンサ端子S1、S2によって検出する。なお、表裏面に設けたMはモニタ端子であり、前述同様に音叉振動による電荷を検出して振幅を一定にする。
【0029】
このような構成であれば、先ず半周期の交流電圧V1>V2によって、一方の音叉腕3aの表面側は電界強度が高くて屈曲量が大きく、裏面側は電界強度が低くて屈曲量は小さい。そして、次の半周期の交流電圧V1<V2によって、同様にして表面側の屈曲量は小さく、裏面側は大きくなる。したがって、第1実施例と同様に斜め振動を生ずる。このことから、加工誤差による機械的な斜め振動を電子的に相殺して抑制できる。
【0030】
【発明の効果】
本発明は、前述した課題を解決するための手段(段落0014)によって、音叉腕の両主面から両側面に印加して音叉振動を駆動する交流電圧の大きさを異ならせて駆動するので、音叉腕の両主面から両側面に向かう電界及び表面側と裏面側の屈曲量も異なって、音叉腕は斜め振動を生ずる。このことから、加工誤差に起因した機械的な斜め振動を電子的に相殺して抑制できるので、加工誤差の影響が小さく生産性の高い角速度センサ素子を得られる。
【図面の簡単な説明】
【図1】 本発明の第1実施例の駆動方法を説明する角速度センサ素子の結線図を示した
上面図である。
【図2】 本発明の第1実施例を説明する駆動電圧の図である。
【図3】 本発明の第1実施例の作用を説明する一方の音叉腕の上面図である。
【図4】 本発明の第1実施例の作用を説明する一方の音叉腕の上面図である。
【図5】 本発明の第1実施例を説明する駆動電圧の形成方法の図である。
【図6】 本発明の第2実施例の駆動方法を説明する角速度センサ素子の結線図を示した
上面図である。
【図7】 従来例を説明する音叉型角速度センサの図である。
【図8】 従来例を説明する角速度センサ素子の結線図を示した上面図である。
【図9】 従来例を説明する駆動電圧の図である。
【図10】 従来例を説明する音叉腕の上面図である。
【符号の説明】
1 音叉状水晶片、2 音叉基部、3 音叉腕、4、5 電極.
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a driving method of a tuning fork type angular velocity sensor element (hereinafter referred to as an angular velocity sensor element) using Coriolis force, and more particularly to a driving method in which a noise component due to oblique vibration is electrically reduced.
[0002]
[Prior art]
BACKGROUND OF THE INVENTION Tuning fork type angular velocity sensor elements are applied to position control and guidance devices such as cameras and car navigation systems. One of these is a piezoelectric material, particularly one using a bonded crystal, and further high sensitivity and productivity are required.
[0003]
(Example of Prior Art) FIG. 7 is a view of an angular velocity sensor element for explaining one conventional example.
[0004]
The angular velocity sensor element is configured on the basis of a tuning fork type crystal resonator (referred to as a tuning fork resonator) 1. The tuning fork vibrator 1 is composed of a Z-cut plate whose principal surface is orthogonal or substantially orthogonal to the Z axis of the crystal axis (XYZ), and extends a pair of tuning fork arms 3 (ab) from the tuning fork base 2. Here, two tuning-fork crystal pieces 1 (ab) having ± X axes in opposite directions are bonded together by direct bonding.
[0005]
Each of the pair of tuning fork arms 3 (ab) is provided with electrodes 4 and 5 for detecting Coriolis force by driving tuning fork vibration. Here, as shown in the connection diagram of FIG. 8, the first electrodes 4a and 5a provided on the inner surfaces of the pair of tuning fork arms 3 (ab) are connected, and the second electrodes 4b provided on the outer surfaces. 5b are connected to derive the first and second sensor terminals S1 and S2, respectively.
[0006]
Further, the third electrode 4c provided on the surface of one tuning fork arm 3a (right side in the figure) and the fourth electrode 5d provided on the back surface of the other tuning fork arm 3b (left side in the figure) are connected in common. One drive terminal D1 is derived. The second drive terminal D2 is derived from the fourth electrode 4d provided on the back surface of one tuning fork arm 3a. Further, the monitor terminal M is led out from the third electrode 5c provided on the surface of the other tuning fork arm 3b.
[0007]
In such a case, a direct current reference voltage E0 is applied to the first and second sensor terminals S1 and S2 as shown in FIG. 9, and the potentials on both sides of each tuning fork arm 3 (ab) are kept constant. To. The first and second drive terminals D1 and D2 are applied with AC voltages V1 and V2 having opposite phases with the reference voltage E0 as the center value. As a result, since the X-axis polarity is reversed, the outer surface of one tuning fork arm 3a expands (contracts) in the Y-axis direction due to the electric field generated between the front and back surfaces and the inner and outer surfaces. It contracts (extends) and bends and vibrates in the left-right direction.
[0008]
In the other tuning fork arm 3b, either one of the inner and outer surfaces is bent by being expanded or contracted by an AC voltage applied to the back surface, and since it has a tuning fork structure, it is reversed in response to one tuning fork arm 3a. Bends and vibrates. Therefore, the pair of tuning fork arms 3 (ab) vibrate in the horizontal direction opposite to each other.
[0009]
When a rotational force about the Y axis is applied during tuning fork vibration, the pair of tuning fork arms 3 (ab) are bent in opposite directions perpendicular to the plate surface, that is, opposite to each other perpendicular to horizontal vibration. Cause vertical vibration. Then, charges corresponding to the rotational force are generated on both side surfaces of each tuning fork arm 3 (ab). In addition, the sign of the electric charge between the both side surfaces of each tuning fork arm 3 (ab) is reversed. Specifically, the first electrodes 4a and 5a on the inner surface of each tuning fork arm 3 (ab) have the same polarity, and the second electrodes 4b and 5b on the outer surface have the same polarity.
[0010]
The first and second electrodes 4 (ab) and 5 (ab) of each tuning fork arm 3 (ab) collects continuously changing charges and superimposes them on the reference voltage E0 as an AC component. Detected at the second sensor terminals S1 and S2. Then, the AC component (charge amount) is detected by synchronous detection (not shown) in response to the vibration frequency, and the rotation angle is measured. The monitor terminal M is provided to detect the amount of charge induced by the tuning fork vibration and to set the vibration amplitude amount (displacement amount) as a constant reference value.
[0011]
[Problems to be solved by the invention]
However, in the angular velocity sensor element having the above configuration, the pair of tuning fork arms 3 (ab) does not necessarily vibrate in the horizontal direction indicated by the arrow PP in FIG. Due to the asymmetry of the cross-sectional shape resulting from the manufacture, so-called oblique vibrations occur in the oblique direction indicated by the arrow QQ. Therefore, electric charges are generated by the vertical vector component in the oblique vibration irrespective of the Coriolis force, and are detected as unnecessary signals at the sensor terminals S1 and S2. As a result, even when the angular velocity does not reach, an erroneous signal that the angular velocity reaches is generated.
[0012]
For this reason, normally, an unnecessary signal due to oblique vibration is detected for each angular velocity sensor element. Then, the pair of tuning fork arms 3 (ab) are repeatedly ground (trimmed) several times and adjusted to suppress oblique vibration. However, in this case, the trimming process takes a lot of time and there is a problem in that the productivity is lowered.
[0013]
(Object of the Invention) An object of the present invention is to provide a method of driving an angular velocity sensor element capable of reducing the influence of an unnecessary signal due to a processing error of a tuning fork.
[0014]
[Means for Solving the Problems]
According to the first aspect of the present invention, electrodes are provided on at least one of the tuning fork arms made of a tuning fork-shaped crystal piece, and the other electrode is used as a reference voltage from the front and back electrodes of both main surfaces. The AC voltage based on the monitor voltage based on the amplitude of the tuning fork vibration detected by the front or back electrode of the tuning fork arm is applied to vibrate the one and the other tuning fork arms and vibrate the electric charges generated by the Coriolis force. In the method for driving a tuning fork type angular velocity sensor element that detects at least the other tuning fork arm by means of sensor electrodes provided on both side surfaces, the alternating voltage applied from the surface electrode to the both side surfaces reduces the monitor voltage to the monitor voltage. An asymmetric voltage obtained by adding the rectified voltage to the AC voltage applied to the both side surfaces from the back electrode has the phase of the asymmetric voltage different by 180 °. And symmetric voltage, a structure having different magnitude of the AC voltage applied to the electrodes on both sides from the surface electrode and the rear electrode of the tuning fork arms. Thereby, the electric field which goes to both sides from both principal surfaces of a tuning fork arm, and the amount of bending of the surface side and the back side also differ. Therefore, the tuning fork arm generates oblique vibration. From this, it is possible to electronically cancel (suppress) the oblique vibration by changing the magnitude of the AC voltage according to the mechanical oblique vibration caused by the machining error.
[0015]
In the invention of claim 2, the tuning fork type angular velocity sensor element is formed by bonding two tuning fork crystal pieces with the ± X axes of crystal axes (XYZ) opposite to each other, and from both main surfaces of the tuning fork arm. The AC voltages applied to both sides are opposite in phase. Thereby, diagonal vibration can be suppressed by the angular velocity sensor element in which two tuning-fork crystal pieces are bonded together.
[0016]
In the invention of claim 3, the tuning fork type angular velocity sensor element is composed of a single tuning fork crystal piece, and AC voltages applied to both side surfaces from both main surfaces of the tuning fork arm are in phase with each other. Thereby, diagonal vibration can be suppressed with the angular velocity sensor element which consists of a single plate. In the fourth aspect of the invention, the method of varying the magnitude of the AC voltage is a condition that can cancel or suppress the oblique vibration generated in the tuning fork due to the tuning fork processing error.
[0017]
[First embodiment]
FIG. 1 is a top view showing a connection diagram of an angular velocity sensor element for explaining a driving method of a first embodiment of the present invention. In addition, the same number is attached | subjected to the same part as a prior art example, and the description is simplified or abbreviate | omitted.
[0018]
As described above, the angular velocity sensor element is composed of a tuning fork vibrator having a tuning fork base 2 and a pair of tuning fork arms 3 (ab). (See figure). Each tuning fork arm 3 (ab) has first and second electrodes 4 (ab) and 5 (ab) to which a reference voltage E0 is applied on the inner and outer surfaces thereof, and the first and second electrodes 4a, 5a and 4b. 5b are connected in common and lead to sensor terminals S1 and S2.
[0019]
Further, the front and back surfaces of one tuning fork arm 3a have third and fourth electrodes 4 (cd) connected to drive terminals D1 and D2 and applied with AC voltages V1 and V2 having opposite phases to each other. A third electrode 5c connected to the monitor terminal M is provided on the surface of the tuning fork arm 3b, and a fourth electrode 5d connected to the third electrode 4c on the surface of one tuning fork arm 3a is provided on the rear surface (same as in FIG. 8). ).
[0020]
In this embodiment, as shown particularly in FIG. 2, the first and second drive terminals D1 and D2 are connected to the third and fourth electrodes (front and back electrodes) 4 (cd) of one tuning fork arm 3a. The AC voltages V1 and V2 to be applied are centered on the reference voltage E0 and have opposite phases as described above, and here the voltage levels (amplitude levels) are further different.
[0021]
In such a case, first, a large voltage of a half cycle from the drive terminal D1 is applied to the third electrode (front surface electrode) 4c of one tuning fork arm 3a, and a small reverse phase is applied to the fourth electrode (back surface electrode) 4d. When a voltage is applied, as shown in FIG. 3A, the bending amount of the front surface side crystal 1b due to bonding is large, and the bending amount of the back surface side crystal 1a is small. Therefore, since the expansion and contraction amounts of the two crystal pieces 1 (ab) to be bonded differ in the previous half cycle, the tuning fork arm 3a is displaced in an oblique direction with a component biased toward the electrode 4c, for example.
[0022]
Next, when a small voltage of the next half cycle is applied to the third electrode (front surface electrode) 4c of one tuning fork arm 3a, and a large voltage in reverse phase is applied to the fourth electrode (back surface electrode) 4d, As shown in FIG. 3 (b), the amount of bending of the front surface side crystal 1b due to bonding is small, and the amount of bending of the back surface side crystal 1a is large. Therefore, in the next half cycle, for example, a displacement in an oblique direction with a component biased toward the electrode 4d side is performed. From these things, as shown in FIG. 4, it vibrates in an oblique direction in one cycle of the AC voltage.
[0023]
In such a driving method, if alternating voltages of different magnitudes are applied to the drive terminals D1 and D2 so as to cancel out the charge amount due to the oblique vibration of the tuning fork vibrator based on the processing error, the drive terminals D1 and D2 are inclined. The horizontal vibration can be maintained by suppressing the vibration. In short, mechanical oblique vibration can be suppressed electronically. For example, the AC voltage V1 applied to the drive terminal D1 is formed as follows.
[0024]
That is, first, as shown in FIG. 5 (a), an AC voltage V0 having a constant amplitude of tuning fork vibration is generated from the charge amount of the monitor terminal M. Next, an adjustment voltage A0 in which the amplitude level of the AC voltage V0 is reduced is obtained (FIG. 2B). Next, a rectified voltage A1 obtained by inverting the negative side of the adjustment voltage A0 is obtained (FIG. 3C). Finally, the rectified voltage A1 is added to the AC voltage V0 to obtain an asymmetrical AC voltage V1 having a different amplitude between the positive and negative "(d)".
[0025]
The amplitude of the adjustment voltage A0 (rectified voltage A1) is determined according to the oblique vibration. The AC voltage V2 applied to the drive terminal D2 is obtained by shifting the phase of the AC voltage V1 by 180 degrees. From these facts, an angular velocity sensor element that is less affected by unnecessary signals due to processing errors can be obtained. In addition, compared with trimming such as grinding, the time required for electronic control is shortened, so that productivity can be improved.
[0026]
[Second embodiment]
FIG. 6 is a top view showing a connection diagram of the angular velocity sensor element for explaining the driving method of the second embodiment of the present invention. In addition, description of the same part as 1st Example is simplified or abbreviate | omitted.
[0027]
In the first embodiment, an example of a tuning fork type vibrator in which two crystal pieces 1 (ab) are bonded is described. However, in the second embodiment, a tuning fork type consisting of a single (single plate) tuning fork crystal piece is described. It is an example with a vibrator. In this example, one tuning fork arm 3a is used for driving tuning fork vibration, and the other tuning fork arm 3b is used for detecting vertical vibration due to Coriolis force.
[0028]
That is, the reference voltage E0 is applied by commonly connecting both side electrodes of one tuning fork arm 3a. Then, AC voltages V1 and V2 having different magnitudes are applied to the front and back electrodes from the drive terminals D1 and D2. Further, the inner side electrode of the other tuning fork arm 3b is set to, for example, a reference voltage E0 (or ground potential), and charges due to vertical vibration are detected by the sensor terminals S1 and S2 between the divided electrodes provided on the outer side. Note that M provided on the front and back surfaces is a monitor terminal, and charges are detected by tuning fork vibration to make the amplitude constant as described above.
[0029]
In such a configuration, first, due to the half-cycle AC voltage V1> V2, the surface side of one tuning fork arm 3a has a high electric field strength and a large amount of bending, and the back side has a low electric field strength and a small amount of bending. . Then, by the next half-cycle AC voltage V1 <V2, similarly, the amount of bending on the front surface side is small and the back surface side is large. Accordingly, oblique vibration is generated as in the first embodiment. From this, it is possible to electronically cancel and suppress mechanical oblique vibration due to processing errors.
[0030]
【The invention's effect】
According to the present invention, the means for solving the above-described problem (paragraph 0014) is driven by changing the magnitude of the AC voltage applied to both side surfaces from both main surfaces of the tuning fork arm to drive the tuning fork vibration. The electric field from both main surfaces of the tuning fork arm to both sides and the amount of bending on the front side and the back side are also different, and the tuning fork arm generates oblique vibration. This makes it possible to electronically cancel and suppress mechanical oblique vibration caused by machining errors, so that an angular velocity sensor element that is less affected by machining errors and has high productivity can be obtained.
[Brief description of the drawings]
FIG. 1 is a top view showing a connection diagram of an angular velocity sensor element for explaining a driving method of a first embodiment of the present invention.
FIG. 2 is a drive voltage diagram for explaining the first embodiment of the present invention;
FIG. 3 is a top view of one tuning fork arm for explaining the operation of the first embodiment of the present invention.
FIG. 4 is a top view of one tuning fork arm for explaining the operation of the first embodiment of the present invention.
FIG. 5 is a diagram of a method for forming a drive voltage for explaining the first embodiment of the present invention;
FIG. 6 is a top view showing a connection diagram of an angular velocity sensor element for explaining a driving method of a second embodiment of the present invention.
FIG. 7 is a diagram of a tuning fork type angular velocity sensor for explaining a conventional example.
FIG. 8 is a top view showing a connection diagram of an angular velocity sensor element for explaining a conventional example.
FIG. 9 is a drive voltage diagram illustrating a conventional example.
FIG. 10 is a top view of a tuning fork arm for explaining a conventional example.
[Explanation of symbols]
1 tuning fork crystal piece, 2 tuning fork base, 3 tuning fork arm, 4, 5 electrodes.

Claims (4)

音叉状水晶片からなる少なくとも一方の音叉腕の4面に電極を設けて両主面の表面電極及び裏面電極から基準電圧とした両側面電極、前記他方の音叉腕の表面電極又は裏面電極によって検出される前記音叉振動の振幅によるモニタ電圧に基づいた交流電圧を印加し、前記一方と他方の音叉腕とを音叉振動するとともに
コリオリの力によって生ずる電荷を少なくとも他方の音叉腕の両側面に設けたセンサ電極によって検出する音叉型角速度センサ素子の駆動方法において、
前記表面電極から前記両側面に印加される交流電圧は前記モニタ電圧に前記モニタ電圧を小さくした整流電圧を加えた非対称電圧とし、
前記裏面電極から前記両側面に印加される交流電圧は前記非対称電圧の位相を180°異ならせた非対称電圧とし、
前記音叉腕の表面電極及び裏面電極から両側面の電極に印加する交流電圧の大きさを異ならせたことを特徴とする音叉型角速度センサ素子の駆動方法。
On both sides electrodes and reference voltage electrodes provided on four sides of the at least one of the tuning fork arms consisting tuning fork shaped crystal pieces from the surface electrode and the rear electrode on both main surfaces, the surface electrode or the backside electrode of the other tuning fork arm applying an AC voltage based on the monitor voltage by the amplitude of the tuning fork vibration detected, the tuning fork arms of the one and the other as well as tuning fork,
In a driving method of a tuning fork type angular velocity sensor element for detecting charges generated by Coriolis force by sensor electrodes provided on both side surfaces of at least the other tuning fork arm,
The alternating voltage applied to the both side surfaces from the surface electrode is an asymmetric voltage obtained by adding a rectified voltage obtained by reducing the monitor voltage to the monitor voltage,
The alternating voltage applied to the both side surfaces from the back electrode is an asymmetric voltage in which the phase of the asymmetric voltage is different by 180 °,
A driving method of a tuning fork type angular velocity sensor element characterized in that the magnitude of the AC voltage applied to the electrodes on both sides from the front and back electrodes of the tuning fork arm is varied.
前記音叉型角速度センサ素子は結晶軸(XYZ)の±X軸を逆向きにした2枚の音叉状水晶片を貼り合わせてなり、前記音叉腕の両主面の電極から両側面の電極に印加される交流電圧は互いに逆相である請求項1の音叉型角速度センサ素子。  The tuning fork angular velocity sensor element is formed by bonding two tuning fork crystal pieces with the ± X axes of crystal axes (XYZ) opposite to each other, and is applied to the electrodes on both sides from the electrodes on both main surfaces of the tuning fork arm. 2. The tuning-fork type angular velocity sensor element according to claim 1, wherein the AC voltages applied are in opposite phases to each other. 前記音叉型角速度センサ素子は1枚の音叉状水晶片からなり、前記音叉腕の両主面の電極から両側面の電極に印加される交流電圧は互いに同相である請求項1の音叉型角速度センサ素子。  2. The tuning fork type angular velocity sensor according to claim 1, wherein the tuning fork type angular velocity sensor element is composed of a single tuning fork crystal piece, and AC voltages applied to electrodes on both side surfaces from electrodes on both main surfaces of the tuning fork arm are in phase with each other. element. 前記交流電圧の大きさの異ならせ方は、前記音叉の加工誤差に起因して前記音叉に生じる斜め方向振動を相殺又は抑圧できる条件である請求項1の音叉型角速度センサ素子の駆動方法。  2. The method of driving a tuning fork type angular velocity sensor element according to claim 1, wherein the method of varying the magnitude of the AC voltage is a condition that can cancel or suppress an oblique vibration generated in the tuning fork due to a processing error of the tuning fork.
JP2003143174A 2003-05-21 2003-05-21 Driving method of tuning fork type angular velocity sensor element Expired - Fee Related JP4316293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003143174A JP4316293B2 (en) 2003-05-21 2003-05-21 Driving method of tuning fork type angular velocity sensor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003143174A JP4316293B2 (en) 2003-05-21 2003-05-21 Driving method of tuning fork type angular velocity sensor element

Publications (2)

Publication Number Publication Date
JP2004347398A JP2004347398A (en) 2004-12-09
JP4316293B2 true JP4316293B2 (en) 2009-08-19

Family

ID=33531033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003143174A Expired - Fee Related JP4316293B2 (en) 2003-05-21 2003-05-21 Driving method of tuning fork type angular velocity sensor element

Country Status (1)

Country Link
JP (1) JP4316293B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010103776A1 (en) * 2009-03-10 2010-09-16 パナソニック株式会社 Angular velocity sensor

Also Published As

Publication number Publication date
JP2004347398A (en) 2004-12-09

Similar Documents

Publication Publication Date Title
US7313958B2 (en) Rotational rate sensor
JP4702942B2 (en) Vibrating gyro element and vibrating gyro
US20060162447A1 (en) Piezoelectric vibration gyro element, structure for supporting the piezoelectric vibration gyro element and gyro sensor
WO2005078389A1 (en) Angular velocity sensor
US9273962B2 (en) Physical quantity sensor and electronic device
US20010020388A1 (en) Piezoelectric vibration gyroscope and method for adjusting resonance frequencies of same
JP4449128B2 (en) Angular velocity sensor
US8065914B2 (en) Vibration gyro
JP2001208546A (en) Angular velocity sensor
JP4911690B2 (en) Vibrating gyro vibrator
KR100527351B1 (en) Vibrating gyroscope and angular velocity sensor
JP5093405B2 (en) Vibrating gyro element
JP4316293B2 (en) Driving method of tuning fork type angular velocity sensor element
JP3336451B2 (en) Tuning fork type vibration gyro
JP6337443B2 (en) Vibrating piece, angular velocity sensor, electronic device and moving object
JP6337444B2 (en) Vibrating piece, angular velocity sensor, electronic device and moving object
JP4163031B2 (en) Tuning fork type angular velocity sensor
JP3674013B2 (en) Angular velocity detector
JP3732582B2 (en) Angular velocity detector
JP3291968B2 (en) Vibrating gyro
JP2006308359A (en) Inertia sensor element, and manufacturing method of inertia sensor element
JP2005345404A (en) Vibrator for piezoelectric vibration gyroscope, and its manufacturing method
JP3360510B2 (en) Angular velocity sensor
JP4600590B2 (en) Angular velocity sensor
JP3039625B2 (en) Angular velocity detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090520

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees