JP4314676B2 - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP4314676B2
JP4314676B2 JP15613299A JP15613299A JP4314676B2 JP 4314676 B2 JP4314676 B2 JP 4314676B2 JP 15613299 A JP15613299 A JP 15613299A JP 15613299 A JP15613299 A JP 15613299A JP 4314676 B2 JP4314676 B2 JP 4314676B2
Authority
JP
Japan
Prior art keywords
lithium
cuo
positive electrode
battery
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15613299A
Other languages
Japanese (ja)
Other versions
JP2000348721A (en
Inventor
健祐 名倉
一広 岡村
芳明 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP15613299A priority Critical patent/JP4314676B2/en
Publication of JP2000348721A publication Critical patent/JP2000348721A/en
Application granted granted Critical
Publication of JP4314676B2 publication Critical patent/JP4314676B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リチウム二次電池の、特にその正極活物質に関する。
【0002】
【従来の技術】
近年、携帯機器用の主電源として、水溶液系の小型二次電池よりも放電電圧が高く、重量エネルギー密度の大きなリチウム二次電池が実用化されている。
【0003】
この主電源用リチウム二次電池の正極活物質としてリチウムコバルト複合酸化物(LiCoO2)が現在最も多用されている。またリチウムマンガン複合酸化物(LiMn24)を正極活物質とするリチウム二次電池も製品化されている。さらに種々様々な材料が正極活物質として研究されているが実用化には至っていない。リチウム銅複合酸化物のLi2CuO2もその一つで既に正極活物質としての研究報告があるが(例えば、荒井創、岡田重人、山木準一、第35回電池討論会講演要旨集、講演番号2C18)、十分な電極特性が得られておらず、工業的に実用化された事例はない。
【0004】
【発明が解決しようとする課題】
現在主流であるLiCoO2の原料であるコバルト化合物は高価であるため、これを用いた電池は必然的にコストが高くなる。また、LiCoO2をリチウム二次電池の正極活物質として用いる場合、実際の充放電容量は1電子反応で計算される正極の理論容量の5割程度に過ぎない。これは理論容量に近い充放電反応は一時的には可能であるが、二次電池として充放電を繰り返した場合に容量の劣化が大きく、また、保存特性も悪く十分な特性が得られないためである。この原因は定かでないが、正極活物質の反応可逆性が損なわれたり、または正極活物質の電解質に対する反応活性が高くなり保存中に好ましくない反応を起こしていることが考えられる。
【0005】
またLiMn24の原料であるマンガン化合物は、一般にコバルト化合物よりも安価であることから電池のコストはいくらか低くなる。しかし、正極活物質としてのLiMn24の充放電容量は、LiCoO2のそれと同等以下でしかなく、電池の高エネルギー密度化は困難である。
【0006】
またLi2CuO2の原料となる銅化合物も一般に安価であることから電池のコストを低くすることができる。従来の研究報告では正極活物質として組成式Li2CuO2とLiCuO2との間で可逆な充放電反応が行われている。LiCoO2 やLiMn24と比較すると、放電容量は大きいが、平均放電電位が1V以上も低いために、Li2CuO2を正極活物質として用いた電池のエネルギー密度は、LiCoO2 やLiMn24を用いたものよりも小さくなるという短所がある。
【0007】
ゆえに安価でかつ、優れた特性、特にエネルギー密度の大きなリチウム二次電池を提供するためには、新規な正極活物質の発明と電池への適用化が望まれる。
【0008】
本発明は、上記の課題を鑑みてなされたものであり、安価で充放電容量の大きいリチウム亜鉛銅複合酸化物を新規な正極活物質として用いることで、従来よりも低コストでエネルギー密度の大きなリチウム二次電池を提供することを目的としている。
【0009】
【課題を解決するための手段】
発明者らは、上記目的を達成するために、新たな材料を探索し、検討を行ったところ、組成式Li2-2xZnxCuO2(0.01≦x≦0.49)で表され、かつ空間群Immmに属する構造を有する新規のリチウム亜鉛銅複合酸化物を発見し、これが非常に有望な電極材料であることを見い出した。
【0010】
既存の電極材料であるLi2CuO2は組成式上2個のリチウムがあり、化合物の単位重量あたりではLiCoO2の約二倍量、LiMn24の約四倍量のリチウムが含まれている。よって、仮に組成式Li2CuO2とCuO2との間で、2個のリチウムが可逆的に充放電反応に関与できるとすると、単位重量あたりの放電容量はLiCoO2 の約二倍、LiMn24の約四倍が期待できる。しかし、実際には組成式Li2CuO2とLiCuO2との間の1個分のリチウムしか可逆的に充放電反応に関与できない。そしてこのときの銅の酸化数は2から3の低い範囲で酸化還元反応に関与するため、平均放電電位も低い。更に電池における充電反応に相当する電気化学的な酸化反応においてLiCuO2からリチウムが減少すると、CuO2とはならずに別の化合物、おそらくはCuOに分解し、その後は電極活物質としての反応可逆性を失ってしまう。この現象はLi2CuO2の結晶構造に起因していると考えられ、以下のように考察した。
【0011】
Li2CuO2は空間群Immmを有しており、その結晶構造中では、銅を中心にして酸素が平面4配位し、これが辺を共有して一次元の直鎖状ユニットを形成している。そして、リチウムは平行した直鎖状ユニットの間に存在し、ユニットの酸素と結合して、あたかもリチウムが複数の直鎖状ユニットをつなぎ止めているかのような結晶構造的特徴を有している。そこで、電気化学的な酸化反応によってLi2CuO2からリチウムが減少してLiCuO2の状態になった場合は、残りの1個のリチウムが複数の直鎖状ユニットをつなぎ止めて結晶構造を維持できていると考えた。
【0012】
しかし、更に電気化学的な酸化反応によってリチウムが減少すると、直鎖状ユニット間に作用する静電反発力がリチウムと酸素との結合力に対抗して働き、結晶構造が不安定になって分解するため可逆的な電気化学的な酸化還元反応、すなわち充放電反応が不可能になり、そしてCuO2に至っては直鎖状ユニットをつなぎ止める作用をするものがないために全く安定には存在できないと考えている。
【0013】
そこでこの考察により、電気化学的な酸化反応後に結晶構造中にとどまる元素が、上記したようなリチウムと同様に複数の直鎖状ユニットをつなぎ止めておく役割を果たせば、たとえ充電反応でリチウムが減少しても結晶構造が維持され、可逆的な電気化学反応量を増大させることができると考えた。また、銅の酸化数が3より大きい反応過程では酸化数が3以下の場合よりも高い放電電位が期待されることから、高エネルギー密度な正極活物質となる可能性もある。
【0014】
このような発想のもとに、新たな材料を探索し、検討を行ったところ、組成式Li2-2xZnxCuO2(0.01≦x≦0.49)で表され、かつ空間群Immmに属する構造を有する新規のリチウム亜鉛銅複合酸化物を発見し、これが非常に有望な電極材料であることを見い出したのである。
【0015】
本発明のLi2-2xZnxCuO2(0.01≦x≦0.49)では、亜鉛元素が電気化学的な酸化反応でも結晶構造中にとどまる元素としてリチウムと同様に複数の直鎖状ユニットをつなぎ止めておく役割を担っているものと考えられる。含まれている亜鉛の価数は2価であると考えられることから、組成式のxで表現した亜鉛の量の2倍に相当する2xのリチウムと置き換わることになる。よって亜鉛量が多くなると充放電反応に関与できるリチウム量が減少してしまうため、容量が減少するが、検討の結果からxが0.01以上0.49以下の組成では従来よりも可逆的な電気化学反応量が増大することを見出した。亜鉛は少量でも充電状態での分解反応を抑制する作用が認められ、結果として可逆的な電気化学反応量が増大し、また銅の酸化数が3より大きい領域でも充放電反応が可能になることから平均動作電位を高くすることができた。CuKα線を用いた粉末X線回折測定を行った結果、Li2-2xZnxCuO2(0.01≦x≦0.49)は空間群Immmに帰属され、亜鉛はリチウムと等価な位置に存在していることが確認された。亜鉛以外にも電気化学的な酸化反応で結晶構造中にとどまり、複数の直鎖状ユニットをつなぎ止めておく役割をする元素であれば同様の改良された結果が期待される。
【0016】
本発明のLi2-2xZnxCuO2(0.01≦x≦0.49)を合成するにあたり、金属リチウム、酸化リチウム、過酸化リチウム、水酸化リチウム、硝酸リチウム、炭酸リチウム、ギ酸リチウム、酢酸リチウム、安息香酸リチウム、クエン酸リチウム、乳酸リチウム、シュウ酸リチウム、ピリビン酸リチウム、ステアリン酸リチウム、および酒石酸リチウムから成る群より選択されるリチウム原料と、酢酸亜鉛、安息香酸亜鉛、塩基性炭酸亜鉛、クエン酸亜鉛、ギ酸亜鉛、水酸化亜鉛、乳酸亜鉛、塩化アンモニウム亜鉛、硝酸亜鉛、オレイン酸亜鉛、シュウ酸亜鉛、酸化亜鉛、過酸化亜鉛、ピロリン酸亜鉛、ステアリン酸亜鉛、フタロシアニン亜鉛、サリチル酸亜鉛、チオシアン酸亜鉛、酒石酸亜鉛、金属亜鉛から成る群より選択される亜鉛原料と、酢酸銅、安息香酸銅、塩基性炭酸銅、塩化第一銅、クエン酸銅、ギ酸銅、グルコン酸銅、水酸化銅、銅メトキシド、硝酸銅、酒石酸銅、シュウ酸銅、酸化第一銅、酸化第二銅、ピロリン酸銅、サリチル酸銅、ステアリン酸銅から成る群より選択される銅原料からの合成が可能であった。これらの原料を、リチウム原子、亜鉛原子および銅原子のモル比が、組成式Li2-2xZnxCuO2(0.01≦x≦0.49)で表される所定の値になるように混合して焼成を行い、Li2-2xZnxCuO2(0.01≦x≦0.49)を得ることができた。なお、xの範囲として、0.01≦x≦0.49の全領域で不純物のない単一相の合成が可能であった。上記原料のいずれの場合も目的とするLi2-2xZnxCuO2(0.01≦x≦0.49)の合成は可能であるが、工業的には価格の低い原料を選択することが好ましい。
【0017】
焼成温度は、400℃〜950℃である。400℃以下では反応速度が遅く合成物を得るために長時間の焼成が必要となる。また950℃以上では、不純物を含む合成物となった。よって好ましくは400℃〜950℃である。
【0018】
焼成は、酸素を含む酸化性雰囲気または不活性ガス雰囲気で行う。雰囲気は用いる原料に応じて適正化される。すなわち、金属など酸素を含まない原料を用いた場合は酸素を含む酸化性雰囲気が必要であり、酸化物など合成物に対して十分な酸素を含む原料を用いた場合は必ずしも雰囲気中に酸素が含まれている必要はなく、不活性ガス雰囲気での合成も可能である。また、酸化性雰囲気中の酸素分圧は適正化されることが好ましい。酸素分圧調整のために混合する不活性ガスとしては、窒素、ヘリウム、アルゴンからなる群より選択されるガスを使用できる。
【0019】
本発明のLi2-2xZnxCuO2(0.01≦x≦0.49)を正極活物質とする正極と、リチウム金属またはリチウムと電気化学的に反応可能で、正極よりも電位が卑な負極活物質を含む負極と、イオン伝導機能を有する電解質とから成るリチウム二次電池を構成することができる。
【0020】
まず、正極活物質としてLi2-2xZnxCuO2(0.01≦x≦0.49)粉末を用い、これに導電剤、結着剤、また場合によっては電解質を混合して正極を作製する。
【0021】
導電剤にはアセチレンブラック、グラファイト粉末などの炭素材料や、金属粉末、導電性セラミックスなどを用いることができるが、実用的な導電性能を有するものであればこれらに限定されない。
【0022】
結着剤にはポリテトラフルオロエチレン、ポリフッ化ビニリデンなどのフッ素系ポリマー、ポリエチレン、ポリプロピレンなどのポリオレフィン系ポリマーなどを用いることができるが、実用的な結着機能を有するものであればこれらに限定されない。
【0023】
Li2-2xZnxCuO2(0.01≦x≦0.49)粉末、導電剤および結着剤の混合比は、Li2-2xZnxCuO2(0.01≦x≦0.49)粉末100重量部に対して導電剤を1〜50重量部、結着剤を1〜50重量部とすることができる。導電剤が1重量部より少ないと、充放電反応における電極の過電圧が大きくなり充放電容量が小さくなるために実用的なリチウム二次電池が構成できない。また、導電剤が50重量部より大きいと電極内のLi2-2xZnxCuO2(0.01≦x≦0.49)粉末の体積割合が減少するために電池容量が小さくなり実用的でなくなる。結着剤は、1重量部より少ないと結着能力がなくなってしまい電極が構成できなくなる。また、結着剤が50重量部より大きいと充放電反応における電極の過電圧が大きくなり、かつ電極内のLi2-2xZnxCuO2(0.01≦x≦0.49)粉末の体積割合が減少するために電池容量が小さくなって実用的でなくなる。
【0024】
正極は、前記混合物を集電体に圧着するか、水やN−メチル−2−ピロリドンなどの分散媒あるいは溶剤と混合してスラリー状にし、これを集電体に塗布した後に乾燥するなどして構成できる。集電体には金属箔、金属メッシュ、金属不織布などの導電体が使用できる。なお、実用的な電位安定性と集電機能を有するものであれば、集電体の材質および形状はこれらに限定されない。
【0025】
一方、負極活物質としては、リチウム金属またはリチウムと電気化学的に反応可能で、正極よりも電位が卑な活物質であればよい。例えば、各種の合金、炭素材料や、ポリアセチレン、ポリチオフェン、ポリパラフェニレンなどのポリマー材料、各種の遷移金属化合物などを単独または複合体として用いることができる。これらの中で、金属リチウムは、単位重量あたりの電気化学容量が最も大きいために、高エネルギー密度のリチウム二次電池を構成し得る。しかし、金属リチウムは、充放電を繰り返すことによってリチウム金属表面上に樹枝状析出物が生成し、成長した樹枝状析出物は、やがて正極と接触して電池内部にて短絡を引き起こす可能性がある。また現状では充放電効率が良くないなどの課題も残されているが、電池を構成することは可能である。よって、リチウム二次電池の負極活物質としては、金属リチウム以外のリチウムと電気化学的に反応可能で正極よりも電位が卑な活物質を用いることが好ましい。
【0026】
負極は、これら負極活物質に必要に応じて導電材や結着剤を混合した合剤を集電体に圧着するか、合剤を水やN−メチル−2−ピロリドンなどの分散媒あるいは溶剤と混合してスラリー状にし、これを集電体に塗布した後に乾燥するなどして作製できる。集電体には金属箔、金属メッシュ、金属不織布等の導電体が使用できる。なお、実用的な電位安定性と集電機能を有するものであれば、集電体の材質および形状はこれらに限定されない。
【0027】
そして本発明のリチウム二次電池のイオン伝導機能を有する電解質には、例えばリチウム化合物の電解質を有機溶媒に溶解させた有機電解液、ポリマー電解質、無機固体電解質、溶融塩などを用いることができる。
【0028】
有機溶媒には、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、γ−ブチロラクトンなどのエステル類や、テトラヒドロフラン、2−メチルテトラヒドロフランなどの置換ヒドロフラン類、ジオキソラン、ジエチルエーテル、ジメトキシエタン、ジエトキシエタン、メトキシエトキシエタンなどのエーテル類、ジメチルスルホキシド、スルホラン、メチルスルホラン、アセトニトリル、ギ酸メチル、酢酸メチルなどが挙げられる。これらの有機溶媒は1種または2種以上を組み合わせて使用してもよい。
【0029】
リチウム化合物の電解質としては、ヘキサフルオロリン酸リチウム、過塩素酸リチウム、ホウフッ化リチウム、トリフルオロメタンスルホン酸リチウム、ハロゲン化リチウム、塩化アルミン酸などのリチウム塩を挙げることができる。これらのリチウム化合物電解質は1種または2種以上を組み合わせて使用してもよい。なお、有機溶媒、リチウム化合物電解質は、実用的なリチウムイオン伝導体としての機能を有するものであれば上述のものに限定されない。
【0030】
本発明におけるリチウム二次電池は、上記の正極および負極の間に上記のリチウムイオン伝導機能を有する電解質を介在させて構成される。この電解質と共に必要に応じて多孔質ポリエチレン、多孔質ポリプロピレンなどのセパレータを介在させてもよい。なおセパレータの材質及び形状はこれらに限定されない。
【0031】
本発明のリチウム二次電池の形状は特に限定されず、円筒型、コイン型、角型、シート状などの電池形状で実用可能である。
【0032】
【発明の実施の形態】
以下に実施形態に基づいて本発明を具体的に説明するが、本発明はこれらの実施形態に何ら制限されることはなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。
【0033】
(実施例1)
試料を以下の方法によって合成した。原料に炭酸リチウムLi2CO3、酸化亜鉛ZnOと酸化銅CuOを用い、それらのLi、ZnとCuの原子比が1.98:0.01:1.00、1.90:0.05:1.00、1.80:0.10:1.00、1.60:0.20:1.00、1.40:0.30:1.00、 1.20:0.40:1.00、1.02:0.49:1.00になるように秤量して、めのう製乳鉢中で十分な混合を行った。
【0034】
これらの混合物の各々をアルミナ製の焼成ボートに入れ、空気雰囲気の電気炉内に設置した。電気炉の温度を室温から750℃まで昇温させて、750℃で12時間維持して焼成した。その後に電気炉の温度を下げ、電気炉内の温度が室温付近の温度になってから試料を取り出した。合成物は、露点−50℃以下の乾燥空気中で、めのう製乳鉢で粉砕して、CuKα線での粉末X線回折測定を行い、試料が空間群Immmに帰属する結晶構造を有し、不純物のない単一相であることを確認した後に、電池評価用の試料に供した。
【0035】
図1に本発明の実施例で用いたコイン形リチウム二次電池の縦断面図を示す。図において1は耐有機電解質性のステンレス鋼板を加工した電池ケース、2は同材料の封口板、3は同材料の集電体で、ケース1の内面にスポット溶接されている。4はリチウム金属負極で、封口板2の内部に圧着されている。先述のように負極活物質としてのリチウム金属は課題もあるが、ここでは正極活物質の特性を明らかに評価するためにあえて用いた。5は組成式Li2-2xZnxCuO2 (0.01≦x≦0.49)で表され、かつ空間群Immmに属する構造を有するリチウム亜鉛銅複合酸化物を正極活物質とする正極である。正極の作製に当たっては、Li2-2xZnxCuO2 (0.01≦x≦0.49)100重量部に対し、結着剤としてのポリテトラフルオロエチレン10重量部と導電剤としてのアセチレンブラック5重量部を混合して得られる合剤の一定量を集電体3の上に成形、80℃で減圧乾燥した。6は多孔質ポリプロピレンのセパレーター、7はポリプロピレンの絶縁ガスケットである。電解液はエチレンカ−ボネ−ト、ジエチルカ−ボネ−トの等体積混合溶媒にリチウム化合物の電解質としてヘキサフルオロリン酸リチウムを1モル/リットルの濃度で溶解して用いた。これらを用いて、寸法が直径20mm、電池総高1.6mmである電池を構成し、充放電試験を行った。評価方法は電流密度0.5mA/cm2の定電流で1.5〜4.3Vの電池電圧範囲で充放電を行った。表1には、組成式Li2-2xZnxCuO2 でx=0.01、0.05、0.1、0.2、0.3、0.4、0.49の時の、電池の平均放電電圧、正極活物質の単位重量当たりの放電容量、および電池の放電容量を示した。
【0036】
(比較例1)
本比較例では、Li、ZnとCuの原子比が1.00:0.50:1.00となるように原料を秤量し、正極活物質試料の組成がLi1.00Zn0.50CuO2である以外は、実施例1での実施の形態と同じである。(表1)には、電池の平均放電電圧、正極活物質の単位重量当たりの放電容量、および電池の放電容量を示した。
【0037】
(比較例2)
比較のための試料Li2CuO2を以下の方法によって合成した。原料に炭酸リチウムLi2CO3、と酸化銅CuOを用い、それらのLiとCuの原子比が2.00:1.00になるように秤量して、めのう製乳鉢中で十分な混合を行った。これらの混合物の各々をアルミナ製の焼成ボートに入れ、空気雰囲気の電気炉内に設置した。電気炉の温度を室温から750℃まで昇温させて、750℃で12時間維持して焼成した。その後に電気炉の温度を下げ、電気炉内の温度が室温付近の温度になってから試料を取り出した。合成物は、露点−50℃以下の乾燥空気中で、めのう製乳鉢で粉砕して、CuKα線での粉末X線回折測定を行い、試料が不純物のない単一相であることを確認した後に、電池評価用の試料に供した。
【0038】
正極活物質がLi2CuO2であること以外、この実施例でのコイン形非水電解質二次電池の構成、作成方法と材料、評価方法は実施例1での実施の形態と同じである。(表1)に比較例としての正極活物質Li2CuO2を用いた電池の平均放電電圧、正極活物質の単位重量当たりの放電容量、および電池の放電容量を示した。
【0039】
【表1】

Figure 0004314676
(表1)から本実施例の、組成式Li2-2xZnxCuO2 (0.01≦x≦0.49)で表され、かつ空間群Immmに属する構造を有するリチウム亜鉛銅複合酸化物の正極活物質は、いずれの場合も比較例2のLi2CuO2の放電容量よりも大きいことが分かる。
【0040】
また平均放電電圧は、亜鉛の含量が多くなるほど高くなっている。本実施例と比較例では同一寸法の電池で評価しており、これらのことから電池の平均放電電圧と放電容量との積を電池体積で除した値で表される電池のエネルギー密度は、実施例のいずれの場合も比較例よりも増加していることが分かる。
【0041】
比較例1の場合は、電池の平均放電電圧が比較例2と同一であるにもかかわらず、放電容量は減少してしまっていることから、組成Li1.00Zn0.50CuO2の活物質は、Li2CuO2と比較して、電池のエネルギー密度を増加させる効果はないことも分かった。
【0042】
【発明の効果】
本発明によれば、組成式Li2-2xZnxCuO2 (0.01≦x≦0.49)で表され、かつ空間群Immmに属する構造を有するリチウム亜鉛銅複合酸化物を正極活物質とする正極を用いることにより、従来のLi2CuO2を正極活物質とする電池よりもエネルギー密度の大きなリチウム二次電池を提供することが可能となる。また活物質の放電容量が150mAh/g程度でしかないリチウムコバルト複合酸化物LiCoO2を正極活物質とする電池よりも、低コストでエネルギー密度の大きなリチウム二次電池を提供でき、また放電容量が130mAh/g程度でしかないリチウムマンガン複合酸化物LiMn24を正極活物質とする電池よりも、更にエネルギー密度の大きなリチウム二次電池を提供できる。
【図面の簡単な説明】
【図1】本発明のコイン形リチウム二次電池の縦断面図
【符号の説明】
1 電池ケース
2 封口板
3 集電体
4 金属リチウム
5 正極試料極
6 セパレータ
7 ガスケット[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lithium secondary battery, in particular, a positive electrode active material thereof.
[0002]
[Prior art]
In recent years, lithium secondary batteries having a higher discharge voltage and a higher weight energy density have been put to practical use as a main power source for portable devices.
[0003]
Lithium cobalt composite oxide (LiCoO 2 ) is currently most frequently used as the positive electrode active material for the lithium secondary battery for main power source. A lithium secondary battery using a lithium manganese composite oxide (LiMn 2 O 4 ) as a positive electrode active material has also been commercialized. Furthermore, various materials have been studied as positive electrode active materials, but have not yet been put into practical use. Li 2 CuO 2, which is a lithium copper composite oxide, is already one of the research reports as a positive electrode active material (for example, Arai So, Shigeto Okada, Junichi Yamaki, Proceedings of the 35th Battery Conference, (Lecture No. 2C18), sufficient electrode characteristics have not been obtained, and there have been no industrial examples.
[0004]
[Problems to be solved by the invention]
Since the cobalt compound which is the raw material of LiCoO 2 which is currently the mainstream is expensive, a battery using the cobalt compound inevitably increases the cost. When LiCoO 2 is used as the positive electrode active material of a lithium secondary battery, the actual charge / discharge capacity is only about 50% of the theoretical capacity of the positive electrode calculated by one-electron reaction. This is because a charge / discharge reaction close to the theoretical capacity is temporarily possible, but when the charge / discharge is repeated as a secondary battery, the capacity is greatly deteriorated, and the storage characteristics are also poor and sufficient characteristics cannot be obtained. It is. Although this cause is not certain, it is considered that the reaction reversibility of the positive electrode active material is impaired, or the reaction activity of the positive electrode active material with respect to the electrolyte is increased, causing an undesirable reaction during storage.
[0005]
Further, since the manganese compound which is a raw material of LiMn 2 O 4 is generally cheaper than the cobalt compound, the cost of the battery is somewhat lower. However, the charge / discharge capacity of LiMn 2 O 4 as the positive electrode active material is only equal to or less than that of LiCoO 2 , and it is difficult to increase the energy density of the battery.
[0006]
Moreover, since the copper compound used as the raw material for Li 2 CuO 2 is generally inexpensive, the cost of the battery can be reduced. In a conventional research report, a reversible charge / discharge reaction is performed between a composition formula Li 2 CuO 2 and LiCuO 2 as a positive electrode active material. Compared to LiCoO 2 and LiMn 2 O 4 , the discharge capacity is large, but the average discharge potential is as low as 1 V or more. Therefore, the energy density of the battery using Li 2 CuO 2 as the positive electrode active material is LiCoO 2 or LiMn 2. There is a disadvantage that it is smaller than that using O 4 .
[0007]
Therefore, in order to provide a lithium secondary battery that is inexpensive and has excellent characteristics, in particular, a large energy density, the invention of a novel positive electrode active material and its application to a battery are desired.
[0008]
The present invention has been made in view of the above-mentioned problems, and uses a lithium zinc copper composite oxide having a low charge and a large charge / discharge capacity as a novel positive electrode active material. The object is to provide a lithium secondary battery.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the inventors have searched for and studied a new material, which is represented by the composition formula Li 2-2x Zn x CuO 2 (0.01 ≦ x ≦ 0.49). In addition, a novel lithium zinc copper composite oxide having a structure belonging to the space group Immm was discovered and found to be a very promising electrode material.
[0010]
The existing electrode material, Li 2 CuO 2, has two lithiums in terms of the composition formula, and contains about twice the amount of LiCoO 2 and about four times the amount of LiMn 2 O 4 per unit weight of the compound. Yes. Therefore, if two lithiums can reversibly participate in the charge / discharge reaction between the composition formulas Li 2 CuO 2 and CuO 2 , the discharge capacity per unit weight is about twice that of LiCoO 2 , LiMn 2 About 4 times O 4 can be expected. However, in reality, only one lithium between the composition formulas Li 2 CuO 2 and LiCuO 2 can reversibly participate in the charge / discharge reaction. At this time, the copper oxidation number is involved in the oxidation-reduction reaction in a low range of 2 to 3, so the average discharge potential is also low. Further, when lithium is decreased from LiCuO 2 in electrochemical oxidation reactions, which corresponds to the charging reaction in the battery, another compound not become CuO 2, possibly decomposed into CuO, then the reaction reversibility as an electrode active material Will be lost. This phenomenon is considered to be caused by the crystal structure of Li 2 CuO 2 , and was considered as follows.
[0011]
Li 2 CuO 2 has a space group Immm, and in its crystal structure, oxygen is coordinated in four planes with copper as the center, and this forms a one-dimensional linear unit by sharing sides. Yes. Lithium exists between the parallel linear units and combines with the unit's oxygen to have crystal structural characteristics as if lithium is holding together multiple linear units. . Therefore, when lithium is reduced from Li 2 CuO 2 to the state of LiCuO 2 by an electrochemical oxidation reaction, the remaining one lithium keeps the crystal structure by connecting a plurality of linear units. I thought it was done.
[0012]
However, when lithium is further reduced by an electrochemical oxidation reaction, the electrostatic repulsive force acting between the linear units works against the binding force between lithium and oxygen, and the crystal structure becomes unstable and decomposes. Therefore, a reversible electrochemical redox reaction, that is, a charge / discharge reaction is impossible, and CuO 2 has no function of anchoring the linear unit and cannot exist at all stably. thinking.
[0013]
Therefore, based on this consideration, if the element that remains in the crystal structure after the electrochemical oxidation reaction plays a role of keeping a plurality of linear units connected like the lithium as described above, even if lithium is charged in the charging reaction, It was thought that the crystal structure was maintained even if it decreased, and the amount of reversible electrochemical reaction could be increased. Further, a reaction process in which the oxidation number of copper is greater than 3 is expected to have a higher discharge potential than that in the case of an oxidation number of 3 or less, which may result in a high energy density positive electrode active material.
[0014]
Based on such an idea, when a new material was searched for and studied, it was expressed by the composition formula Li 2-2x Zn x CuO 2 (0.01 ≦ x ≦ 0.49) and the space group. They discovered a novel lithium zinc-copper composite oxide having a structure belonging to Immm, and found it to be a very promising electrode material.
[0015]
In the Li 2-2x Zn x CuO 2 (0.01 ≦ x ≦ 0.49) of the present invention, a plurality of straight-chains are formed as an element in which the zinc element remains in the crystal structure even in the electrochemical oxidation reaction. It is thought to be responsible for keeping the unit connected. Since the valence of zinc contained is considered to be divalent, 2x lithium corresponding to twice the amount of zinc expressed by x in the composition formula is replaced. Therefore, as the amount of zinc increases, the amount of lithium that can participate in the charge / discharge reaction decreases, so the capacity decreases. However, from the results of the study, the composition with x of 0.01 or more and 0.49 or less is more reversible than before. It was found that the amount of electrochemical reaction increased. Zinc has the effect of suppressing the decomposition reaction in the charged state even with a small amount, and as a result, the amount of reversible electrochemical reaction increases, and the charge / discharge reaction is possible even in the region where the oxidation number of copper is greater than 3. The average operating potential can be increased. As a result of performing powder X-ray diffraction measurement using CuKα rays, Li 2-2x Zn x CuO 2 (0.01 ≦ x ≦ 0.49) is attributed to the space group Immm, and zinc is in an equivalent position to lithium. It was confirmed that it existed. In addition to zinc, the same improved result is expected if it is an element that remains in the crystal structure by an electrochemical oxidation reaction and serves to keep a plurality of linear units connected.
[0016]
In synthesizing Li 2-2x Zn x CuO 2 (0.01 ≦ x ≦ 0.49) of the present invention, metal lithium, lithium oxide, lithium peroxide, lithium hydroxide, lithium nitrate, lithium carbonate, lithium formate, A lithium source selected from the group consisting of lithium acetate, lithium benzoate, lithium citrate, lithium lactate, lithium oxalate, lithium pyruvate, lithium stearate, and lithium tartrate; and zinc acetate, zinc benzoate, basic carbonate Zinc, Zinc citrate, Zinc formate, Zinc hydroxide, Zinc lactate, Zinc ammonium chloride, Zinc nitrate, Zinc oleate, Zinc oxalate, Zinc oxide, Zinc peroxide, Zinc pyrophosphate, Zinc stearate, Zinc phthalocyanine, Salicylic acid A sub-group selected from the group consisting of zinc, zinc thiocyanate, zinc tartrate, and zinc metal Raw materials and copper acetate, copper benzoate, basic copper carbonate, cuprous chloride, copper citrate, copper formate, copper gluconate, copper hydroxide, copper methoxide, copper nitrate, copper tartrate, copper oxalate, oxidation Synthesis was possible from a copper raw material selected from the group consisting of cuprous, cupric oxide, copper pyrophosphate, copper salicylate, and copper stearate. In these raw materials, the molar ratio of lithium atom, zinc atom and copper atom is set to a predetermined value represented by the composition formula Li 2-2x Zn x CuO 2 (0.01 ≦ x ≦ 0.49). mixed and then fired, it was possible to obtain a Li 2-2x Zn x CuO 2 (0.01 ≦ x ≦ 0.49). In addition, as a range of x, it was possible to synthesize a single phase without impurities in the entire region of 0.01 ≦ x ≦ 0.49. The synthesis of the target Li 2-2x Zn x CuO 2 (0.01 ≦ x ≦ 0.49) is possible in any of the above raw materials, but it is possible to select a raw material with a low price industrially. preferable.
[0017]
The firing temperature is 400 ° C to 950 ° C. Below 400 ° C., the reaction rate is slow and long firing is required to obtain a composite. Moreover, it became a compound containing impurities at 950 ° C. or higher. Therefore, it is preferably 400 ° C to 950 ° C.
[0018]
Firing is performed in an oxidizing atmosphere containing oxygen or an inert gas atmosphere. The atmosphere is optimized according to the raw material used. That is, when a raw material that does not contain oxygen, such as a metal, is used, an oxidizing atmosphere containing oxygen is required. It does not need to be contained and can be synthesized in an inert gas atmosphere. Moreover, it is preferable that the oxygen partial pressure in the oxidizing atmosphere is optimized. As the inert gas to be mixed for adjusting the oxygen partial pressure, a gas selected from the group consisting of nitrogen, helium, and argon can be used.
[0019]
The positive electrode having Li 2-2x Zn x CuO 2 (0.01 ≦ x ≦ 0.49) of the present invention as a positive electrode active material can be electrochemically reacted with lithium metal or lithium and has a lower potential than the positive electrode. A lithium secondary battery including a negative electrode containing a negative active material and an electrolyte having an ion conduction function can be formed.
[0020]
First, Li 2-2x Zn x CuO 2 (0.01 ≦ x ≦ 0.49) powder is used as a positive electrode active material, and a positive electrode is prepared by mixing a conductive agent, a binder, and in some cases an electrolyte. To do.
[0021]
As the conductive agent, carbon materials such as acetylene black and graphite powder, metal powder, conductive ceramics, and the like can be used, but the conductive agent is not limited to these as long as it has practical conductive performance.
[0022]
Fluorine polymers such as polytetrafluoroethylene and polyvinylidene fluoride, and polyolefin polymers such as polyethylene and polypropylene can be used as the binder, but these are limited to those having a practical binding function. Not.
[0023]
The mixing ratio of Li 2-2x Zn x CuO 2 (0.01 ≦ x ≦ 0.49) powder, conductive agent and binder is Li 2-2x Zn x CuO 2 (0.01 ≦ x ≦ 0.49). ) The conductive agent can be 1 to 50 parts by weight and the binder can be 1 to 50 parts by weight with respect to 100 parts by weight of the powder. When the amount of the conductive agent is less than 1 part by weight, the overvoltage of the electrode in the charge / discharge reaction is increased and the charge / discharge capacity is decreased, so that a practical lithium secondary battery cannot be constructed. On the other hand, if the conductive agent is larger than 50 parts by weight, the volume ratio of the Li 2-2x Zn x CuO 2 (0.01 ≦ x ≦ 0.49) powder in the electrode decreases, so that the battery capacity becomes small and practical. Disappear. When the amount of the binder is less than 1 part by weight, the binding ability is lost and the electrode cannot be formed. On the other hand, if the binder is larger than 50 parts by weight, the overvoltage of the electrode in the charge / discharge reaction increases, and the volume ratio of the Li 2-2x Zn x CuO 2 (0.01 ≦ x ≦ 0.49) powder in the electrode. Therefore, the battery capacity becomes small and becomes impractical.
[0024]
For the positive electrode, the mixture is pressure-bonded to a current collector or mixed with a dispersion medium or solvent such as water or N-methyl-2-pyrrolidone to form a slurry, which is applied to the current collector and then dried. Can be configured. As the current collector, a conductor such as a metal foil, a metal mesh, or a metal nonwoven fabric can be used. Note that the material and shape of the current collector are not limited to these as long as they have practical potential stability and a current collecting function.
[0025]
On the other hand, the negative electrode active material may be any active material that can electrochemically react with lithium metal or lithium and has a lower potential than the positive electrode. For example, various alloys, carbon materials, polymer materials such as polyacetylene, polythiophene, and polyparaphenylene, various transition metal compounds, and the like can be used alone or as a composite. Among these, since lithium has the largest electrochemical capacity per unit weight, it can constitute a high energy density lithium secondary battery. However, when lithium metal is repeatedly charged and discharged, dendritic precipitates are formed on the surface of the lithium metal, and the grown dendritic precipitate may eventually contact the positive electrode and cause a short circuit inside the battery. . Moreover, although the subject that charging / discharging efficiency is not good is still left in the present condition, it is possible to constitute a battery. Therefore, as the negative electrode active material of the lithium secondary battery, it is preferable to use an active material that can electrochemically react with lithium other than metallic lithium and has a lower potential than the positive electrode.
[0026]
For the negative electrode, a mixture obtained by mixing a conductive material and a binder as necessary with these negative electrode active materials is pressure-bonded to a current collector, or the mixture is a dispersion medium or solvent such as water or N-methyl-2-pyrrolidone. It can be prepared by mixing with a slurry to apply it to a current collector and then drying it. As the current collector, a conductor such as a metal foil, a metal mesh, or a metal nonwoven fabric can be used. Note that the material and shape of the current collector are not limited to these as long as they have practical potential stability and a current collecting function.
[0027]
As the electrolyte having an ion conduction function of the lithium secondary battery of the present invention, for example, an organic electrolytic solution in which an electrolyte of a lithium compound is dissolved in an organic solvent, a polymer electrolyte, an inorganic solid electrolyte, a molten salt, or the like can be used.
[0028]
Examples of the organic solvent include esters such as propylene carbonate, ethylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, and γ-butyrolactone, substituted hydrofurans such as tetrahydrofuran and 2-methyltetrahydrofuran, dioxolane, diethyl ether, Examples include ethers such as dimethoxyethane, diethoxyethane, and methoxyethoxyethane, dimethyl sulfoxide, sulfolane, methyl sulfolane, acetonitrile, methyl formate, and methyl acetate. These organic solvents may be used alone or in combination of two or more.
[0029]
Examples of the electrolyte of the lithium compound include lithium salts such as lithium hexafluorophosphate, lithium perchlorate, lithium borofluoride, lithium trifluoromethanesulfonate, lithium halide, and chloroaluminum acid. These lithium compound electrolytes may be used alone or in combination of two or more. The organic solvent and the lithium compound electrolyte are not limited to those described above as long as they have a function as a practical lithium ion conductor.
[0030]
The lithium secondary battery in the present invention is configured by interposing the electrolyte having the lithium ion conduction function between the positive electrode and the negative electrode. You may interpose separators, such as porous polyethylene and porous polypropylene, with this electrolyte as needed. The material and shape of the separator are not limited to these.
[0031]
The shape of the lithium secondary battery of the present invention is not particularly limited, and can be practically used in battery shapes such as a cylindrical shape, a coin shape, a square shape, and a sheet shape.
[0032]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be specifically described below based on the embodiments. However, the present invention is not limited to these embodiments, and can be appropriately modified and implemented without departing from the scope of the present invention. is there.
[0033]
Example 1
Samples were synthesized by the following method. Lithium carbonate Li 2 CO 3 , zinc oxide ZnO and copper oxide CuO were used as raw materials, and the atomic ratio of Li, Zn and Cu was 1.98: 0.01: 1.00, 1.90: 0.05: 1.00, 1.80: 0.10: 1.00, 1.60: 0.20: 1.00, 1.40: 0.30: 1.00, 1.20: 0.40: 1. Weighed to 00, 1.02: 0.49: 1.00 and mixed thoroughly in an agate mortar.
[0034]
Each of these mixtures was placed in an alumina firing boat and placed in an electric furnace in an air atmosphere. The temperature of the electric furnace was raised from room temperature to 750 ° C. and maintained at 750 ° C. for 12 hours for firing. Thereafter, the temperature of the electric furnace was lowered, and the sample was taken out after the temperature in the electric furnace became a temperature near room temperature. The composite is pulverized in an agate mortar in dry air with a dew point of -50 ° C. or less, and powder X-ray diffraction measurement is performed with CuKα rays. The sample has a crystal structure belonging to the space group Immm, and impurities After confirming that it was a single phase without any sample, it was used as a sample for battery evaluation.
[0035]
FIG. 1 is a longitudinal sectional view of a coin-type lithium secondary battery used in an embodiment of the present invention. In the figure, 1 is a battery case obtained by processing a stainless steel plate resistant to organic electrolyte, 2 is a sealing plate of the same material, 3 is a current collector of the same material, and is spot-welded to the inner surface of the case 1. 4 is a lithium metal negative electrode, and is pressure-bonded inside the sealing plate 2. As described above, lithium metal as a negative electrode active material has a problem, but here it was used in order to clearly evaluate the characteristics of the positive electrode active material. 5 is a positive electrode using a lithium zinc copper composite oxide having a structure represented by the composition formula Li 2-2x Zn x CuO 2 (0.01 ≦ x ≦ 0.49) and belonging to the space group Immm as a positive electrode active material. is there. In producing the positive electrode, 10 parts by weight of polytetrafluoroethylene as a binder and acetylene black as a conductive agent with respect to 100 parts by weight of Li 2-2x Zn x CuO 2 (0.01 ≦ x ≦ 0.49). A certain amount of the mixture obtained by mixing 5 parts by weight was molded on the current collector 3 and dried under reduced pressure at 80 ° C. 6 is a porous polypropylene separator, and 7 is a polypropylene insulating gasket. The electrolyte was used by dissolving lithium hexafluorophosphate as an electrolyte of a lithium compound in an equal volume mixed solvent of ethylene carbonate and diethyl carbonate at a concentration of 1 mol / liter. Using these, a battery having a diameter of 20 mm and a total battery height of 1.6 mm was constructed, and a charge / discharge test was performed. In the evaluation method, charging / discharging was performed in a battery voltage range of 1.5 to 4.3 V at a constant current of a current density of 0.5 mA / cm 2 . Table 1 shows the batteries when the composition formula is Li 2-2x Zn x CuO 2 and x = 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.49. The average discharge voltage, the discharge capacity per unit weight of the positive electrode active material, and the discharge capacity of the battery were shown.
[0036]
(Comparative Example 1)
In this comparative example, the raw materials were weighed so that the atomic ratio of Li, Zn and Cu was 1.00: 0.50: 1.00, and the composition of the positive electrode active material sample was Li 1.00 Zn 0.50 CuO 2 These are the same as in the first embodiment. Table 1 shows the average discharge voltage of the battery, the discharge capacity per unit weight of the positive electrode active material, and the discharge capacity of the battery.
[0037]
(Comparative Example 2)
A sample Li 2 CuO 2 for comparison was synthesized by the following method. Lithium carbonate Li 2 CO 3 and copper oxide CuO are used as raw materials, weighed so that the atomic ratio of Li and Cu is 2.00: 1.00, and thoroughly mixed in an agate mortar It was. Each of these mixtures was placed in an alumina firing boat and placed in an electric furnace in an air atmosphere. The temperature of the electric furnace was raised from room temperature to 750 ° C. and maintained at 750 ° C. for 12 hours for firing. Thereafter, the temperature of the electric furnace was lowered, and the sample was taken out after the temperature in the electric furnace became a temperature near room temperature. After the composite is pulverized in an agate mortar in dry air with a dew point of −50 ° C. or less, and powder X-ray diffraction measurement is performed with CuKα rays, it is confirmed that the sample is a single phase free of impurities. The sample was used for battery evaluation.
[0038]
Except that the positive electrode active material is Li 2 CuO 2 , the configuration, production method and material, and evaluation method of the coin-type non-aqueous electrolyte secondary battery in this example are the same as those in the example in Example 1. Table 1 shows the average discharge voltage of the battery using the positive electrode active material Li 2 CuO 2 as a comparative example, the discharge capacity per unit weight of the positive electrode active material, and the discharge capacity of the battery.
[0039]
[Table 1]
Figure 0004314676
From Table 1, a lithium zinc copper composite oxide having a structure represented by the composition formula Li 2-2x Zn x CuO 2 (0.01 ≦ x ≦ 0.49) and belonging to the space group Immm of this example It can be seen that the positive electrode active material is larger than the discharge capacity of Li 2 CuO 2 of Comparative Example 2 in any case.
[0040]
Further, the average discharge voltage becomes higher as the zinc content increases. The battery of the same size was evaluated in this example and the comparative example, and the energy density of the battery represented by the value obtained by dividing the product of the average discharge voltage and the discharge capacity of the battery by the battery volume is It can be seen that the increase in all cases is greater than that in the comparative example.
[0041]
In the case of Comparative Example 1, since the discharge capacity has decreased although the average discharge voltage of the battery is the same as that of Comparative Example 2, the active material of the composition Li 1.00 Zn 0.50 CuO 2 is Li It has also been found that there is no effect of increasing the energy density of the battery compared to 2 CuO 2 .
[0042]
【The invention's effect】
According to the present invention, a lithium zinc copper composite oxide having a structure represented by the composition formula Li 2-2x Zn x CuO 2 (0.01 ≦ x ≦ 0.49) and belonging to the space group Immm is used as the positive electrode active material. By using the positive electrode, it is possible to provide a lithium secondary battery having a higher energy density than a conventional battery using Li 2 CuO 2 as a positive electrode active material. In addition, it is possible to provide a lithium secondary battery having a higher energy density at a lower cost than a battery using a lithium cobalt composite oxide LiCoO 2 having a discharge capacity of only about 150 mAh / g as a positive electrode active material. It is possible to provide a lithium secondary battery having a higher energy density than a battery using a lithium manganese composite oxide LiMn 2 O 4 of only about 130 mAh / g as a positive electrode active material.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a coin-type lithium secondary battery of the present invention.
1 Battery Case 2 Sealing Plate 3 Current Collector 4 Metallic Lithium 5 Positive Electrode Sample Electrode 6 Separator 7 Gasket

Claims (1)

組成式Li2-2xZnxCuO2 (0.01≦x≦0.49)で表され、かつ空間群Immmに属する構造を有するリチウム亜鉛銅複合酸化物を正極活物質とする正極を備えるリチウム二次電池。Lithium comprising a positive electrode using a lithium zinc copper composite oxide having a structure represented by the composition formula Li 2-2x Zn x CuO 2 (0.01 ≦ x ≦ 0.49) and belonging to the space group Immm as a positive electrode active material Secondary battery.
JP15613299A 1999-06-03 1999-06-03 Lithium secondary battery Expired - Fee Related JP4314676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15613299A JP4314676B2 (en) 1999-06-03 1999-06-03 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15613299A JP4314676B2 (en) 1999-06-03 1999-06-03 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2000348721A JP2000348721A (en) 2000-12-15
JP4314676B2 true JP4314676B2 (en) 2009-08-19

Family

ID=15621032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15613299A Expired - Fee Related JP4314676B2 (en) 1999-06-03 1999-06-03 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4314676B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7521153B2 (en) * 2004-03-16 2009-04-21 Toyota Motor Engineering & Manufacturing North America, Inc. Corrosion protection using protected electron collector
JP5145648B2 (en) * 2006-04-14 2013-02-20 日産自動車株式会社 Lithium ion secondary battery
CN102668184B (en) 2009-12-18 2015-06-24 Jx日矿日石金属株式会社 Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
JP6285089B2 (en) 2009-12-22 2018-02-28 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, lithium ion battery using the same, and positive electrode active material precursor for lithium ion battery
CN102792496B (en) 2010-02-05 2016-03-23 Jx日矿日石金属株式会社 Positive electrode active material for lithium ion battery, lithium ion battery positive pole and lithium ion battery
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
JPWO2011108595A1 (en) 2010-03-04 2013-06-27 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9225020B2 (en) 2010-03-04 2015-12-29 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
JP5923036B2 (en) 2010-03-04 2016-05-24 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
CN102754254B (en) 2010-03-04 2016-01-20 Jx日矿日石金属株式会社 Positive electrode active material for lithium ion battery, lithium ion battery positive pole and lithium ion battery
CN105514420A (en) 2010-12-03 2016-04-20 Jx日矿日石金属株式会社 Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
JP2012142156A (en) 2010-12-28 2012-07-26 Sony Corp Lithium ion secondary battery, positive electrode active material, positive electrode, power tool, electric vehicle, and power storage system
KR101667867B1 (en) 2011-01-21 2016-10-19 제이엑스금속주식회사 Method of manufacturing positive electrode active material for a lithium-ion battery and a positive electrode active material for a lithium-ion battery
EP2704237B1 (en) 2011-03-29 2016-06-01 JX Nippon Mining & Metals Corporation Production method for positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
KR101539154B1 (en) 2011-03-31 2015-07-23 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Positive electrode active material for lithium ion batteries, positive electrode for lithium ion battery, and lithium ion battery
JP6292739B2 (en) 2012-01-26 2018-03-14 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP6292738B2 (en) 2012-01-26 2018-03-14 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP6159514B2 (en) * 2012-09-19 2017-07-05 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
KR101729824B1 (en) 2012-09-28 2017-04-24 제이엑스금속주식회사 Positive-electrode active substance for lithium-ion cell, positive electrode for lithium-ion cell, and lithium-ion cell

Also Published As

Publication number Publication date
JP2000348721A (en) 2000-12-15

Similar Documents

Publication Publication Date Title
JP4314676B2 (en) Lithium secondary battery
JP4523807B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
US9660261B2 (en) Positive electrode active material, method for producing the same, and electrochemical device
Tarascon et al. Li Metal‐Free Rechargeable Batteries Based on Li1+ x Mn2 O 4 Cathodes (0≤ x≤ 1) and Carbon Anodes
JP4431064B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
JP4216669B2 (en) Lithium / nickel / manganese / cobalt composite oxide and lithium ion secondary battery using the same as positive electrode active material
US20110200878A1 (en) Lithium containing transition metal sulfide compounds
KR20020063501A (en) Non-aqueous electrolyte secondary battery
JPH10158017A (en) Lithium-nickel-multiple oxide, its production and its use
JPH08217452A (en) Needle manganese complex oxide, production and use thereof
JPH11135119A (en) Active material and positive plate for nonaqueous electrolyte secondary battery, and the nonaqueous electrolyte secondary battery
JP3260282B2 (en) Non-aqueous electrolyte lithium secondary battery
JP4028738B2 (en) Positive electrode active material for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery
KR100570747B1 (en) Positive electrode for rechargeable lithium battery and rechargeable lithium battery comprising same
JP5169079B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP3057755B2 (en) Method for producing lithium manganese composite oxide and use thereof
JP2013062114A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery manufactured using the same
KR101299666B1 (en) Electrolyte for lithium air rechargeable battery and lithium air rechargeable battery using the same
JP3713066B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
KR101173860B1 (en) Negative active material for rechargeable lithium battery and rechargeable lithium battery comprising same
JP3403568B2 (en) Lithium nickel composite oxide, its production method and its use
JP3079577B2 (en) Lithium-containing manganese dioxide, method for producing the same, and use thereof
JP3301026B2 (en) Lithium battery
JP5176270B2 (en) Anode material for secondary battery and secondary battery using the same
JP2006066084A (en) Anode for lithium secondary battery and its utilization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060405

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090511

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees