JP4313417B1 - Apparatus and method for controlling color shade of tea extract - Google Patents

Apparatus and method for controlling color shade of tea extract Download PDF

Info

Publication number
JP4313417B1
JP4313417B1 JP2008079740A JP2008079740A JP4313417B1 JP 4313417 B1 JP4313417 B1 JP 4313417B1 JP 2008079740 A JP2008079740 A JP 2008079740A JP 2008079740 A JP2008079740 A JP 2008079740A JP 4313417 B1 JP4313417 B1 JP 4313417B1
Authority
JP
Japan
Prior art keywords
color
tea
solution
catechin
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008079740A
Other languages
Japanese (ja)
Other versions
JP2009232696A (en
Inventor
数馬 朝野
Original Assignee
数馬 朝野
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 数馬 朝野 filed Critical 数馬 朝野
Priority to JP2008079740A priority Critical patent/JP4313417B1/en
Application granted granted Critical
Publication of JP4313417B1 publication Critical patent/JP4313417B1/en
Publication of JP2009232696A publication Critical patent/JP2009232696A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Tea And Coffee (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

【課題】茶の品質の評価はその風味に加えて色調によっても左右されることから、抽出後の溶液の色を制御できる装置および方法を提供する。
【解決手段】茶の主成分であるカテキン類は無色であるが酸化によって、有色であるタンニンへと変わることが知られている。そこで、プロトン伝導膜3をはさんだ一対の電極1,2、水素イオンの受け渡しが可能な官能基を持つ固体電解質の膜をはさんだ一対の貴金属の電極を用いてカテキンの酸化作用を制御することにより、茶抽出液の色を制御する。
【選択図】図1
The present invention provides an apparatus and a method capable of controlling the color of a solution after extraction because the evaluation of tea quality depends on the color tone in addition to its flavor.
It is known that catechins, which are the main components of tea, are colorless, but are changed to colored tannins by oxidation. Therefore, the oxidation action of catechin is controlled by using a pair of electrodes 1 and 2 sandwiching the proton conducting membrane 3 and a pair of noble metal electrodes sandwiching a membrane of a solid electrolyte having a functional group capable of transferring hydrogen ions. To control the color of the tea extract.
[Selection] Figure 1

Description

本発明は電極を用いて電気分解し、溶液に含まれる発色物質を酸化還元してその溶液の色を制御する装置及びその方法に関するものである。   The present invention relates to an apparatus and a method for controlling the color of a solution by electrolyzing with an electrode and oxidizing and reducing a coloring substance contained in the solution.

一般に、食べ物の味の良し悪しは、味覚だけではなく他の感覚などにも影響されることもある。それは茶にも共通することであり、例えば「色が鮮やかで深みがある方が良いお茶だ」などといった、外観の評価によって茶の品質が左右されることもある。よって、茶の色調の変化が品質に与える影響は大きい。それ故、茶の色調を自由に変化させることができれば、茶の品質を向上させることができる。そのため、茶は抽出時に温度、圧力や茶葉の状態を調節するなどといった様々な工夫を施して抽出液の色調を制御する技術が存在する。
特開2001-17368号公報 特開2006-191851号公報
In general, the taste of food may be influenced not only by taste but also by other sensations. This is also common to tea, and the quality of tea may be influenced by the appearance evaluation, for example, “It is better if the color is bright and deep”. Therefore, the influence of the change in tea color on the quality is great. Therefore, if the color tone of tea can be freely changed, the quality of tea can be improved. Therefore, there are techniques for controlling the color tone of the extracted liquid by various means such as adjusting the temperature, pressure and the state of the tea leaf during extraction.
JP 2001-17368 A Japanese Unexamined Patent Publication No. 2006-191851

従来技術は茶の抽出時に作用させるものであり、抽出後の茶では適用できない。また、抽出後の茶を制御する手段として、加熱や試薬の添加などが挙げられるが、その際の色の制御は加減の面から困難である。加えて、茶の色調は抽出時の時間や浸透液の温度などによって変化してしまい、色の変化に伴って茶の味も変わってしまう。それ故、味はそのままで茶の色調を変えることは難しい。もし、何も加えず茶の抽出液の色調を自在に調節することができれば、味を変えずに色の濃い茶を飲むことが出来るなど、茶の楽しみ方が広まると考えた。   The prior art works at the time of tea extraction and cannot be applied to tea after extraction. In addition, as means for controlling the tea after extraction, heating, addition of a reagent, and the like can be mentioned, but it is difficult to control the color at that time in terms of adjustment. In addition, the color tone of tea changes depending on the extraction time, the temperature of the penetrant, and the like, and the tea taste changes with the change of color. Therefore, it is difficult to change the color of tea without changing the taste. If I could adjust the color of the tea extract without adding anything, I thought it would be possible to enjoy dark tea without changing the taste.

そこで我々は抽出後の溶液においても用いることが可能で、かつ制御の容易な色調制御手段として電気を用いることを検討した。茶の主成分であるカテキン類は無色であるが酸化 によって、有色であるタンニンへと変わることが知られている。そこでこの酸化作用を利用した、制御の容易な電気による、カテキンを含む溶液の色の制御装置およびその方法を提案することによって上記の問題を解決する。本発明は電荷の受け渡しが可能な伝導膜をはさんだ電極を用いて、発色物質が含まれる溶液を電気分解し、溶液に含まれている発色物質を酸化還元することによってその溶液の色を制御する装置およびその方法である。具体的にはプロトン伝導膜をはさんだ一対の電極、水素イオンの受け渡しが可能な官能基を持つ固体電解質の膜をはさんだ一対の貴金属の電極を用いて、カテキンを含む茶葉などの溶液の色を制御する。   Therefore, we investigated the use of electricity as a color control means that can be used in the solution after extraction and is easy to control. It is known that catechins, which are the main components of tea, are colorless, but are converted to colored tannins by oxidation. Therefore, the above problem is solved by proposing an apparatus and a method for controlling the color of a solution containing catechin, which uses this oxidation action and is easily controlled by electricity. The present invention controls the color of a solution by electrolyzing a solution containing a coloring substance using an electrode sandwiched between conductive films capable of transferring charges and oxidizing and reducing the coloring substance contained in the solution. Apparatus and method thereof. Specifically, using a pair of electrodes sandwiched between proton conducting membranes and a pair of noble metal electrodes sandwiching a membrane of a solid electrolyte having a functional group capable of passing hydrogen ions, the color of a solution such as tea leaves containing catechins To control.

一対の電極をカテキンが含まれる溶液に浸して電気分解することにより、カテキンが酸化還元反応して有色のタンニンに変化し溶液の色の濃度が変化する。電解時間や電流を適宜調節することにより、溶液の色の濃度を制御することができる。電極の間にプロトン伝導膜を介在することにより、茶の抽出液のような導電性の悪い溶液でも電気分解が可能である。これにより、抽出後の茶において加減の面から制御の困難な、加熱や試薬の添加ではない、電気による色の制御が可能となり、味を変えずに色の濃い茶を飲むことが出来るなど、茶の楽しみ方が広まるといえる。   By immersing a pair of electrodes in a solution containing catechin and performing electrolysis, the catechin undergoes an oxidation-reduction reaction to change to colored tannin, and the color concentration of the solution changes. The color concentration of the solution can be controlled by appropriately adjusting the electrolysis time and current. By interposing a proton conducting membrane between the electrodes, electrolysis can be performed even with a poorly conductive solution such as tea extract. As a result, it is difficult to control the tea after extraction, it is difficult to control it, it is not heating or the addition of reagents, it is possible to control the color by electricity, you can drink dark tea without changing the taste, etc. It can be said that the way of enjoying is spread.

[全体の構成]
本発明は、一対の電極1、2とこれらの板に挟まれたプロトン伝導膜3から構成されている(図1参照)装置である。
[Overall configuration]
The present invention is an apparatus comprising a pair of electrodes 1 and 2 and a proton conductive membrane 3 sandwiched between these plates (see FIG. 1).

[電極]
本発明に用いる電極1、2は耐食性が優れており、電解の際に人体へ影響を及ぼすイオンや不純物を不溶出しないものが望ましい。例えば、白金、チタン、白金被覆チタンなどの電極が挙げられる。実施例では上記の事柄に該当する白金被覆チタン板を採用した。
電極は陰極と陽極が接触(ショート)しないようにリード線接続部分が湾曲していることが望ましい(図1参照)。
[electrode]
The electrodes 1 and 2 used in the present invention are excellent in corrosion resistance, and desirably do not elute ions and impurities that affect the human body during electrolysis. For example, electrodes such as platinum, titanium, and platinum-coated titanium can be used. In the examples, a platinum-coated titanium plate corresponding to the above matters was adopted.
It is desirable that the lead wire connecting portion is curved so that the cathode and the anode do not contact (short-circuit) (see FIG. 1).

[プロトン伝導膜3]
本発明のプロトン伝導膜は電気導電性が悪い紅茶抽出液において、電気を通過させるために用いられる。プロトン伝導膜は、イオン交換膜のタイプのものがよく、実施例においてはデュポン社製のナフィオン324を使用した。陰極と陽極が接触(ショート)しないように電極1、2よりひと回り大きいサイズとなっている方が望ましい(図1参照)。
[Proton conducting membrane 3]
The proton conducting membrane of the present invention is used for passing electricity in a black tea extract having poor electrical conductivity. The proton conductive membrane is preferably an ion exchange membrane type, and in the examples, Nafion 324 manufactured by DuPont was used. It is desirable that the size be slightly larger than the electrodes 1 and 2 so that the cathode and the anode do not contact (short-circuit) (see FIG. 1).

[その他]
電極1、2とプロトン伝導膜3は電気の通過のために、膜の両面に電極を密着させる必要がある。本実施例では電極接触部分を、絶縁性のプラスチック製クリップを用いて固定した(図2参照)。
以下本発明を紅茶の抽出液に適用した実施例について説明する。
[Others]
The electrodes 1 and 2 and the proton conducting membrane 3 need to be in close contact with both sides of the membrane for the passage of electricity. In this example, the electrode contact portion was fixed using an insulating plastic clip (see FIG. 2).
Examples in which the present invention is applied to black tea extract are described below.

試料の紅茶は、三井農林株式会社製 日東紅茶 ティーバッグ1.8gを電子レンジで7分間加熱した水道水1Lで、5分間抽出して調製した。図3に実験装置を示した。1組の白金被覆チタン(電極面積4.0cm2)の間にプロトン伝導膜(面積7.2cm2)を挟んだものを電極として用いた。絶縁体の器具によって電極とプロトン伝導膜を密着固定した。クールスターラーにより冷却・攪拌しながら定電圧36.7Vで2.0Aで90分間電解を行った。色の変化の観察のために、各電解時間(0,5,10,15,20,30,40,60,90分)の反応液をそれぞれ10mlずつ採取し、イオン交換水で6倍に希釈し、分光光度計(日立製U0080D)を用いて茶色の吸収波長である波長λ=480nmの吸光度測定を行った。 The sample black tea was prepared by extracting 1.8 g of Nitto black tea tea bag made by Mitsui Norin Co., Ltd. for 5 minutes with 1 L of tap water heated for 7 minutes in a microwave oven. FIG. 3 shows an experimental apparatus. It was used to sandwich the proton conductive membrane (area 7.2cm 2) as an electrode between a pair of platinum coated titanium (electrode area 4.0 cm 2). The electrode and the proton conductive membrane were tightly fixed with an insulator. Electrolysis was performed for 90 minutes at 2.0 A at a constant voltage of 36.7 V while cooling and stirring with a cool stirrer. To observe the color change, collect 10 ml each of the reaction solution for each electrolysis time (0, 5, 10, 15, 20, 30, 40, 60, 90 minutes) and dilute 6 times with ion-exchanged water. Then, the absorbance at a wavelength λ = 480 nm, which is a brown absorption wavelength, was measured using a spectrophotometer (Hitachi U0080D).

[比較例1]
また、電解による影響を検証するために、比較例1としてプロトン伝導膜を電極間にはさまないで、代わりにスペーサーとして硝子板をはさんだものについて同様の操作を行い、実験を行った。実験結果を図4に示す。
[Comparative Example 1]
Further, in order to verify the influence of electrolysis, as a comparative example 1, the proton conducting membrane was not sandwiched between the electrodes, and instead, the same operation was performed with a glass plate interposed as a spacer. The experimental results are shown in FIG.

[実施例1と比較例1に関する考察]
図4より、本来導電性が悪い紅茶においてもプロトン伝導膜をはさんで導電性が向上した本発明品を用いて電解した事により、プロトン伝導膜をはさまなかった比較例1に比べて、電解時間が増加するに伴い紅茶の色が濃くなっている事がわかる。これは、プロトン交換膜を用いると、電極間の導電性が上がるために、電解の進行が速くなり、色の変化も大きくなるからである。プロトン伝導膜を用いないと、電極間の導電性が低く、電流が流れにくいため、電解の進行速度が極端に遅くなり、色の変化も小さくなったためであると考えられる。
[Consideration on Example 1 and Comparative Example 1]
From FIG. 4, compared to Comparative Example 1 in which the proton conductive membrane was not sandwiched by electrolysis using the product of the present invention with improved conductivity across the proton conductive membrane, even in black tea with originally poor conductivity, It can be seen that the color of black tea becomes darker as the electrolysis time increases. This is because the use of a proton exchange membrane increases the conductivity between the electrodes, so that the progress of electrolysis is accelerated and the color change also increases. If a proton conducting membrane is not used, the electrical conductivity between the electrodes is low and the current does not flow easily. Therefore, it is considered that the progress of electrolysis is extremely slow and the color change is small.

以下本発明を、カテキンを含む溶液に適用した実施例について説明する。試料の緑茶を、佐藤食品工業株式会社製 「真茶撰煎茶(上撰)0.5gを電子レンジで7分間加熱した水道水1Lで、溶かして調製した。紅茶での適用時と同様の操作を行い、緑茶の色の変化を観察した。実験結果を図5に示す。   Examples in which the present invention is applied to a solution containing catechin will be described below. A sample of green tea was prepared by dissolving 0.5 g of “Shincha-boiled green tea (upper rice cake) 0.5 g, heated in a microwave oven for 7 minutes. The results of the experiment are shown in FIG.

カテキンを含む溶液として、花王株式会社製「ヘルシアウォーター」を使用し、他は実施例1と同様の操作を行い、ヘルシアウォーターの色の変化を観察した。また分光計による吸光度の観察の際に、実施例1の様に、反応液を6倍希釈せずに測定を行った。実験結果を図6に示す。   As a solution containing catechin, “Healthia Water” manufactured by Kao Corporation was used, and the other operations were carried out in the same manner as in Example 1, and the change in the color of Helsia Water was observed. In addition, when the absorbance was observed with a spectrometer, the measurement was performed without diluting the reaction solution 6 times as in Example 1. The experimental results are shown in FIG.

[実施例1〜3に関する考察]
茶の色はタンニン(カテキン類の混合物)によるところが大きいとされている。タンニンの主な成分であるテアフラビン、エピカテキン、エピガロカテキンガレートの酸化重合物の化学式を図7に示す。無色であったカテキンが酸化重合してタンニンになり、これらの分子は図7に示すような長い共役鎖を有していることから着色して見える。紅茶は茶葉を発酵させることにより、茶葉中のカテキンを酸化酵素によって酸化重合して生まれる、紅茶特有のタンニンを含んだ抽出液である。そのため、図4の紅茶の色が濃くなる現象は、電気分解によって、紅茶が含有しているカテキン類が酸化重合され、上記の様な物質が生成したものと予想される。また、紅茶以外のカテキンを含む溶液も同様にカテキン類が酸化重合され、発色物質が発生したものと推測される。
[Consideration regarding Examples 1 to 3]
It is said that the color of tea is largely due to tannin (a mixture of catechins). The chemical formula of the oxidation polymer of theaflavin, epicatechin, and epigallocatechin gallate, which are the main components of tannin, is shown in FIG. The colorless catechin is oxidatively polymerized into tannins, and these molecules appear colored because they have long conjugated chains as shown in FIG. Black tea is an extract containing tannin peculiar to black tea, which is produced by fermenting tea leaves and oxidatively polymerizing catechins in the tea leaves with an oxidase. Therefore, the phenomenon that the color of black tea in FIG. 4 becomes dark is presumed that the catechins contained in black tea are oxidatively polymerized by electrolysis and the above-mentioned substances are generated. In addition, it is presumed that the solution containing catechins other than black tea was also oxidatively polymerized to generate chromogenic substances.

そこで、このことを検証するために、カテキンを含有していない飲料で同様の実験を行い、色の変化を観察した。本比較実験では紅茶と同じ茶色で吸収波長λ=480nmの吸光度で比較が可能であり、かつ茶葉からではなく大麦の種子から抽出した溶液である麦茶と、茶には含まれているが麦茶には含まれていないカフェインの効果を検証するために、コーヒー豆を焙煎し挽いた粉末の成分を抽出した溶液であるコーヒーを用いて電解を行い、色の変化を比較することにした。   Therefore, in order to verify this, the same experiment was performed with a beverage not containing catechin, and the color change was observed. In this comparative experiment, the same brown color as black tea can be compared with the absorbance at an absorption wavelength λ = 480 nm, and barley tea, which is a solution extracted from barley seeds instead of tea leaves, is contained in tea but barley tea. In order to verify the effect of caffeine not contained, coffee was roasted and ground, and coffee was extracted from the components of the powder, and electrolysis was used to compare the color changes.

[比較例2]
以下本発明をカテキンが含まれていない溶液に適用し、その差を比較した比較例2について説明する。電子レンジで7分間加熱した1Lの水道水でコプロ株式会社製六条麦茶ティーバッグ10gを5分間抽出して得た麦茶をカテキンの含まれていない溶液の試料として、実施例1と同様の操作を行い、麦茶の色の変化を観察した。実験結果を図8に示す。
[Comparative Example 2]
Hereinafter, Comparative Example 2 in which the present invention is applied to a solution containing no catechin and the difference is compared will be described. The same operation as in Example 1 was performed using barley tea obtained by extracting 10 g of Rojo tea tea bag made by Copro Co., Ltd. for 5 minutes with 1 L of tap water heated for 7 minutes in a microwave oven as a sample of a solution not containing catechin. The change in the color of barley tea was observed. The experimental results are shown in FIG.

[比較例3]
ネスレ社製「ネスカフェ香味焙煎インスタントコーヒー」0.5gを電子レンジで7分間加熱した1Lの水道水で溶かしたコーヒーをカテキンの含まれていない溶液の試料とし、実施例1と同様の操作を行い、コーヒーの色の変化を観察した。実験結果を図9に示す。
[Comparative Example 3]
The same operation as in Example 1 was carried out using a coffee solution prepared by dissolving 0.5 g of Nescafe “Roasted Nescafe Flavored Instant Coffee” in 1 L of tap water heated for 7 minutes in a microwave oven as a sample of a solution containing no catechin. Observed coffee color change. The experimental results are shown in FIG.

実験結果から、各溶液の電解による吸光度の変化率を「(変化率)=(波長λ=480nmにおける吸光度)/(電解時間0分における吸光度)」と定義し、図10に示す。   From the experimental results, the rate of change in absorbance of each solution due to electrolysis is defined as “(change rate) = (absorbance at wavelength λ = 480 nm) / (absorbance at 0 minutes of electrolysis time)” and is shown in FIG.

図4〜10から、上記考察のとおりカテキンが含まれる各溶液においては電解に伴い吸光度が高くなっている事が読み取れる。カテキンが含まれる溶液では色の変化が起きたが、麦茶ではほとんど変化がおきなかった。これは、麦茶には含まれていない茶葉特有の成分が原因で起きたものと推定される。上述したように、紅茶には麦茶に含まれていない、カテキン類が含まれている。よって、この色の変化は、当初の予想通り、麦茶には含まれていない、カテキン類などの分子が電気分解によってタンニン、テアフラビン、テアルビジンやそれらの酸化重合物に変化し、色が濃くなったのではないかと考えられる。   4-10, it can be read that the absorbance increases with electrolysis in each solution containing catechins as described above. The color change occurred in the solution containing catechin, but almost no change was observed in barley tea. This is presumed to be caused by a component unique to tea leaves not contained in barley tea. As described above, black tea contains catechins that are not contained in barley tea. Therefore, this color change, as originally expected, changed the molecules such as catechins, which are not contained in barley tea, to tannin, theaflavin, thearvidin and their oxidation polymers by electrolysis, and the color became darker. It is thought that.

カテキンを含む溶液の色の濃度制御が可能であることから、本発明をカテキンを含む風呂の入浴剤やカテキンを含む染料に適用する事により、時間経過に伴う色調の鮮度低下を制御し、溶液を長時間利用し続けることが可能となる。   Since it is possible to control the color concentration of a solution containing catechin, by applying the present invention to a bath agent containing catechin or a dye containing catechin, a decrease in the freshness of the color tone over time can be controlled. Can be used for a long time.

本発明の装置図である。It is an apparatus diagram of the present invention. 本発明の最良の実施形態図である。It is the best embodiment figure of this invention. 本発明の実施例における装置図である。It is an apparatus figure in the Example of this invention. 実施例1と比較例1の電気分解による紅茶の吸光度変化を示した図である。It is the figure which showed the light absorbency change of the black tea by the electrolysis of Example 1 and Comparative Example 1. 実施例2の電気分解による緑茶の吸光度変化を示した図である。It is the figure which showed the light absorbency change of the green tea by the electrolysis of Example 2. FIG. 実施例3の電気分解によるヘルシアウォーターの吸光度変化を示した図である。FIG. 6 is a graph showing changes in the absorbance of Helsia water due to electrolysis in Example 3. タンニンの主成分の物質の化学式を示した図である。It is the figure which showed the chemical formula of the substance of the main component of a tannin. 比較例2の電気分解による麦茶の吸光度変化を示した図である。It is the figure which showed the light absorbency change of barley tea by the electrolysis of the comparative example 2. 比較例3の電気分解によるコーヒーの吸光度変化を示した図である。It is the figure which showed the light absorbency change of the coffee by the electrolysis of the comparative example 3. 各溶液における電解に伴う吸光度の変化率を示した図である。It is the figure which showed the change rate of the light absorbency accompanying electrolysis in each solution.

符号の説明Explanation of symbols

1 電極
2 電極
3 プロトン導電膜
4 クリップ
5 試料
6 攪拌子
7 クールスターラー
8 電流計
9 電圧計
DESCRIPTION OF SYMBOLS 1 Electrode 2 Electrode 3 Proton conductive film 4 Clip 5 Sample 6 Stirrer 7 Cool stirrer 8 Ammeter 9 Voltmeter

Claims (2)

プロトン伝導膜を密着させはさんだ一対の電極を用いて、カテキンが含まれる溶液を電気分解し、溶液中に含まれるカテキンを酸化還元することによってその溶液の色を制御する装置を用いたカテキンを含む溶液の色の制御方法。Catechin using a device that controls the color of the solution by electrolyzing the solution containing catechin using a pair of electrodes sandwiched between proton conductive membranes and oxidizing and reducing the catechin contained in the solution. Method for controlling the color of the solution containing. 水素イオンの受け渡しが可能な官能基を持つ固体電解質の膜を密着させはさんだ一対の貴金属の電極を用いて、カテキンを含む溶液を電気分解し、溶液に含まれるカテキンを酸化還元することによってその溶液の色を制御する装置を用いた茶のカテキンを含む溶液の色の制御方法。Using a pair of noble metal electrodes with a solid electrolyte membrane having a functional group capable of passing hydrogen ions, the solution containing catechin is electrolyzed and the catechin contained in the solution is oxidized and reduced. A method for controlling the color of a solution containing tea catechins using an apparatus for controlling the color of the solution.
JP2008079740A 2008-03-26 2008-03-26 Apparatus and method for controlling color shade of tea extract Expired - Fee Related JP4313417B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008079740A JP4313417B1 (en) 2008-03-26 2008-03-26 Apparatus and method for controlling color shade of tea extract

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008079740A JP4313417B1 (en) 2008-03-26 2008-03-26 Apparatus and method for controlling color shade of tea extract

Publications (2)

Publication Number Publication Date
JP4313417B1 true JP4313417B1 (en) 2009-08-12
JP2009232696A JP2009232696A (en) 2009-10-15

Family

ID=41036712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008079740A Expired - Fee Related JP4313417B1 (en) 2008-03-26 2008-03-26 Apparatus and method for controlling color shade of tea extract

Country Status (1)

Country Link
JP (1) JP4313417B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7114122B1 (en) 2021-07-08 2022-08-08 株式会社Giant Process for producing modified coffee

Also Published As

Publication number Publication date
JP2009232696A (en) 2009-10-15

Similar Documents

Publication Publication Date Title
Kilmartin Electrochemical detection of natural antioxidants: Principles and protocols
Oliveira et al. Batch-injection analysis with amperometric detection of the DPPH radical for evaluation of antioxidant capacity
Ping et al. An amperometric sensor based on Prussian blue and poly (o-phenylenediamine) modified glassy carbon electrode for the determination of hydrogen peroxide in beverages
Kilmartin et al. A cyclic voltammetry method suitable for characterizing antioxidant properties of wine and wine phenolics
Skrovankova et al. Determination of ascorbic acid by electrochemical techniques and other methods
Campanella et al. Determination of the antioxidant capacity of samples of different types of tea, or of beverages based on tea or other herbal products, using a superoxide dismutase biosensor
Koçak et al. Highly sensitive determination of gallic acid on poly (l-Methionine)-carbon nanotube composite electrode
Yardım Electrochemical Behavior of Chlorogenic Acid at a Boron‐Doped Diamond Electrode and Estimation of the Antioxidant Capacity in the Coffee Samples Based on Its Oxidation Peak
Michalska et al. Experimental study on stability of different solid contact arrangements of ion-selective electrodes
Fustier et al. Non-enzymatic browning and ascorbic acid degradation of orange juice subjected to electroreduction and electro-oxidation treatments
Saikrithika et al. Electrochemical detections of tea polyphenols: A review
Türke et al. Electrochemistry of sulfur dioxide, polyphenols and ascorbic acid at poly (3, 4-ethylenedioxythiophene) modified electrodes
Kunitake et al. Electrochemistry in bicontinuous microemulsions based on control of dynamic solution structures on electrode surfaces
Zielinska et al. Electrooxidation of quercetin at glassy carbon electrode studied by ac impedance spectroscopy
Song et al. A selective voltammetric detection for dopamine using poly (gallic acid) film modified electrode
He et al. Voltammetric and spectral characterization of two flavonols for assay-dependent antioxidant capacity
JP4313417B1 (en) Apparatus and method for controlling color shade of tea extract
Pusch et al. Pt–Pd bimetallic nanoparticles dispersed in an ionic liquid and peroxidase immobilized on nanoclay applied in the development of a biosensor
Mason et al. Monitoring of glucose in beer brewing by a carbon nanotubes based nylon nanofibrous biosensor
Kilmartin et al. Polyaniline-based microelectrodes for sensing ascorbic acid in beverages
Sabela et al. Evaluation of antioxidants in herbal tea with a Laccase biosensor
Andrei et al. Simple DPPH.‐Based Electrochemical Assay for the Evaluation of the Antioxidant Capacity: a Thorough Comparison with Spectrophotometric Assays and Evaluation with Real‐World Samples
Datta et al. Electrochemical sensor for detection of polyphenols in tea and wine with differential pulse voltammetry and electrochemical impedance spectroscopy utilizing tyrosinase and gold nanoparticles decorated biomembrane
Prehn et al. Electrochemical detection of polyphenolic compounds in foods and beverages
Wang et al. Simultaneous determination of food-related biogenic amines and precursor amino acids by micellar electrokinetic capillary chromatography with electrochemical detection

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees