JP4312455B2 - Tetraphenylporphyrin derivative and composition comprising the same - Google Patents

Tetraphenylporphyrin derivative and composition comprising the same Download PDF

Info

Publication number
JP4312455B2
JP4312455B2 JP2002525240A JP2002525240A JP4312455B2 JP 4312455 B2 JP4312455 B2 JP 4312455B2 JP 2002525240 A JP2002525240 A JP 2002525240A JP 2002525240 A JP2002525240 A JP 2002525240A JP 4312455 B2 JP4312455 B2 JP 4312455B2
Authority
JP
Japan
Prior art keywords
tetraphenylporphyrin
salt
derivative
tetraphenylporphyrin derivative
pyr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002525240A
Other languages
Japanese (ja)
Other versions
JPWO2002020621A1 (en
Inventor
重信 矢野
豊次 覚知
木下  勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
San Ei Gen FFI Inc
REI Medical Co Ltd
Original Assignee
San Ei Gen FFI Inc
REI Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by San Ei Gen FFI Inc, REI Medical Co Ltd filed Critical San Ei Gen FFI Inc
Publication of JPWO2002020621A1 publication Critical patent/JPWO2002020621A1/en
Application granted granted Critical
Publication of JP4312455B2 publication Critical patent/JP4312455B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Description

技術分野
この発明は、テトラフェニルポルフィリン誘導体に関し、詳細には、マルトヘキソース残基とデシル基で置換されたテトラフェニルポルフィリン誘導体またはその塩、ならびに光線力学的療法(Photodynamic Therapy;PDT)に使用することができる、テトラフェニルポルフィリン誘導体またはその塩からなる光増感剤としての組成物に関する。
背景技術
腫瘍細胞に対する特異的親和性を有する光増感剤をあらかじめ患者に投与し、その後、各種波長のレーザー光等を照射することにより癌の治療を行う光線力学的療法(PDT)は、癌の非侵襲的療法の一つとして注目を浴びている。このようなPDT療法に使用し得る光増感剤としては、ポルフィリン骨格を有する種々の誘導体が知られており、それらの中には臨床上実際に使用されている化合物もある。
ところで、PDT療法に使用し得る望ましい光増感剤としては、親水性であること、腫瘍細胞に対する選択性が高いこと、暗所では細胞に対して無害であること、組織透過性が良く安価なレーザー光装置を用いることのできる長波長領域の吸光係数が大きいこと等が要求される。しかしながら、これまで提案されているポルフィリン誘導体には、疎水性であるために生じる副作用や、組織透過性の高い長波長領域での励起光の吸光係数が小さい等の問題があるため、より優れた光増感剤の開発が望まれている。
発明の開示
そこで本発明者らは、より優れた光増感剤を開発すべく鋭意研究した結果、親水性と細胞親和性を付与するためのマルトヘキソース残基と、細胞壁への親和性を増大させるためのデシル基とを有するテトラフェニルポルフィリン誘導体が、長波長領域の光によるすぐれた殺細胞効果を有することを見出し、この発明を完成した。
発明を実施するための最良の形態
本発明によれば、式(I):

Figure 0004312455
[式中、R、R、RおよびRは、互いに独立して、
Figure 0004312455
で示される基であり、かつ、R〜Rの少なくとも1つは
Figure 0004312455
で示される基であり、かつR〜Rの残りの少なくとも1つは、
Figure 0004312455
で示される基である]
で表されるテトラフェニルポルフィリン誘導体またはその塩が提供される。
本発明によるテトラフェニルポルフィリン誘導体(I)の好ましい具体的化合物の例を示すと、次の通りである。
Figure 0004312455
Figure 0004312455
本発明のテトラフェニルポルフィリン誘導体(I)は、以下に記載する方法あるいはそれに準じた方法により製造することができる。
例えば、マルトヘキソース残基およびデシル基で置換されたテトラフェニルポルフィリン誘導体(Ia)は、ベンゼン環上のヒドロキシ基が適当な保護基で保護されたベンズアルデヒド誘導体、ベンゼン環上ののヒドロキシ基がデシル基で置換されたベンズアルデヒド誘導体およびピロールを、Adlerらの方法(J.Org.Chem.,32,476(1967))に準じて反応させることにより得られる。
その一例を、反応式で示すと次の通りである。
Figure 0004312455
Figure 0004312455
この具体例では、まずピロールと2種類のベンズアルデヒド誘導体(II)および(III)を、適当な有機溶媒、例えばプロピオン酸中で反応させることにより、テトラフェニルポルフィリン誘導体(IV)を得る。
上記で得られるテトラフェニルポルフィリン誘導体(IV)を、例えば、ナトリウムメトキシド等の塩基の存在下に、ベンゼン環上のヒドロキシ保護基を脱離して、テトラフェニルポルフィリン化合物(V)を得る。
このテトラフェニルポルフィリン化合物(V)を、マルトヘキソース誘導体(VI)とのカップリング反応に付して化合物(VII)を得、次いでマルトヘキソース部分のヒドロキシ保護基を脱離することにより、マルトヘキソース残基およびデシル基で置換されたテトラフェニルポルフィリン誘導体(Ia)を得ることができる。
また、マルトヘキソース残基およびデシル基で置換されたテトラフェニルポルフィリン誘導体(Ib)は、ベンゼン環上のヒドロキシ基が適当な保護基で保護されたベンズアルデヒド誘導体、ベンゼン環上のヒドロキシ基がデシル基で置換されたベンズアルデヒド誘導体および1−メシチルジピロロメタンを、Lindseyらの方法(J.Org.Chem.,64,1391(1999)および64,2864(1999))に準じて反応させることにより得られる。その一例を反応式で示すと、次の通りである。
Figure 0004312455
Figure 0004312455
この具体例では、まず1−メシチルジピロロメタン(VIII)と2種類のベンズアルデヒド誘導体(II)および(III)を、適当な有機溶媒、例えば無水ジクロロメタン等の不活性溶媒中、トリフルオロ酢酸の存在下に反応させ、次いで2,3−ジクロロ−5,6−ジシアノ−1,4−ベンゾキノンで処理してテトラフェニルポルフィリン化合物(IX)を得る。
得られるテトラフェニルポルフィリン化合物(IX)を、例えば水酸化カリウム等の塩基の存在下に、ベンゼン環上のヒドロキシ保護基を脱離して、テトラフェニルポルフィリン化合物(X)を得る。
このテトラフェニルポルフィリン化合物(X)をマルトヘキソース誘導体(VI)とのカップリング反応に付して化合物(XI)を得、次いでマルトヘキソース部分のヒドロキシ保護基を脱離することにより、マルトヘキソース残基およびデシル基で置換されたテトラフェニルポルフィリン誘導体(Ib)を得ることができる。
本発明のテトラフェニルポルフィリン誘導体(I)の塩としては、酸または塩基と形成した塩ならびに金属との分子内錯体塩が挙げられる。
酸または塩基と形成した塩は、上記のようにして得られるテトラフェニルポルフィリン誘導体(I)を、適当な酸または塩基で処理することにより、形成することができる。塩を形成するのに用いられる酸または塩基としては、例えば、塩酸、臭化水素、硝酸、硫酸等の鉱酸、トルエンスルホン酸、ベンゼンスルホン酸等の有機酸、アルカリ金属もしくはアルカリ土類金属(例えば、ナトリウム、カリウム、カルシウムまたはマグネシウム)の水酸化物、炭酸塩もしくは炭酸水素塩、あるいはアンモニウム、トリメチルアミン、トリエチルアミン等の有機塩基が挙げられる。
分子内錯体塩を形成する金属としては、アルカリ金属(例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム)、アルカリ土類金属(例えば、マグネシウム、カルシウム、バリウム、ストロンチウム)ならびに元素の周期律表の第3族(例えば、スカンジウム、ランタン、イットリウム)、ランタノイド(例えば、ユーロピウム、プラセオジム、イッテルビウム)、第4族(例えば、チタン)、第5族(例えば、バナジウム)、第6族(例えば、クロム、モリブデン、タングステン)、第7族(例えば、マンガン、レニウム)、第8族(例えば、鉄、ルテニウム、オスミウム)、第9族(例えば、コバルト、ロジウム、イリジウム)、第10族(例えば、ニッケル、パラジウム、白金)、第11族(例えば、銅、銀、金)、第12族(例えば、亜鉛、カドミウム、水銀)、第13族(例えば、アルミニウム、ガリウム、インジウム)、第14族(例えば、ケイ素、ゲルマニウム、スズ、鉛)および第15族(ヒ素、アンチモン、ビスマス)の金属が挙げられる。中でも元素の周期律表の第10族および第12族の金属が好ましく、亜鉛および白金が最も好ましい。金属との分子内錯体塩は、テトラフェニルポルフィリン誘導体(I)と金属ハロゲン化物、金属の酢酸塩、金属の水酸化物または金属の過塩素酸塩等との反応により形成することができる。
本発明のテトラフェニルポルフィリン誘導体(I)およびその塩は、マルトヘキソース残基およびデシル基の導入により、親水性と親油性の両方が高まり、かつマルトース残基による細胞認識により腫瘍細胞に対する選択性が期待される。さらに本発明のテトラフェニルポルフィリン誘導体(I)およびその塩には、暗所では細胞に対して毒性が無く、細胞組織透過性の良い長波長領域の光照射により殺細胞効果を有していることから、PDT療法における光増感剤として有用である。また、腫瘍細胞に集積したポルフィリン骨格はQ帯(約650nm)の光で励起すると特徴的な赤い蛍光を発するため、テトラフェニルポルフィリン誘導体(I)およびその塩は、がん病巣の有無あるいは局在を診断するための光線力学的診断(PDD)への応用も期待される。
従って、本発明によれば、テトラフェニルポルフィリン誘導体(I)またはその塩からなる光増感剤としての組成物が提供される。
本発明のテトラフェニルポルフィリン誘導体(I)またはその塩からなる組成物は、癌および腫瘍の診断および治療に使用することができる。癌および腫瘍の例としては、胃癌、腸癌、肺癌、乳癌、子宮癌、食道癌、卵巣癌、膵臓癌、咽頭癌、肉腫、肝臓癌、膀胱癌、上顎癌、胆管癌、舌癌、大脳腫瘍、皮膚癌、悪性甲状腺腫、前立腺癌、耳下腺の癌、ホジキン病、多発性骨髄腫、腎臓癌、白血病および悪性リンパ細胞腫が挙げられる。
本発明のテトラフェニルポルフィリン誘導体(I)またはその塩は、医薬的に許容される通常の添加剤と組み合わせた組成物として、ヒトまたは動物に投与される。本発明の組成物は、任意に他の医薬品をさらに含んでいてもよい。
本発明の組成物は、経口的に、または静脈内もしくは筋肉内注射などにより非経口的に投与される。経口的には、例えば、錠剤、丸剤、散剤、顆粒剤、細粒剤、カプセル剤、液剤、懸濁液剤、乳剤等の形態で、投与される。非経口的には注射剤、点滴剤、坐剤、軟膏剤、硬膏剤、貼付剤、エアゾール剤等の形態で、投与される。
医薬的に許容される添加剤としては、剤型にもよるが、医薬の分野で通常使用されているものを用いることができる。
例えば、錠剤の形態に成形するに際しては、賦形剤(乳糖、デンプン、結晶セルロース等)、結合剤(デンプン液、カルボキシメチルセルロース等)等を添加して、常法に従って製造することができる。
例えば、注射剤または点滴剤の形態に成形するに際しては、希釈剤として注射用蒸留水に溶解させ、適宜pH調製剤および緩衝剤(クエン酸ナトリウム、酢酸ナトリウム、リン酸ナトリウム等)等を添加し、常法により静脈内、筋肉内、皮下、皮内または腹腔内用の注射剤または点滴剤を製造することができる。なお、注射剤または点滴剤は滅菌され、かつ血液と等張であるのが好ましい。
本発明のテトラフェニルポルフィリン誘導体(I)またはその塩の投与量は、テトラフェニルポルフィリン誘導体(I)またはその塩の量として、腫瘍の診断のためには、7〜0.07mg/kg(フォトフィリン)、好ましくは0.7mg/kg(フォトフィリン)であり、腫瘍の治療のためには、30〜0.3mg/kg HpD(フォトフィリン)、好ましくは3mg/kg HpD(フォトフィリン)または20〜0.2mg/kg PHE(フォトフィリン)、好ましくは2mg/kg PHE(フォトフィリン)である。
本発明の組成物を投与すると、一定時間後に本発明のテトラフェニルポルフィリン誘導体(I)またはその塩が腫瘍細胞に選択的に分布する。
その後、腫瘍の診断のためには、検査すべき部位に、360〜760nmの間の波長を有する光線を照射する。照射源は限定されないが、ハロゲンランプが、広範囲の波長領域の光線を照射することが可能なため好ましい。腫瘍細胞に分布したテトラフェニルポルフィリン誘導体(I)またはその塩は、上記の波長の光線により蛍光を発し、腫瘍細胞の局在および有無が診断できる。
腫瘍の治療のためには、テトラフェニルポルフィリン誘導体(I)またはその塩を含む組成物を投与したのち、治療すべき部位に、650nm近傍、例えば630〜670nmの間の波長を有する光線を照射する。
照射源としては限定されないが、所望の波長範囲において強い光線を選択的に発するものを選択利用するのが望ましい。照射源としては、レーザービームを発する、ガリウム−アルミニウム−ヒ素、ガリウム−インジウム−ヒ素−リン、ガリウム−リンまたはガリウム−ヒ素−リンを用いた近赤外領域のレーザーのような半導体レーザーまたは発光ダイオード、クリプトンイオンレーザーのような気体レーザーならびにスチリル、オキサジンおよびキサンテンを用いた色素レーザーが挙げられる。
光線の照射強度は、具体的には、光線の照射強度は、10〜500mW/cm、好ましくは160〜500mW/cmである。光線の照射回数は、1日1回以上であってもよく、例えば1〜100回/日、好ましくは1〜10回/日である。本発明の組成物の投与の回数と、光線の照射回数との組み合わせは、腫瘍を有意に減少させるのに十分な程度であればよい。
以下、本発明のテトラフェニルポルフィリン誘導体(I)の具体的な製造例を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。
なお、実施例中で使用する略語の意味は、次の通りである。
THF:テトラヒドロフラン
DMAP:4−ジメチルアミノピリジン
DMF:ジメチルホルミアミド
TFA:トリフルオロ酢酸
DDQ:2,3−ジクロロ−5,6−ジシアノ−1,4−ベンゾキノン
DMSO:メチルスルホキシド
製造例1:イコサ−O−アセチル−α−シクロデキストリン
α−シクロデキストリン(α−CD)(197g,202mmol)の無水酢酸(600mL)溶液に、ピリジン(900mL)を加え、室温で4時間攪拌した。冷水をその溶液に加え、一晩攪拌した。反応混合物を6N−塩酸で酸性化し、次いでクロロホルムで抽出した。有機相を冷水および炭酸水素ナトリウム飽和水溶液で洗浄し、次いで無水硫酸マグネシウムで乾燥した。合わせた抽出液を真空下に蒸発させてイコサ−O−アセチル−α−CD(318g,91%)を得た。
製造例2:イコサ−O−アセチル−β−D−マルトヘキサノシド
イコサ−O−アセチル−α−CD(200g,0.12mol)の無水酢酸(1200mL)溶液に、濃硫酸(24mL)を加え、60℃で2.5時間攪拌した。この混合物に酢酸ナトリウムのエタノール溶液(約400mL)を0℃で加えて、中和した。トルエンで溶媒を共沸除去した後、残渣をトルエンに再び懸濁した。不溶性固体をろ去し、次いでろ液を真空下に蒸発させた。粗生成物をトルエン/アセトン(4/1〜5/2,v/v)で溶出するシリカゲルカラムクロマトグラフィーにより精製し、エタノールから再結晶して、白色固体のイコサ−O−アセチル−β−D−マルトヘキサノシド(42.3g,20%)を得た。
製造例3:ノナデカ−O−アセチル−1−ヒドロキシ−β−D−マルトヘキサノシド
イコサ−O−アセチル−β−D−マルトヘキサノシド(20g,10.9mmol)のTHF(200mL)溶液に、ピペリジン(6mL)を加え、室温で24時間攪拌した。反応混合物を冷2N−塩酸に注ぎ、次いでクロロホルムで抽出した。有機相を炭酸水素ナトリウム飽和水溶液および塩化ナトリウム飽和水溶液で洗浄し、次いで無水硫酸マグネシウムで乾燥した。合わせた抽出液を蒸発させた後、粗生成物をトルエン/アセトン(v/v,4/1)で溶出するシリカゲルカラムクロマトグラフィーで精製して、白色固体のノナデカ−O−アセチル−1−ヒドロキシ−β−D−マルトヘキサノシド(15.8g,81%)を得た。
製造例4:ノナデカ−O−アセチル−1−トリクロロイミデート−β−D−マルトキサノシド
ノナデカ−O−アセチル−1−ヒドロキシ−β−D−マルトヘキサノシド(13.5g,7.5mmol)の無水ジクロロメタン(150mL)溶液に、炭酸カリウム(10.3g,75mmol)およびCCl3CN(11.2mL,0.11mol)を加え、室温で15時間攪拌した。セライトを用いて炭酸カリウムをろ過して除き、ろ液を真空下に蒸発させた。粗生成物をトルエン/アセトン(8/3,v/v)で溶出するシリカゲルカラムクロマトグラフィーで精製して、白色固体のノナデカ−O−アセチル−1−トリクロロイミデート−β−D−マルトキサノシド(11.0g,76%)を得た。
元素分析:C7610050NClとして;計算値:C47.22,H5.22,N0.73,Cl5.43;実測値C47.94,H5.24,N0.85,Cl5.85;
FAB MS m/z:1972.0(M+K).
製造例5:ノナデカ−O−アセチル−1−ブロモプロポキシ−β−D−マルトヘキサノシド
ノナデカ−O−アセチル−1−トリクロロイミデート−β−D−マルトキサノシド(10g,5.17mmol)およびモレキュラーシーブス4Aの無水ジクロロメタン(100mL)溶液に、3−ブロモプロパノール(4.67mL,51.7mmol)を窒素気流下に−20℃で加えた。反応混合物を−20℃で30分間攪拌した後、BF3・Et2O(0.65mL,5.17mmol)を加えて20分間攪拌した。その反応をピリジン(1mL)を加えて失活させた。反応混合物を冷水に注ぎ入れ、次いでジクロロメタンで抽出した。合わせた抽出液を蒸発させた後、粗生成物をトルエン/アセトン(v/v,2/1)で溶出するシリカゲルカラムクロマトグラフィーで精製して、白色固体のノナデカ−O−アセチル−1−ブロモプロポキシ−β−D−マルトヘキサノシド(7.5g,76%)を得た。
H NMR(300MHz,CDCl)δ5.42(d,1H,J=3.8Hz,1VI−H),5.35(t,1H,J=10Hz,3I−H),5.24−5.43(m,11H,1II,III,IV,V,VI−,3I,II,III,VI,V,VI−H),5.07(t,1H,J=10Hz,4VI−H),4.86(dd,1H,J=4.0Hz,10.5Hz,2VI−H),4.80(dd,1H,J=7.9Hz,9.3Hz,2I−H),4.71−4.76(m,4H,2II,III,IV,V−H),4.54(d,1H,J=7.9Hz,1I−H),4.53−4.43(m,5H,6aI,II,III,IV,V−H),4.50(dd,1H,J=3.0Hz,12.2Hz,6a1−H),4.38(dd,1H,J=3.7Hz,12.2Hz,6bI−H),4.30,4.28,4.25,4.16(dd(4,4H,6bII,III,IV,V−H),4.22(m,1H,6aVI−H),4.07(dd,1H,J=2.3Hz,9.1Hz,6bVI−H),3.93(m,1H,5VI−H),3.93(m,1H,OCH),3.98(m,1H,4I−H),3.71(m,1H,5I−H),3.70(m,1H,OCH),3.45(m,2H,CHBr),2.02(2H,m,CHCHCH),1.98−2.20(s,3H(19,COCH).
元素分析:C7710550Brとして:計算値C48.42,H5.54,Br4.14;実測値C48.42,H5.54,Br4.29;
FAB MS m/z:1909.0(M+H).
製造例6:ノナデカ−O−アセチル−1−ヨードプロポキシ−β−D−マルトヘキサノシド
ノナデカ−O−アセチル−1−ブロモプロポキシ−β−D−マルトヘキサノシド(4.8g,2.5mmol)およびNaI(3.7g,25mmol)の2−ブタノン(100mL)溶液を20時間還流加熱した。室温まで冷却した後、反応混合物をクロロホルムで抽出した。合わせた抽出液を蒸発させ、エタノールから再結晶して、白色結晶のノナデカ−O−アセチル−1−ヨードプロポキシ−β−D−マルトヘキサノシド(4.6g,95%)を得た。
H NMR(500MHz,CDCl)δ5.42(d,1H,1VI−H),5.35(t,1H,3I−H),5.25−5.50(m,11H,1II,III,IV,V,VI−,3I,II,III,IV,V,VI−H)5.07(t,1H,J=10Hz,4VI−H),4.87(dd,1H,2VI−H),4.80(dd,1H,2I−H),4.71−4.76(m,4H,2II,III,IV,V−H)4.54(d,1H,J=7.9Hz,1I−H),4.50(dd,1H,6aI−H),3.71(m,1H,5I−H),3.60(1H,m,OCH),3.23(2H,m,CHI),2.02(2H,m,CHCHCH),1.98−2.20(s,3H(19,COCH).
13C NMR(125MHz,CDCl):δ2.90(CHI),20.60,20.89(COCH),32.85(CHCHCH),61.374(6VI−C),62.17(6V−C),62.35(6IV−C),62.47(6III−C),62.52(6II−C),62.89(6I−C),67.95(4VI−C),68.97(OCH),69.36(3VI−C),70.44(5VI−C),72.34(2I−C),73.75(4I−C),75.30(3I−C),95.63(1VI−C),95.73(1II,III,IV,V−C),100.42(1I−C),169.48,169.75,170.12,170.43,170.66(C=O).
元素分析:C7710550Iとして:計算値C47.24,H5.41,I6.48;実測値C47.11,H5.30,I7.45;
FAB MS m/z:1957.0(M+H).
製造例7:4−アセトキシベンズアルデヒド
4−ヒドロキシベンズアルデヒド(5.87g,48.6mmol)の酢酸エチル(100mL)溶液に、ピリジン(5.8mL)および無水酢酸(6.8mL)を加えた。室温で2.5時間攪拌した後、触媒量のDMAPを加え、その混合物を30分間攪拌した。反応混合物を0.5N−塩酸で失活させ、クロロホルムで抽出した。合わせた抽出液を炭酸水素ナトリウム飽和水溶液および塩化ナトリウム飽和水溶液で洗浄し、次いで無水硫酸マグネシウムで乾燥した。抽出物を蒸発させた後、粗生成液を、ヘキサン/酢酸エチル(5/2,v/v)を溶出液として用いるシリカゲルカラムクロマトグラフィーで精製して、白色油状の4−アセトキシベンズアルデヒド(7.80g,99%)を得た。
H NMR(300MHz,CDCl)δ9.97(s,1H,CHO),7.86(d,2H,J=7.32Hz,Ar−3,5),7.24(s,2H,J=7.37Hz,Ar−2,6),2.28(s,3H,Ac).
製造例8:4−デシルオキシベンズアルデヒド
4−ヒドロキシベンズアルデヒド(5.0g)の無水DMF(40mL)溶液に1−ブロモデカン(8.5mL)および炭酸カリウム(6.0g)を加えた。室温で21時間攪拌した後、DMFを減圧下に除去した。反応混合物をクロロホルムで抽出した。クロロホルム相を2N−塩酸、氷水、炭酸ナトリウム飽和水溶液および塩化ナトリウム飽和水溶液で洗浄し、次いで無水硫酸マグネシウムで乾燥した。抽出液を蒸発させ、得られた粗生成物をヘキサン/酢酸エチル(4/1,v/v)を溶出液として用いるシリカゲルカラムクロマトグラフィーで精製して、4−デシルオキシベンズアルデヒド(9.13g,85%)を得た。
H NMR(300MHz,CDCl)δ9.87(s,1H,CHO),7.80(d,2H,J=6.53Hz,Ar−3,5),7.00(s,2H,J=6.56Hz,Ar−2,6),4.04(m,2H,CHO),1.80(m,2H,CHCHO),1.45−1.27(m,14H,−CH−),0.88(s,3H,CH).
製造例9:1−メシチルジピロロメタン
ピロール(25mL,360mmol)およびメシチルアルデヒド(2.14g,14.4mmol)の溶液をアルゴンで5分間パージした。TFA(0.11mL,1.44mmol)をこの溶液に加えた。1時間室温で攪拌した後、反応混合物をトリエチルアミン(0.5mL)を加えて中和した。これに約100mLのトルエンを加え、次いで有機相を塩化ナトリウム飽和水溶液で2回洗浄し、無水硫酸ナトリウムで乾燥した。溶液をろ過し、真空下で蒸発させて黒色油状物を得た。この油状物をさらに蒸留して精製し、黄色固体を得た。エタノール/水(10/1,v/v)から再結晶して、薄黄色結晶(0.8g,21%)の標題化合物を得た。
H NMR(300MHz,CDCl)δ2.06(s,6H,2,6−CH),2.28(s,3H,4−CH),5.93(s,1H,meso−CH),6.01(m,2H,pyr−β),6.17−6.19(m,2H,NH),6.67(m,2H,pyr−β),6.87(s,2H,pyr−α),7.97(brs,2H,Ar−3,5).
製造例10:5,10−ジ−(4−デシルオキシ)−15,20−ジ−(4−ヒドロキシ)テトラフェニルポルフィリン
4−アセトキシベンズアルデヒド(1.0g,1当量)、4−デシルオキシベンズアルデヒド(1.6g,1当量)およびピロール(0.85mL,2当量)のプロピオン酸(200mL)溶液を1時間還流加熱した。冷却後、反応混合物を0.5N−水酸化ナトリウム水溶液で中和し、次いでクロロホルムで5回抽出した。有機相を冷水および塩化ナトリウム飽和水溶液で洗浄し、次いで硫酸ナトリウムで乾燥し、ろ過して、溶媒を蒸発させた。粗生成物をヘキサン/酢酸エチル(20/1〜8/1,v/v)を勾配溶出液として用いるシリカゲル60Nのカラムクロマトグラフィーで精製して、5,10−ジ−(4−デシルオキシ)−15,20−ジ−(4−アセトキシ)テトラフェニルポルフィリン(100.1mg,3.1%)を得た。得られた生成物をナトリウムメトキシドのメタノール溶液(1重量%)中、室温で攪拌して、紫色固体として標題の化合物を得た。
H NMR(300MHz,CDCl)δ8.94(d,2H,J=4.67Hz,pyr−β),8.84,8.83(s,2H),8.83(d,2H,J=4.7Hz,pyr−β),8.20(d,2H,Ar−3,5),8.09(d,2H,Ar−2,6),7.50(d,2H,J=8.57Hz,Ar’−3,5),7.28(d,2H,J=8.10Hz,Ar’−2,6),4.24(m,4H,CH2O),2.49(s,6H,Ac),1.98(m,4H,CHCHO),1.62−1.25(m,28H,−CH−),0.91(t,6H,CH).
製造例11:5,10−ジ−(4−デシルオキシフェニル)−15,20−ビス−[4−[3−(ノナデカ−O−アセチル−β−D−マルトヘキサノシル)プロポキシ]フェニル]ポルフィリン
5,10−ジ−(4−デシルオキシ)−15,20−ジ−(4−ヒドロキシ)テトラフェニルポルフィリン(20.7mg)および炭酸カリウム(1g)の無水DMF(20mL)中混合物に、ノナデカ−O−アセチル−1−ヨードプロポキシ−β−D−マルトヘキサノシド(163.5mg)を加えた。60時間室温で攪拌した後、DMFを減圧下に除去した。これに、約200mLのクロロホルムを加え、次いでクロロホルム相を1N−塩酸、冷水、炭酸ナトリウム飽和水溶液および塩化ナトリウム飽和水溶液で洗浄した。クロロホルム溶液を無水硫酸ナトリウムで乾燥し、ろ過した。得られた粗生成物をTHFを溶出液として用いる循環HPLCで精製して標題の化合物を得た(43.3mg,45%)。
H NMR(300MHz,CDCl)δ8.80(d,2H,J=4.9Hz,pyr−β),8.79(s,2H,pyr−β),8.76(s,2H,pyr−β),8.75(d,2H,J=5.0Hz,pyr−β),8.05(d,4H,Ar−3,5),8.02(d,4H,Ar−2,6),7.19(d,4H,J=8.4Hz,Ar’−3,5),7.07(d,4H,J=8.4Hz,Ar’−2,6),8.20(d,2H,Ar−3,5),8.09(d,2H,Ar−2,6),7.50(d,2H,J=8.57Hz,Ar’−3,5),7.28(d,2H,J=8.10Hz,Ar’−2,6),4.24(m,4H,CHO),2.49(s,6H,Ac),1.98(m,4H,CHCHO),1.62−1.25(m,28H,−CH−),0.91(t,6H,CH).
実施例1:5,10−ジ−(4−デシルオキシフェニル)−15,20−ビス−[4−[3−(β−D−マルトヘキサノシル)プロポキシ]フェニル]ポルフィリン
5,10−ジ−(4−デシルオキシフェニル)−15,20−ビス−[4−[3−(ノナデカ−O−アセチル−β−D−マルトヘキサノシル)プロポキシ]フェニル]ポルフィリンの脱アセチル化を、ナトリウムメトキシドを用いて製造例10と同様に行い、標題の化合物を得た(収率:69.3%)。
[α]25 =+24.4°,[α]25 365=+143.6°(HO).H NMR(300MHz,DMSO−d)δ8.79(s,2H,pyr−β),8.78(s,2H,pyr−β),8.87(m,4H,pyr−β),8.10(m,16H,Ar−2,3,5,6),7.39(d,2H,J=8.51Hz,Ar−4),7.36(d,2H,J=8.57Hz,Ar−4).
UV(DMSO):423.5nm(ε=3.5×10/cm・M),519.0nm(ε=1.2×10/cm・M),557.0nm(ε=9.5×10/cm・M),596.0nm(ε=3.5×10/cm・M),652.0nm(ε=4.9×10/cm・M).
製造例12:5,15−ジメシチル−10−アセトキシフェニル−20−デシルオキシフェニルポルフィリン
1−メシチルジピロロメタン(264.4mg,1.0mmol)、4−アセトキシベンズアルデヒド(82.2mg,0.5mmol)、および4−デシルオキシベンズアルデヒドをジクロロメタン(100mL)中に溶解させ、アルゴンで5分間パージした。TFA(0.13mL,1.78mmol)を加え、30分間攪拌した。DDQ(380mg)を反応混合物に加え、さらに1時間攪拌した。トリエチルアミン(0.5mL)で中和した後、混合溶媒をろ過し、真空下に除去した。残渣をジクロロメタン/ヘキサン(3/2,v/v)を溶出液として用いるシリカゲルカラムクロマトグラフィーで精製した。得られた粗生成物をさらにTHFを溶出液として用いる循環HPLCで精製し、紫色の固体として標題化合物(80mg,17.5%)を得た。
H NMR(300MHz,CDCl)δ8.83(d,2H,J=4.77Hz,pyr−β),8.80(d,2H,J=4.79Hz,pyr−β),8.69(d,2H,J=4.74Hz,pyr−β),8.68(d,2H,J=4.77Hz,pyr−β),8.22(d,2H,J=8.46Hz,ArOAc−2,6),8.11(d,2H,J=8.55Hz,ArOdec−2,6),7.48(d,2H,J=8.61Hz,ArOAc−3,5),7.28(s,4H,Ar),7.27(d,2H,J=8.77Hz,ArOdec−3,5),4.24(t,2H,J=6.50,6.51,OCH),2.63(s,6H,4−CH),2.48(s,3H,OAc),1.83(s,12H,2,6−CH),1.18−2.06(m,16H,decCH),0.91(m,3H,decCH),−2.63(s,2H,NH).
製造例13:5,15−ジメシチル−10−ヒドロキシフェニル−20−デシルオキシフェニルポルフィリン
5,15−ジメシチル−10−アセトキシフェニル−20−デシルオキシフェニルポルフィリン(52mg)のエタノール性水酸化カリウム(水酸化カリウムを含む95%エタノール100mL)溶液を1時間還流加熱した。緑色の溶液を酢酸で酸性化し、溶媒を蒸発させた後、残渣を冷エタノールで2〜3回洗浄して、紫色結晶として標題化合物(40g,80.7%)を得た。
H NMR(300MHz,CDCl):δ8.81(brs,4H,pyr−β),8.68(brs,4H,pyr−β),8.08(m,4H,Ar−2,6),7.27−7.19(8H,m,Ar−3,5),4.24(m,2H,OCH),2.63(s,6H,4−CH),1.83(s,12H,2,6−CH),1.3−1.97(m,16H,decCH),0.91(m,3H,decCH),−2.62(s,2H,NH).
製造例14:5,15−ジメシチル−10−デシルオキシフェニル−20−[4−[3−(ノナデカ−O−アセチル−β−D−マルトヘキサノシル)プロポキシ]フェニル]ポルフィリン
5,15−ジメシチル−10−ヒドロキシフェニル−20−デシルオキシフェニルポルフィリン(40mg,45.9mmol)および炭酸カリウム(1g)の無水DMF(20mL)溶液に、ノナデカ−O−アセチル−1−ヨードプロポキシ−β−D−マルトヘキサノシド(46mmol)を加えた。72時間室温で攪拌した後、DMFを減圧下に除去した。これに約200mLのクロロホルムを加え、次いでクロロホルム相を1N−塩酸、冷水、炭酸ナトリウム飽和水溶液および塩化ナトリウム飽和水溶液で洗浄した。クロロホルム相を無水硫酸ナトリウムで乾燥して、ろ過した。得られた粗生成物をTHFを溶出液として用いる循環HPLCで精製して標題化合物を得た(59mg,85%)。
H NMR(300MHz,CDCl)δ8.82(d,2H,J=4.82Hz,pyr−β),8.79(d,2H,J=4.75Hz,pyr−β),8.67(d,2H,J=4.67Hz,pyr−β),8.66(d,2H,J=4.70Hz,pyr−β),8.11(d,4H,J=8.46Hz,ArOCH−2,6),7.48(d,2H,J=8.61Hz,ArOAc−3,5),7.28(s,4H,mes−Ar),7.23−7.27(m,4H,ArOCH−3,5),5.42(d,1H,J=3.8Hz,1VI−H),5.35(t,1H,J=10Hz,3I−H),5.24−5.43(m,11H,1II,III,IV,V,VI−,3I,II,III,IV,V,VI−H),5.07(t,1H,J=10Hz,4VI−H),4.86(dd,1H,J=4.0Hz,10.5Hz,2VI−H),4.80(dd,1H,J=7.9,9.3Hz,2I−H),4.71−4.76(m,4H,2II,III,IV,V−H),4.54(d,1H,J=7.9Hz,1I−H),4.53−4.43(m,5H,6aI,II,III,IV,V−H),4.50(dd,1H,J=3.0Hz,12.2Hz,6aI−H),4.38(dd,1H,J=3.7,12.2Hz,6bI−H),4.30,4.28,4.25,4.16(dd(4,1H,6bII,III,IV,V−H),4.22(m,H,6aVI−H),4.07(dd,1H,J=2.3Hz,9.1Hz,6bVI−H),3,93(m,1H,5VI−H),3.93(m,1H,OCHCH),3.98(m,1H,4I−H),3.71(m,1H,5I−H),3.70(m,1H,OCH),3.45(m,2H,CHOAr),2.02(2H,m,CHCHCH),4.24(t,2H,J=6.50,6.51Hz,OCH),2.63(s,6H,4−CH),1.83(s,12H,2,6−CH),1.91−2.20(s,3H(76H,COCH),1.25−2.06(m,16H,decCH),0.91(m,3H,decCH),2.62(s,2H,NH).
実施例2:5,15−ジメシチル−10−デシルオキシフェニル−20−[4−[3−(β−D−マルトヘキサノシル)プロポキシ]フェニル]ポルフィリン
5,15−ジメシチル−10−デシルオキシフェニル−20−[4−[3−(ノナデカ−O−アセチル−β−D−マルトヘキサノシル)プロポキシ]フェニル]ポルフィリンの脱アセチル化をナトリウムメトキシドを用いて製造例10と同様に行い、標題の化合物を得た(収率,75%)。
H NMR(300MHz,DMSO−d)δ8.83(d,2H,J=5.4Hz,pyr−β),8.82(d,2H,J=4.8Hz,pyr−β),8.62(m,4H,pyr−β),8.25(d,2H,J=8.4Hz,Ar−3,5),8.07(d,2H,J=8.4Hz,Ar−2,6),7.36(d,2H,J=8.7Hz,Ar−3’,5’),7.34(s,4H,Mes−2,6),7.30(d,2H,J=8.8Hz,Ar−2’,6’),3.75−3.77(4H,OCH),2.58(s,6H,4−CH),2.27(m,2H,sug−CH−),1.76−1.85(m,12H,2,6−CH),1.27−1.76(m,16H,decCH),0.86(t,3H,J=6.4Hz,decCH).
ESI mass:C9912833(MH)として1901.8461,実測値1902.5458.
UV(DMSO):423.5nm(ε=3.5×10/cm・M),516.5nm(ε=1.3×10/cm・M),553.0nm(ε=6.6×10/cm・M),593.5nm(ε=3.7×10/cm・M),650.0nm(ε=4.4×10/cm・M).
試験例1:光毒性試験
5,10−ジ−(4−デシルオキシフェニル)−15,20−ビス−[4−[3−(β−D−マルトヘキサノシル)プロポキシ]フェニル]ポルフィリン(以下、「化合物A」と称する)の細胞毒性を、MTTアッセイ法(Carmichal,J.,W.G.DeGraff,A.F.Gazdar,J.D.MinnaおよびJ.B.Mitchell,Cancer Res.,1987,47,936−942)を用いたヒーラー細胞の生存力で評価した。ヒーラー細胞(1×10細胞/ウエル)を、10%胎児ウシ血清(FBS)を含むダルベッコの修飾イーグル培地(DMEM)中で、96ウエル−プレートで5%CO下、37℃で24時間インキュベートした。リン酸緩衝溶液(PBS)で洗浄した後、細胞を化合物A(5または10μM)の存在下、血清のないDMEMで2時間インキュベートした。化合物Aを加えた細胞をPBSで洗浄した。20時間インキュベートした後、10μLの臭化3−(4,5−ジメチル−2−チアゾリル)−2,5−ジフェニル−2H−テトラゾリウム(MTT)溶液(5mg/mL)を加えた。細胞をさらに4時間インキュベートした後、生存力を、540nm(OD540)での光学濃度を測定することにより決定した。図1a)は、照射を行っていない細胞の生存比(%)を示す。その比は、以下の式に従って計算した:細胞生存比(%)={化合物A存在時のOD540/化合物A不在時のOD540}×100。細胞生存比が100%とは、細胞毒性が存在しないことを示す。この比は、化合物Aの細胞毒性と考えられる。図1a)から示されるように、化合物A存在下でも、照射を行っていないときには、細胞毒性を示さないことが明らかとなった。
ヒーラー細胞(1×10細胞/ウエル)を、上記と同様に処理した。化合物Aを加えた細胞を、500nmより短波長をカットするフィルターを備えた500Wハロゲンランプで8分間照射した。24時間インキュベートした後、生存力をMTTアッセイにより測定した。図1b)は、照射後の細胞生存比(%)を示した。細胞生存比は、以下の式に従って計算した;細胞生存比(%)=[照射したときの化合物A存在時のOD540/照射しないときの化合物A存在時のOD540]×100。図1b)から示されるように、化合物A存在下に光照射を行うと、細胞毒性を示すことが明らかとなった。
産業上の利用の可能性
本発明のテトラフェニルポルフィリン誘導体またはその塩は、マルトヘキソース残基およびデシル基の導入により親水性と親油性の両方が高まり、かつマルトース残基による細胞認識により腫瘍細胞に対する選択性が期待される。さらに本発明のテトラフェニルポルフィリン誘導体またはその塩には、暗所では細胞に対して毒性が無く、細胞組織透過性の良い長波長領域の光照射により殺細胞効果を有していることから、PDT療法およびPDDにおける光増感剤として有用である。
また、本発明のテトラフェニルポルフィリン誘導体またはその塩は、感圧塗料としても利用可能である。
【図面の簡単な説明】
図1aは、光照射を行っていない、細胞に対する本発明の化合物Aの毒性を示すグラフと、図1bは、光照射を行った、細胞に対する本発明の化合物Aの毒性を示すグラフである。 Technical field
The present invention relates to a tetraphenylporphyrin derivative, and in particular, can be used for a tetraphenylporphyrin derivative substituted with a maltohexose residue and a decyl group or a salt thereof, and photodynamic therapy (PDT). And a composition as a photosensitizer comprising a tetraphenylporphyrin derivative or a salt thereof.
Background art
Photodynamic therapy (PDT), in which a photosensitizer having specific affinity for tumor cells is administered to a patient in advance and then treated by irradiating laser light of various wavelengths, is a non-cancerous treatment. It is attracting attention as an invasive therapy. As photosensitizers that can be used for such PDT therapy, various derivatives having a porphyrin skeleton are known, and some of them are actually used clinically.
By the way, as a desirable photosensitizer that can be used for PDT therapy, it is hydrophilic, has high selectivity for tumor cells, is harmless to cells in the dark, has good tissue permeability and is inexpensive. A large extinction coefficient in a long wavelength region where a laser beam apparatus can be used is required. However, the porphyrin derivatives that have been proposed so far have problems such as side effects caused by being hydrophobic and low absorption coefficient of excitation light in a long wavelength region where tissue permeability is high. Development of photosensitizers is desired.
Disclosure of the invention
Therefore, as a result of diligent research to develop a better photosensitizer, the present inventors have found that a maltohexose residue for imparting hydrophilicity and cell affinity and an affinity for the cell wall are increased. The present inventors have found that a tetraphenylporphyrin derivative having a decyl group has an excellent cell-killing effect by light in a long wavelength region.
BEST MODE FOR CARRYING OUT THE INVENTION
According to the invention, the formula (I):
Figure 0004312455
[Wherein R1, R2, R3And R4Are independent of each other
Figure 0004312455
And a group represented by R1~ R4At least one of
Figure 0004312455
And a group represented by R1~ R4At least one of the
Figure 0004312455
Is a group represented by
The tetraphenylporphyrin derivative represented by these, or its salt is provided.
Examples of preferred specific compounds of the tetraphenylporphyrin derivative (I) according to the present invention are as follows.
Figure 0004312455
Figure 0004312455
The tetraphenylporphyrin derivative (I) of the present invention can be produced by the method described below or a method analogous thereto.
For example, a tetraphenylporphyrin derivative (Ia) substituted with a maltohexose residue and a decyl group is a benzaldehyde derivative in which the hydroxy group on the benzene ring is protected with an appropriate protecting group, and the hydroxy group on the benzene ring is a decyl group. The benzaldehyde derivative substituted with pyrrole and pyrrole can be obtained by reacting according to the method of Adler et al. (J. Org. Chem., 32, 476 (1967)).
An example of the reaction is shown as follows.
Figure 0004312455
Figure 0004312455
In this specific example, tetraphenylporphyrin derivative (IV) is first obtained by reacting pyrrole with two types of benzaldehyde derivatives (II) and (III) in an appropriate organic solvent such as propionic acid.
In the tetraphenylporphyrin derivative (IV) obtained above, for example, the hydroxy protecting group on the benzene ring is eliminated in the presence of a base such as sodium methoxide to obtain the tetraphenylporphyrin compound (V).
The tetraphenylporphyrin compound (V) is subjected to a coupling reaction with a maltohexose derivative (VI) to obtain a compound (VII), and then the hydroxy protecting group of the maltohexose moiety is eliminated to remove the maltohexose residue. A tetraphenylporphyrin derivative (Ia) substituted with a decyl group and a decyl group can be obtained.
The tetraphenylporphyrin derivative (Ib) substituted with a maltohexose residue and a decyl group is a benzaldehyde derivative in which the hydroxy group on the benzene ring is protected with an appropriate protecting group, and the hydroxy group on the benzene ring is a decyl group. It is obtained by reacting a substituted benzaldehyde derivative and 1-mesityldipyrromethane according to the method of Lindsey et al. (J. Org. Chem., 64, 1391 (1999) and 64,2864 (1999)). . An example of the reaction formula is as follows.
Figure 0004312455
Figure 0004312455
In this embodiment, first, 1-mesityldipyrromethane (VIII) and two benzaldehyde derivatives (II) and (III) are mixed with trifluoroacetic acid in a suitable organic solvent, for example, an inert solvent such as anhydrous dichloromethane. Reaction in the presence, followed by treatment with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone gives the tetraphenylporphyrin compound (IX).
In the obtained tetraphenylporphyrin compound (IX), for example, in the presence of a base such as potassium hydroxide, the hydroxy protecting group on the benzene ring is eliminated to obtain the tetraphenylporphyrin compound (X).
The tetraphenylporphyrin compound (X) is subjected to a coupling reaction with a maltohexose derivative (VI) to obtain a compound (XI), and then the hydroxy protecting group of the maltohexose moiety is eliminated to thereby remove a maltohexose residue. And a tetraphenylporphyrin derivative (Ib) substituted with a decyl group can be obtained.
Examples of the salt of the tetraphenylporphyrin derivative (I) of the present invention include salts formed with acids or bases and intramolecular complex salts with metals.
A salt formed with an acid or base can be formed by treating the tetraphenylporphyrin derivative (I) obtained as described above with an appropriate acid or base. Examples of the acid or base used to form the salt include mineral acids such as hydrochloric acid, hydrogen bromide, nitric acid and sulfuric acid, organic acids such as toluenesulfonic acid and benzenesulfonic acid, alkali metals or alkaline earth metals ( For example, sodium, potassium, calcium, or magnesium) hydroxide, carbonate or bicarbonate, or organic bases such as ammonium, trimethylamine, and triethylamine can be used.
Metals that form intramolecular complex salts include alkali metals (eg, lithium, sodium, potassium, rubidium, cesium), alkaline earth metals (eg, magnesium, calcium, barium, strontium) and elements of the periodic table of elements. Group 3 (eg, scandium, lanthanum, yttrium), lanthanoid (eg, europium, praseodymium, ytterbium), group 4 (eg, titanium), group 5 (eg, vanadium), group 6 (eg, chromium, molybdenum) , Tungsten), Group 7 (eg, manganese, rhenium), Group 8 (eg, iron, ruthenium, osmium), Group 9 (eg, cobalt, rhodium, iridium), Group 10 (eg, nickel, palladium) , Platinum), Group 11 (eg, copper, silver, gold), first Of group 13 (eg zinc, cadmium, mercury), group 13 (eg aluminum, gallium, indium), group 14 (eg silicon, germanium, tin, lead) and group 15 (arsenic, antimony, bismuth) A metal is mentioned. Among them, metals of Group 10 and Group 12 of the periodic table of elements are preferable, and zinc and platinum are most preferable. An intramolecular complex salt with a metal can be formed by a reaction between a tetraphenylporphyrin derivative (I) and a metal halide, a metal acetate, a metal hydroxide, a metal perchlorate, or the like.
The tetraphenylporphyrin derivative (I) and the salt thereof of the present invention are both hydrophilic and lipophilic due to the introduction of a maltohexose residue and a decyl group, and have selectivity for tumor cells due to cell recognition by a maltose residue. Be expected. Furthermore, the tetraphenylporphyrin derivative (I) and its salt of the present invention are not toxic to cells in the dark, and have a cell-killing effect by light irradiation in a long wavelength region with good cell tissue permeability. Therefore, it is useful as a photosensitizer in PDT therapy. In addition, since the porphyrin skeleton accumulated in tumor cells emits a characteristic red fluorescence when excited with light in the Q band (about 650 nm), tetraphenylporphyrin derivative (I) and its salts are present in the presence or absence of a cancer lesion. Application to photodynamic diagnosis (PDD) for diagnosing the disease is also expected.
Therefore, according to the present invention, a composition as a photosensitizer comprising the tetraphenylporphyrin derivative (I) or a salt thereof is provided.
The composition comprising the tetraphenylporphyrin derivative (I) or a salt thereof of the present invention can be used for diagnosis and treatment of cancer and tumors. Examples of cancers and tumors include gastric cancer, intestinal cancer, lung cancer, breast cancer, uterine cancer, esophageal cancer, ovarian cancer, pancreatic cancer, pharyngeal cancer, sarcoma, liver cancer, bladder cancer, maxillary cancer, bile duct cancer, tongue cancer, large Examples include brain tumors, skin cancer, malignant goiter, prostate cancer, parotid gland cancer, Hodgkin's disease, multiple myeloma, kidney cancer, leukemia and malignant lymphoma.
The tetraphenylporphyrin derivative (I) or a salt thereof of the present invention is administered to humans or animals as a composition in combination with conventional pharmaceutically acceptable additives. The composition of the present invention may optionally further comprise other pharmaceutical agents.
The composition of the present invention is administered orally or parenterally, such as by intravenous or intramuscular injection. Orally, for example, it is administered in the form of tablets, pills, powders, granules, fine granules, capsules, liquids, suspensions, emulsions and the like. It is administered parenterally in the form of injections, drops, suppositories, ointments, plasters, patches, aerosols and the like.
As the pharmaceutically acceptable additive, those commonly used in the pharmaceutical field can be used, although depending on the dosage form.
For example, when it is formed into a tablet form, it can be produced according to a conventional method by adding excipients (lactose, starch, crystalline cellulose, etc.), binders (starch solution, carboxymethylcellulose, etc.) and the like.
For example, when forming into the form of injection or infusion, dissolve it in distilled water for injection as a diluent and add pH adjuster and buffer (sodium citrate, sodium acetate, sodium phosphate, etc.) as appropriate. Intravenous, intramuscular, subcutaneous, intradermal or intraperitoneal injections or infusions can be produced by conventional methods. The injection or infusion is preferably sterilized and isotonic with blood.
The dosage of the tetraphenylporphyrin derivative (I) or a salt thereof of the present invention is 7 to 0.07 mg / kg (photophyllin) for tumor diagnosis as the amount of the tetraphenylporphyrin derivative (I) or a salt thereof. ), Preferably 0.7 mg / kg (photophilin), for treatment of tumors 30-0.3 mg / kg HpD (photophilin), preferably 3 mg / kg HpD (photophilin) or 20- 0.2 mg / kg PHE (photophilin), preferably 2 mg / kg PHE (photophilin).
When the composition of the present invention is administered, the tetraphenylporphyrin derivative (I) of the present invention or a salt thereof is selectively distributed to tumor cells after a certain time.
Thereafter, for tumor diagnosis, the region to be examined is irradiated with light having a wavelength between 360 and 760 nm. The irradiation source is not limited, but a halogen lamp is preferable because it can irradiate light in a wide wavelength range. The tetraphenylporphyrin derivative (I) or a salt thereof distributed in the tumor cells emits fluorescence with the light beam having the above wavelength, and the localization and presence of the tumor cells can be diagnosed.
For the treatment of tumors, a composition containing tetraphenylporphyrin derivative (I) or a salt thereof is administered, and then the site to be treated is irradiated with light having a wavelength in the vicinity of 650 nm, for example, between 630 and 670 nm. .
The irradiation source is not limited, but it is desirable to selectively use one that selectively emits intense light in a desired wavelength range. As a radiation source, a semiconductor laser or a light emitting diode emitting a laser beam, such as a gallium-aluminum-arsenic, gallium-indium-arsenic-phosphorus, gallium-phosphorus or gallium-arsenic-phosphorus laser in the near infrared region And gas lasers such as krypton ion lasers and dye lasers using styryl, oxazine and xanthene.
Specifically, the irradiation intensity of the light beam is 10 to 500 mW / cm.2, Preferably 160 to 500 mW / cm2It is. The number of irradiation times of light may be once or more per day, for example, 1 to 100 times / day, preferably 1 to 10 times / day. The combination of the frequency | count of administration of the composition of this invention and the frequency | count of light irradiation should just be a grade sufficient to reduce a tumor significantly.
Hereinafter, specific production examples of the tetraphenylporphyrin derivative (I) of the present invention will be described with reference to Examples, but the present invention is not limited to these Examples.
In addition, the meaning of the abbreviation used in an Example is as follows.
THF: tetrahydrofuran
DMAP: 4-dimethylaminopyridine
DMF: Dimethylformamide
TFA: trifluoroacetic acid
DDQ: 2,3-dichloro-5,6-dicyano-1,4-benzoquinone
DMSO: methyl sulfoxide
Production Example 1: Eicosa-O-acetyl-α-cyclodextrin
Pyridine (900 mL) was added to a solution of α-cyclodextrin (α-CD) (197 g, 202 mmol) in acetic anhydride (600 mL), and the mixture was stirred at room temperature for 4 hours. Cold water was added to the solution and stirred overnight. The reaction mixture was acidified with 6N hydrochloric acid and then extracted with chloroform. The organic phase was washed with cold water and saturated aqueous sodium bicarbonate and then dried over anhydrous magnesium sulfate. The combined extracts were evaporated under vacuum to give icosa-O-acetyl-α-CD (318 g, 91%).
Production Example 2: Eicosa-O-acetyl-β-D-maltohexanoside
Concentrated sulfuric acid (24 mL) was added to a solution of icosa-O-acetyl-α-CD (200 g, 0.12 mol) in acetic anhydride (1200 mL), and the mixture was stirred at 60 ° C. for 2.5 hours. The mixture was neutralized by adding an ethanol solution of sodium acetate (about 400 mL) at 0 ° C. After azeotropic removal of the solvent with toluene, the residue was resuspended in toluene. The insoluble solid was filtered off and the filtrate was then evaporated under vacuum. The crude product was purified by silica gel column chromatography eluting with toluene / acetone (4 / 1-5 / 2, v / v) and recrystallized from ethanol to give icosa-O-acetyl-β-D as a white solid. -Maltohexanoside (42.3 g, 20%) was obtained.
Production Example 3: Nonadeca-O-acetyl-1-hydroxy-β-D-maltohexanoside
Piperidine (6 mL) was added to a solution of icosa-O-acetyl-β-D-maltohexanoside (20 g, 10.9 mmol) in THF (200 mL), and the mixture was stirred at room temperature for 24 hours. The reaction mixture was poured into cold 2N hydrochloric acid and then extracted with chloroform. The organic phase was washed with saturated aqueous sodium bicarbonate and saturated aqueous sodium chloride and then dried over anhydrous magnesium sulfate. After evaporation of the combined extracts, the crude product was purified by silica gel column chromatography eluting with toluene / acetone (v / v, 4/1) to give white solid Nonadeca-O-acetyl-1-hydroxy. -Β-D-maltohexanoside (15.8 g, 81%) was obtained.
Production Example 4: Nonadeca-O-acetyl-1-trichloroimidate-β-D-maltoxanoside
To a solution of nonadeca-O-acetyl-1-hydroxy-β-D-maltohexanoside (13.5 g, 7.5 mmol) in anhydrous dichloromethane (150 mL) was added potassium carbonate (10.3 g, 75 mmol) and CCl 3 CN (11. 2 mL, 0.11 mol) was added, and the mixture was stirred at room temperature for 15 hours. The potassium carbonate was filtered off using Celite and the filtrate was evaporated under vacuum. The crude product was purified by silica gel column chromatography eluting with toluene / acetone (8/3, v / v) to give nonadeca-O-acetyl-1-trichloroimidate-β-D-maltoxanoside (11 0.0 g, 76%).
Elemental analysis: C76H100O50NCl3Calculated values: C47.22, H5.22, N0.73, Cl5.43; measured values C47.94, H5.24, N0.85, Cl5.85;
FAB MS m / z: 1972.0 (M + K).
Production Example 5: Nonadeca-O-acetyl-1-bromopropoxy-β-D-maltohexanoside
To a solution of nonadeca-O-acetyl-1-trichloroimidate-β-D-maltoxanoside (10 g, 5.17 mmol) and molecular sieves 4A in anhydrous dichloromethane (100 mL) was added 3-bromopropanol (4.67 mL, 51.7 mmol). Was added at −20 ° C. under a nitrogen stream. The reaction mixture was stirred at −20 ° C. for 30 minutes, BF 3 · Et 2 O (0.65 mL, 5.17 mmol) was added, and the mixture was stirred for 20 minutes. The reaction was quenched by adding pyridine (1 mL). The reaction mixture was poured into cold water and then extracted with dichloromethane. After evaporation of the combined extracts, the crude product was purified by silica gel column chromatography eluting with toluene / acetone (v / v, 2/1) to give white solid Nonadeca-O-acetyl-1-bromo. Propoxy-β-D-maltohexanoside (7.5 g, 76%) was obtained.
11 H NMR (300 MHz, CDCl3) 5.44 (d, 1H, J = 3.8 Hz, 1VI-H), 5.35 (t, 1H, J = 10 Hz, 3I-H), 5.24-5.43 (m, 11H, 1II) , III, IV, V, VI-, 3I, II, III, VI, V, VI-H), 5.07 (t, 1H, J = 10 Hz, 4VI-H), 4.86 (dd, 1H, J = 4.0 Hz, 10.5 Hz, 2VI-H), 4.80 (dd, 1H, J = 7.9 Hz, 9.3 Hz, 2I-H), 4.71-4.76 (m, 4H, 2II, III, IV, V-H), 4.54 (d, 1H, J = 7.9 Hz, 1I-H), 4.53-4.43 (m, 5H, 6aI, II, III, IV, V-H), 4.50 (dd, 1H, J = 3.0 Hz, 12.2 Hz, 6a1-H), 4.38 (dd, 1H, J = 3.7 Hz, 2.2 Hz, 6bI-H), 4.30, 4.28, 4.25, 4.16 (dd (4, 4H, 6bII, III, IV, VH), 4.22 (m, 1H, 6aVI-H), 4.07 (dd, 1H, J = 2.3 Hz, 9.1 Hz, 6b VI-H), 3.93 (m, 1H, 5VI-H), 3.93 (m, 1H, OCH2), 3.98 (m, 1H, 4I-H), 3.71 (m, 1H, 5I-H), 3.70 (m, 1H, OCH)2), 3.45 (m, 2H, CH2Br), 2.02 (2H, m, CH2CH2CH2), 1.98-2.20 (s, 3H (19, COCH3).
Elemental analysis: C77H105O50As Br: calculated values C48.42, H5.54, Br4.14; measured values C48.42, H5.54, Br4.29;
FAB MS m / z: 1909.0 (M++ H).
Production Example 6: Nonadeca-O-acetyl-1-iodopropoxy-β-D-maltohexanoside
A solution of nonadeca-O-acetyl-1-bromopropoxy-β-D-maltohexanoside (4.8 g, 2.5 mmol) and NaI (3.7 g, 25 mmol) in 2-butanone (100 mL) was heated at reflux for 20 hours. did. After cooling to room temperature, the reaction mixture was extracted with chloroform. The combined extracts were evaporated and recrystallized from ethanol to give white crystals of nonadeca-O-acetyl-1-iodopropoxy-β-D-maltohexanoside (4.6 g, 95%).
11 H NMR (500 MHz, CDCl3) 5.44 (d, 1H, 1VI-H), 5.35 (t, 1H, 3I-H), 5.25-5.50 (m, 11H, 1II, III, IV, V, VI-, 3I, II, III, IV, V, VI-H) 5.07 (t, 1H, J = 10 Hz, 4VI-H), 4.87 (dd, 1H, 2VI-H), 4.80 (dd, 1H, 2I-H), 4.71-4.76 (m, 4H, 2II, III, IV, VH) 4.54 (d, 1H, J = 7.9 Hz, 1I-H), 4. 50 (dd, 1H, 6aI-H), 3.71 (m, 1H, 5I-H), 3.60 (1H, m, OCH)2), 3.23 (2H, m, CH2I), 2.02 (2H, m, CH2CH2CH2), 1.98-2.20 (s, 3H (19, COCH3).
13C NMR (125 MHz, CDCl3): Δ 2.90 (CH2I), 20.60, 20.89 (COCH3), 32.85 (CH2CH2CH), 61.374 (6VI-C), 62.17 (6V-C), 62.35 (6IV-C), 62.47 (6III-C), 62.52 (6II-C), 62. 89 (6I-C), 67.95 (4VI-C), 68.97 (OCH2), 69.36 (3VI-C), 70.44 (5VI-C), 72.34 (2I-C), 73.75 (4I-C), 75.30 (3I-C), 95.63. (1VI-C), 95.73 (1II, III, IV, V-C), 100.42 (1I-C), 169.48, 169.75, 170.12, 170.43, 170.66 ( C = O).
Elemental analysis: C77H105O50As I: Calculated values C47.24, H5.41, I6.48; measured values C47.11, H5.30, I7.45;
FAB MS m / z: 1957.0 (M++ H).
Production Example 7: 4-Acetoxybenzaldehyde
To a solution of 4-hydroxybenzaldehyde (5.87 g, 48.6 mmol) in ethyl acetate (100 mL) was added pyridine (5.8 mL) and acetic anhydride (6.8 mL). After stirring at room temperature for 2.5 hours, a catalytic amount of DMAP was added and the mixture was stirred for 30 minutes. The reaction mixture was quenched with 0.5N hydrochloric acid and extracted with chloroform. The combined extracts were washed with a saturated aqueous solution of sodium bicarbonate and a saturated aqueous solution of sodium chloride, and then dried over anhydrous magnesium sulfate. After evaporation of the extract, the crude product was purified by silica gel column chromatography using hexane / ethyl acetate (5/2, v / v) as eluent to give 4-acetoxybenzaldehyde (7. 80 g, 99%).
11 H NMR (300 MHz, CDCl3) Δ 9.97 (s, 1H, CHO), 7.86 (d, 2H, J = 7.32 Hz, Ar-3, 5), 7.24 (s, 2H, J = 7.37 Hz, Ar-2) , 6), 2.28 (s, 3H, Ac).
Production Example 8: 4-decyloxybenzaldehyde
To a solution of 4-hydroxybenzaldehyde (5.0 g) in anhydrous DMF (40 mL) was added 1-bromodecane (8.5 mL) and potassium carbonate (6.0 g). After stirring at room temperature for 21 hours, DMF was removed under reduced pressure. The reaction mixture was extracted with chloroform. The chloroform phase was washed with 2N hydrochloric acid, ice water, saturated aqueous sodium carbonate solution and saturated aqueous sodium chloride solution, and then dried over anhydrous magnesium sulfate. The extract was evaporated and the resulting crude product was purified by silica gel column chromatography using hexane / ethyl acetate (4/1, v / v) as eluent to give 4-decyloxybenzaldehyde (9.13 g, 85%).
11 H NMR (300 MHz, CDCl3) Δ 9.87 (s, 1H, CHO), 7.80 (d, 2H, J = 6.53 Hz, Ar-3, 5), 7.00 (s, 2H, J = 6.56 Hz, Ar-2) , 6), 4.04 (m, 2H, CH2O), 1.80 (m, 2H, CH2CH2O), 1.45-1.27 (m, 14H, -CH2-), 0.88 (s, 3H, CH3).
Production Example 9: 1-mesityldipyrromethane
A solution of pyrrole (25 mL, 360 mmol) and mesitylaldehyde (2.14 g, 14.4 mmol) was purged with argon for 5 minutes. TFA (0.11 mL, 1.44 mmol) was added to this solution. After stirring for 1 hour at room temperature, the reaction mixture was neutralized by adding triethylamine (0.5 mL). About 100 mL of toluene was added thereto, and then the organic phase was washed twice with a saturated aqueous sodium chloride solution and dried over anhydrous sodium sulfate. The solution was filtered and evaporated under vacuum to give a black oil. The oil was further purified by distillation to give a yellow solid. Recrystallization from ethanol / water (10/1, v / v) gave the title compound as pale yellow crystals (0.8 g, 21%).
11 H NMR (300 MHz, CDCl3) Δ 2.06 (s, 6H, 2, 6-CH3), 2.28 (s, 3H, 4-CH3), 5.93 (s, 1H, meso-CH), 6.01 (m, 2H, pyr-β), 6.17-6.19 (m, 2H, NH), 6.67 (m, 2H) , Pyr-β), 6.87 (s, 2H, pyr-α), 7.97 (brs, 2H, Ar-3, 5).
Production Example 10: 5,10-di- (4-decyloxy) -15,20-di- (4-hydroxy) tetraphenylporphyrin
A solution of 4-acetoxybenzaldehyde (1.0 g, 1 equivalent), 4-decyloxybenzaldehyde (1.6 g, 1 equivalent) and pyrrole (0.85 mL, 2 equivalents) in propionic acid (200 mL) was heated to reflux for 1 hour. After cooling, the reaction mixture was neutralized with 0.5N aqueous sodium hydroxide solution and then extracted five times with chloroform. The organic phase was washed with cold water and saturated aqueous sodium chloride solution, then dried over sodium sulfate, filtered and the solvent was evaporated. The crude product was purified by column chromatography on silica gel 60N using hexane / ethyl acetate (20 / 1-8 / 1, v / v) as gradient eluent to give 5,10-di- (4-decyloxy)- 15,20-Di- (4-acetoxy) tetraphenylporphyrin (100.1 mg, 3.1%) was obtained. The resulting product was stirred in sodium methoxide in methanol (1 wt%) at room temperature to give the title compound as a purple solid.
11 H NMR (300 MHz, CDCl3) Δ 8.94 (d, 2H, J = 4.67 Hz, pyr-β), 8.84, 8.83 (s, 2H), 8.83 (d, 2H, J = 4.7 Hz, pyr-β) ), 8.20 (d, 2H, Ar-3, 5), 8.09 (d, 2H, Ar-2, 6), 7.50 (d, 2H, J = 8.57 Hz, Ar′-3) 5), 7.28 (d, 2H, J = 8.10 Hz, Ar′-2, 6), 4.24 (m, 4H, CH 2 O), 2.49 (s, 6H, Ac), 1. 98 (m, 4H, CH2CH2O), 1.62-1.25 (m, 28H, -CH2-), 0.91 (t, 6H, CH3).
Production Example 11: 5,10-di- (4-decyloxyphenyl) -15,20-bis- [4- [3- (nonadeca-O-acetyl-β-D-maltohexanosyl) propoxy] phenyl] Porphyrin
To a mixture of 5,10-di- (4-decyloxy) -15,20-di- (4-hydroxy) tetraphenylporphyrin (20.7 mg) and potassium carbonate (1 g) in anhydrous DMF (20 mL) was added Nonadeca-O. -Acetyl-1-iodopropoxy-β-D-maltohexanoside (163.5 mg) was added. After stirring for 60 hours at room temperature, DMF was removed under reduced pressure. About 200 mL of chloroform was added thereto, and then the chloroform phase was washed with 1N hydrochloric acid, cold water, saturated aqueous sodium carbonate solution and saturated aqueous sodium chloride solution. The chloroform solution was dried over anhydrous sodium sulfate and filtered. The resulting crude product was purified by cyclic HPLC using THF as eluent to give the title compound (43.3 mg, 45%).
11 H NMR (300 MHz, CDCl3) Δ 8.80 (d, 2H, J = 4.9 Hz, pyr-β), 8.79 (s, 2H, pyr-β), 8.76 (s, 2H, pyr-β), 8.75 ( d, 2H, J = 5.0 Hz, pyr-β), 8.05 (d, 4H, Ar-3, 5), 8.02 (d, 4H, Ar-2, 6), 7.19 (d , 4H, J = 8.4 Hz, Ar′-3, 5), 7.07 (d, 4H, J = 8.4 Hz, Ar′-2, 6), 8.20 (d, 2H, Ar-3) 5), 8.09 (d, 2H, Ar-2, 6), 7.50 (d, 2H, J = 8.57 Hz, Ar'-3, 5), 7.28 (d, 2H, J = 8.10 Hz, Ar'-2, 6), 4.24 (m, 4H, CH2O), 2.49 (s, 6H, Ac), 1.98 (m, 4H, CH2CH2O), 1.62-1.25 (m, 28H, -CH2-), 0.91 (t, 6H, CH3).
Example 1: 5,10-di- (4-decyloxyphenyl) -15,20-bis- [4- [3- (β-D-maltohexanosyl) propoxy] phenyl] porphyrin
Deacetylation of 5,10-di- (4-decyloxyphenyl) -15,20-bis- [4- [3- (nonadeca-O-acetyl-β-D-maltohexanosyl) propoxy] phenyl] porphyrin The title compound was obtained using sodium methoxide in the same manner as in Production Example 10 (yield: 69.3%).
[Α]25 D= + 24.4 °, [α]25 365= + 143.6 ° (H2O).11 H NMR (300 MHz, DMSO-d6) Δ 8.79 (s, 2H, pyr-β), 8.78 (s, 2H, pyr-β), 8.87 (m, 4H, pyr-β), 8.10 (m, 16H, Ar- 2, 3, 5, 6), 7.39 (d, 2H, J = 8.51 Hz, Ar-4), 7.36 (d, 2H, J = 8.57 Hz, Ar-4).
UV (DMSO): 423.5 nm (ε = 3.5 × 105/ Cm · M), 519.0 nm (ε = 1.2 × 104/ Cm · M), 557.0 nm (ε = 9.5 × 103/ Cm · M), 596.0 nm (ε = 3.5 × 103/ Cm · M), 652.0 nm (ε = 4.9 × 103/ Cm · M).
Production Example 12: 5,15-Dimesityl-10-acetoxyphenyl-20-decyloxyphenylporphyrin
1-mesityldipyrromethane (264.4 mg, 1.0 mmol), 4-acetoxybenzaldehyde (82.2 mg, 0.5 mmol), and 4-decyloxybenzaldehyde were dissolved in dichloromethane (100 mL) and 5% with argon. Purged for minutes. TFA (0.13 mL, 1.78 mmol) was added and stirred for 30 minutes. DDQ (380 mg) was added to the reaction mixture and stirred for an additional hour. After neutralization with triethylamine (0.5 mL), the mixed solvent was filtered and removed under vacuum. The residue was purified by silica gel column chromatography using dichloromethane / hexane (3/2, v / v) as eluent. The resulting crude product was further purified by circulating HPLC using THF as an eluent to give the title compound (80 mg, 17.5%) as a purple solid.
11 H NMR (300 MHz, CDCl3) Δ 8.83 (d, 2H, J = 4.77 Hz, pyr-β), 8.80 (d, 2H, J = 4.79 Hz, pyr-β), 8.69 (d, 2H, J = 4) .74 Hz, pyr-β), 8.68 (d, 2H, J = 4.77 Hz, pyr-β), 8.22 (d, 2H, J = 8.46 Hz, ArOAc-2, 6), 8. 11 (d, 2H, J = 8.55 Hz, ArOdec-2, 6), 7.48 (d, 2H, J = 8.61 Hz, ArOAc-3, 5), 7.28 (s, 4H, Ar) 7.27 (d, 2H, J = 8.77 Hz, ArOdec-3, 5), 4.24 (t, 2H, J = 6.50, 6.51, OCH)2), 2.63 (s, 6H, 4-CH3), 2.48 (s, 3H, OAc), 1.83 (s, 12H, 2, 6-CH)3), 1.18-2.06 (m, 16H, decCH2), 0.91 (m, 3H, decCH3), -2.63 (s, 2H, NH).
Production Example 13: 5,15-Dimesityl-10-hydroxyphenyl-20-decyloxyphenylporphyrin
A solution of 5,15-dimesityl-10-acetoxyphenyl-20-decyloxyphenylporphyrin (52 mg) in ethanolic potassium hydroxide (100% of 95% ethanol containing potassium hydroxide) was heated at reflux for 1 hour. After acidifying the green solution with acetic acid and evaporating the solvent, the residue was washed 2-3 times with cold ethanol to give the title compound (40 g, 80.7%) as purple crystals.
11 H NMR (300 MHz, CDCl3): Δ 8.81 (brs, 4H, pyr-β), 8.68 (brs, 4H, pyr-β), 8.08 (m, 4H, Ar-2, 6), 7.27-7.19. (8H, m, Ar-3, 5), 4.24 (m, 2H, OCH2), 2.63 (s, 6H, 4-CH3), 1.83 (s, 12H, 2, 6-CH3), 1.3-1.97 (m, 16H, decCH2), 0.91 (m, 3H, decCH3), -2.62 (s, 2H, NH).
Production Example 14: 5,15-Dimesityl-10-decyloxyphenyl-20- [4- [3- (nonadeca-O-acetyl-β-D-maltohexanosyl) propoxy] phenyl] porphyrin
To a solution of 5,15-dimesityl-10-hydroxyphenyl-20-decyloxyphenylporphyrin (40 mg, 45.9 mmol) and potassium carbonate (1 g) in anhydrous DMF (20 mL), nonadeca-O-acetyl-1-iodopropoxy- β-D-maltohexanoside (46 mmol) was added. After stirring for 72 hours at room temperature, DMF was removed under reduced pressure. About 200 mL of chloroform was added thereto, and then the chloroform phase was washed with 1N hydrochloric acid, cold water, saturated aqueous sodium carbonate and saturated aqueous sodium chloride. The chloroform phase was dried over anhydrous sodium sulfate and filtered. The resulting crude product was purified by cyclic HPLC using THF as eluent to give the title compound (59 mg, 85%).
11 H NMR (300 MHz, CDCl3) Δ 8.82 (d, 2H, J = 4.82 Hz, pyr-β), 8.79 (d, 2H, J = 4.75 Hz, pyr-β), 8.67 (d, 2H, J = 4) .67 Hz, pyr-β), 8.66 (d, 2H, J = 4.70 Hz, pyr-β), 8.11 (d, 4H, J = 8.46 Hz, ArOCH2-2, 6), 7.48 (d, 2H, J = 8.61 Hz, ArOAc-3, 5), 7.28 (s, 4H, mes-Ar), 7.23-7.27 (m, 4H, ArOCH2−3,5), 5.42 (d, 1H, J = 3.8 Hz, 1VI-H), 5.35 (t, 1H, J = 10 Hz, 3I-H), 5.24-5.43 ( m, 11H, 1II, III, IV, V, VI-, 3I, II, III, IV, V, VI-H), 5.07 (t, 1H, J = 10 Hz, 4VI-H), 4.86. (Dd, 1H, J = 4.0 Hz, 10.5 Hz, 2VI-H), 4.80 (dd, 1H, J = 7.9, 9.3 Hz, 2I-H), 4.71-4.76 (M, 4H, 2II, III, IV, VH), 4.54 (d, 1H, J = 7.9 Hz, 1I-H), 4.53-4.43 (m, 5H, 6aI, II) , III, IV, VH), 4.50 (dd, 1H, J = 3.0 Hz, 12.2 Hz, 6aI-H), 4.38 (dd, 1H, J = 3.7, 2.2 Hz, 6bI-H), 4.30, 4.28, 4.25, 4.16 (dd (4, 1H, 6bII, III, IV, VH), 4.22 (m, H, 6aVI-H), 4.07 (dd, 1H, J = 2.3 Hz, 9.1 Hz, 6b VI-H), 3,93 (m, 1H, 5VI-H), 3.93 (m, 1H, OCH)2CH2), 3.98 (m, 1H, 4I-H), 3.71 (m, 1H, 5I-H), 3.70 (m, 1H, OCH)2), 3.45 (m, 2H, CH2OAr), 2.02 (2H, m, CH2CH2CH2), 4.24 (t, 2H, J = 6.50, 6.51 Hz, OCH2), 2.63 (s, 6H, 4-CH3), 1.83 (s, 12H, 2, 6-CH3), 1.91-2.20 (s, 3H (76H, COCH3), 1.25-2.06 (m, 16H, decCH2), 0.91 (m, 3H, decCH3), 2.62 (s, 2H, NH).
Example 2: 5,15-Dimesityl-10-decyloxyphenyl-20- [4- [3- (β-D-maltohexanosyl) propoxy] phenyl] porphyrin
Deacetylation of 5,15-dimesityl-10-decyloxyphenyl-20- [4- [3- (nonadeca-O-acetyl-β-D-maltohexanosyl) propoxy] phenyl] porphyrin was reduced by sodium methoxide. The title compound was obtained in the same manner as in Production Example 10 (yield, 75%).
11 H NMR (300 MHz, DMSO-d6) Δ 8.83 (d, 2H, J = 5.4 Hz, pyr-β), 8.82 (d, 2H, J = 4.8 Hz, pyr-β), 8.62 (m, 4H, pyr-β) ), 8.25 (d, 2H, J = 8.4 Hz, Ar-3, 5), 8.07 (d, 2H, J = 8.4 Hz, Ar-2, 6), 7.36 (d, 2H, J = 8.7 Hz, Ar-3 ′, 5 ′), 7.34 (s, 4H, Mes-2, 6), 7.30 (d, 2H, J = 8.8 Hz, Ar-2 ′) , 6 '), 3.75-3.77 (4H, OCH2), 2.58 (s, 6H, 4-CH3), 2.27 (m, 2H, sug-CH2-), 1.76-1.85 (m, 12H, 2, 6-CH3), 1.27-1.76 (m, 16H, decCH2), 0.86 (t, 3H, J = 6.4 Hz, decCH3).
ESI mass: C99H128N4O33(MH)+1901.8461, measured value 1902.5458.
UV (DMSO): 423.5 nm (ε = 3.5 × 105/ Cm · M), 516.5 nm (ε = 1.3 × 104/ Cm · M), 553.0 nm (ε = 6.6 × 103/ Cm · M), 593.5 nm (ε = 3.7 × 103/ Cm · M), 650.0 nm (ε = 4.4 × 103/ Cm · M).
Test Example 1: Phototoxicity test
5,10-di- (4-decyloxyphenyl) -15,20-bis- [4- [3- (β-D-maltohexanosyl) propoxy] phenyl] porphyrin (hereinafter referred to as “Compound A”) The cytotoxicity of MTT assay (Carmichal, J., WG DeGraff, AF Gazdar, JD Minna and JB Mitchell, Cancer Res., 1987, 47, 936-942). ) Was used to evaluate the viability of healer cells. Healer cells (1 × 104Cells / well) in Dulbecco's Modified Eagle Medium (DMEM) containing 10% fetal bovine serum (FBS) in 96-well plates with 5% CO2The mixture was incubated at 37 ° C. for 24 hours. After washing with phosphate buffered saline (PBS), the cells were incubated in serum-free DMEM for 2 hours in the presence of Compound A (5 or 10 μM). Cells added with Compound A were washed with PBS. After incubation for 20 hours, 10 μL of 3- (4,5-dimethyl-2-thiazolyl) -2,5-diphenyl-2H-tetrazolium bromide (MTT) solution (5 mg / mL) was added. After incubating the cells for an additional 4 hours, viability was measured at 540 nm (OD540) By measuring the optical density. FIG. 1a) shows the survival ratio (%) of cells that have not been irradiated. The ratio was calculated according to the following formula: Cell survival ratio (%) = {OD in the presence of Compound A540/ OD in the absence of Compound A540} × 100. A cell viability ratio of 100% indicates the absence of cytotoxicity. This ratio is considered to be the cytotoxicity of Compound A. As shown in FIG. 1a), it was revealed that even in the presence of Compound A, no cytotoxicity was exhibited when irradiation was not performed.
Healer cells (1 × 104Cells / well) were treated as described above. Cells added with Compound A were irradiated with a 500 W halogen lamp equipped with a filter that cuts wavelengths shorter than 500 nm for 8 minutes. After 24 hours of incubation, viability was measured by MTT assay. FIG. 1b) shows the cell survival ratio (%) after irradiation. Cell survival ratio was calculated according to the following formula; cell survival ratio (%) = [OD in presence of Compound A when irradiated]540/ OD in the presence of Compound A when not irradiated540] × 100. As shown in FIG. 1b), it was revealed that when irradiated with light in the presence of Compound A, cytotoxicity was exhibited.
Industrial applicability
The tetraphenylporphyrin derivative or a salt thereof of the present invention is expected to have both hydrophilicity and lipophilicity by introduction of a maltohexose residue and a decyl group, and selectivity for tumor cells by cell recognition by a maltose residue. Furthermore, since the tetraphenylporphyrin derivative or a salt thereof of the present invention is not toxic to cells in the dark and has a cell-killing effect by light irradiation in a long wavelength region having good cell tissue permeability, PDT Useful as a photosensitizer in therapy and PDD.
Moreover, the tetraphenylporphyrin derivative of the present invention or a salt thereof can be used as a pressure-sensitive paint.
[Brief description of the drawings]
FIG. 1a is a graph showing the toxicity of the compound A of the present invention to cells not irradiated with light, and FIG. 1b is a graph showing the toxicity of the compound A of the present invention to cells irradiated with light.

Claims (5)

式(I):
Figure 0004312455
[式中、R、R、RおよびRは、互いに独立して、
Figure 0004312455
で示される基であり、かつ、R〜Rの少なくとも1つは
Figure 0004312455
で示される基であり、かつR〜Rの残りの少なくとも1つは、
Figure 0004312455
で示される基である]
で表されるテトラフェニルポルフィリン誘導体またはその塩。
Formula (I):
Figure 0004312455
[Wherein R 1 , R 2 , R 3 and R 4 are independently of each other,
Figure 0004312455
And at least one of R 1 to R 4 is a group represented by
Figure 0004312455
And at least one of the remaining R 1 to R 4 is
Figure 0004312455
Is a group represented by
The tetraphenylporphyrin derivative represented by these, or its salt.
が、
Figure 0004312455
で示される基であり、Rが、
Figure 0004312455
で示される基であり、RおよびRがそれぞれ
Figure 0004312455
で示される基である請求項1に記載のテトラフェニルポルフィリン誘導体またはその塩。
R 1 is
Figure 0004312455
R 3 is a group represented by
Figure 0004312455
R 2 and R 4 are each a group represented by
Figure 0004312455
The tetraphenylporphyrin derivative or a salt thereof according to claim 1, which is a group represented by
塩が金属との分子内錯体塩である請求項1または2に記載のテトラフェニルポルフィリン誘導体またはその塩。  The tetraphenylporphyrin derivative or a salt thereof according to claim 1 or 2, wherein the salt is an intramolecular complex salt with a metal. 請求項1〜3のいずれか一つに記載のテトラフェニルポルフィリン誘導体またはその塩からなる光増感剤としての組成物。  The composition as a photosensitizer which consists of the tetraphenylporphyrin derivative or its salt as described in any one of Claims 1-3. 光線力学的療法に用いられる請求項4に記載の組成物。  The composition according to claim 4, which is used for photodynamic therapy.
JP2002525240A 2000-09-08 2001-09-06 Tetraphenylporphyrin derivative and composition comprising the same Expired - Fee Related JP4312455B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000273650 2000-09-08
JP2000273650 2000-09-08
PCT/JP2001/007757 WO2002020621A1 (en) 2000-09-08 2001-09-06 Tetraphenylporphyrin derivatives and compositions comprising the same

Publications (2)

Publication Number Publication Date
JPWO2002020621A1 JPWO2002020621A1 (en) 2004-01-15
JP4312455B2 true JP4312455B2 (en) 2009-08-12

Family

ID=18759555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002525240A Expired - Fee Related JP4312455B2 (en) 2000-09-08 2001-09-06 Tetraphenylporphyrin derivative and composition comprising the same

Country Status (3)

Country Link
JP (1) JP4312455B2 (en)
AU (1) AU2001284465A1 (en)
WO (1) WO2002020621A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6041360B2 (en) * 2011-07-22 2016-12-07 バイオリテック ウンターネーメンスベタイリグンクス ツヴァイ アクツィエンゲゼルシャフト Sugar-substituted dihydroxy-chlorins and β-functionalized chlorins for antibacterial photodynamic therapy
US8748037B2 (en) 2011-12-20 2014-06-10 Samsung Electronics Co., Ltd. Cathode and electrochemical device including cathode
JP5908271B2 (en) 2011-12-20 2016-04-26 三星電子株式会社Samsung Electronics Co.,Ltd. Polymer compound, oxygen permeable membrane, oxygen permeable material and electrochemical device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3076883B2 (en) * 1991-10-21 2000-08-14 株式会社ホーネンコーポレーション A novel tetraphenylporphine glycoside

Also Published As

Publication number Publication date
AU2001284465A1 (en) 2002-03-22
JPWO2002020621A1 (en) 2004-01-15
WO2002020621A1 (en) 2002-03-14

Similar Documents

Publication Publication Date Title
Deutsch et al. Synthesis of congeners and prodrugs. 3. Water-soluble prodrugs of taxol with potent antitumor activity
EP0233701B1 (en) Porphyrin derivatives
JP6910551B2 (en) Photosensitizers, their derivatives and applications
JPH0684336B2 (en) Biocidal aromatic compounds, their synthesis and their use as pharmaceuticals
CS265248B2 (en) Process for preparing analogs of rebeccamycine
EP3111940B1 (en) Silicon phthalocyanine complex, preparation method and medicinal application thereof
US7157432B2 (en) Tetraphenylbacteriochlorin derivatives and compositions containing the same
EP3808751A1 (en) Camptothecin derivative, preparation method therefor and application thereof
JP4066389B2 (en) Morpholinyl anthracycline derivatives
US6043367A (en) Proactive antitumor compounds
JP4312455B2 (en) Tetraphenylporphyrin derivative and composition comprising the same
Deutsch et al. Synthesis of congeners and prodrugs of the benzene maleimide photoadduct, mitindomide, as potential antitumor agents. 2
CN115368347A (en) Near-infrared molecules with PTT and PDT effects and application thereof
RU2073681C1 (en) Anthracycline glycoside and method of its synthesis
JP2000007693A (en) Chlorin derivative
CN110054645B (en) Ferrocene-modified glutathione-activatable BODIPY derivative and preparation method and application thereof
JP2003525851A (en) Drug release activated by hydroxylation
Van Chinh et al. Synthesis and cytotoxic activity of some novel 2’-hydroxychalcones containing murrayafoline A
HU186282B (en) Process for the preparation of bisindol compounds
HRP950436A2 (en) 8-fluoro-anthracyclines, processes for their preparation and pharmaceutical compositions containing them
CN110066239B (en) Carbazole dimer derivative and preparation method and application thereof
CN117304198A (en) 7-and 20-substituted camptothecin derivatives and uses thereof
JPH06797B2 (en) 14-fluorodaunorubicin derivative
PT97484A (en) PROCESS FOR THE PREPARATION OF NEW HETEROCYCLIC DERIVATIVES: 2-STIRYL-4H-1-BENZO-4-PYRANONES
KR20200082468A (en) Compound comprising Hsp90 inhibitor targeting mitochondria and pharmaceutical composition for photodynamic therapy comprising the compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050421

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090209

TRDD Decision of grant or rejection written
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4312455

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees