JP4310432B2 - Hexanol dehydration reaction method - Google Patents

Hexanol dehydration reaction method Download PDF

Info

Publication number
JP4310432B2
JP4310432B2 JP2003373767A JP2003373767A JP4310432B2 JP 4310432 B2 JP4310432 B2 JP 4310432B2 JP 2003373767 A JP2003373767 A JP 2003373767A JP 2003373767 A JP2003373767 A JP 2003373767A JP 4310432 B2 JP4310432 B2 JP 4310432B2
Authority
JP
Japan
Prior art keywords
reaction
carbon dioxide
water
acid
supercritical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003373767A
Other languages
Japanese (ja)
Other versions
JP2005132809A (en
Inventor
豊 生島
邦夫 新井
公隆 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003373767A priority Critical patent/JP4310432B2/en
Publication of JP2005132809A publication Critical patent/JP2005132809A/en
Application granted granted Critical
Publication of JP4310432B2 publication Critical patent/JP4310432B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、超臨界水又は亜臨界水と大過剰の二酸化炭素とを含有する反応媒体中で、有機化合物の脱水反応又は水和反応を遂行する新規な無触媒反応方法に関するものであり、更に詳しくは、二酸化炭素を3モル%以上含有し、温度が275℃ないし600℃、圧力が20MPaないし300MPaの超臨界水又は亜臨界水の反応媒体中で、有機化合物の脱水反応又は水和反応を遂行する新規反応方法に関するものである。
本発明は、環境問題を抜本的に解消することを可能とする次世代の化学合成技術として実用化が強く期待されている超臨界状態の反応媒体を利用した、高温高圧反応システムの技術分野において、超臨界水又は亜臨界水に大過剰の二酸化炭素を加えた反応媒体を使用することによって、有機化合物の脱水反応又は水和反応を一段階の簡単な反応方法で遂行でき、しかも、高反応率を得ることが可能な新規反応方法を提供するものであり、また、本発明は、超臨界水又は亜臨界水の酸触媒効果を顕著に向上させることを可能とする、新規反応方法を提供するものである。
本発明は、例えば、有用な化合物であるオレフィン類又はアルコール類を、簡単な反応方法で、短時間で、選択的に、しかも、環境に優しく製造することができる反応方法を提供するものとして有用である。
The present invention relates to a novel non-catalytic reaction method for performing a dehydration reaction or a hydration reaction of an organic compound in a reaction medium containing supercritical water or subcritical water and a large excess of carbon dioxide. Specifically, the dehydration reaction or hydration reaction of an organic compound is carried out in a supercritical water or subcritical water reaction medium containing 3 mol% or more of carbon dioxide, a temperature of 275 ° C. to 600 ° C., and a pressure of 20 MPa to 300 MPa. It relates to a new reaction method to be carried out.
The present invention is in the technical field of a high-temperature and high-pressure reaction system using a supercritical reaction medium, which is expected to be put to practical use as a next-generation chemical synthesis technology that can drastically solve environmental problems. By using a reaction medium in which a large excess of carbon dioxide is added to supercritical water or subcritical water, the dehydration reaction or hydration reaction of organic compounds can be carried out in a simple one-step reaction method. In addition, the present invention provides a novel reaction method that makes it possible to significantly improve the acid catalyst effect of supercritical water or subcritical water. To do.
INDUSTRIAL APPLICABILITY The present invention is useful, for example, as providing a reaction method capable of producing olefins or alcohols, which are useful compounds, in a simple reaction method, in a short time, and in an environmentally friendly manner. It is.

従来、有機化合物の脱水反応又は水和反応には、種々の反応方法があり、これまでに多くの事例が報告されている。例えば、シクロヘキセン及び水を固体酸触媒を充填した蒸留塔に供給し、蒸留塔内で固体酸触媒と接触させシクロヘキサノールを製造する方法(特許文献1)、ベンゼンの部分水素化によって得られたシクロヘキセンを水和して高純度のシクロヘキサノールを製造する方法(特許文献2)等のオレフィン類の水和反応が報告されている。   Conventionally, there are various reaction methods for dehydration reaction or hydration reaction of organic compounds, and many cases have been reported so far. For example, a method of producing cyclohexanol by supplying cyclohexene and water to a distillation column packed with a solid acid catalyst and contacting the solid acid catalyst in the distillation column (Patent Document 1), cyclohexene obtained by partial hydrogenation of benzene There has been reported a hydration reaction of olefins such as a method for producing a high-purity cyclohexanol by hydration of olefins (Patent Document 2).

アルコール類の脱水反応としては、例えば、シクロヘキサノールの脱水によりシクロヘキセンを製造する方法、ベンゼンの部分水素化による製法等が、シクロヘキセンの工業的な製法として知られている。また、特定の触媒を使用し、酸性の条件下でベンゼンを部分水素化する工程中において、反応混合物のシクロヘキセン、シクロヘキサン及びベンゼンから、クロヘキセンを分離する方法(特許文献3)等が報告されている。 As the dehydration reaction of alcohols, for example, a method of producing cyclohexene by dehydration of cyclohexanol, a production method by partial hydrogenation of benzene, and the like are known as industrial production methods of cyclohexene. Further, by using a specific catalyst, in a process for partial hydrogenation of benzene under acidic conditions, cyclohexene reaction mixture, cyclohexane and benzene, a method (Patent Document 3) for separating the sheets cyclohexene, etc. is reported Yes.

一方、超臨界水又は亜臨界水を反応媒体とした反応には、超臨界水(臨界温度375℃、臨界圧力22.05MPa以上の水)中において酸等の触媒を添加しないで、セルロースやそのモデル物質であるセロビオース(グルコース二量体)の加水分解を行い、それぞれオリゴ糖やグルコースを生成する反応が本発明者らにより報告されている(非特許文献1,2)。このことは、セルロースやセロビオースの加水分解反応が、常温の条件下では、強酸の存在下で進行することからみて、超臨界水に酸触媒効果があることを示唆している。   On the other hand, in the reaction using supercritical water or subcritical water as a reaction medium, without adding a catalyst such as acid in supercritical water (water having a critical temperature of 375 ° C. and a critical pressure of 22.05 MPa or more), cellulose or its Reactions of hydrolysis of cellobiose (glucose dimer), which is a model substance, to generate oligosaccharides and glucose, respectively, have been reported by the present inventors (Non-Patent Documents 1 and 2). This suggests that the hydrolysis reaction of cellulose and cellobiose proceeds in the presence of a strong acid under normal temperature conditions, and that supercritical water has an acid catalytic effect.

このように、本発明者らは、超臨界水自身が有する酸触媒効果を見出したが、一方で、超臨界水を利用した環境調和型の酸触媒プロセスを目的とした多くの研究例がある。中でも、シクロヘキサノンのベックマン転移によるε−カプロラクタムの生成反応や、フェノールとアルコールからのフリーデル−クラフツアルキル化反応は、工業的にも非常に利用価値の高い反応といえる。ところが、これらの反応は、ごく少量ではあるが強酸を加えて目的生成物の選択性を高める必要があり、反応に長時間が必要である等のいくつかの問題がある。   As described above, the present inventors have found the acid catalyst effect of supercritical water itself, but there are many research examples aiming at an environmentally harmonized acid catalyst process using supercritical water. . Among them, the production reaction of ε-caprolactam by the Beckmann transition of cyclohexanone and the Friedel-Crafts alkylation reaction from phenol and alcohol can be said to be industrially very useful reactions. However, these reactions have some problems such as the addition of a strong acid to increase the selectivity of the target product, although the reaction is required for a long time.

一般に、常温において水に二酸化炭素を溶解させると炭酸を形成し、その水溶液は酸性を示すが、1963年のZ.Phys.Chem誌(非特許文献3)には、超臨界水に二酸化炭素を混合すると、臨界点は低温、高圧側に変化し、二酸化炭素が7.5モル%では、温度360℃、圧力28MPa以上で均一相となり、更に、水の臨界温度(375℃)以上になると二酸化炭素と水とは任意に混和することが報告されている。しかしながら、この文献には、二酸化炭素を含む超臨界水を反応の媒体として用いた例は記載されていない。   In general, when carbon dioxide is dissolved in water at normal temperature, carbon dioxide is formed, and the aqueous solution shows acidity. In 1963, Z.Phys.Chem (Non-patent Document 3) indicated that carbon dioxide was added to supercritical water. When mixed, the critical point changes to a low temperature and high pressure side, and when carbon dioxide is 7.5 mol%, it becomes a homogeneous phase at a temperature of 360 ° C. and a pressure of 28 MPa or higher, and further reaches a critical temperature of water (375 ° C.) or higher. It has been reported that carbon and water are miscible arbitrarily. However, this document does not describe an example in which supercritical water containing carbon dioxide is used as a reaction medium.

特開平10−287600号公報Japanese Patent Laid-Open No. 10-287600 特開平11−228472号公報Japanese Patent Laid-Open No. 11-228472 特開平7−196538号公報JP-A-7-196538 M. Sasaki, B. Kabyemela, R. Ma1aluan, S. Hirose, N. Takeda, T. Adschiri andK. Arai, J. Supercritical Fluids, 1998, 13, 261-268M. Sasaki, B. Kabyemela, R. Ma1aluan, S. Hirose, N. Takeda, T. Adschiri and K. Arai, J. Supercritical Fluids, 1998, 13, 261-268 M. Sasaki, M. Furukawa, K. Minami, T. Adschiri and K. Arai, Ind. Eng. Chem. Res., 2002, 41,6642-6649M. Sasaki, M. Furukawa, K. Minami, T. Adschiri and K. Arai, Ind. Eng. Chem. Res., 2002, 41,6642-6649 K. Todheide andE. U. Franck, Z. Physik.Chem.Neue Folge, 1963,37, 387-401K. Todheide and E. U. Franck, Z. Physik.Chem. Neue Folge, 1963,37, 387-401

このような状況の中で、本発明者らは、上記従来技術に鑑みて、有機化合物の脱水反応又は水和反応が効率よく遂行できる、新しい反応方法を開発することを目標として鋭意研究を積み重ねた結果、超臨界水又は亜臨界水に大過剰の二酸化炭素を含有する反応媒体中で、硫酸、塩酸等のような強酸を添加しないで、酸触媒反応である有機化合物の脱水反応又は水和反応を選択的に遂行することができることを見出し、本発明を完成するに至った。
本発明の目的は、触媒や有機溶剤を使用することなく、酸触媒反応である、有機化合物の脱水反応又は水和反応を選択的に遂行する反応方法を提供することである。
また、本発明の目的は、アルコール類の脱水反応又はオレフィン類の水和反応を、選択的に、効率良く、60%の高反応率で、遂行することができる反応方法を提供することである。
また、本発明の目的は、廃水、廃物がほとんど発生しない反応方式であって、廃水、廃物の処理を必要としない、有機化合物の脱水反応又は水和反応の反応方法を提供することである。
また、本発明の目的は、無触媒で、反応時間が5分ないし25分という極めて短時間の反応で、アルコール類の脱水反応又はオレフィン類の水和反応を遂行する反応方法を提供することである。
Under such circumstances, the present inventors have conducted intensive research with the goal of developing a new reaction method capable of efficiently performing a dehydration reaction or a hydration reaction of an organic compound in view of the above prior art. As a result, in a reaction medium containing a large excess of carbon dioxide in supercritical water or subcritical water, without adding a strong acid such as sulfuric acid or hydrochloric acid, dehydration reaction or hydration of an organic compound that is an acid-catalyzed reaction The inventors have found that the reaction can be selectively performed, and have completed the present invention.
An object of the present invention is to provide a reaction method for selectively performing a dehydration reaction or a hydration reaction of an organic compound, which is an acid catalyst reaction, without using a catalyst or an organic solvent.
Another object of the present invention is to provide a reaction method capable of selectively and efficiently performing a dehydration reaction of alcohols or a hydration reaction of olefins at a high reaction rate of 60%. .
It is another object of the present invention to provide a reaction method for a dehydration reaction or a hydration reaction of an organic compound, which is a reaction system that hardly generates waste water and waste and does not require treatment of waste water and waste.
Another object of the present invention is to provide a reaction method that performs a dehydration reaction of alcohols or a hydration reaction of olefins in a very short reaction time of 5 to 25 minutes without a catalyst. is there.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)超臨界水又は亜臨界水に大過剰の二酸化炭素を加えた反応媒体中で、強酸を添加しないで、超臨界水又は亜臨界水の二酸化炭素混合系における酸触媒効果を利用して、酸触媒反応であるアルコールの脱水反応又はオレフィンの水和反応を選択的に遂行する当該有機化合物の無触媒反応方法であって、反応媒体中の二酸化炭素の濃度が少なくとも3モル%であること、反応媒体中の水密度が少なくとも0.30g/cm であること、反応媒体が、温度275℃ないし600℃、圧力20MPaないし300MPaであること、を特徴とする上記有機化合物の無触媒反応方法。
)脱水反応が、シクロヘキサノールのシクロヘキセンへの脱水反応である、上記()に記載の有機化合物の無触媒反応方法。
)水和反応が、シクロヘキセンのシクロヘキサノールへの水和反応である、上記()に記載の有機化合物の無触媒反応方法。
)超臨界水又は亜臨界水を反応媒体とする酸触媒反応系において、超臨界水又は亜臨界水に大過剰の二酸化炭素を混合することにより、超臨界水又は亜臨界水の二酸化炭素混合系における酸触媒効果を利用して、超臨界水又は亜臨界水による酸触媒反応の酸触媒作用を向上させること、その際に、二酸化炭素を濃度が少なくとも3モル%となるように混合すること、を特徴とする上記酸触媒反応系における酸触媒作用の増強方法。
The present invention for solving the above-described problems comprises the following technical means.
(1) in a reaction medium by adding a large excess of carbon dioxide in the supercritical or subcritical water, without the addition of strong acid, using an acid catalyst effect in carbon dioxide mixed system of supercritical or subcritical water An organic catalyst-free method for selectively performing an alcohol dehydration reaction or an olefin hydration reaction, which is an acid-catalyzed reaction, wherein the concentration of carbon dioxide in the reaction medium is at least 3 mol%. it it the water density in the reaction medium is at least 0.30 g / cm 3, the reaction medium is, to no temperature 275 ° C. 600 ° C., it to no pressure 20MPa is 300 MPa, uncatalyzed reaction of the organic compound, characterized Method.
( 2 ) The noncatalytic reaction method of an organic compound according to ( 1 ) above, wherein the dehydration reaction is a dehydration reaction of cyclohexanol to cyclohexene.
( 3 ) The noncatalytic reaction method of an organic compound according to ( 1 ) above, wherein the hydration reaction is a hydration reaction of cyclohexene to cyclohexanol.
( 4 ) In an acid-catalyzed reaction system using supercritical water or subcritical water as a reaction medium, carbon dioxide in supercritical water or subcritical water is mixed with supercritical water or subcritical water by mixing a large excess of carbon dioxide. Utilizing the acid catalyst effect in the mixed system to improve the acid catalysis of the acid catalyzed reaction with supercritical water or subcritical water , and at that time, carbon dioxide is mixed so that the concentration is at least 3 mol% The method for enhancing acid catalysis in the acid-catalyzed reaction system .

次に、本発明について更に詳細に説明する。
本発明は、超臨界水又は亜臨界水に大過剰の二酸化炭素を加えた反応媒体中で、硫酸、塩酸等のような強酸を添加しないで、酸触媒反応である有機化合物の脱水反応又は水和反応を選択的に遂行することを特徴とするものである。本発明者らは、超臨界又は亜臨界水を反応媒体とする反応方法を研究する中で、セルロースやセロビオース等の加水分解反応のような、常温の条件下では強酸の存在下で進行する反応が、超臨界水又は亜臨界水を反応媒体とすると、酸等の触媒が存在しなくても反応が進行することを確認(前記非特許文献1,2)し、超臨界水に酸触媒効果があることを見出した。しかしながら、一部の反応に対しては、超臨界水のみによる酸触媒効果はあまり高くないため、環境調和型の酸触媒プロセスとして超臨界水を利用するには、更に環境調和型の別の成分を加えて酸触媒効果を向上させる等の必要があることが判明した。
Next, the present invention will be described in more detail.
The present invention is a reaction medium in which a large excess of carbon dioxide is added to supercritical water or subcritical water, without adding a strong acid such as sulfuric acid, hydrochloric acid, etc. It is characterized by selectively performing a sum reaction. The present inventors have studied a reaction method using supercritical or subcritical water as a reaction medium, and a reaction that proceeds in the presence of a strong acid under normal temperature conditions, such as a hydrolysis reaction of cellulose or cellobiose. However, when supercritical water or subcritical water is used as a reaction medium, it is confirmed that the reaction proceeds even if no catalyst such as an acid is present (Non-Patent Documents 1 and 2), Found that there is. However, for some reactions, the acid catalyst effect of supercritical water alone is not so high, so in order to use supercritical water as an environmentally friendly acid catalyst process, another component of environmentally friendly type is required. It has been found that it is necessary to improve the acid catalyst effect by adding.

水の臨界温度以上では、二酸化炭素は水と均一層になり(前記非特許文献3)、酸性を呈することから、超臨界水において酸触媒効果を増加させる方法として、大過剰の二酸化炭素を加えることを本発明者らは見出した。そこで、超臨界水中に大過剰の二酸化炭素を混合し、酸触媒効果を確認するために、酸触媒反応の代表例として、アルコール類、例えば、シクロヘキサノールからのシクロヘキセンヘの脱水反応、及びオレフィン類、例えば、シクロヘキセンからシクロヘキサノールヘの水和反応を検討し、二酸化炭素を含有する超臨界水が酸触媒効果を有するとの結果を得た。本発明者らは、更に回収率を向上することを目標に、研究を重ねた結果、超臨界水を反応媒体とするにあたり、大過剰の二酸化炭素を添加すると、更に大きな酸触媒効果が得られることを確認した。従来、275℃以上の温度においての脱水反応についての報告例はない。   Above the critical temperature of water, carbon dioxide forms a uniform layer with water (Non-patent Document 3) and exhibits acidity. Therefore, as a method for increasing the acid catalytic effect in supercritical water, a large excess of carbon dioxide is added. The present inventors have found that. Therefore, in order to confirm the acid catalyst effect by mixing a large excess of carbon dioxide in supercritical water, a typical example of the acid catalyst reaction is a dehydration reaction of cyclohexene from cyclohexanol and olefins. For example, the hydration reaction from cyclohexene to cyclohexanol was examined, and the result that supercritical water containing carbon dioxide has an acid catalytic effect was obtained. As a result of repeated research aimed at further improving the recovery rate, the present inventors can obtain a larger acid catalytic effect when adding a large excess of carbon dioxide when supercritical water is used as a reaction medium. It was confirmed. Conventionally, there is no report example about the dehydration reaction in the temperature of 275 degreeC or more.

更に、本発明者らは、水熱条件の270℃の反応温度よりも更に高温条件での研究を重ね、超臨界水又は亜臨界水と過剰の二酸化炭素とを含有する反応媒体の中で、硫酸、塩酸等のような強酸を添加しないで、酸触媒反応である有機化合物の脱水反応又は水和反応を選択的に、高収率で遂行することを新たに見出した。本発明では、例えば、380℃、15分間の条件下における、シクロヘキサノールの脱水反応によるシクロヘキセンの回収率が、超臨界水のみを反応媒体とすると10%ほどであるのに対し、超臨界水に二酸化炭素を7.5モル%添加した反応媒体では60%と大幅に向上する(図3及び図4)。また、反応媒体の水密度、二酸化炭素の濃度を上げることにより反応の収率が向上する。したがって、本発明では、特定の反応条件の下で、脱水反応又は水和反応が高収率で進行する、という顕著な効果が得られる。本発明では、二酸化炭素を3モル%以上含み、温度約275℃ないし600℃、圧力20MPaないし300MPaの範囲にある、超臨界水又は亜臨界水が使用され、反応媒体の温度が約360℃以上となると、二酸化炭素と水とは均一な混合物となり反応の効率的な進行上に好ましい状態となる。   Furthermore, the present inventors have repeated research under conditions higher than the reaction temperature of 270 ° C. under hydrothermal conditions, and in a reaction medium containing supercritical water or subcritical water and excess carbon dioxide, It was newly found that a dehydration reaction or a hydration reaction of an organic compound, which is an acid-catalyzed reaction, can be selectively performed in a high yield without adding a strong acid such as sulfuric acid or hydrochloric acid. In the present invention, for example, the recovery rate of cyclohexene by dehydration reaction of cyclohexanol under conditions of 380 ° C. for 15 minutes is about 10% when only supercritical water is used as a reaction medium, whereas The reaction medium to which 7.5 mol% of carbon dioxide is added greatly improves to 60% (FIGS. 3 and 4). Further, the yield of the reaction is improved by increasing the water density of the reaction medium and the concentration of carbon dioxide. Therefore, in the present invention, a remarkable effect is achieved that the dehydration reaction or hydration reaction proceeds in high yield under specific reaction conditions. In the present invention, supercritical water or subcritical water containing 3 mol% or more of carbon dioxide, having a temperature of about 275 ° C. to 600 ° C. and a pressure of 20 MPa to 300 MPa is used, and the temperature of the reaction medium is about 360 ° C. or more. Then, carbon dioxide and water become a uniform mixture, which is preferable for efficient progress of the reaction.

本発明の反応は、基本的には、例えば、アルコール類の脱水反応により、炭素間の二重結合を生成する反応、及び、オレフィン類の炭素間二重結合に水を付加する反応であるが、本発明の反応方法では、反応基質を選ぶものではない。しかしながら、脱水反応では、アルコール類、例えば、シクロアルコール類、シクロヘキサノールが好ましく、水和反応では、オレフィン類、例えば、シクロオレフィン類、シクロヘキセンが好ましく用いられる。 本発明において、上記基質及び反応媒体を反応器に導入して所定の反応時間で合成を実施する。このとき、上記反応容器としては、例えば、バッチ式の高温高圧反応器、及び連続式の流通式高温高圧反応装置を使用することができるが、本発明は、これらの装置については特に限定されるものではない。   The reaction of the present invention is basically, for example, a reaction for generating a double bond between carbons by dehydration reaction of alcohols, and a reaction for adding water to the carbon-carbon double bonds of olefins. In the reaction method of the present invention, a reaction substrate is not selected. However, alcohols such as cycloalcohols and cyclohexanol are preferable in the dehydration reaction, and olefins such as cycloolefins and cyclohexene are preferably used in the hydration reaction. In the present invention, the substrate and the reaction medium are introduced into a reactor and the synthesis is carried out for a predetermined reaction time. At this time, as the reaction vessel, for example, a batch-type high-temperature high-pressure reactor and a continuous flow-type high-temperature high-pressure reactor can be used, but the present invention is particularly limited for these devices. It is not a thing.

本発明では、上記超臨界水又は亜臨界水の反応媒体中の、二酸化炭素の濃度、温度及び圧力条件、基質の種類及びその濃度、反応時間を最適に調整することにより、短時間で効率良く所望の反応生成物を得ることができる。従来、例えば、3モル%以上の過剰な量の二酸化炭素を含む超臨界水又は亜臨界水を利用して、275℃以上の温度条件下で、有機化合物の脱水反応又は水和反応により60%もの高収率で遂行できることが実証された例はなく、これは、本発明により初めて得られた知見である。   In the present invention, the carbon dioxide concentration, temperature and pressure conditions, the type and concentration of the substrate, and the reaction time in the supercritical water or subcritical water reaction medium are optimally adjusted, thereby efficiently in a short time. The desired reaction product can be obtained. Conventionally, for example, by using supercritical water or subcritical water containing an excess amount of carbon dioxide of 3 mol% or more, 60% by dehydration reaction or hydration reaction of an organic compound under a temperature condition of 275 ° C. or more. There are no examples that have been demonstrated to be able to be performed in high yields, and this is the first finding obtained by the present invention.

本発明により、(1)超臨界水又は亜臨界水に大過剰の二酸化炭素を加えることによって、酸触媒効果が向上する、(2)通常では、酸触媒が必要な反応が、触媒を使用しなくても遂行できる、(3)反応触媒等が必要でないため、生成物に不純物が混入するおそれがない、(4)反応媒体が水及び二酸化炭素の混合物であるため、反応生成物の取り扱いが容易であり、また、反応媒体から生成物の分離が容易である、(5)反応媒体が水及び二酸化炭素の混合物であり、触媒等の使用がないため、製造工程から、廃物、廃液の排出がなく、それらの処理が不要である、(6)反応に選択性があり、目的とする化合物のみを製造できる、(7)環境問題との調和が良好な方法であり、反応媒体の水及び二酸化炭素のリサイクルが容易であり、反応時間は短いので、生産コストを軽減することが可能となる、という効果が奏される。   According to the present invention, (1) the acid catalyst effect is improved by adding a large excess of carbon dioxide to supercritical water or subcritical water. (2) Usually, a reaction that requires an acid catalyst uses a catalyst. (3) Since no reaction catalyst is required, there is no possibility of impurities being mixed into the product. (4) Since the reaction medium is a mixture of water and carbon dioxide, the reaction product can be handled. Easy and product separation from the reaction medium is easy. (5) Since the reaction medium is a mixture of water and carbon dioxide and no catalyst is used, waste and waste liquid are discharged from the manufacturing process. And (6) the reaction is selective, only the target compound can be produced, (7) the method is well harmonized with environmental problems, and the reaction medium water and Carbon dioxide is easy to recycle, Because response time is short, it is possible to reduce the production cost, the effect is exhibited that.

次に、本発明を実施例に基づいて具体的に説明するが、本発明の方法は、これらの実施例によって何ら限定されるものではない。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example, the method of this invention is not limited at all by these Examples.

(1)反応装置
本実施例においては、回分式反応器を使用した。この回分式反応器は、図1にその概要を示すように、6cmの内容積を有する管状の密閉可能な耐圧容器からなり、反応媒体及び反応基質の導入口及び反応終了液の排出口を有し、反応器は流動砂浴中に保持されている。流動砂浴は、加熱手段により加熱され、反応器を所定の温度に保持するように温度制御がなされている。
(1) Reactor In this example, a batch reactor was used. As schematically shown in FIG. 1, this batch reactor comprises a tubular sealable pressure-resistant container having an internal volume of 6 cm 3 , and has an inlet for the reaction medium and the reaction substrate and an outlet for the reaction end liquid. And the reactor is held in a fluidized sand bath. The fluid sand bath is heated by a heating means, and the temperature is controlled so as to maintain the reactor at a predetermined temperature.

(2)シクロヘキサノールの脱水反応
本実施例では、シクロヘキサノールの脱水反応によりシクロヘキセンを製造した。その反応条件と、生成物を分析して得られた結果を以下に説明する。
試料(脱水反応)
シクロヘキサノール 仕込み量 0.2g
水 仕込み量 0.0−3.3g(0.0−0.55g/cm
二酸化炭素 添加量 0.3−1.3g(3.9−8.1モル%)
これらの範囲で、水と二酸化炭素の量を種々組み合わせて実験した。反応温度は380℃、反応時間は、5−25分であった。
なお、水の仕込み量が0.0gのときは、不活性ガスであるアルゴン中で反応を行った。
(2) Dehydration reaction of cyclohexanol In this example, cyclohexene was produced by a dehydration reaction of cyclohexanol. The reaction conditions and the results obtained by analyzing the product are described below.
Sample (dehydration reaction)
Cyclohexanol Charge 0.2g
Water charge 0.0-3.3 g (0.0-0.55 g / cm 3 )
Carbon dioxide addition amount 0.3-1.3 g (3.9-8.1 mol%)
Within these ranges, experiments were performed with various combinations of water and carbon dioxide. The reaction temperature was 380 ° C., and the reaction time was 5-25 minutes.
When the amount of water charged was 0.0 g, the reaction was performed in argon as an inert gas.

(3)結果
図2に、温度380℃で、水の仕込み量3.0g(水密度0.5g/cm3)でシクロヘキサノールの仕込み量0.2gにおいて、超臨界水のみを反応媒体とした場合、及び二酸化炭素を0.6g(7.5モル%)添加した超臨界水を反応媒体とした場合の反応生成物を分析した結果を示す。図中、●:シクロヘキサノール及び▲:シクロヘキセンは、二酸化炭素添加(7.5モル%)による収量を示し、○:シクロヘキサノール及び△:シクロヘキセンは、二酸化炭素無添加による収量を示す。その結果によれば、二酸化炭素の添加の有無に関わらず、シクロヘキサノールは時間とともに減少し、シクロヘキサノールの脱水反応生成物であるシクロヘキセンは時間とともに増加した。しかし、そのシクロヘキセンの回収濃度は、常に超臨界水に二酸化炭素を添加した場合が、超臨界水のみの場合と比較して格段に大きい値を示した。即ち、超臨界水に二酸化炭素を添加した反応媒体が、超臨界水のみを反応媒体と比較して、酸触媒効果が大きいことが分かった。
(3) Results FIG. 2 shows that only supercritical water was used as a reaction medium at a temperature of 380 ° C., with a water charge of 3.0 g (water density 0.5 g / cm 3 ) and a cyclohexanol charge of 0.2 g. And the results of analyzing the reaction product when supercritical water with 0.6 g (7.5 mol%) of carbon dioxide added is used as the reaction medium are shown. In the figure, ●: cyclohexanol and ▲: cyclohexene show the yield by carbon dioxide addition (7.5 mol%), ○: cyclohexanol and Δ: cyclohexene show the yield by adding no carbon dioxide. According to the results, cyclohexanol decreased with time regardless of the presence or absence of carbon dioxide, and cyclohexene, which is a dehydration reaction product of cyclohexanol, increased with time. However, the concentration of cyclohexene recovered was much higher when carbon dioxide was always added to supercritical water than when only supercritical water was used. That is, it was found that the reaction medium obtained by adding carbon dioxide to supercritical water has a larger acid catalyst effect than the reaction medium containing only supercritical water.

図3に、温度380℃、反応時間7分、水の仕込み量は3.0g(水密度0.5g/cm3)で一定とし、二酸化炭素の添加量を変えて反応させた後の脱水反応の結果を示す。図中、●は、シクロヘキサノール、▲は、シクロヘキセンの二酸化炭素による収量を示す。その結果によれば、二酸化炭素の添加量を増加するとともに、反応生成物中の原料であるシクロヘキサノールの量は滅少し、生成物であるシクロヘキセンの回収量が増加した。これは、二酸化炭素の添加量を増加させるに伴い酸触媒効果が増加することを示唆している。二酸化炭素を約4%添加するとシクロヘキセンは約30%が回収され、二酸化炭素を約15%添加すると約80%のシクロヘキセンが回収されたことが図3から分かる。
この値は、本発明が、優れた効果を奏することを示している。
Fig. 3 shows a dehydration reaction after reacting with a temperature of 380 ° C, a reaction time of 7 minutes, a constant charge of water of 3.0 g (water density 0.5 g / cm 3 ), and changing the amount of carbon dioxide added. The results are shown. In the figure, ● represents the yield of cyclohexanol and ▲ represents the yield of cyclohexene by carbon dioxide. According to the results, the amount of carbon dioxide added was increased, the amount of cyclohexanol as a raw material in the reaction product was reduced, and the amount of recovered cyclohexene as a product was increased. This suggests that the acid catalyst effect increases as the amount of carbon dioxide added increases. It can be seen from FIG. 3 that about 30% of cyclohexene was recovered when about 4% of carbon dioxide was added, and about 80% of cyclohexene was recovered when about 15% of carbon dioxide was added.
This value indicates that the present invention has an excellent effect.

図4に、温度380℃、反応時間7分、二酸化炭素の添加量0.6g(7.5モル%)で一定とし、水密度を変えてシクロヘキサノールを反応させて得た結果を示す。図中、●は、シクロヘキサノール、▲は、シクロヘキセンの水密度による収量を示す。その結果によれば、図3と同様の傾向が示されており、水密度の増加にともないシクロヘキセンの回収量が増加し、水密度が0.55g/
cm3では、約60%のシクロヘキセンが回収された。こうした、図3及び図4に示された結果を総合すれば、本反応系における酸触媒効果は、水及び二酸化炭素の両者の存在なくしては発揮できないものであることが分かる。
FIG. 4 shows the results obtained by reacting cyclohexanol at a temperature of 380 ° C., a reaction time of 7 minutes, a constant carbon dioxide addition amount of 0.6 g (7.5 mol%), and varying the water density. In the figure, ● indicates the yield of cyclohexanol, and ▲ indicates the yield of cyclohexene depending on the water density. According to the results, the same tendency as in FIG. 3 is shown, and the amount of cyclohexene recovered increases as the water density increases, and the water density reaches 0.55 g /
At cm 3 , about 60% cyclohexene was recovered. When the results shown in FIGS. 3 and 4 are combined, it can be understood that the acid catalyst effect in this reaction system cannot be exhibited without the presence of both water and carbon dioxide.

(1)反応装置
実施例1と同様の回分式反応器を使用した。
(2)シクロヘキセンの水和反応
本実施例では、シクロヘキセンの水和反応によりシクロヘキサノールを合成した。その反応条件と、生成物を分析して得られた結果を以下に説明する。
試料(水和反応)
シクロヘキセン 仕込み量 0.2g
水 仕込み量 3.0g(0.5g/cm3
二酸化炭素 仕込み量 0.6g(7.5モル%)
温度 380℃
反応時間 5−25分
(3)結果
図5に、温度380℃で水の仕込み量3.0g(水密度0.5g/cm3)、シクロヘキセンの仕込み量0.2gの条件下で、超臨界水のみを反応媒体とする場合、及び二酸化炭素を0.6g添加した超臨界水を反応媒体とする場合において、水和反応によりシクロヘキサノールを合成した結果を示す。図中、●は、二酸化炭素(7.5モル%)、○は、水密度であり、二酸化炭素の添加の有無によるシクロヘキサノールの収量を示す。なお、図中括弧内の数字は炭素回収率を示す。超臨界水単独の反応媒体、及び超臨界水に二酸化炭素を添加した反応媒体のいずれの場合も、シクロヘキセンの水和反応生成物であるシクロヘキサノールは反応時間とともに増加した。しかし、その回収濃度は、常に超臨界水に二酸化炭素を添加した方が、大きい値を示した。このことからも、超臨界水に二酸化炭素を添加した反応媒体が、超臨界水のみの反応媒体と比較して酸触媒効果が大きいことが分かる。
(1) Reactor The same batch reactor as in Example 1 was used.
(2) Hydration reaction of cyclohexene In this example, cyclohexanol was synthesized by a hydration reaction of cyclohexene. The reaction conditions and the results obtained by analyzing the product are described below.
Sample (hydration reaction)
Cyclohexene charge 0.2g
Water charge 3.0 g (0.5 g / cm 3 )
Carbon dioxide charge 0.6g (7.5mol%)
Temperature 380 ° C
Reaction time 5-25 minutes (3) Results FIG. 5 shows a supercritical condition under the conditions of a temperature of 380 ° C. and a charge of water of 3.0 g (water density 0.5 g / cm 3 ) and a charge of cyclohexene of 0.2 g. The results of synthesizing cyclohexanol by a hydration reaction in the case of using only water as the reaction medium and in the case of using supercritical water added with 0.6 g of carbon dioxide as the reaction medium are shown. In the figure, ● represents carbon dioxide (7.5 mol%), ○ represents water density, and indicates the yield of cyclohexanol depending on whether carbon dioxide is added or not. The numbers in parentheses in the figure indicate the carbon recovery rate. Cyclohexanol, which is a hydration reaction product of cyclohexene, increased with the reaction time in both the reaction medium of supercritical water alone and the reaction medium in which carbon dioxide was added to supercritical water. However, the recovery concentration was always higher when carbon dioxide was added to supercritical water. This also shows that the reaction medium obtained by adding carbon dioxide to supercritical water has a larger acid catalyst effect than the reaction medium containing only supercritical water.

また、水和反応は脱水反応の逆反応であり、両反応は、通常、酸による触媒効果として知られている反応であるから、以上の実施例1及び2の結果は、二酸化炭素の添加が、酸触媒に代替する機能を有することの裏づけとなった。これまで報告された研究のなかには、超臨界水又は亜臨界水に二酸化炭素を添加して酸触媒効果を検討した例は知られていない。超臨界又は亜臨界の条件に達している高温での反応としては、従来、報告例がなく、本発明は、新規な反応方式である。   In addition, since the hydration reaction is a reverse reaction of the dehydration reaction, and both reactions are reactions that are usually known as catalytic effects by acids, the results of Examples 1 and 2 above are the results of the addition of carbon dioxide. This proved that it has a function to replace the acid catalyst. Among the studies reported so far, there is no known example in which carbon dioxide is added to supercritical water or subcritical water to study the acid catalyst effect. Conventionally, there is no report as a reaction at a high temperature reaching supercritical or subcritical conditions, and the present invention is a novel reaction system.

以上詳述したように、本発明は、超臨界水又は亜臨界水に大過剰の二酸化炭素を加えた反応媒体中で、硫酸、塩酸等のような強酸を添加しないで、酸触媒反応である有機化合物の脱水反応又は水和反応を選択的に遂行する有機化合物の無触媒反応方法に係るものであり、本発明により、有機溶媒、触媒等を使用しない新規な反応方法が実現でき、二酸化炭素を添加することに基づいて、有機化合物の脱水反応又は水和反応が、60%の高収率で、副反応生成物もなく実現できる反応方法を提供できる。また、本発明の反応方法では、主に水と二酸化炭素からなる反応媒体を使用するため、反応終了液の再利用が容易で、反応性生物と反応媒体とを分離し易い利点を有している。更に、本発明は、廃液、廃触媒、廃酸の処理をしなくてもよく、環境にやさしい反応方法を提供できる。本発明の反応方法は、こうした特徴点を有しているため、特に、ラクタム類、ジカルボン酸等のポリアミドの原料や各種有機化学製品、医薬、農薬等の合成中間体として有用な化合物を提供することを可能とするものであって、産業上の利用価値は極めて高い。   As described above in detail, the present invention is an acid-catalyzed reaction without adding a strong acid such as sulfuric acid or hydrochloric acid in a reaction medium obtained by adding a large excess of carbon dioxide to supercritical water or subcritical water. The present invention relates to a non-catalytic reaction method of an organic compound that selectively performs a dehydration reaction or a hydration reaction of the organic compound. According to the present invention, a novel reaction method that does not use an organic solvent, a catalyst, or the like can be realized. Based on the addition of the above, it is possible to provide a reaction method in which a dehydration reaction or hydration reaction of an organic compound can be realized with a high yield of 60% and without any side reaction products. Further, in the reaction method of the present invention, since a reaction medium mainly composed of water and carbon dioxide is used, the reaction-terminated liquid can be easily reused, and the reaction organism and the reaction medium can be easily separated. Yes. Furthermore, the present invention does not require treatment of waste liquid, waste catalyst, and waste acid, and can provide an environmentally friendly reaction method. Since the reaction method of the present invention has such characteristics, it provides particularly useful compounds as raw materials for polyamides such as lactams and dicarboxylic acids, and as synthetic intermediates for various organic chemical products, pharmaceuticals, agricultural chemicals and the like. The industrial utility value is extremely high.

実施例で使用した回分式反応器を示す。The batch type reactor used in the Example is shown. 二酸化炭素の添加の有無に伴う、シクロヘキセンの収率の時間的変化を示す。The time change of the yield of cyclohexene with and without the addition of carbon dioxide is shown. 二酸化炭素の濃度変化に伴うシクロヘキセンの収率の変化を示す。The change of the cyclohexene yield accompanying the density | concentration change of a carbon dioxide is shown. 水密度の変化に伴うシクロヘキセンの収率の変化を示す。The change of the yield of cyclohexene accompanying the change of water density is shown. 二酸化炭素添加の有無に伴う、シクロヘキサノールの収率の時間的変化を示す。The time-dependent change of the yield of cyclohexanol with and without carbon dioxide addition is shown.

Claims (4)

超臨界水又は亜臨界水に大過剰の二酸化炭素を加えた反応媒体中で、強酸を添加しないで、超臨界水又は亜臨界水の二酸化炭素混合系における酸触媒効果を利用して、酸触媒反応であるアルコールの脱水反応又はオレフィンの水和反応を選択的に遂行する当該有機化合物の無触媒反応方法であって、反応媒体中の二酸化炭素の濃度が少なくとも3モル%であること、反応媒体中の水密度が少なくとも0.30g/cm であること、反応媒体が、温度275℃ないし600℃、圧力20MPaないし300MPaであること、を特徴とする上記有機化合物の無触媒反応方法。 In a reaction medium by adding a large excess of carbon dioxide in the supercritical or subcritical water, without the addition of strong acid, using an acid catalyst effect in carbon dioxide mixed system of supercritical or subcritical water, acid A method of non-catalytic reaction of an organic compound that selectively performs a dehydration reaction of alcohol or an olefin hydration reaction, which is a catalytic reaction, wherein the concentration of carbon dioxide in the reaction medium is at least 3 mol%, reaction A method for non-catalytic reaction of an organic compound as described above , wherein the water density in the medium is at least 0.30 g / cm 3 , and the reaction medium is at a temperature of 275 ° C. to 600 ° C. and a pressure of 20 MPa to 300 MPa . 脱水反応が、シクロヘキサノールのシクロヘキセンへの脱水反応である、請求項に記載の有機化合物の無触媒反応方法。 Dehydration reaction, a dehydration reaction of cyclohexene cyclohexanol, uncatalyzed reaction method of an organic compound according to claim 1. 水和反応が、シクロヘキセンのシクロヘキサノールへの水和反応である、請求項に記載の有機化合物の無触媒反応方法。 Hydration, a hydration reaction to cyclohexanol cyclohexene, uncatalyzed reaction method of an organic compound according to claim 1. 超臨界水又は亜臨界水を反応媒体とする酸触媒反応系において、超臨界水又は亜臨界水に大過剰の二酸化炭素を混合することにより、超臨界水又は亜臨界水の二酸化炭素混合系における酸触媒効果を利用して、超臨界水又は亜臨界水による酸触媒反応の酸触媒作用を向上させること、その際に、二酸化炭素を濃度が少なくとも3モル%となるように混合すること、を特徴とする上記酸触媒反応系における酸触媒作用の増強方法。 In an acid-catalyzed reaction system using supercritical water or subcritical water as a reaction medium, a large excess of carbon dioxide is mixed into supercritical water or subcritical water , thereby mixing carbon dioxide in a supercritical water or subcritical water carbon dioxide system. Utilizing the acid catalyst effect, improving the acid catalysis of the acid catalyzed reaction with supercritical water or subcritical water, and mixing carbon dioxide at a concentration of at least 3 mol%. A method for enhancing acid catalysis in the acid-catalyzed reaction system .
JP2003373767A 2003-10-31 2003-10-31 Hexanol dehydration reaction method Expired - Lifetime JP4310432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003373767A JP4310432B2 (en) 2003-10-31 2003-10-31 Hexanol dehydration reaction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003373767A JP4310432B2 (en) 2003-10-31 2003-10-31 Hexanol dehydration reaction method

Publications (2)

Publication Number Publication Date
JP2005132809A JP2005132809A (en) 2005-05-26
JP4310432B2 true JP4310432B2 (en) 2009-08-12

Family

ID=34649687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003373767A Expired - Lifetime JP4310432B2 (en) 2003-10-31 2003-10-31 Hexanol dehydration reaction method

Country Status (1)

Country Link
JP (1) JP4310432B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5177759B2 (en) * 2008-03-26 2013-04-10 独立行政法人産業技術総合研究所 Method for producing cyclic ether and hydroxyketone from polyhydric alcohol
CN111100035B (en) * 2019-11-29 2021-03-16 山东新和成精化科技有限公司 Preparation method of 3-hydroxypropionitrile

Also Published As

Publication number Publication date
JP2005132809A (en) 2005-05-26

Similar Documents

Publication Publication Date Title
EP2445855B2 (en) Carbohydrate route to para-xylene and terephthalic acid
Hoelderich Environmentally benign manufacturing of fine and intermediate chemicals
Ma et al. Zeolite-catalyzed esterification I. Synthesis of acetates, benzoates and phthalates
JP5101495B2 (en) Method for producing 3-methyl-1,5-pentanediol
JP2022538679A (en) Process for the preparation of alkyl methacrylates and optionally methacrylic acid
Garcia-Verdugo et al. In situ generation of hydrogen for continuous hydrogenation reactions in high temperature water
KR20140048981A (en) Method for producing alpha-hydroxycarboxylic acid esters
JP3656030B2 (en) Method for producing tertiary butyl alcohol
JP4310432B2 (en) Hexanol dehydration reaction method
US20150252015A1 (en) Method for synthesising 2,5-di(hydroxymethyl)furan and 2,5-di(hydroxymethyl)tetrahydrofuran by selective hydrogenation of furan-2,5-dialdehyde
JP7184039B2 (en) Method for producing dicyanocyclohexane
CA2157544C (en) Process for the preparation of mono- or dicarboxylic acids from aldehydes, from their full acetals or hemiacetals or from mixtures therefor
Feng et al. The functionalized poly (ethylene glycol) supported palladium nanoparticles as a highly efficient catalyst for aerobic oxidation of alcohols
Mukhopadhyay et al. Tuning the selectivity of heterogeneous catalysts: A trimetallic approach to reductive coupling of chloroarenes in water
JP5262710B2 (en) Method for producing 5-phenylisophthalic acid
WO2000037408A1 (en) Process for producing aliphatic aldehydic acid and/or aliphatic dicarboxylic acid and catalyst for the production
Yang et al. Novel carbon catalysis: oxidation in basic solution
JPS61167634A (en) Production of 2-ethylhexenal
JP5742716B2 (en) Method for producing cyclohexyl alkyl ketones
Gupta et al. Heterogeneous Catalysis under Continuous Flow Conditions
van Bekkum et al. Zeolites in organic cascade reactions
JP2007261991A (en) Method for producing 4,4"-diformylterphenyls
CN115536512A (en) Method and device for continuously synthesizing levulinic acid
JPH0574579B2 (en)
KR20120035368A (en) METHOD FOR PREPARING α,β-UNSATURATED ALDEHYDE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080526

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080624

AA91 Notification that invitation to amend document was cancelled

Free format text: JAPANESE INTERMEDIATE CODE: A971091

Effective date: 20080624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4310432

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term