JP4308951B2 - Production method of epoxy resin - Google Patents

Production method of epoxy resin Download PDF

Info

Publication number
JP4308951B2
JP4308951B2 JP34188598A JP34188598A JP4308951B2 JP 4308951 B2 JP4308951 B2 JP 4308951B2 JP 34188598 A JP34188598 A JP 34188598A JP 34188598 A JP34188598 A JP 34188598A JP 4308951 B2 JP4308951 B2 JP 4308951B2
Authority
JP
Japan
Prior art keywords
amount
reaction
organic solvent
added
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34188598A
Other languages
Japanese (ja)
Other versions
JP2000159856A (en
Inventor
尚 森本
宏 寺川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chang Chun Plastics Co Ltd
Original Assignee
Chang Chun Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chang Chun Plastics Co Ltd filed Critical Chang Chun Plastics Co Ltd
Priority to JP34188598A priority Critical patent/JP4308951B2/en
Publication of JP2000159856A publication Critical patent/JP2000159856A/en
Application granted granted Critical
Publication of JP4308951B2 publication Critical patent/JP4308951B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、加水分解性ハロゲン含量が低減されたエポキシ樹脂の製造方法に関する。
【0002】
【従来の技術】
エポキシ樹脂は、その硬化物が電気特性、耐熱性、接着性、耐湿性等の特性に優れていることから、半導体封止材料をはじめとして、電気絶縁材料、プリント配線板、ソルダーレジスト、接着剤、塗料等の幅広い分野で使用されている。
【0003】
エポキシ樹脂は、通常、水酸化ナトリウム等のアルカリの存在下で多価フェノールにエピハロヒドリンを付加させ、ついで生成した1,2−ハロヒドリンエーテル基を閉環させる、いわゆるエポキシ化反応によって製造される。前記多価フェノールとしては、電気および電子産業における封止材料等の用途に使用するエポキシ樹脂の場合、o−クレゾールノボラック等のノボラック樹脂が多く使用されている。
【0004】
一般に、電気および電子産業分野で使用されるエポキシ樹脂には加水分解性ハロゲン含量が低いことが要求される。これは、加水分解性ハロゲンが電気絶縁性の低下、リード線の腐食等、いわゆる電子素子の信頼性に悪影響を与えるためである。
エポキシ樹脂中の加水分解性ハロゲン含量を減少させるために、本出願人は、先に、エポキシ化反応をジオキサン等の特定の有機溶媒の共存下で行うことを提案した(特公昭62−34330号公報)。この方法は、加水分解性ハロゲン含量の少ないエポキシ樹脂を得るうえで非常に有効な方法である。
【0005】
【発明が解決しようとする課題】
前記した特公昭62−34330号公報に記載の方法では、反応系中の有機溶媒量が多いほど、加水分解性ハロゲン含量の低減に効果的であることが期待される。しかし、反応初期には、有機溶媒の含有量が多くなると、反応効率が低下するという問題がある。これを防止するためにはエピハロヒドリンの含有量も多くしなければならないため、生産効率が悪くなるという問題がある。
【0006】
また、通常のエポキシ化反応では、系中の水分を制御する目的で、系中の水分をエピハロヒドリンおよび有機溶媒と共沸蒸留し、ついで冷却液化して有機層と水層とに分離し、有機層は反応系内に戻し、水層を除去している。そのため、有機溶媒としてジオキサン等の水溶性有機溶媒を使用した場合、有機溶媒の添加量が多くなると、留出液を有機層と水層とに分離させることが困難になるという問題がある。
【0007】
本発明の目的は、加水分解性ハロゲン含量が低減されたエポキシ樹脂の製造方法を提供することである。
【0008】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、所定量のアルカリを反応系内に添加した時点で、エピハロヒドリンを除去回収し、当該回収量に相当する有機溶媒を添加して残りの反応を行わせるときは、エポキシ化反応の進行を阻害することなく、多量の有機溶媒が存在した状態でエポキシ化反応を行わせるのと同等の効果が得られ、加水分解性ハロゲン含量を大きく低減させることができるという新たな知見を見出し、本発明を完成するに到った。
【0009】
すなわち、本発明のエポキシ樹脂の製造方法は、有機溶媒の共存下で多価フェノールとエピハロヒドリンとをアルカリを添加しながら反応させてエポキシ樹脂を製造する方法において、全アルカリ量に対してアルカリをモル比で5〜70%添加した時点で、エピハロヒドリンおよび有機溶媒を回収し、ついで回収量に相当する量の有機溶媒を加え、残りのアルカリを添加しながら反応させることを特徴とする。
【0010】
【発明の実施の形態】
本発明におけるエポキシ樹脂は、前記したように有機溶媒の共存下で多価フェノールとエピハロヒドリンとをアルカリを添加しながら反応させて製造される。
前記多価フェノールとしては、例えばフェノール類とカルボニル化合物またはジエン化合物との重縮合反応により得られる多価フェノールが挙げられるが、これのみに限定されるものではない。
【0011】
多価フェノールの具体例としては、o−クレゾールノボラック、フェノールノボラック、ブロモフェノールノボラック、アルキルフェノールノボラック、フェノール類とヒドロキシベンズアルデヒドとの重縮合物、ビスフェノールA、ビスフェノールF、テトラブロモビスフェノールA、ジヒドロキシスチルベンまたはそのアルキル誘導体、フェノール類とジシクロペンタジエンの重縮合物、ビフェノール、テトラメチルビフェノール等が挙げられる。
【0012】
また、エピハロヒドリンとしては、特に限定されないが、例えばエピクロルヒドリン、エピブロモヒドリン等が挙げられ、これらのうち入手の容易性からエピクロルヒドリンを使用するのが好ましい。このとき、エピハロヒドリンはフェノール性水酸基1モルに対して2〜15倍モル量の範囲で使用するのがよい。
アルカリとしては、例えば水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等のアルカリ金属またはアルカリ土類金属の水酸化物が挙げられるが、これらに限定されるものではない。上記水酸化物は、濃度が20〜55重量%程度の水溶液の形態で使用してもよく、さらに2種以上を混合して使用してもよい。また、アルカリの全添加量はフェノール性水酸基1モルに対して0.9〜1.1モルであるのが適当である。
【0013】
前記有機溶媒としては、例えばメチルエチルケトン、メチルイソブチルケトン等のケトン類、トルエン、キシレン等の炭化水素類、メタノール、エタノール等のアルコール類、メチルセロソルブ、エチルセロソルブ等のセロソルブ類、ジオキサン、ジエトキシエタン等のエーテル類、ジメチルスルホキシド、ジメチルホルムアミド等が挙げられ、好ましくは環状または直鎖状エーテル化合物、とくにジオキサンが好適である。有機溶媒の添加量は、エピハロヒドリン100重量部に対して100重量部以下、通常10〜100重量部であるのがよい。
【0014】
本発明におけるエポキシ化反応は、全アルカリ量に対してモル比で5〜70%のアルカリを添加して行われる第1反応工程、過剰のエピハロヒドリンおよび有機溶媒の回収工程、有機溶媒の添加工程および残りのアルカリを添加して行われる第2反応工程の順で行われる。ただし、各工程はそれぞれ独立している必要はなく、例えば前記第1反応工程の継続中、好ましくは終了近くにエピハロヒドリンと有機溶媒の回収を開始したり、回収工程の継続中、好ましくは終了近くに有機溶媒添加工程を開始したり、あるいは有機溶媒添加工程の開始と同時にもしくは該添加工程の継続中に第2反応工程を開始するといったように、各工程が部分的にまたは全部が重複して行われてもよい。
【0015】
第1反応工程では、前記のように多価フェノールをエピハロヒドリンと有機溶媒との混合液に混合溶解した溶液にアルカリを徐々に添加して、常圧ないし減圧下で反応を行わせる。その際、系中の水分を制御する目的で、共沸脱水させるのが好ましい。
モル比で全アルカリ量の5〜70%を添加した時点で、アルカリの添加を止め、必要ならその状態で数時間放置して、添加アルカリ量に対応する反応を充分に行わせる。なお、前記モル比(%)は[添加アルカリ量(モル)/全アルカリ量(モル)]×100にて求められる。
【0016】
この第1反応工程では、主として多価フェノールに対するエピハロヒドリンの付加反応が起こり、1,2−ハロヒドリンエーテル体が生成されると考えられる。反応温度は約30〜100℃であるのがよいが、付加反応時に異常反応が起こるのを防止するうえで、反応温度は後述の第2反応工程よりも低温であるのが好ましく、通常約30〜60℃であるのがよい。
【0017】
次の回収工程では、過剰のエピハロヒドリンおよび有機溶媒を反応系から除去回収する。回収は常圧ないし減圧下での蒸留操作によって行うのがよい。エピハロヒドリンおよび有機溶媒の回収量は、それらの仕込み量に対して20〜60重量%であるのがよい。回収量が20重量%未満では、新たに回収量と同量の有機溶媒を添加しても、それに見合う効果は得られないおそれがある。また、回収量が60重量%を超えると、高分子量化等の副反応が起こるおそれがある。
【0018】
回収後、回収したエピハロヒドリンおよび有機溶媒の回収総量に相当する量の有機溶媒を加える。このとき、有機溶媒の添加量が回収量よりも過度に少ないときは、加水分解性ハロゲン含量の低減効果が期待できないばかりか、品質低下のおそれがある。一方、有機溶媒の添加量が回収量よりも過度に多いときは、加水分解性ハロゲン含量の低減には効果的であるが、反応釜の容量上の制約や反応濃度低下による反応時間の延長といった生産性の問題が生じるおそれがある。従って、前記した回収量に相当する量とは、これらの問題をひき起こさない範囲を意味し、通常は有機溶媒を回収量と同量か、回収量に対して±10重量%、好ましくは±5重量%の範囲内で添加すればよい。
【0019】
なお、添加する有機溶媒は回収工程で回収した有機溶媒と同じであるのが好ましいが、反応系中に残留する有機溶媒やエピハロヒドリンと相溶性を有する限り、他の有機溶媒を添加してもよい。
有機溶媒の添加後、第2反応工程にて、残りのアルカリを添加しながらエポキシ化反応を完結させる。この工程での反応は、主として閉環反応であって、前記第1反応工程で生成した1,2−ハロヒドリンエーテル体から脱塩化水素を行わせて多価フェノールのグリシジルエーテルを得る反応である。反応は、常圧ないし減圧下30〜100℃、好ましくは50〜100℃程度の温度でアルカリを徐々に反応液に添加して行われる。その際、系中の水分を制御する目的で、共沸脱水させるのが好ましい。
【0020】
反応終了後、反応液から過剰のエピハロヒドリンと有機溶媒とを蒸留等によって除去し、常法に従って精製してエポキシ樹脂を得る。
このエポキシ樹脂は、エピクロルヒドリン等の回収とこの回収量に相当する量の有機溶媒の添加とを行わない従来のエポキシ化反応で得られるエポキシ樹脂に比較して、加水分解性ハロゲン含量が低減されているので、電子、電気産業分野における封止材料等に使用するのに好適である。
【0021】
【実施例】
以下、実施例および比較例を挙げて本発明の製造方法を詳細に説明するが、本発明はこれらの実施例のみに限定されるものでない。
【0022】
実施例1
o−クレゾールノボラック100重量部、エピクロルヒドリン540重量部および1,4−ジオキサン173重量部を反応槽に仕込み、均一に攪拌溶解させた。得られた混合溶液を60torrの減圧下39℃に保ち、48%水酸化カリウム水溶液19重量部を1時間かけて滴下し、さらに同一条件下で3.5時間放置し反応を行わせた。この間、留出した凝縮液は分液ポットに受けて水相は除去し、油相は系内へ還流させた。
【0023】
ついで、60torrの減圧下39〜45℃で蒸留を行い、反応液中のエピクロルヒドリンおよび1,4−ジオキサンを除去・回収した。回収量はそれらの仕込み量に対して30重量%であった。回収後、回収量と同量の1,4−ジオキサンを添加し、系内を150torr、60℃に調節し、48%水酸化ナトリウム水溶液56重量部を6時間かけて滴下した。この間も、前記と同様に留出する水分は除去し油層は系内に還流させた。
反応終了後、留出分を留去し、残渣にメチルイソブチルケトンを添加し、副生した塩化ナトリウムを水洗とろ過により除去した。最後に、メチルイソブチルケトンを蒸留にて留去してo−クレゾールノボラックエポキシ樹脂を得た。
【0024】
実施例2
エピクロルヒドリンおよび1,4−ジオキサンの回収量をそれらの仕込み量に対して50重量%とした他は実施例1と同様にしてエポキシ樹脂を得た。
【0025】
実施例3
エピクロルヒドリンおよび1,4−ジオキサンの回収開始時を、アルカリをモル比で全アルカリ量の10%添加時としたほかは、実施例1と同様にしてエポキシ樹脂を得た。詳細は以下のとおりである。
まず、実施例1と同量のo−クレゾールノボラック、エピクロルヒドリンおよび1,4−ジオキサンをそれぞれ反応槽に仕込み、均一に攪拌溶解させた。得られた混合溶液を60torrの減圧下39℃に保ち、48%水酸化カリウム水溶液10重量部を0.5時間かけて滴下し、さらに同一条件下で3.5時間放置し反応を行わせた。この間、留出した凝縮液は分液ポットに受けて水相は除去し、油相は系内へ還流させた。
【0026】
ついで、60torrの減圧下45℃まで昇温して、反応液中のエピクロルヒドリンおよび1,4−ジオキサンを除去・回収した。回収量はそれらの仕込み量に対して30重量%であった。回収後、回収量と同量の1,4−ジオキサンを添加し、系内を150torr、60℃に調節し、48%水酸化カリウム水溶液9重量部ついで48%水酸化ナトリウム水溶液56重量部を連続的に6.5時間かけて滴下した。この間も、前記と同様に留出する水分は除去し油層は系内に還流させた。
反応終了後、留出分を留去し、残渣にメチルイソブチルケトンを添加し、副生した塩化ナトリウムを水洗とろ過により除去した。最後に、メチルイソブチルケトンを蒸留にて留去してo−クレゾールノボラックエポキシ樹脂を得た。
【0027】
実施例4
エピクロルヒドリンおよび1,4−ジオキサンの回収開始時を、アルカリをモル比で全アルカリ量の60%添加時としたほかは、実施例1と同様にしてエポキシ樹脂を得た。詳細は以下のとおりである。
まず、実施例1と同量のo−クレゾールノボラック、エピクロルヒドリンおよび1,4−ジオキサンをそれぞれ反応槽に仕込み、均一に攪拌溶解させた。得られた混合溶液を60torrの減圧下39℃に保ち、48%水酸化カリウム水溶液19重量部ついで48%水酸化ナトリウム水溶液29重量部を連続的にを3時間かけて滴下し、さらに同一条件下で3.5時間放置し反応を行わせた。この間、留出した凝縮液は分液ポットに受けて水相は除去し、油相は系内へ還流させた。
【0028】
ついで、60torrの減圧下45℃まで昇温して、反応液中のエピクロルヒドリンおよび1,4−ジオキサンを除去・回収した。回収量はそれらの仕込み量に対して30重量%であった。回収後、回収量と同量の1,4−ジオキサンを添加し、系内を150torr、60℃に調節し、48%水酸化ナトリウム水溶液27重量部を4時間かけて滴下した。この間も、前記と同様に留出する水分は除去し油層は系内に還流させた。
反応終了後、留出分を留去し、残渣にメチルイソブチルケトンを添加し、副生した塩化ナトリウムを水洗とろ過により除去した。最後に、メチルイソブチルケトンを蒸留にて留去してo−クレゾールノボラックエポキシ樹脂を得た。
【0029】
比較例
エピクロルヒドリンおよび1,4−ジオキサンの回収を行わず、従って回収量と同量の1,4−ジオキサンの添加も行わなかった他は実施例1と同様にしてエポキシ樹脂を得た。
これらの実施例および比較例で得られたエポキシ樹脂の加水分解性塩素含量および全塩素含量を以下の方法にて測定した。
【0030】
(1) 加水分解性塩素含量
試料をジオキサンに溶解し、1N−水酸化カリウムのエタノール溶液を添加し、室温で10分間反応させ、遊離した塩素量を酢酸酸性下0.01N−硝酸銀溶液で電位差滴定で測定し、これを試料重量で除した値を加水分解性塩素含量(ppm)とした。
(2) 全塩素含量
試料をジメチルスルホキシドに溶解し、水酸化ナトリウムのエタノール溶液を加えて50℃で40分間保温した後、硝酸銀溶液で滴定して全塩素含有量(ppm)を算出した。
【0031】
これらの測定結果を、各実施例および比較例におけるエピハロヒドリンおよび1,4−ジオキサンの回収開始時および回収量と共に、表1に示す。
【0032】
【表1】

Figure 0004308951
【0033】
表1から、実施例1〜4では、所定量のアルカリを添加した時点でエピクロルヒドリンおよび1,4−ジオキサンの除去・回収を行い、回収量に相当する量の1,4−ジオキサンを添加することにより、これらの操作を行わない比較例と比較して、得られたエポキシ樹脂の加水分解性塩素含量が大きく低減されており、全塩素含量も低減されていることがわかる。
【0034】
【発明の効果】
以上のように本発明の製造方法によれば、エポキシ化反応において所定量のアルカリを反応系内に添加した時点で、エピハロヒドリンおよび有機溶媒を除去回収し、回収量と実質的に同量の有機溶媒を添加して残りの反応を行わせることにより、加水分解性ハロゲン含量を大きく低減させることができるという効果がある。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an epoxy resin having a reduced hydrolyzable halogen content.
[0002]
[Prior art]
Epoxy resins have excellent properties such as electrical properties, heat resistance, adhesiveness, moisture resistance, etc. because of their cured products, including semiconductor sealing materials, electrical insulation materials, printed wiring boards, solder resists, adhesives Used in a wide range of fields such as paint.
[0003]
The epoxy resin is usually produced by a so-called epoxidation reaction in which an epihalohydrin is added to a polyhydric phenol in the presence of an alkali such as sodium hydroxide, and then the 1,2-halohydrin ether group formed is closed. As the polyhydric phenol, a novolak resin such as o-cresol novolak is often used in the case of an epoxy resin used for a sealing material in the electrical and electronic industries.
[0004]
In general, epoxy resins used in the electrical and electronic industries are required to have a low hydrolyzable halogen content. This is because hydrolyzable halogen adversely affects the reliability of so-called electronic elements, such as a decrease in electrical insulation and corrosion of lead wires.
In order to reduce the hydrolyzable halogen content in the epoxy resin, the present applicant has previously proposed that the epoxidation reaction be performed in the presence of a specific organic solvent such as dioxane (Japanese Patent Publication No. 62-34330). Publication). This method is a very effective method for obtaining an epoxy resin having a low hydrolyzable halogen content.
[0005]
[Problems to be solved by the invention]
In the method described in Japanese Patent Publication No. 62-34330, it is expected that the more the amount of the organic solvent in the reaction system, the more effective the reduction of the hydrolyzable halogen content. However, at the initial stage of the reaction, there is a problem that the reaction efficiency decreases as the content of the organic solvent increases. In order to prevent this, since the content of epihalohydrin must be increased, there is a problem that production efficiency is deteriorated.
[0006]
In the usual epoxidation reaction, the water in the system is azeotropically distilled with epihalohydrin and an organic solvent for the purpose of controlling the water in the system, and then cooled and liquefied to separate into an organic layer and an aqueous layer. The layer is returned to the reaction system and the aqueous layer is removed. Therefore, when a water-soluble organic solvent such as dioxane is used as the organic solvent, there is a problem that it becomes difficult to separate the distillate into an organic layer and an aqueous layer when the amount of the organic solvent added increases.
[0007]
An object of the present invention is to provide a method for producing an epoxy resin having a reduced hydrolyzable halogen content.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors removed and recovered epihalohydrin when a predetermined amount of alkali was added to the reaction system, and added an organic solvent corresponding to the recovered amount. When the rest of the reaction is carried out, it is possible to obtain the same effect as the epoxidation reaction in the presence of a large amount of organic solvent without inhibiting the progress of the epoxidation reaction. As a result, the present inventors have completed the present invention.
[0009]
That is, the method for producing an epoxy resin of the present invention is a method for producing an epoxy resin by reacting a polyhydric phenol and an epihalohydrin while adding an alkali in the presence of an organic solvent. The epihalohydrin and the organic solvent are recovered at the time when 5-70% is added in a ratio, and then the amount of the organic solvent corresponding to the recovered amount is added, and the reaction is performed while adding the remaining alkali.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
As described above, the epoxy resin in the present invention is produced by reacting a polyhydric phenol and epihalohydrin while adding an alkali in the presence of an organic solvent.
Examples of the polyhydric phenol include, but are not limited to, polyhydric phenols obtained by a polycondensation reaction between phenols and a carbonyl compound or a diene compound.
[0011]
Specific examples of the polyhydric phenol include o-cresol novolak, phenol novolak, bromophenol novolak, alkylphenol novolak, polycondensate of phenols with hydroxybenzaldehyde, bisphenol A, bisphenol F, tetrabromobisphenol A, dihydroxystilbene or the like Examples thereof include alkyl derivatives, polycondensates of phenols and dicyclopentadiene, biphenols, and tetramethylbiphenol.
[0012]
The epihalohydrin is not particularly limited, and examples thereof include epichlorohydrin and epibromohydrin. Of these, epichlorohydrin is preferably used because of its availability. At this time, the epihalohydrin is preferably used in a range of 2 to 15 times the molar amount with respect to 1 mol of the phenolic hydroxyl group.
Examples of the alkali include, but are not limited to, hydroxides of alkali metals or alkaline earth metals such as sodium hydroxide, potassium hydroxide, and calcium hydroxide. The hydroxide may be used in the form of an aqueous solution having a concentration of about 20 to 55% by weight, or two or more kinds may be mixed and used. The total amount of alkali added is suitably 0.9 to 1.1 mol per mol of phenolic hydroxyl group.
[0013]
Examples of the organic solvent include ketones such as methyl ethyl ketone and methyl isobutyl ketone, hydrocarbons such as toluene and xylene, alcohols such as methanol and ethanol, cellosolves such as methyl cellosolve and ethyl cellosolve, dioxane, diethoxyethane, and the like. And ethers, dimethyl sulfoxide, dimethylformamide, and the like. Cyclic or linear ether compounds, particularly dioxane, are preferred. The amount of the organic solvent added is preferably 100 parts by weight or less, usually 10 to 100 parts by weight, based on 100 parts by weight of epihalohydrin.
[0014]
The epoxidation reaction in the present invention is a first reaction step performed by adding 5 to 70% alkali in a molar ratio with respect to the total alkali amount, a step of recovering excess epihalohydrin and an organic solvent, a step of adding an organic solvent, and It is performed in the order of the second reaction step performed by adding the remaining alkali. However, each step does not need to be independent. For example, the recovery of the epihalohydrin and the organic solvent is preferably started near the end of the first reaction step, or preferably near the end of the recovery step. Each step is partially or wholly overlapped, such as starting the organic solvent addition step, or starting the second reaction step simultaneously with the start of the organic solvent addition step or during the addition step. It may be done.
[0015]
In the first reaction step, alkali is gradually added to the solution obtained by mixing and dissolving the polyhydric phenol in the mixed solution of epihalohydrin and organic solvent as described above, and the reaction is performed under normal pressure or reduced pressure. In that case, it is preferable to carry out azeotropic dehydration for the purpose of controlling the moisture in the system.
When 5 to 70% of the total alkali amount is added in a molar ratio, the addition of the alkali is stopped, and if necessary, it is left in that state for several hours to sufficiently perform the reaction corresponding to the added alkali amount. The molar ratio (%) is determined by [added alkali amount (mol) / total alkali amount (mol)] × 100.
[0016]
In this first reaction step, it is considered that an epihalohydrin addition reaction with respect to the polyhydric phenol mainly occurs to produce a 1,2-halohydrin ether. The reaction temperature is preferably about 30 to 100 ° C., but in order to prevent an abnormal reaction from occurring during the addition reaction, the reaction temperature is preferably lower than the second reaction step described below, and usually about 30 It should be ˜60 ° C.
[0017]
In the next recovery step, excess epihalohydrin and organic solvent are removed and recovered from the reaction system. The recovery is preferably carried out by distillation under normal pressure or reduced pressure. The recovered amount of the epihalohydrin and the organic solvent is preferably 20 to 60% by weight based on the charged amount. If the recovered amount is less than 20% by weight, even if a new amount of the organic solvent is newly added, there is a possibility that an effect corresponding to that amount cannot be obtained. On the other hand, if the recovered amount exceeds 60% by weight, side reactions such as high molecular weight may occur.
[0018]
After the collection, an organic solvent in an amount corresponding to the total amount of collected epihalohydrin and organic solvent is added. At this time, when the addition amount of the organic solvent is excessively smaller than the recovered amount, not only the effect of reducing the hydrolyzable halogen content cannot be expected, but the quality may be deteriorated. On the other hand, when the amount of the organic solvent added is excessively larger than the recovered amount, it is effective for reducing the hydrolyzable halogen content, but the reaction time is extended due to the capacity limitation of the reaction kettle and the reaction concentration reduction. Productivity issues may arise. Therefore, the amount corresponding to the above-mentioned recovered amount means a range that does not cause these problems. Usually, the amount of organic solvent is the same as the recovered amount, or ± 10% by weight, preferably ± 10% by weight. What is necessary is just to add within the range of 5 weight%.
[0019]
The organic solvent to be added is preferably the same as the organic solvent recovered in the recovery step, but other organic solvents may be added as long as they are compatible with the organic solvent remaining in the reaction system and epihalohydrin. .
After the addition of the organic solvent, the epoxidation reaction is completed in the second reaction step while adding the remaining alkali. The reaction in this step is mainly a ring-closing reaction, and is a reaction in which dehydrochlorination is performed from the 1,2-halohydrin ether produced in the first reaction step to obtain a glycidyl ether of polyhydric phenol. . The reaction is carried out by gradually adding alkali to the reaction solution at a temperature of about 30 to 100 ° C., preferably about 50 to 100 ° C. under normal or reduced pressure. In that case, it is preferable to carry out azeotropic dehydration for the purpose of controlling the moisture in the system.
[0020]
After completion of the reaction, excess epihalohydrin and organic solvent are removed from the reaction solution by distillation or the like, and purified according to a conventional method to obtain an epoxy resin.
This epoxy resin has a hydrolyzable halogen content reduced as compared with an epoxy resin obtained by a conventional epoxidation reaction in which epichlorohydrin or the like is not recovered and an organic solvent corresponding to the recovered amount is not added. Therefore, it is suitable for use as a sealing material in the electronic and electrical industry fields.
[0021]
【Example】
EXAMPLES Hereinafter, although the manufacturing method of this invention is demonstrated in detail, giving an Example and a comparative example, this invention is not limited only to these Examples.
[0022]
Example 1
100 parts by weight of o-cresol novolak, 540 parts by weight of epichlorohydrin, and 173 parts by weight of 1,4-dioxane were charged into a reaction vessel and uniformly stirred and dissolved. The obtained mixed solution was maintained at 39 ° C. under a reduced pressure of 60 torr, 19 parts by weight of 48% potassium hydroxide aqueous solution was added dropwise over 1 hour, and the reaction was allowed to stand for 3.5 hours under the same conditions. During this time, the distilled condensate was received in a separating pot, the aqueous phase was removed, and the oil phase was refluxed into the system.
[0023]
Subsequently, distillation was performed at 39 to 45 ° C. under a reduced pressure of 60 torr to remove and collect epichlorohydrin and 1,4-dioxane in the reaction solution. The recovered amount was 30% by weight based on the amount charged. After the recovery, 1,4-dioxane was added in the same amount as the recovered amount, the system was adjusted to 150 torr and 60 ° C., and 56 parts by weight of 48% aqueous sodium hydroxide solution was added dropwise over 6 hours. During this time, the distilled water was removed in the same manner as described above, and the oil layer was refluxed into the system.
After completion of the reaction, the distillate was distilled off, methyl isobutyl ketone was added to the residue, and by-product sodium chloride was removed by washing with water and filtration. Finally, methyl isobutyl ketone was distilled off to obtain an o-cresol novolac epoxy resin.
[0024]
Example 2
An epoxy resin was obtained in the same manner as in Example 1 except that the recovered amounts of epichlorohydrin and 1,4-dioxane were 50% by weight based on the charged amounts.
[0025]
Example 3
An epoxy resin was obtained in the same manner as in Example 1, except that the recovery of epichlorohydrin and 1,4-dioxane was started at the time of addition of 10% of the total alkali amount in molar ratio. Details are as follows.
First, the same amounts of o-cresol novolak, epichlorohydrin and 1,4-dioxane as in Example 1 were charged into a reaction vessel, and uniformly stirred and dissolved. The obtained mixed solution was kept at 39 ° C. under a reduced pressure of 60 torr, 10 parts by weight of 48% aqueous potassium hydroxide solution was added dropwise over 0.5 hours, and the reaction was allowed to stand for 3.5 hours under the same conditions. . During this time, the distilled condensate was received in a separating pot, the aqueous phase was removed, and the oil phase was refluxed into the system.
[0026]
Then, the temperature was raised to 45 ° C. under a reduced pressure of 60 torr to remove and recover epichlorohydrin and 1,4-dioxane in the reaction solution. The recovered amount was 30% by weight based on the amount charged. After recovery, the same amount of 1,4-dioxane as the amount recovered was added, the system was adjusted to 150 torr and 60 ° C., and 9 parts by weight of 48% aqueous potassium hydroxide solution and 56 parts by weight of 48% aqueous sodium hydroxide solution were continuously added. Specifically, it was added dropwise over 6.5 hours. During this time, the distilled water was removed in the same manner as described above, and the oil layer was refluxed into the system.
After completion of the reaction, the distillate was distilled off, methyl isobutyl ketone was added to the residue, and by-product sodium chloride was removed by washing with water and filtration. Finally, methyl isobutyl ketone was distilled off to obtain an o-cresol novolac epoxy resin.
[0027]
Example 4
An epoxy resin was obtained in the same manner as in Example 1, except that the recovery of epichlorohydrin and 1,4-dioxane was changed to 60% of the total alkali amount in terms of molar ratio of alkali. Details are as follows.
First, the same amounts of o-cresol novolak, epichlorohydrin and 1,4-dioxane as in Example 1 were charged into a reaction vessel, and uniformly stirred and dissolved. The obtained mixed solution was kept at 39 ° C. under a reduced pressure of 60 torr, 19 parts by weight of 48% aqueous potassium hydroxide solution and then 29 parts by weight of 48% aqueous sodium hydroxide solution were continuously added dropwise over 3 hours. And allowed to react for 3.5 hours. During this time, the distilled condensate was received in a separating pot, the aqueous phase was removed, and the oil phase was refluxed into the system.
[0028]
Then, the temperature was raised to 45 ° C. under a reduced pressure of 60 torr to remove and recover epichlorohydrin and 1,4-dioxane in the reaction solution. The recovered amount was 30% by weight based on the amount charged. After the recovery, 1,4-dioxane was added in the same amount as the recovered amount, the system was adjusted to 150 torr and 60 ° C., and 27 parts by weight of 48% aqueous sodium hydroxide solution was added dropwise over 4 hours. During this time, the distilled water was removed in the same manner as described above, and the oil layer was refluxed into the system.
After completion of the reaction, the distillate was distilled off, methyl isobutyl ketone was added to the residue, and by-product sodium chloride was removed by washing with water and filtration. Finally, methyl isobutyl ketone was distilled off to obtain an o-cresol novolac epoxy resin.
[0029]
Comparative Example An epoxy resin was obtained in the same manner as in Example 1 except that epichlorohydrin and 1,4-dioxane were not recovered, and therefore the same amount of 1,4-dioxane was not added.
The hydrolyzable chlorine content and total chlorine content of the epoxy resins obtained in these examples and comparative examples were measured by the following methods.
[0030]
(1) Dissolve the sample with hydrolyzable chlorine content in dioxane, add 1N-potassium hydroxide in ethanol and react at room temperature for 10 minutes. The value measured by titration and divided by the sample weight was defined as the hydrolyzable chlorine content (ppm).
(2) The total chlorine content sample was dissolved in dimethyl sulfoxide, an ethanol solution of sodium hydroxide was added and kept at 50 ° C. for 40 minutes, and then titrated with a silver nitrate solution to calculate the total chlorine content (ppm).
[0031]
These measurement results are shown in Table 1 together with the recovery start amount and recovery amount of epihalohydrin and 1,4-dioxane in each Example and Comparative Example.
[0032]
[Table 1]
Figure 0004308951
[0033]
From Table 1, in Examples 1-4, when a predetermined amount of alkali is added, epichlorohydrin and 1,4-dioxane are removed and recovered, and an amount of 1,4-dioxane corresponding to the recovered amount is added. Thus, it can be seen that the hydrolyzable chlorine content of the obtained epoxy resin is greatly reduced and the total chlorine content is also reduced as compared with the comparative examples in which these operations are not performed.
[0034]
【The invention's effect】
As described above, according to the production method of the present invention, when a predetermined amount of alkali is added to the reaction system in the epoxidation reaction, the epihalohydrin and the organic solvent are removed and recovered, and substantially the same amount of organic as the recovered amount is obtained. By adding a solvent to carry out the remaining reaction, the hydrolyzable halogen content can be greatly reduced.

Claims (2)

ジオキサンの共存下で多価フェノールとエピハロヒドリンとをアルカリを添加しながら反応させてエポキシ樹脂を製造する方法において、
全アルカリ量に対してアルカリをモル比で5〜70%添加した時点で、エピハロヒドリンおよびジオキサンを回収し、ついで回収量に相当する量のジオキサンを加え、残りのアルカリを添加しながら反応させることを特徴とするエポキシ樹脂の製造方法。
In the method of producing an epoxy resin by reacting polyphenol and epihalohydrin in the presence of dioxane while adding an alkali,
When 5 to 70% of alkali is added at a molar ratio with respect to the total amount of alkali, epihalohydrin and dioxane are recovered, then an amount of dioxane corresponding to the recovered amount is added, and the reaction is performed while adding the remaining alkali. A method for producing an epoxy resin.
前記エピハロヒドリンおよびジオキサンの回収量が、それらの仕込み量に対して20〜60重量%である請求項1記載のエポキシ樹脂の製造方法。The recovered amount of epihalohydrin and dioxane, a manufacturing method of claim 1 Symbol placement of epoxy resin 20 to 60 wt% with respect to those charged amount.
JP34188598A 1998-12-01 1998-12-01 Production method of epoxy resin Expired - Fee Related JP4308951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34188598A JP4308951B2 (en) 1998-12-01 1998-12-01 Production method of epoxy resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34188598A JP4308951B2 (en) 1998-12-01 1998-12-01 Production method of epoxy resin

Publications (2)

Publication Number Publication Date
JP2000159856A JP2000159856A (en) 2000-06-13
JP4308951B2 true JP4308951B2 (en) 2009-08-05

Family

ID=18349503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34188598A Expired - Fee Related JP4308951B2 (en) 1998-12-01 1998-12-01 Production method of epoxy resin

Country Status (1)

Country Link
JP (1) JP4308951B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101906768B1 (en) * 2018-04-13 2018-12-05 김혜경 Process for producing aqueous cross-linking agent for surface treatment of polyester fabric

Also Published As

Publication number Publication date
JP2000159856A (en) 2000-06-13

Similar Documents

Publication Publication Date Title
JP2001511170A (en) Method for producing epoxy compound
JP5130728B2 (en) Epoxy resin purification method
JP3315436B2 (en) Method for producing epoxy resin containing biphenol skeleton
MXPA00012793A (en) Phenol-novolacs with improved optical properties.
JP4308951B2 (en) Production method of epoxy resin
JP3661101B2 (en) Epoxy resin composition
JPS62212410A (en) Production of novolak resin and its glycidyl ether
JP2631560B2 (en) Novolak epoxy resins with phenols and their production
JPS61168617A (en) Production of high-purity brominated epoxy resin
JP4616947B2 (en) Method for producing epoxy resin and epoxy resin obtained by the method
JP2702515B2 (en) Purification method of epoxy resin
JP3458465B2 (en) Manufacturing method of high purity epoxy resin
US4518762A (en) Process for making epoxy novolac resins with high epoxy values
JP2732162B2 (en) Manufacturing method of high purity epoxy resin
JPS6350361B2 (en)
JP2865439B2 (en) Epoxy resin and its cured product
JP2004211028A (en) Method for purifying epoxy resin and epoxy resin composition for sealing semiconductor
JP2663103B2 (en) Method for producing glycidyl ether of novolak resin
JPH1060068A (en) Production of phenolic resin
JP2000072845A (en) Production of epoxy resin
JP2003277468A (en) Epoxy resin, epoxy resin composition and its cured product
JP4004787B2 (en) Phenol resin, epoxy resin, production method thereof, and resin composition for semiconductor encapsulant
JP2776924B2 (en) New epoxy resin composition and cured product thereof
JP3871236B2 (en) Production method of epoxy resin
JP3955199B2 (en) Phenol resin, epoxy resin, production method thereof, and resin composition for semiconductor encapsulant

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050114

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081226

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees