JP4307970B2 - Twin screw extruder or twin screw kneader - Google Patents

Twin screw extruder or twin screw kneader Download PDF

Info

Publication number
JP4307970B2
JP4307970B2 JP2003409912A JP2003409912A JP4307970B2 JP 4307970 B2 JP4307970 B2 JP 4307970B2 JP 2003409912 A JP2003409912 A JP 2003409912A JP 2003409912 A JP2003409912 A JP 2003409912A JP 4307970 B2 JP4307970 B2 JP 4307970B2
Authority
JP
Japan
Prior art keywords
screw
molecular weight
kneading
resin
twin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003409912A
Other languages
Japanese (ja)
Other versions
JP2005138567A (en
Inventor
高橋    守
徹志 笠井
勝彦 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2003409912A priority Critical patent/JP4307970B2/en
Publication of JP2005138567A publication Critical patent/JP2005138567A/en
Application granted granted Critical
Publication of JP4307970B2 publication Critical patent/JP4307970B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/57Screws provided with kneading disc-like elements, e.g. with oval-shaped elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/55Screws having reverse-feeding elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Description

連続多段重合で製造されたポリエチレン粒子を造粒する過程において、低い電力消費で
、分子分解を生じることなく、均一化された樹脂を製造するための装置に関する。
The present invention relates to an apparatus for producing a homogenized resin with low power consumption and without causing molecular decomposition in the process of granulating polyethylene particles produced by continuous multistage polymerization.

ポリエチレン、特に高密度ポリエチレンは、成形のしやすさと剛性、衝撃強度などの製
品物性との両立を図るために、分子量が低いエチレン系重合体(流動性付与、剛性付与)
と分子量が高いエチレン系重合体(成形時の形状保持性付与、強度付与)の両方を含有す
ることが多い。工業的に製造するときには、例えば「ポリエチレン読本」松浦一雄・三上
尚孝編著(工業調査会)155ページ記載のように、重合触媒を第1の重合器に供給して、
第1の重合器で片方の成分(例えば低分子量エチレン系重合体)を重合し、その粒子(触
媒と低分子量エチレン重合体とを含む)を連続的に抜き出して第2の重合器に輸送して、
第2の重合器でもう片方の成分(この場合、高分子量エチレン系重合体)を重合すること
で、ひとつの粒子に低分子量エチレン系重合体と高分子量エチレン系重合体とを共に含有
する重合体粒子を得ることが出来る。
Polyethylene, especially high-density polyethylene, is an ethylene-based polymer with low molecular weight (flowability and rigidity) in order to achieve both ease of molding and product properties such as rigidity and impact strength.
And an ethylene polymer having a high molecular weight (providing shape retention during molding and imparting strength) in many cases. For industrial production, for example, as described in “Polyethylene reader”, Kazuo Matsuura and Naotaka Mikami (Industry Research Committee), page 155, a polymerization catalyst is supplied to the first polymerization vessel,
One component (for example, low molecular weight ethylene polymer) is polymerized in the first polymerization vessel, and the particles (including catalyst and low molecular weight ethylene polymer) are continuously extracted and transported to the second polymerization vessel. And
By polymerizing the other component (in this case, a high molecular weight ethylene polymer) in the second polymerization vessel, a single particle contains both a low molecular weight ethylene polymer and a high molecular weight ethylene polymer. Combined particles can be obtained.

一般的に連続多段重合によりポリエチレンを製造する場合、各槽における滞留時間にム
ラが発生することは避けられない現象である。上記の、二つの重合器からなる場合を例に
とれば、第1の重合器における滞留時間が短いがために、低分子量エチレン系重合体を十
分に含有することなく第2の重合器に輸送されて、第2の重合器で高分子量エチレン系重
合体だけを重合してしまうようなケースがある。この場合は、結果としてまわりの粒子よ
りも粘度が高い重合粒子がある確率で生成してしまう。従来用いられているチーグラー触
媒を用いて連続2段重合で製造した高密度ポリエチレンでもこのような状況は生じていた
が、チーグラー触媒の場合はひとつの粒子中にある活性点の性能が多岐にわたっていたた
め、仮に第1の重合器に滞留せずに第2の重合器だけで重合した粒子でも、ある程度分子
量が低いエチレン系重合体も生成していた。この結果、重合粒子をペレット状にする造粒
工程における溶融混練によって比較的容易にまわりの粒子とよく混ざり合って均一な構造
とすることができた。しかし、特願2003-38079のようにメタロセン触媒を用い
た連続2段重合の場合には、ひとつの触媒粒子中にある活性点の性能が均質であるために
、例えば、第1の重合器に全く滞留せずに第2の重合器だけで重合した粒子は、分子量が
低いエチレン系重合体を含有せずに、高分子量エチレン系重合体のみからなることになる
。しかも、このときに分子量が低いエチレン系重合体と分子量が高いエチレン系重合体と
の分子量差が大きい。このようなエチレン系重合体を、従来の装置を用いた溶融混練で、
まわりの粒子とよく混ざり合った均一な構造とするためには十分な混練が必要であり、そ
の結果多くの電力を必要とすることや、混練条件が厳し過ぎるがために分子レベルの切断
、すなわち分子切断や分子分解が生じるなどの問題があった。
In general, when polyethylene is produced by continuous multistage polymerization, it is an unavoidable phenomenon that unevenness occurs in the residence time in each tank. Taking the case of the above-mentioned two polymerizers as an example, since the residence time in the first polymerizer is short, it is transported to the second polymerizer without sufficiently containing the low molecular weight ethylene polymer. In some cases, only the high molecular weight ethylene polymer is polymerized in the second polymerization vessel. In this case, as a result, polymer particles having a higher viscosity than surrounding particles are generated with a probability. This situation has occurred even in high-density polyethylene produced by continuous two-stage polymerization using a conventional Ziegler catalyst, but in the case of a Ziegler catalyst, the performance of active sites in one particle was diverse. Therefore, even if the particles are polymerized only in the second polymerization vessel without staying in the first polymerization vessel, an ethylene-based polymer having a low molecular weight is generated to some extent. As a result, it was possible to relatively easily mix with surrounding particles relatively easily by melt kneading in the granulation step of forming the polymer particles into pellets, thereby obtaining a uniform structure. However, in the case of continuous two-stage polymerization using a metallocene catalyst as in Japanese Patent Application No. 2003-38079, since the performance of active sites in one catalyst particle is homogeneous, for example, in the first polymerization vessel The particles polymerized only in the second polymerization vessel without staying at all do not contain an ethylene polymer having a low molecular weight, but consist only of a high molecular weight ethylene polymer. In addition, the molecular weight difference between the low molecular weight ethylene polymer and the high molecular weight ethylene polymer is large. Such an ethylene polymer is melt kneaded using a conventional apparatus,
In order to obtain a uniform structure that is well mixed with the surrounding particles, sufficient kneading is required. As a result, a large amount of electric power is required, and the kneading conditions are too strict, so that cutting at the molecular level is performed. There were problems such as molecular cleavage and molecular degradation.

一方で、溶融混練が不十分な場合は、高分子量エチレン系重合体が十分分散せずに局在
化しているような混練物を与える。このような混練物をフイルム用に成形した場合にはフ
ィッシュアイが発生し易くなることが一般に知られているため塊状高分子量重合体の低減
化や分散状態の一層の改良が求められている。
On the other hand, when the melt kneading is insufficient, a kneaded product in which the high molecular weight ethylene polymer is localized without being sufficiently dispersed is provided. It is generally known that when such a kneaded product is formed for a film, fish eyes are likely to be generated. Therefore, reduction of the bulk high molecular weight polymer and further improvement of the dispersion state are required.

特開2001-150429号公報では、ポリオレフィンのフィッシュアイを軽減する
装置が開示されている(フィッシュアイとは、成形品表面に現れる数十〜数百μmオーダ
ーの「ブツ」のことを意味する)。しかし、特開2001-150429号公報において
フィッシュアイを低減しようとしているポリオレフィンはポリプロピレンであり、フィッ
シュアイが発生するメカニズムが高密度ポリエチレンの場合とは根本的に異なることが明
示してあることから、その低減装置はポリエチレン用とは根本的に異なると考えることが
できる。
Japanese Patent Application Laid-Open No. 2001-150429 discloses an apparatus for reducing the fish eye of polyolefin (the fish eye means a “butsu” of the order of several tens to several hundreds μm that appears on the surface of a molded product). . However, in Japanese Patent Application Laid-Open No. 2001-150429, the polyolefin for which fish eyes are to be reduced is polypropylene, and it is clearly shown that the mechanism of generating fish eyes is fundamentally different from the case of high-density polyethylene. The reduction device can be considered fundamentally different from that for polyethylene.

特開平11-124439号公報では、ポリオレフィンのフィッシュアイを軽減する装
置が開示されている。スクリュー形状に関する記載は無いが、混練領域におけるせん断速
度が大きいことから、バレルとスクリューとの間隙(クリアランス)が狭いことが推察出
来る。クリアランスが狭い部分があると、高いせん断応力が発生するために、消費電力が
大きくなることや、分子切断が生じやすいことが懸念される。
Japanese Patent Application Laid-Open No. 11-124439 discloses an apparatus for reducing the fish eye of polyolefin. Although there is no description about a screw shape, since the shear rate in a kneading | mixing area | region is large, it can be guessed that the clearance gap (clearance) between a barrel and a screw is narrow. If there is a portion with a narrow clearance, a high shear stress is generated, and there is a concern that power consumption increases and molecular cleavage is likely to occur.

特許第3207055号公報では、混練部スクリューの翼数が少なくてせん断発熱を減
らし、かつ、混練室容積を増加させる翼を有するローターを備えたローターからなること
を特徴とする連続混練機が開示されている。クリアランスが狭くなる個所(翼部)が少な
いが、クリアランスが狭い個所は存在するため、消費電力が大きくなることや、分子切断
が生じやすいことが懸念される。
Japanese Patent No. 32007055 discloses a continuous kneading machine characterized by comprising a rotor having a blade having a blade for reducing the shear heat generation and increasing the volume of the kneading chamber while the number of blades of the kneading section screw is small. ing. There are few places (wings) where the clearance is narrow, but there are places where the clearance is narrow, so there is a concern that power consumption will increase and molecular cleavage will likely occur.

特公平7-100325号公報では、熱劣化(分子分解)させないよう、またフィッシ
ュアイを抑制するために、混練部の長さとバレル内径との比を特定の範囲とした2軸連続
混練機が開示されている。スクリューとバレルとのクリアランスに関する記述は無いが、
高密度ポリエチレン(HDPE)は強い練りを必要とするとの記載があることから、クリ
アランスが狭いことが推察出来る。クリアランスが狭い部分があると、高いせん断応力が
発生するために、消費電力が大きくなることや、分子切断が生じやすいことが懸念される
Japanese Patent Publication No. 7-100325 discloses a biaxial continuous kneader in which the ratio between the length of the kneading part and the barrel inner diameter is in a specific range so as not to cause thermal deterioration (molecular decomposition) and to suppress fish eyes. Has been. There is no description about the clearance between the screw and the barrel,
Since there is a description that high density polyethylene (HDPE) requires strong kneading, it can be inferred that the clearance is narrow. If there is a portion with a narrow clearance, a high shear stress is generated, and there is a concern that power consumption increases and molecular cleavage is likely to occur.

特開平8-258110号公報には、2軸押出機内のスクリューの一方の溝深さを深く
(クリアランスを大きく)し、一方のスクリューのフライト幅あるいは先端部の厚さを他
方のそれと異なるようにした2軸押出機が開示されている。低いせん断速度とともに、高
いせん断速度を発生させることを目的としている装置であるため、消費電力が大きくなる
ことや、分子切断が生じやすいことが懸念される。
特願2003-38079 特開2001-150429号公報 特開平11-124439号公報 特許第3207055号公報 特公平7-100325号公報 特開平8-258110号公報 ポリエチレン読本、松浦一雄・三上尚孝編著(工業調査会)
In JP-A-8-258110, the depth of one groove of a screw in a twin-screw extruder is increased (clearance is increased) so that the flight width or the thickness of the tip of one screw is different from that of the other. A two-screw extruder is disclosed. Since the apparatus is intended to generate a high shear rate as well as a low shear rate, there is a concern that the power consumption becomes large and molecular cleavage is likely to occur.
Japanese Patent Application No. 2003-38079 JP 2001-150429 A Japanese Patent Laid-Open No. 11-124439 Japanese Patent No. 32007055 Japanese Patent Publication No. 7-100325 JP-A-8-258110 Polyethylene reader, edited by Kazuo Matsuura and Naotaka Mikami (Industry Research Committee)

本発明が解決しようとする課題は、連続多段重合で、特に触媒として例えばメタロセン
触媒のように触媒の能力として単段重合品分子量分布が狭いような触媒を用いて連続多段
重合によって製造されるポリエチレン粒子を造粒する過程において、低い電力消費で、分
子分解を生じることなく、均一化された樹脂を製造するための装置を提供することである
。連続2段重合した高密度ポリエチレンの場合、第一重合槽と第二重合槽を設計した滞留
時間で通過した標準的な重合体粒子は溶融混練する前から分子量が低い分子鎖と分子量が
大きい分子鎖とが触媒活性点の分散度合いである、数十ナノメートルオーダーで分散して
いると考えることができる。〔以下の説明では、このような標準的な重合体粒子を構成す
る低分子量重合鎖を「標準的な低分子量重合鎖」と呼び、高分子量重合鎖を「標準的な高
分子量重合鎖」と呼ぶ場合がある。〕一方、低分子量鎖を重合するための重合器に十分滞
留することなく、高分子量鎖を重合するための重合器のみでほとんどが重合して得られる
重合体粒子は、ほとんどが高分子量鎖であるため、重合粒子サイズである数十〜数百μm
のオーダーで高分子量鎖が塊になっている可能性がある。
The problem to be solved by the present invention is continuous polyethylene polymerization, particularly polyethylene produced by continuous multistage polymerization using a catalyst having a narrow single-stage polymer product molecular weight distribution as a catalyst, such as a metallocene catalyst. An object of the present invention is to provide an apparatus for producing a homogenized resin in a process of granulating particles with low power consumption and without causing molecular decomposition. In the case of continuous two-stage polymerized high-density polyethylene, standard polymer particles that have passed through the residence time designed in the first and second polymerization tanks are molecular chains with low molecular weight and molecules with high molecular weight before melt kneading. It can be considered that the chains are dispersed in the order of several tens of nanometers, which is the degree of dispersion of the catalyst active points. [In the following description, the low molecular weight polymer chains constituting such standard polymer particles are referred to as “standard low molecular weight polymer chains”, and the high molecular weight polymer chains are referred to as “standard high molecular weight polymer chains”. Sometimes called. On the other hand, most of the polymer particles obtained by polymerizing only the polymerizer for polymerizing the high molecular weight chain without sufficiently staying in the polymerizer for polymerizing the low molecular weight chain are mostly high molecular weight chains. Because there are several tens to several hundreds μm of the polymer particle size
There is a possibility that high molecular weight chains are agglomerated in the order of.

本願発明者らは、
1) この塊を形成している高分子量鎖と、数十ナノメートルオーダーで分散している
「標準的な高分子量重合鎖」とは同じ分子構造であるし、分子鎖骨格についても
「標準的な低分子量鎖」とも大差ない(エチレン以外のα-オレフィンが共重合し
ていたとしても、ごく少量である)ので本質的には混ざってしかるべきものである
こと、
2) 従って、上述の高密度ポリエチレンにおいて、数十〜数百μmのオーダーで分散し
ていない塊状高分子量鎖を標準的な粒子レベルまで均一化するために、高いせん断
速度(高いせん断応力)は必ずしも必要ではないこと、
3) せん断応力が高いと、消費電力が大きくなったり、分子切断が生じるなど、むしろ
好ましくないことが多いという問題があること、
4) ただし、均一化のためには、十分な混練履歴を樹脂に与えることは必要であるこ
と、
という視点に立ち、メタロセン触媒のように触媒の能力として単段重合品分子量分布が狭
いような触媒を用いて製造される連続多段重合ポリエチレン粒子を造粒する過程において
、低い電力消費で、分子分解を生じることなく、均一化された樹脂を製造するための新し
い押出又は混練装置の開発に到達したのである。
The inventors of the present application
1) The high molecular weight chain forming this lump and the “standard high molecular weight polymer chain” dispersed in the order of several tens of nanometers have the same molecular structure. It is not much different from the “low molecular weight chain” (even if α-olefin other than ethylene is copolymerized, it is very small amount), so it should be essentially mixed.
2) Therefore, in the above-mentioned high-density polyethylene, a high shear rate (high shear stress) is used in order to homogenize the high molecular weight chains that are not dispersed in the order of several tens to several hundreds of micrometers to the standard particle level. Not necessarily necessary,
3) There is a problem that a high shear stress is often undesirable, such as high power consumption and molecular cleavage.
4) However, for homogenization, it is necessary to give the resin a sufficient kneading history.
In the process of granulating continuous multi-stage polymerized polyethylene particles produced using a catalyst with a narrow molecular weight distribution of single-stage polymer products as a metallocene catalyst, such as a metallocene catalyst, molecular decomposition with low power consumption This has led to the development of a new extrusion or kneading apparatus for producing a homogenized resin without causing any problems.

すなわち、本発明が解決しようとする課題は、低いせん断応力条件下で、十分な混練履
歴を樹脂に与えることが可能な押出機または混練機を提供することである。なお、ポリプ
ロピレンとゴム成分とからなるブロックPPの場合は分子鎖骨格が異なる成分同士の均一
分散化なので本質的に異なり、ある程度は高いずり応力も必要になると考えることができ
る。
That is, the problem to be solved by the present invention is to provide an extruder or a kneader capable of giving a sufficient kneading history to a resin under low shear stress conditions. In the case of a block PP made of polypropylene and a rubber component, it can be considered that a component having different molecular chain skeletons is uniformly dispersed and thus essentially different, and a high shear stress is required to some extent.

本発明の2軸押出機又は2軸混練機は、低いせん断応力条件下で、十分な混練履歴を樹
脂に与えることを目的とし、混練部の最小スクリュー半径(R)とバレル半径(R
の比〔R/R〕が0.70〜0.80の範囲にあり、混練部の最大スクリュー半径(
)とバレル半径(R)の比〔R/R〕が0.70〜0.94の範囲にあり、混
練部の最小スクリュー半径(R)と混練部の最大スクリュー半径(R)の比〔R/R〕が0.78〜1.00の範囲にあり、混練部スクリューの直後に逆ネジやシールリ
ングのようにスクリューに樹脂を逆流させるような形状を有するか、ゲートのようにバレ
ルに樹脂を逆流させるような形状を有している2軸押出機または2軸混練機であることを
主要な特徴とする。本発明は、更に混練部の手前で樹脂の結晶成分は融解させることが出
来ることを特徴とする2軸押出機または2軸混練機であることが好ましい。混練部のスク
リュー形状に重要な特徴があるので、スクリューの1端だけを支持している押出機であっ
ても、スクリューの両端を支持している混練機であっても構わない。R、R、R
図1に示す。
The biaxial extruder or biaxial kneader of the present invention is intended to give a sufficient kneading history to the resin under low shear stress conditions, and the minimum screw radius (R 1 ) and barrel radius (R 0 ) of the kneading part. )
The ratio [R 1 / R 0 ] is in the range of 0.70 to 0.80, and the maximum screw radius (
R 2 ) to barrel radius (R 0 ) ratio [R 2 / R 0 ] is in the range of 0.70 to 0.94, the minimum screw radius (R 1 ) of the kneading part and the maximum screw radius ( R 2 ) ratio [R 1 / R 2 ] is in the range of 0.78 to 1.00, and has a shape that allows the resin to flow back to the screw just like the reverse screw or seal ring immediately after the kneading part screw. Alternatively, the main feature is a twin-screw extruder or a twin-screw kneader having a shape that allows the resin to flow back into the barrel like a gate. The present invention is preferably a twin screw extruder or a twin screw kneader characterized in that the resin crystal component can be melted before the kneading section. Since the screw shape of the kneading part has an important feature, it may be an extruder that supports only one end of the screw or a kneader that supports both ends of the screw. R 0 , R 1 and R 2 are shown in FIG.

本発明の2軸押出機または2軸混練機を用いて、連続多段重合で、特に触媒として例え
ばメタロセン触媒のように触媒の能力として単段重合品分子量分布が狭いような触媒を用
い連続多段重合で製造されたポリエチレン粒子を造粒すると、既存の押出機または混練機
を使用した場合に比べて、低い電力消費で、分子分解を生じることなく、均一化された樹
脂を製造することが可能であるという利点がある。
Continuous multi-stage polymerization using the twin-screw extruder or twin-screw kneader of the present invention, particularly continuous multi-stage polymerization using a catalyst having a narrow single-stage polymer product molecular weight distribution as a catalyst, such as a metallocene catalyst. When the polyethylene particles produced in step 1 are granulated, it is possible to produce a homogenized resin with low power consumption and no molecular degradation compared to the case of using an existing extruder or kneader. There is an advantage of being.

以下に本発明に関わる2軸押出機について、具体的に説明する。なお、混練部のスクリ
ュー形状に重要な特徴があるので、スクリューの1端だけを支持している押出機であって
も、スクリューの両端を支持している混練機であっても、同方向回転でも異方向回転でも
構わない。ここでは、便宜上2軸押出機とする。
The twin screw extruder according to the present invention will be specifically described below. Note that the screw shape of the kneading part has an important feature, so even if it is an extruder that supports only one end of the screw or a kneader that supports both ends of the screw, it rotates in the same direction. However, it can be rotated in a different direction. Here, for convenience, a twin-screw extruder is used.

ホッパー〜混練部の手前
重合粒子(耐熱安定剤、塩酸吸収剤などの所定の添加剤や顔料などを配合してあっても
よい)を押出機内に投入するためのホッパー部、樹脂を輸送しながら融解させるスクリュ
ー部については、従来公知の装置を用いることが出来る。重合粒子が混練部に到達する前
に樹脂の結晶が融解しているよう、ホッパーから混練部までの距離を長くとることが好ま
しい。重合粒子が混練部に到達したときに樹脂の結晶が残っていると、混練部にて低いせ
ん断速度で混練した際に結晶が溶解せずにそのまま残ってしまい、結果として均一化が進
行しないことがある。また、この輸送部のフルフライトスクリュー部(図2)の山とバレ
ルとの空隙(クリアランス)が、混練部の最小クリアランスと同等程度であることが好ま
しい。
While transporting the resin, the hopper part for feeding the polymer particles before the hopper to the kneading part (which may be blended with a predetermined additive such as heat stabilizer, hydrochloric acid absorbent or pigment) into the extruder A conventionally known apparatus can be used for the screw part to be melted. The distance from the hopper to the kneading part is preferably long so that the resin crystals are melted before the polymer particles reach the kneading part. If resin crystals remain when the polymer particles reach the kneading section, the crystals remain undissolved when kneaded at a low shear rate in the kneading section, and as a result, homogenization does not proceed. There is. Moreover, it is preferable that the clearance (clearance) between the crest and the barrel of the full flight screw part (FIG. 2) of this transport part is equivalent to the minimum clearance of the kneading part.

混練部
混練部の最小スクリュー半径(R)とバレル半径(R)の比〔(R)/(R
〕が0.70〜0.80の範囲にあることを特徴とする。(R)/(R)がこの範囲
にあると、低いずり速度で樹脂に混練履歴を付加することが出来る。0.70未満だと空
隙が広すぎるために樹脂に十分な力が伝わらず、樹脂に十分な混練履歴を付加出来ない。
0.80を超えると、十分な空隙を得ることが出来ず、結果として樹脂の滞留時間が短く
なって、樹脂に十分な混練履歴を付与出来ない。
Ratio of minimum screw radius (R 1 ) and barrel radius (R 0 ) of kneading part kneading part [(R 1 ) / (R 0 )
] Is in the range of 0.70 to 0.80. When (R 1 ) / (R 0 ) is within this range, a kneading history can be added to the resin at a low shear rate. If it is less than 0.70, the void is too wide, so that a sufficient force cannot be transmitted to the resin, and a sufficient kneading history cannot be added to the resin.
If it exceeds 0.80, sufficient voids cannot be obtained, and as a result, the residence time of the resin is shortened and a sufficient kneading history cannot be imparted to the resin.

混練部の最大スクリュー半径(R)とバレル半径(R)の比〔(R)/(R
〕が0.70〜0.94の範囲にあり、好ましくは0.70〜0.85の範囲にあり、よ
り好ましくは0.70〜0.80の範囲にあることを特徴とする。(R)/(R)が
この範囲にあると、低いずり速度で樹脂に混練履歴を付加することが出来る。空隙が広い
ために樹脂の滞留時間が長くなり、樹脂に十分な混練履歴を付与出来る。更に消費電力も
小さくなり、経済的にも好ましい。0.70未満だと空隙が広すぎるために樹脂に十分な
力が伝わらないために、樹脂に十分な混練履歴を付加出来ない。0.90を超えると、消
費電力が大きくなるので、好ましくない。
Ratio of maximum screw radius (R 2 ) and barrel radius (R 0 ) of kneading part [(R 2 ) / (R 0 )
] Is in the range of 0.70 to 0.94, preferably in the range of 0.70 to 0.85, more preferably in the range of 0.70 to 0.80. When (R 2 ) / (R 0 ) is within this range, a kneading history can be added to the resin at a low shear rate. Since the voids are wide, the residence time of the resin becomes long, and a sufficient kneading history can be imparted to the resin. Furthermore, power consumption is reduced, which is economically preferable. If it is less than 0.70, the voids are too wide and a sufficient force cannot be transmitted to the resin, so that a sufficient kneading history cannot be added to the resin. If it exceeds 0.90, the power consumption increases, which is not preferable.

混練部の最小スクリュー半径(R)と混練部の最大スクリュー半径(R)の比〔(
)/(R)〕が0.78〜1.00の範囲にあり、好ましくは0.85〜1.00
の範囲にあることが好ましい。(R)/(R)がこの範囲にあると、低いずり速度で
長い時間樹脂に混練履歴を付加することが出来る。更に消費電力も小さくなり、経済的に
も好ましい。0.78未満だとRが小さすぎる、またはRが大きすぎることを意味し
、樹脂に十分な力が伝わらないために樹脂に十分な混練履歴を付加出来ない、消費電力が
大きくなるなどの現象が生じ、好ましくない。
Ratio of minimum screw radius (R 1 ) of kneading part to maximum screw radius (R 2 ) of kneading part [(
R 1) / (R 2)] is in the range of 0.78 to 1.00, preferably 0.85 to 1.00
It is preferable that it exists in the range. When (R 1 ) / (R 2 ) is within this range, a kneading history can be added to the resin for a long time at a low shear rate. Furthermore, power consumption is reduced, which is economically preferable. If it is less than 0.78, it means that R 1 is too small or R 2 is too large. Since sufficient force is not transmitted to the resin, a sufficient kneading history cannot be added to the resin, and power consumption increases. This phenomenon is undesirable.

本発明においては、R/R、R/R、R/Rの値が特定の範囲にあること
が重要であり、混練部の形状は円筒型、円周が長さ方向に対して不連続に変動するニーデ
ィング型、円周が長さ方向に対して連続的に変動するローター型、いずれでもよい。
In the present invention, it is important that the values of R 1 / R 0 , R 2 / R 0 , and R 1 / R 2 are in a specific range, the shape of the kneading part is cylindrical, and the circumference is the length direction. Any of a kneading type that varies discontinuously with respect to the rotor and a rotor type in which the circumference continuously varies in the length direction may be used.

混練条件として、混練部のスクリュー直径が最大(R)である位置におけるずり速度
が500〜50(1/sec)、好ましくは300〜50(1/sec)であることが望ましい。ずり速
度がこの範囲にあると、分子分解せずに、小さい消費電力で、均一な構造を有する樹脂を
製造することが可能である。ずり速度が速すぎると、ずり応力が高くなって、分子分解す
る懸念がある。ポリプロピレンにゴム成分を均一に分散させるような場合には高いずり速
度が有効であるが、連続多段重合により製造した高密度ポリエチレン粒子を造粒する工程
において構造を均一化するためには、高いずり応力は必ずしも必要ではない。なお、混練
部のスクリュー直径が最大(R)である位置におけるずり速度(G)は、
G=2×ω×(R/2)/((R/2)-(R/2))
ω=1秒当たりのスクリュー回転数×2×3.14
から求めた。
As kneading conditions, it is desirable that the shear rate at the position where the screw diameter of the kneading part is the maximum (R 2 ) is 500 to 50 (1 / sec), preferably 300 to 50 (1 / sec). When the shear rate is within this range, it is possible to produce a resin having a uniform structure with low power consumption without molecular decomposition. If the shear rate is too high, the shear stress increases and there is a concern of molecular decomposition. A high shear rate is effective when the rubber component is uniformly dispersed in polypropylene, but a high shear rate is required to make the structure uniform in the process of granulating high-density polyethylene particles produced by continuous multistage polymerization. Stress is not always necessary. The shear rate (G) at the position where the screw diameter of the kneading part is the maximum (R 2 ) is:
G = 2 × ω × (R 0/2) / ((R 0/2) - (R 2/2))
ω = screw rotations per second × 2 × 3.14
I asked for it.

混練部スクリューの直後に樹脂を逆流させるような形状を有するようなスクリューが組
み込まれていることを特徴とする。樹脂をせき止めるようなスクリュー上のシールリング
、バレル側のゲート、フルフライト部とは山の切り方が逆方向になっているスクリュー上
の逆ネジなど、従来公知の形状のものを用いることが出来る。このうち、スクリュー上の
逆ネジが特に好ましい。混練部スクリューの直後にこのような構造を有すると、広い空隙
に樹脂が十分に充満するので、低いずり速度で長い時間樹脂に混練履歴を付加することが
出来る。混練部スクリューの直後にこのような構造を有していないと、混練部に樹脂が留
まることなく流れていってしまうため、結果として滞留時間が短くなり、樹脂に十分な混
練履歴を与えることが出来ずに、好ましくない。
混練するエチレン系重合体は、極限粘度[η]が1.5〜4.0(dl/g)の範囲にあ
り、GPCを用いて測定した分子量分布曲線を2つの山にピーク分離したときに、高分子
量側の山のピークの[Mw(重量平均分子量)]/[Mn(数平均分子量)]が1.7〜3.
5の範囲にあり、低分子量側のピークのMw(重量平均分子量)/高分子量側のピークの
Mw(重量平均分子量)が0.01〜0.15の範囲にあるある場合、特に本発明の押出
機を用いることが有効である。
A screw having a shape that allows the resin to flow backward immediately after the kneading section screw is incorporated. Conventionally known shapes such as a seal ring on the screw that dampens the resin, a gate on the barrel side, and a reverse screw on the screw in which the way of cutting the mountain is opposite to the full flight part can be used. . Of these, the reverse screw on the screw is particularly preferable. When such a structure is provided immediately after the kneading section screw, the resin is sufficiently filled in the wide voids, so that a kneading history can be added to the resin for a long time at a low shear rate. If such a structure is not provided immediately after the kneading part screw, the resin will flow without staying in the kneading part. As a result, the residence time is shortened, and a sufficient kneading history can be given to the resin. Unable to do it.
The ethylene polymer to be kneaded has an intrinsic viscosity [η] in the range of 1.5 to 4.0 (dl / g), and the molecular weight distribution curve measured using GPC is peak-separated into two peaks. The peak [Mw (weight average molecular weight)] / [Mn (number average molecular weight)] of the peak on the high molecular weight side is 1.7-3.
When the Mw (weight average molecular weight) of the low molecular weight peak / Mw (weight average molecular weight) of the high molecular weight peak is in the range of 0.01 to 0.15, It is effective to use an extruder.

以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれら実施例に
限定されるものではない。
EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example, this invention is not limited to these Examples.

次に、分子分解の程度を調べるための極限粘度測定法、進行した構造の均一化状態を評
価するための表面粗さ(Rz)測定用サンプル作成法およびRz測定法等について順次記
載する。
〔極限粘度([η])〕
デカリン溶媒を用いて、135℃で測定した値である。すなわち重合粒子やストランド
など約20mgをデカリン15mlに溶解し、135℃のオイルバス中で比粘度ηspを測
定する。このデカリン溶液にデカリン溶媒を5ml追加して希釈後、同様にして比粘度η
spを測定する。この希釈操作をさらに2回繰り返し、濃度(C)を0に外挿した時のηsp
/Cの値を極限粘度として求める。
[η]=lim(ηsp/C) (C→0)
〔平滑度係数R〕
東洋精機社製毛細式流れ特性試験機キャピログラフ1Bを用い、樹脂温度200℃、5
0mm/min(3.6cm3/min)の速度で樹脂を押し出す。長さL=60mm、
直径D=1mmのノズル、またはキャピラリーダイスの代わりにチューブ形状物を押し出
すことが出来る円筒ダイス(外径4mmφ、スリット=0.5mm、長さ10mm)を取
り付ける。重合物がペレット化されていても、気相またはスラリー相中で重合された重合
粒子同士が十分に混ざり合っていないと、溶融押出物表面に肌荒れが生じる。
Next, an intrinsic viscosity measurement method for examining the degree of molecular decomposition, a surface roughness (Rz) measurement sample preparation method and an Rz measurement method for evaluating the progress of the homogenization of the structure will be sequentially described.
[Intrinsic viscosity ([η])]
It is a value measured at 135 ° C. using a decalin solvent. That is, about 20 mg of polymer particles and strands are dissolved in 15 ml of decalin, and the specific viscosity η sp is measured in an oil bath at 135 ° C. After adding 5 ml of decalin solvent to the decalin solution and diluting, the specific viscosity η
Measure sp . This dilution operation is repeated twice more, and η sp when the concentration (C) is extrapolated to 0
The value of / C is determined as the intrinsic viscosity.
[Η] = lim (η sp / C) (C → 0)
[Smoothness coefficient R]
Using capillary flow characteristic tester Capillograph 1B manufactured by Toyo Seiki Co., Ltd., resin temperature 200 ° C., 5
The resin is extruded at a speed of 0 mm / min (3.6 cm 3 / min). Length L = 60mm,
A nozzle having a diameter D = 1 mm or a cylindrical die (outer diameter 4 mmφ, slit = 0.5 mm, length 10 mm) capable of extruding a tube-shaped object is attached instead of a capillary die. Even if the polymer is pelletized, if the polymer particles polymerized in the gas phase or slurry phase are not sufficiently mixed together, the surface of the melt-extruded product becomes rough.

このようにして得られたストランドまたはチューブの外側を測定面として表面粗さを測
定する。測定には東京精密社製サーフコム1400Dを用いた。測定長さ=10mm、測
定速度=0.06mm/秒、サンプリング時間=0.01秒、サンプリングピッチ=0.
6μm、測定針の材質はダイアモンド、測定針の先端=5μmφ、計算規格JIS B0
601-1982で計算した十点平均粗さをRzとする。Rzは測定長さ10mmの平均
線に対して、最高から5番目までの山頂の標高の平均値と最深から5番目までの谷底の標
高の平均値との差の値である。測定は場所を変えて3回行い、その平均値を分散係数Rと
する。ここで、3回測定したRzについて標準偏差を求める。標準偏差の値が、3回測定
したRzの平均値であるRの値の1/2よりも大きかった場合には再測定を行う。Rが小
さいほど、構造の均一化が進行していることを示す。
The surface roughness is measured using the strand or tube thus obtained as the measurement surface. For the measurement, Surfcom 1400D manufactured by Tokyo Seimitsu Co., Ltd. was used. Measurement length = 10 mm, measurement speed = 0.06 mm / second, sampling time = 0.01 second, sampling pitch = 0.
6μm, measuring needle material is diamond, tip of measuring needle = 5μmφ, calculation standard JIS B0
The ten-point average roughness calculated in 601-1982 is Rz. Rz is the value of the difference between the average value of the altitude at the top of the peak from the highest to the fifth and the average value of the altitude at the bottom of the valley from the deepest to the fifth with respect to the average line having a measurement length of 10 mm. The measurement is performed three times at different locations, and the average value is defined as the dispersion coefficient R. Here, a standard deviation is obtained for Rz measured three times. When the value of the standard deviation is larger than ½ of the value of R, which is the average value of Rz measured three times, remeasurement is performed. The smaller R is, the more uniform the structure is.

〔重量平均分子量(Mw)、数平均分子量(Mn)、分子量曲線〕
ウォーターズ社製GPC-150Cを用い以下のようにして測定した。分離カラムは、
TSKgel GMH6-HT及びTSKgel GMH6-HTLであり、カラムサイズは
それぞれ内径7.5mm、長さ600mmであり、カラム温度は140℃とし、移動相に
はo-ジクロロベンゼン(和光純薬工業)および酸化防止剤としてBHT(武田薬品)0.
025重量%を用い、1.0ml/minで移動させ、試料濃度は0.1重量%とし、試料
注入量は500マイクロリットルとし、検出器として示差屈折計を用いた。標準ポリスチ
レンは、分子量がMw<1000およびMw>4×106については東ソー社製を用い、
1000≦Mw≦4×106についてはプレッシャーケミカル社製を用いた。分子量計算
は、ユニバーサル校正して、ポリエチレンに換算して求めた値である。
[Weight average molecular weight (Mw), number average molecular weight (Mn), molecular weight curve]
Measurement was performed as follows using GPC-150C manufactured by Waters. The separation column is
TSKgel GMH6-HT and TSKgel GMH6-HTL, column size is 7.5 mm in inner diameter and length is 600 mm, column temperature is 140 ° C., mobile phase is o-dichlorobenzene (Wako Pure Chemical Industries) and oxidation BHT (Takeda Pharmaceutical) as an inhibitor
The sample was moved at 1.0 ml / min using 025 wt%, the sample concentration was 0.1 wt%, the sample injection amount was 500 microliters, and a differential refractometer was used as a detector. Standard polystyrene used for the molecular weight Mw <1000 and Mw> 4 × 10 6 manufactured by Tosoh Corporation
About 1000 <= Mw <= 4 * 10 < 6 >, the pressure chemical company make was used. The molecular weight calculation is a value obtained by universal calibration and conversion into polyethylene.

〔分子量曲線の分離〕
マイクロソフト社製エクセル(登録商標)97のビジュアル・ベーシックを用いてプロ
グラムを作成した。分離する2つの曲線は対数正規分布として、収束計算により分子量分
布曲線を分子量が異なる2つの曲線に分離した。分離した2つの曲線を再合成した曲線と
GPCで実測した分子量曲線とを比較して、両者がほぼ一致するように初期値を変更しな
がら計算を実行する。計算はLog(分子量)を0.02間隔に分割して行う。実測、分
離した2つの曲線を再合成した曲線ともに面積が1となるように強度を規格化し、[分子
量が同じ時の実測の強度(高さ)と再合成した曲線の強度(高さ)の差の絶対値]を分子
量が同じときの再合成した曲線の強度(高さ)で割った値が、分子量が10,000〜1,
000,000の範囲で0.4以下、好ましくは0.2以下、より好ましくは0.1以下
、分離したピークの最大位置では0.2以下、好ましくは0.1以下となるまで曲線の分
離計算を繰り返す。この際、低分子量側に分離されたピークのMw(重量平均分子量)/
Mn(数平均分子量)と高分子量側に分離されたピークのMw/Mnとの差が1.5以下
となるようにする。計算例を図3に示す。
(Separation of molecular weight curve)
A program was created using Visual Basic of Excel (registered trademark) 97 manufactured by Microsoft Corporation. The two curves to be separated were log-normal distributions, and the molecular weight distribution curve was separated into two curves having different molecular weights by convergence calculation. A curve obtained by re-synthesizing the two separated curves and a molecular weight curve measured by GPC are compared, and the calculation is executed while changing the initial values so that the two are almost the same. The calculation is performed by dividing Log (molecular weight) into 0.02 intervals. Standardize the strength so that the area of the two curves obtained by recombining the measured and separated two curves is 1, [the measured strength (height) when the molecular weight is the same and the strength (height) of the recombined curve The absolute value of the difference] divided by the strength (height) of the re-synthesized curve when the molecular weight is the same, the molecular weight is 10,000-1
Separation of curves in the range of 000,000, 0.4 or less, preferably 0.2 or less, more preferably 0.1 or less, and the maximum position of the separated peak is 0.2 or less, preferably 0.1 or less. Repeat the calculation. At this time, Mw (weight average molecular weight) of the peak separated on the low molecular weight side /
The difference between Mn (number average molecular weight) and Mw / Mn of the peak separated on the high molecular weight side is made to be 1.5 or less. A calculation example is shown in FIG.

〔混練用粒子状高密度ポリエチレン(A)〕
[固体触媒成分の調製]
200℃で3時間乾燥したシリカ8.5kgを33リットルのトルエンで懸濁状にした
後、メチルアルミノキサン溶液(Al=1.42モル/リットル)82.7リットルを3
0分で滴下した。次いで1.5時間かけて115℃まで昇温し、その温度で4時間反応さ
せた。その後60℃まで降温し、上澄み液をデカンテーション法によって除去した。得ら
れた固体触媒成分をトルエンで3回洗浄した後、トルエンで再懸濁化して固体触媒成分(
α)を得た(全容積150リットル)。
[Particulate high density polyethylene for kneading (A)]
[Preparation of solid catalyst component]
After 8.5 kg of silica dried at 200 ° C. for 3 hours was suspended in 33 liters of toluene, 82.7 liters of methylaluminoxane solution (Al = 1.42 mol / liter)
It was dripped in 0 minutes. Next, the temperature was raised to 115 ° C. over 1.5 hours, and the reaction was carried out at that temperature for 4 hours. Thereafter, the temperature was lowered to 60 ° C., and the supernatant was removed by a decantation method. The obtained solid catalyst component was washed with toluene three times and then resuspended with toluene to obtain a solid catalyst component (
α) was obtained (total volume 150 liters).

〔担持触媒の調製〕
充分に窒素置換した反応器中に、トルエンに懸濁させた合成例1にて合成した固体触媒
成分(α)をアルミニウム換算で19.60molを入れ、その懸濁液を攪拌しながら、
室温下(20〜25℃)でジフェニルメチレン(シクロペンタジエニル)(2,7-ジ-t-ブ
チルフルオレニル)ジルコニウムジクロライド37.38mmol/リットル溶液を2リ
ットル(74.76mmol)加えた後、60分攪拌した。攪拌を停止後、上澄み液をデ
カンテーションで取り除き、n-ヘキサン40リットルを用いて洗浄を2回行い、得られ
た担持触媒をn-ヘキサンにリスラリーし25リットルの触媒懸濁液として、固体触媒成
分(γ)を得た。
(Preparation of supported catalyst)
In a sufficiently nitrogen-substituted reactor, 19.60 mol of the solid catalyst component (α) synthesized in Synthesis Example 1 suspended in toluene was added in terms of aluminum, and the suspension was stirred,
After adding 2 liters (74.76 mmol) of a 37.38 mmol / liter solution of diphenylmethylene (cyclopentadienyl) (2,7-di-t-butylfluorenyl) zirconium dichloride at room temperature (20-25 ° C.) And stirred for 60 minutes. After stopping the stirring, the supernatant liquid is removed by decantation, washing is performed twice using 40 liters of n-hexane, and the obtained supported catalyst is reslurried in n-hexane to form a 25 liter catalyst suspension as a solid catalyst. Component (γ) was obtained.

[固体触媒成分(γ)の予備重合]
攪拌機つき反応器に窒素雰囲気下、精製n-ヘキサン15.8リットル、および上記固
体触媒成分(γ)を投入した後、トリイソブチルアルミニウム5molを加え、攪拌しな
がら、固体成分1g当たり4時間で3gのポリエチレンを生成相当量のエチレンで予備重
合を行った。重合温度は20〜25℃に保った。重合終了後、攪拌を停止後、上澄み液を
デカンテーションで取り除き、n-ヘキサン35リットルを用いて洗浄を4回行い、得ら
れた担持触媒をn-ヘキサン20リットルにて触媒懸濁液として、固体触媒成分(δ)を
得た。
[Prepolymerization of solid catalyst component (γ)]
Into a reactor equipped with a stirrer, 15.8 liters of purified n-hexane and the above solid catalyst component (γ) were charged in a nitrogen atmosphere. The prepolymerization was carried out with a considerable amount of ethylene. The polymerization temperature was kept at 20-25 ° C. After completion of the polymerization, stirring was stopped, the supernatant was removed by decantation, washing was performed 4 times with 35 liters of n-hexane, and the obtained supported catalyst was made into a catalyst suspension with 20 liters of n-hexane. A solid catalyst component (δ) was obtained.

[重合]
第1重合槽に、ヘキサンを45リットル/hr、合成例2で得た固体触媒成分(δ)を
Zr換算原子に換算して0.11mmol/hr、トリエチルアルミニウムを20mmo
l/hr、エチレンを7.0kg/hr、水素を125N-リットル/hrで連続的に供
給し、かつ重合槽内の液レベルが一定になるように重合槽内容物を連続的に抜出しながら
、重合温度85℃、反応圧8.5kg/cm2G、平均滞留時間2.5hrという条件で
重合を行った。
[polymerization]
In the first polymerization tank, hexane is 45 l / hr, the solid catalyst component (δ) obtained in Synthesis Example 2 is 0.11 mmol / hr in terms of Zr equivalent atoms, and triethylaluminum is 20 mmo.
l / hr, ethylene is 7.0 kg / hr, hydrogen is continuously supplied at 125 N-liter / hr, and the polymerization tank contents are continuously withdrawn so that the liquid level in the polymerization tank is constant, Polymerization was performed under the conditions of a polymerization temperature of 85 ° C., a reaction pressure of 8.5 kg / cm 2 G, and an average residence time of 2.5 hours.

第1重合槽から連続的に抜出された内容物は、内圧0.2kg/m2G、65℃に保た
れたフラッシュドラムで未反応エチレンおよび水素が実質的に除去される。
The contents continuously extracted from the first polymerization tank are substantially free of unreacted ethylene and hydrogen by a flash drum maintained at an internal pressure of 0.2 kg / m 2 G and 65 ° C.

その後、該内容物は、ヘキサン35リットル/hr、エチレン3.0kg/hr、水素
0.07N-リットル/hr、1-ヘキセン30g/hrとともに第2重合槽へ連続的に供
給され、重合温度80℃、反応圧4.5kg/cm2G、平均滞留時間0.8hrという
条件で引き続き重合を行った。
Thereafter, the contents were continuously supplied to the second polymerization tank together with hexane 35 liter / hr, ethylene 3.0 kg / hr, hydrogen 0.07 N-liter / hr, 1-hexene 30 g / hr, and a polymerization temperature of 80 Polymerization was continued under the conditions of C, reaction pressure 4.5 kg / cm 2 G, and average residence time 0.8 hr.

第2重合槽においても重合槽内の液レベルが一定になるように重合槽内容物を連続的に
抜出し、該内容物中のヘキサン及び未反応モノマーを溶媒分離装置で除去、乾燥し重合体
を得た。
In the second polymerization tank, the contents of the polymerization tank are continuously withdrawn so that the liquid level in the polymerization tank is constant, and hexane and unreacted monomers in the contents are removed with a solvent separator and dried to remove the polymer. Obtained.

次に該重合粒子100重量部に対して、二次抗酸化剤としてのトリ(2,4-ジ-t-ブチル
フェニル)フォスフェートを0.1重量部、耐熱安定剤としてのn-オクタデシル-3-(4'-
ヒドロキシ-3',5'-ジ-t-ブチルフェニル)プロピネートを0.1重量部、塩酸吸収剤とし
てのステアリン酸カルシウムを0.05重量部配合する。この高密度ポリエチレンのGP
Cチャートを図4に示す。低分子量側の山のMw/Mnは2.0、高分子量側の山のMw
/Mnは1.9であった。また、低分子量側のピークのMw(=27,600)/高分子
量側のピークのMw(416,000)=0.07であった。[η]は3.1dl/gだった
。なお、重合温度を低くする、重合器内での攪拌を遅くすることでMw/Mnは大きくな
る傾向にある。2段重合における各重合槽における水素/エチレン比が異なるほど低分子
量側のピークのMw/高分子量側のピークのMw比は大きくなる。
Next, 0.1 part by weight of tri (2,4-di-t-butylphenyl) phosphate as a secondary antioxidant and n-octadecyl-as a heat stabilizer are added to 100 parts by weight of the polymer particles. 3- (4'-
0.1 part by weight of hydroxy-3 ′, 5′-di-t-butylphenyl) propinate is mixed with 0.05 part by weight of calcium stearate as a hydrochloric acid absorbent. GP of this high density polyethylene
A C chart is shown in FIG. Mw / Mn of the mountain on the low molecular weight side is 2.0, Mw of the mountain on the high molecular weight side
/ Mn was 1.9. Moreover, it was Mw (= 27,600) of the peak on the low molecular weight side / Mw (416,000) of the peak on the high molecular weight side = 0.07. [η] was 3.1 dl / g. Mw / Mn tends to increase by lowering the polymerization temperature and slowing the stirring in the polymerization vessel. As the hydrogen / ethylene ratio in each polymerization tank in the two-stage polymerization is different, the Mw ratio of the low molecular weight peak / Mw of the high molecular weight peak increases.

押出機としてプラスチック工学研究所社製2軸押出機BT-30(2軸、同方向回転、
噛み合い、バレル半径R=15mm、L/D=47)を用いた。電圧は200V。メッシュは目開き150μmのメッシュ1枚を目開き250μmのメッシュ2枚の間にはさんだ
ものを用いた。スクリューアレンジの概略を図5に示す。混練部は、R=11mm、R
=14mm、長さ30mmのニーディングエレメントを3個並べた。ひとつのニーディングは長さが8mm/14mm/8mmのブロックからなっている。各ブロックは直交している。横から
見たニーディングエレメントを図6に示す。ニーディングの直後には長さ20mmで1ピッ
チの逆ネジスクリューエレメントを2個入れた。ニーディングの手前位置は、スクリュー
の根元から530mm、725mm、1185mmのところ計3箇所入れた。ニーディングエレ
メントの断面を図7に示す。R/R=0.73、R/R=0.93、R/R
=0.79であった。
Extruder BT-30 (2 axis, same direction rotation, manufactured by Plastic Engineering Laboratory Co., Ltd.)
Engagement, barrel radius R 0 = 15 mm, L / D = 47) was used. The voltage is 200V. As the mesh, one mesh having a mesh size of 150 μm and a mesh between two meshes having a mesh size of 250 μm was used. An outline of the screw arrangement is shown in FIG. The kneading part has R 1 = 11 mm, R 2
= 3 kneading elements with a length of 14 mm and a length of 30 mm were arranged. One kneading consists of 8mm / 14mm / 8mm long blocks. Each block is orthogonal. The kneading element viewed from the side is shown in FIG. Immediately after kneading, two reverse screw elements with a length of 20 mm and 1 pitch were put. The front position of kneading was 530 mm, 725 mm, and 1185 mm from the base of the screw, and a total of three places were put. A cross section of the kneading element is shown in FIG. R 1 / R 0 = 0.73, R 2 / R 0 = 0.93, R 1 / R 2
= 0.79.

温度設定は、ホッパー直下を190℃、それ以外は240℃とした。バレル外側には電
磁弁により制御されて、温度が上昇すると水が流れる。樹脂温度はダイス付近に組み込ま
れた樹脂温計の指示温度とした。
The temperature was set to 190 ° C just below the hopper, and 240 ° C otherwise. Controlled by a solenoid valve outside the barrel, water flows when the temperature rises. The resin temperature was the indicated temperature of a resin thermometer built in the vicinity of the die.

高密度ポリエチレン粒子(A)押出量を22g/min、スクリュー回転速度を150
rpmで押出し、ストランドを採取した。このときの電流値は56A、樹脂温度は252
℃、ストランドの[η]は3.1dl/g、表面粗さRは7μmだった。なお、最もホッパー
口に近いニーディングよりも手前のバレルベント口を開放して樹脂の状態を確認したとこ
ろ、粒子の結晶は溶解して半透明状になっていた。混練部のスクリュー半径が最大(R
)である位置におけるずり速度(G)は471(1/sec)であった。
High-density polyethylene particles (A) extrusion rate is 22 g / min, screw rotation speed is 150
Extrusion was performed at rpm, and strands were collected. The current value at this time is 56 A, and the resin temperature is 252.
The strand [η] was 3.1 dl / g, and the surface roughness R was 7 μm. When the barrel vent port before the kneading closest to the hopper port was opened and the state of the resin was confirmed, the crystal of the particles was dissolved and became translucent. The screw radius of the kneading part is maximum (R 2
) Was 471 (1 / sec).

実施例1において、ニーディングエレメントをすべてR=12mm、R=13mm、長さ30mmのニーディングエレメントに変更しした以外は実施例1と同様にして樹脂を押し
出し、ストランドを採取した。ニーディングエレメントの断面を図8に示す。R/R
=0.80、R/R=0.87、R/R=0.92であった。
In Example 1, the resin was extruded and strands were collected in the same manner as in Example 1 except that the kneading elements were all changed to kneading elements having R 1 = 12 mm, R 2 = 13 mm, and a length of 30 mm. A section of the kneading element is shown in FIG. R 1 / R 0
= 0.80, R 2 / R 0 = 0.87, was R 1 / R 2 = 0.92.

このときの電流値は55A、樹脂温度は253℃、ストランドの[η]は3.1dl/g、
表面粗さRは7μmだった。なお、最もホッパー口に近いニーディングよりも手前のバレ
ルベント口を開放して樹脂の状態を確認したところ、粒子の結晶は溶解して半透明状にな
っていた。混練部のスクリュー半径が最大(R)である位置におけるずり速度(G)は
236(1/sec)であった。
At this time, the current value is 55 A, the resin temperature is 253 ° C., the [η] of the strand is 3.1 dl / g,
The surface roughness R was 7 μm. When the barrel vent port before the kneading closest to the hopper port was opened and the state of the resin was confirmed, the crystal of the particles was dissolved and became translucent. The shear rate (G) at the position where the screw radius of the kneading part is the maximum (R 2 ) was 236 (1 / sec).

実施例1において、ニーディングエレメントをすべてR=11mm、R=11mm、すなわち円筒形、長さ30mmのニーディングエレメントに変更しした以外は実施例1と同様
にして樹脂を押し出し、ストランドを採取した。ニーディングエレメントの断面を図9に
示す。R/R=0.73、R/R=0.73、R/R=1.00であった。
In Example 1, the resin was extruded in the same manner as in Example 1 except that the kneading elements were all changed to R 1 = 11 mm and R 2 = 11 mm, that is, cylindrical and 30 mm long kneading elements. Collected. A cross section of the kneading element is shown in FIG. R 1 / R 0 = 0.73, R 2 / R 0 = 0.73, was R 1 / R 2 = 1.00.

このときの電流値は53A、樹脂温度は256℃、ストランドの[η]は3.1dl/g、
表面粗さRは6μmだった。なお、最もホッパー口に近いニーディングよりも手前のバレ
ルベント口を開放して樹脂の状態を確認したところ、粒子の結晶は溶解して半透明状にな
っていた。混練部のスクリュー半径が最大(R)である位置におけるずり速度(G)は
118(1/sec)であった。
The current value at this time is 53 A, the resin temperature is 256 ° C., the [η] of the strand is 3.1 dl / g,
The surface roughness R was 6 μm. When the barrel vent port before the kneading closest to the hopper port was opened and the state of the resin was confirmed, the crystal of the particles was dissolved and became translucent. The shear rate (G) at the position where the screw radius of the kneading part was the maximum (R 2 ) was 118 (1 / sec).

〔比較例1〕
実施例1において、ニーディングエレメントをすべてR=11mm、R=14.9mm、長さ30mmのニーディングエレメントに変更した以外は実施例1と同様にして樹脂を押し出そうとしたが、電流が装置上の上限(70アンペア)を超えてしまうため、実施でき
なかった。ニーディングエレメントの断面を図10に示す。混練部のスクリュー半径が最大(R)である位置におけるずり速度(G)は4710(1/sec)であった。
[Comparative Example 1]
In Example 1, the resin was tried to be extruded in the same manner as in Example 1 except that all the kneading elements were changed to the kneading elements of R 1 = 11 mm, R 2 = 14.9 mm, and length 30 mm. Since the current exceeded the upper limit (70 amperes) on the device, it could not be implemented. A cross section of the kneading element is shown in FIG. The shear rate (G) at the position where the screw radius of the kneading part was the maximum (R 2 ) was 4710 (1 / sec).

〔比較例・BR>Q〕
実施例1において、ニーディングエレメントをすべてR=11mm、R=14.9mm、長さ30mmのニーディングエレメントに変更し、スクリュー回転速度を100rpmとした以外は実施例1と同様にして樹脂を押し出し、ストランドを採取した。このときの電流
値は64A、樹脂温度は252℃、ストランドの[η]は3.1dl/g、表面粗さRは9μmであった。実施例と比較して、電流値が高い。なお、最もホッパー口に近いニーディングよりも手前のバレルベント口を開放して樹脂の状態を確認したところ、粒子の結晶は溶解して半透明状になっていた。混練部のスクリュー半径が最大(R)である位置におけるずり速度(G)は3140(1/sec)であった。
[Comparative example BR> Q]
Resin in the same manner as in Example 1 except that all kneading elements in Example 1 were changed to kneading elements having R 1 = 11 mm, R 2 = 14.9 mm, and length of 30 mm, and the screw rotation speed was set to 100 rpm. Was extruded and the strands were collected. The current value at this time was 64 A, the resin temperature was 252 ° C., the [η] of the strand was 3.1 dl / g, and the surface roughness R was 9 μm. Compared with the example, the current value is high. When the barrel vent port before the kneading closest to the hopper port was opened and the state of the resin was confirmed, the crystal of the particles was dissolved and became translucent. The shear rate (G) at the position where the screw radius of the kneading part was the maximum (R 2 ) was 3140 (1 / sec).

〔比較例3〕
実施例1において、押出機を株式会社プラコー社製プラコー65(1軸押出機、バレル直径65mmφ、L/D=28、スクリュー形状はフルフライト)とし、押出量を500g/min、スクリュー回転速度を300rpmで押出し、ストランドを採取した。このときのストランドの[η]は3.1dl/g、表面粗さRは110μmであった。実施例と比較して表面粗さが大きい。
[Comparative Example 3]
In Example 1, the extruder is Plako 65 (single screw extruder, barrel diameter 65 mmφ, L / D = 28, screw shape is full flight) manufactured by Plako Co., Ltd., the extrusion rate is 500 g / min, and the screw rotation speed is The strand was extracted by extrusion at 300 rpm. At this time, the strand [η] was 3.1 dl / g, and the surface roughness R was 110 μm. The surface roughness is large compared to the examples.

〔比較例4〕
実施例1において、混練部ニーディングの直後の逆ネジエレメントを、長さ20mmで1
ピッチの順ネジスクリューエレメント2個に変更した以外は、実施例1と同様にして樹脂
を押し出し、ストランドを採取した。このときの電流値は49A、樹脂温度は247℃、ストランドの[η]は3.1dl/g、表面粗さRは58μmであった。実施例と比較して表面粗さが大きい。なお、最もホッパー口に近いニーディングよりも手前のバレルベント口を開放して樹脂の状態を確認したところ、粒子の結晶は溶解して半透明状になっていた。
[Comparative Example 4]
In Example 1, the reverse screw element immediately after kneading of the kneading part is 1 mm in length of 20 mm.
The resin was extruded and strands were collected in the same manner as in Example 1, except that the pitch was changed to two forward screw elements. At this time, the current value was 49 A, the resin temperature was 247 ° C., the [η] of the strand was 3.1 dl / g, and the surface roughness R was 58 μm. The surface roughness is large compared to the examples. When the barrel vent port before the kneading closest to the hopper port was opened and the state of the resin was confirmed, the crystal of the particles was dissolved and became translucent.

〔参考例1〕
三井化学(株)社製ハイゼックス7700Mのペレットを用いて測定した表面粗さRは
10μmだった。なお、ハイゼックス7700MのGPC曲線をピーク分離して得られた
、高分子量側の山のMw/Mnは5.3である。
[Reference Example 1]
The surface roughness R measured using Mitsumi Chemical Co., Ltd. Hi-Zex 7700M pellets was 10 μm. In addition, Mw / Mn of the peak on the high molecular weight side obtained by peak-separating the GPC curve of Hi-Zex 7700M is 5.3.

低い電力消費で、分子分解を生じることなく、均一化された樹脂を製造することが可能
であることから、特に触媒として例えばメタロセン触媒のように触媒の能力として単段重
合品分子量分布が狭いような触媒を用いて連続多段重合にて製造されたポリエチレン粒子
を造粒(ペレット化)する工程において、本発明の2軸押出機または2軸混練機を用いる
ことができる。
Since it is possible to produce a homogenized resin with low power consumption and without molecular decomposition, the molecular weight distribution of a single-stage polymer product is narrow as the ability of the catalyst, such as a metallocene catalyst, in particular. In the step of granulating (pelletizing) polyethylene particles produced by continuous multistage polymerization using a simple catalyst, the twin-screw extruder or twin-screw kneader of the present invention can be used.

バレルとスクリューBarrel and screw フルフライトスクリューFull flight screw GPCピーク分離GPC peak separation GPCチャートGPC chart スクリューアレンジ概略Outline of screw arrangement ニーディング(実施例1)Kneading (Example 1) ニーディング(実施例1)Kneading (Example 1) ニーディング(実施例2)Kneading (Example 2) ニーディング(実施例3)Kneading (Example 3) ニーディング(比較例1)Kneading (Comparative Example 1)

符号の説明Explanation of symbols

1 ホッパー
2 混練部(ニーディング)
3 逆ネジスクリュー
4 フルフライトスクリュー
1 Hopper 2 Kneading section (kneading)
3 Reverse screw 4 Full flight screw

Claims (4)

混練部の最小スクリュー半径(R)とバレル半径(R)の比〔R/R〕が0.
70〜0.80の範囲にあり、混練部の最大スクリュー半径(R)とバレル半径(R
)の比〔R/R〕が0.70〜0.94の範囲にあり、混練部の最小スクリュー半径
(R)と混練部の最大スクリュー半径(R)の比〔R/R〕が0.78〜1.0
0の範囲にあり、混練部スクリューの直後に逆ネジやシールリングのようにスクリューに
樹脂を逆流させるような形状を有するか、ゲートのようにバレルに樹脂を逆流させるよう
な形状を有していることを特徴とする2軸押出機または2軸混練機。
The ratio [R 1 / R 0 ] of the minimum screw radius (R 1 ) and barrel radius (R 0 ) of the kneading part is 0.
70 to 0.80, the maximum screw radius (R 2 ) and barrel radius (R 0 ) of the kneading part.
) Ratio [R 2 / R 0 ] is in the range of 0.70 to 0.94, and the ratio of the minimum screw radius (R 1 ) of the kneading part to the maximum screw radius (R 2 ) of the kneading part [R 1 / R 2] is 0.78 to 1.0
It is in the range of 0 and has a shape that causes the resin to flow back to the screw just like the reverse screw or seal ring immediately after the kneading part screw, or a shape that causes the resin to flow back to the barrel like a gate. A twin-screw extruder or a twin-screw kneader.
混練部の手前で樹脂の結晶成分を融解させることを特徴とする請求項1に記載の2軸押出
機または2軸混練機。
The twin-screw extruder or the twin-screw kneader according to claim 1, wherein the resin crystal component is melted before the kneading section.
請求項1または請求項2に記載の2軸押出機または2軸混練機を用いて、連続多段重合で
製造されたポリエチレンを造粒する方法。
A method of granulating polyethylene produced by continuous multistage polymerization using the twin-screw extruder or twin-screw kneader according to claim 1 or 2.
極限粘度[η]が1.5〜4.0(dl/g)の範囲にあり、GPCを用いて測定した分子
量分布曲線を2つの山にピーク分離したときに、高分子量側にあるピークのMw(重量平
均分子量)/Mn(数平均分子量)が、1.7〜3.5の範囲を満たし、低分子量側のピ
ークのMw(重量平均分子量)/高分子量側のピークのMw(重量平均分子量)が0.0
1〜0.15の範囲にあるポリエチレンであることを特徴とする請求項3記載のポリエチ
レンの造粒方法。
When the intrinsic viscosity [η] is in the range of 1.5 to 4.0 (dl / g) and the molecular weight distribution curve measured using GPC is separated into two peaks, the peak on the high molecular weight side Mw (weight average molecular weight) / Mn (number average molecular weight) satisfies the range of 1.7 to 3.5, Mw (weight average molecular weight) of low molecular weight side peak / Mw (weight average of high molecular weight side peak) (Molecular weight) is 0.0
The method for granulating polyethylene according to claim 3, wherein the polyethylene is in the range of 1 to 0.15.
JP2003409912A 2003-10-17 2003-12-09 Twin screw extruder or twin screw kneader Expired - Fee Related JP4307970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003409912A JP4307970B2 (en) 2003-10-17 2003-12-09 Twin screw extruder or twin screw kneader

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003358101 2003-10-17
JP2003409912A JP4307970B2 (en) 2003-10-17 2003-12-09 Twin screw extruder or twin screw kneader

Publications (2)

Publication Number Publication Date
JP2005138567A JP2005138567A (en) 2005-06-02
JP4307970B2 true JP4307970B2 (en) 2009-08-05

Family

ID=34702955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003409912A Expired - Fee Related JP4307970B2 (en) 2003-10-17 2003-12-09 Twin screw extruder or twin screw kneader

Country Status (1)

Country Link
JP (1) JP4307970B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7763341B2 (en) 2004-01-23 2010-07-27 Century-Board Usa, Llc Filled polymer composite and synthetic building material compositions
AU2005267399A1 (en) 2004-06-24 2006-02-02 Century-Board Usa, Llc Continuous forming apparatus for three-dimensional foamed products
US7794224B2 (en) 2004-09-28 2010-09-14 Woodbridge Corporation Apparatus for the continuous production of plastic composites
US20070222105A1 (en) 2006-03-24 2007-09-27 Century-Board Usa, Llc Extrusion of polyurethane composite materials
US9481759B2 (en) 2009-08-14 2016-11-01 Boral Ip Holdings Llc Polyurethanes derived from highly reactive reactants and coal ash
US8846776B2 (en) 2009-08-14 2014-09-30 Boral Ip Holdings Llc Filled polyurethane composites and methods of making same
WO2013052732A1 (en) 2011-10-07 2013-04-11 Boral Industries Inc. Inorganic polymer/organic polymer composites and methods of making same
WO2014168633A1 (en) 2013-04-12 2014-10-16 Boral Ip Holdings (Australia) Pty Limited Composites formed from an absorptive filler and a polyurethane
JP6198666B2 (en) 2014-04-22 2017-09-20 宏平 澤 Kneading equipment
US10138341B2 (en) 2014-07-28 2018-11-27 Boral Ip Holdings (Australia) Pty Limited Use of evaporative coolants to manufacture filled polyurethane composites
WO2016022103A1 (en) 2014-08-05 2016-02-11 Amitabha Kumar Filled polymeric composites including short length fibers
WO2016118141A1 (en) 2015-01-22 2016-07-28 Boral Ip Holdings (Australia) Pty Limited Highly filled polyurethane composites
US10625024B2 (en) * 2015-02-10 2020-04-21 Sanofi-Aventis Deutschland Gmbh Magnifying device for a medicament injection device
WO2016195717A1 (en) 2015-06-05 2016-12-08 Boral Ip Holdings (Australia) Pty Limited Filled polyurethane composites with lightweight fillers
JP6430902B2 (en) * 2015-07-06 2018-11-28 日本スピンドル製造株式会社 Closed kneader
US20170267585A1 (en) 2015-11-12 2017-09-21 Amitabha Kumar Filled polyurethane composites with size-graded fillers

Also Published As

Publication number Publication date
JP2005138567A (en) 2005-06-02

Similar Documents

Publication Publication Date Title
JP4307970B2 (en) Twin screw extruder or twin screw kneader
RU2629120C2 (en) Bimodal polyethylene resins of high density and composition with improved properties, and ways of their production and application
CN1030457C (en) Process for making propylene polymer with free-end long chain branching and use thereof
EP2997054B2 (en) Peroxide treated metallocene-based polyolefins with improved melt strength
ES2807621T3 (en) Polymers with improved processability for piping applications
JP2007522305A (en) Control of catalyst particle size
HUE030645T2 (en) Process for preparing polyolefins and use of antifouling agents therein
JP2019104871A (en) Ultrahigh molecular weight polyethylene powder and ultrahigh molecular weight polyethylene fiber
US7767767B2 (en) Modification of polyethylene with ozone
KR20010082275A (en) Ethylene alpha-olefin elastomeric polymer compositions having improved extrusion processibility
EP2598541B1 (en) Method for producing polyethylene
ITMI982774A1 (en) PROCEDURE FOR REDUCING THE MOLECULAR WEIGHT OF ETHYLENE ETHERPOLYMIC COPOLYMERS.
EP3390524B1 (en) Polyolefin compositions
JP2009528424A (en) Process for preparing high melt strength polypropylene
RU2540974C2 (en) Olefin polymerisation method
US10577440B2 (en) Radically coupled resins and methods of making and using same
CN114507309B (en) Polyethylene resin for secondary battery separator, method for manufacturing the same, and separator using the same
US7601787B2 (en) Ethylene polymerization process
JP7429803B2 (en) Polyethylene powder and molded bodies
JP2020521858A (en) Non-adiabatic two-phase (liquid-liquid) polymerization process
Nooijen Ziegler/Natta catalysts in particle form ethylene polymerization: The effect of polymerization start-up on catalyst activity and morphology of the produced polymer
EP1231238A1 (en) Multimodal polyethylene resin composition for fibre supporting elements for fibre optic cables
JP3768327B2 (en) Ethylene polymer
KR102263236B1 (en) Polyethylene resin for secondary battery separator and its manufacturing method
MX2012006791A (en) Method for improving ethylene polymerization reaction.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060612

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090430

R150 Certificate of patent or registration of utility model

Ref document number: 4307970

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees