JP4307108B2 - Method for producing orthobenzidine compounds - Google Patents

Method for producing orthobenzidine compounds Download PDF

Info

Publication number
JP4307108B2
JP4307108B2 JP2003055698A JP2003055698A JP4307108B2 JP 4307108 B2 JP4307108 B2 JP 4307108B2 JP 2003055698 A JP2003055698 A JP 2003055698A JP 2003055698 A JP2003055698 A JP 2003055698A JP 4307108 B2 JP4307108 B2 JP 4307108B2
Authority
JP
Japan
Prior art keywords
group
substituent
compound
orthobenzidine
structure represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003055698A
Other languages
Japanese (ja)
Other versions
JP2004262863A (en
Inventor
清 本田
誠一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003055698A priority Critical patent/JP4307108B2/en
Publication of JP2004262863A publication Critical patent/JP2004262863A/en
Application granted granted Critical
Publication of JP4307108B2 publication Critical patent/JP4307108B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、特定の構造を有するオルトベンジジン化合物の製造法に関する。
【0002】
本発明の製造法により製造される特定の構造のオルトベンジジン化合物は、医薬、農薬の中間体や、有機染料、有機顔料といった色素類の中間体、不斉合成用触媒、または、有機エレクトロルミネッセンス材料、電子写真における有機電子写真感光体の有機光導電性材料の中間体として有用である。
【0003】
【従来の技術】
ヒドラゾベンゼン化合物からベンジジン化合物を合成する方法としては、ヒドラゾベンゼン化合物を塩酸などのプロトン酸の存在下で転位反応させるベンジジン転位(非特許文献1参照)を用いた方法が知られている。
【0004】
しかし、この方法では、パラベンジジン化合物は得られるものの、オルトベンジジン化合物は全く得られないか、もしくは、得られたとしても極微量である。また、ベンジジン転位の結合位置となる4−,4’−位(窒素原子のパラ位)に置換基を導入したヒドラゾベンゼン化合物を出発物質にして、上述のプロトン酸を触媒としたベンジジン転位を適用したとしても、C−N結合が新たに生成したセミジン化合物、または、ヒドラゾベンゼン化合物が分解したアゾ化合物が生成するだけで、本発明の目的化合物であるオルトベンジジン化合物は全く得られない。
【0005】
また、オルトベンジジン化合物を得るための別の方法としては、アリールボロン酸化合物とハロゲン化アリール化合物とをカップリングさせるSuzuki反応(非特許文献2)を用いた方法や、ヨウ素化アリール化合物を銅触媒存在下、高温で加熱するUllmann反応(非特許文献3)などのビフェニル化合物を得るカップリング反応を応用する方法も考えられるが、本発明の目的化合物のような、構造中にアミノ基を有するベンジジン化合物を合成する場合には、アミノ基が反応したアリールアミンが生成するため、オルトベンジジン化合物は得られない。
【0006】
さらに、上述のカップリング反応を応用して、オルトベンジジン化合物の前駆体化合物になり得るニトロ化合物やフェノール化合物を得た後、アミノ基に置換する方法も考えられるが、カップリング反応の原料となるアリールボロン酸化合物やハロゲン化アリール化合物の合成が困難であり、実質的に合成方法として適用できない。
【0007】
さらに、ビフェニル化合物のオルト位にヨウ素原子を直接導入した後、Ullmann反応を用いてアミノ基を導入する方法もあるが、原料とするヨウ素化合物の合成収率が低いこと、および、Ullmann反応自体の収率も低いため、全収率が極端に低くなり、実用的ではないという問題点があった。
【0008】
【非特許文献1】
大有機化学(朝倉書店:1959年Vol.16), p.517〜518
【非特許文献2】
TCLメール(東京化成工業(株):2000/1 No.105), p.18〜22
【非特許文献3】
大有機化学(朝倉書店:1959年Vol.16), p.510〜513
【0009】
【発明が解決しようとする課題】
本発明は、従来の製造法では合成が困難であったオルトベンジジン化合物を、容易かつ高収率で製造する方法を提供することである。
【0010】
【課題を解決するための手段】
本発明は、下記式(1)で示される構造の4−,4’−位に置換基を有するヒドラゾベンゼン化合物を、非プロトン性のルイス酸性を示す反応剤の存在下で転位反応させることにより、下記式(2)で示される構造のオルトベンジジン化合物を合成するオルトベンジジン化合物の製造法であって、
該反応剤が、三塩化アルミニウム、三臭化アルミニウム、三塩化リン、三臭化リン、三塩化鉄、三臭化鉄、トリメチルシリルクロリドまたはトリ−tert−ブチルスズであることを特徴とするオルトベンジジン化合物の製造法である。
【0011】
【外3】
【0012】
【外4】
【0013】
(式(1)および(2)中、RおよびRは、それぞれ独立に、置換基を有するアルキル基(ただし、該置換基を有するアルキル基の置換基は、アルキル基、アルコキシ基、ニトロ基、シアノ基、または、ハロゲン原子である。)もしくは無置換のアルキル基、置換基を有するアルコキシ基(ただし、該置換基を有するアルコキシ基の置換基は、アルキル基、アルコキシ基、ニトロ基、シアノ基、または、ハロゲン原子である。)もしくは無置換のアルコキシ基、置換基を有するアラルキル基(ただし、該置換基を有するアラルキル基の置換基は、アルキル基、アルコキシ基、ニトロ基、シアノ基、または、ハロゲン原子である。)もしくは無置換のアラルキル基、置換基を有するアリール基(ただし、該置換基を有するアリール基の置換基は、アルキル基、アルコキシ基、ニトロ基、シアノ基、または、ハロゲン原子である。)もしくは無置換のアリール基、または、ハロゲン原子を示し、RおよびRは、それぞれ、水素原子を示す。
本発明によれば、窒素原子のパラ位に置換基を有するオルトベンジジン化合物が高選択的、かつ高収率で得られる。反応機構は明確ではないが、非プロトン性のルイス酸性を示す反応剤の中心原子(金属原子、リン原子、ケイ素原子など)に、上記式(1)で示される構造のヒドラゾベンゼン化合物の2つ窒素原子の孤立電子対が配位し、歪みの大きな3員環構造を含む中間体を形成した後、より安定した構造になるために転位反応を起こし、オルト位での結合を形成したオルトベンジジン化合物が生成するものと考えている。
【0014】
【発明の実施の形態】
上記式(1)、(2)中R、Rのアルキル基としては、メチル基、エチル基、n−プロピル基、t−ブチル基などが挙げられ、アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基などが挙げられ、アラルキル基としては、ベンジル基、フェネチル基などが挙げられ、アリール基としては、フェニル基、ナフチル基などが挙げられ、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子などが挙げられる。
【0015】
また、上記各基が有してもよい置換基としては、メチル、エチル基などのアルキル基や、メトキシ、エトキシなどのアルコキシ基や、ニトロ基や、シアノ基や、フッ素原子、塩素原子、臭素原子などのハロゲン原子が挙げられる。
【0016】
以下に、上記式(1)で示される構造の4−,4’−位に置換基を有するヒドラゾベンゼン化合物の具体例を示すが、本発明はこれら具体例に限定されるものではない(ただし、下記式(1−11)で示される構造のヒドラゾベンゼン化合物は、上記式(1)で示される構造の4−,4’−位に置換基を有するヒドラゾベンゼン化合物の具体例ではない。)
【0017】
【外5】
【0018】
【外6】
【0019】
次に、上記式(2)で示される構造のオルトベンジジン化合物の具体例を示すが、本発明はこれら具体例に限定されるものではない(ただし、下記式(2−11)で示される構造のヒドラゾベンゼン化合物は、上記式(2)で示される構造のオルトベンジジン化合物の具体例ではない。)
【0020】
【外7】
【0021】
【外8】
【0022】
本発明の製造法において用いられる反応剤は、非プロトン性のルイス酸性を示すものであればよく、特には、その構造中に、金属原子、リン原子またはケイ素原子を含む反応剤が好ましい。そのような反応剤としては、例えば、三塩化アルミニウム、三臭化アルミニウム、三塩化リン、三臭化リン、三塩化鉄、三臭化鉄、トリメチルシリルクロリド、トリ−tert−ブチルスズなどが挙げられる。
【0023】
また、非プロトン性のルイス酸性を示す反応剤の使用量は、出発物質である上記式(1)で示される構造の4−,4’−位に置換基を有するヒドラゾベンゼン化合物に対して、0.01〜10当量であることが好ましく、0.05〜5当量であることがより好ましく、0.1〜2当量であることがより一層好ましい。
【0024】
本発明の製造法に用いられる溶媒については、特に限定はないが、トルエン、ヘキサン、アセトニトリル、ジメチルホルムアミド、ジメチルスルホキシド、ジクロルメタン、クロロホルムなどの非プロトン性溶媒が好ましい。
【0025】
反応温度に関しては、ハンドリングの点で、−100〜150℃の範囲で行うことが好ましく、10〜50℃の範囲で反応を行うことがより好ましい。
【0026】
本発明の製造法は、常圧下、空気中で製造することができる方法であるが、窒素あるいはアルゴンといった不活性ガス化下で製造を行ってもよい。
【0027】
反応終了後、常法で処理することにより目的の化合物を得ることができる。
【0028】
上記式(1)で示される構造の4−,4’−位に置換基を有するヒドラゾベンゼン化合物は、例えば、所望の置換基をパラ位に有するニトロベンゼン誘導体を原料として、エタノール溶媒中で、水酸化ナトリウム水溶液、水酸化カリウム水溶液、亜鉛、アルミニウムなどの触媒存在下で反応させることで、収率良く得ることができる。
【0029】
上記式(1)で示される構造の4−,4’−位に置換基を有するヒドラゾベンゼン化合物の合成例を以下に示す。
【0030】
(合成例1)
・上記式(1−1)で示される構造のヒドラゾベンゼン化合物(ヒドラゾトルエン)の合成
4−ニトロトルエン(13.0g/94.8mmol)を300mlフラスコ中、エタノール(100ml)に溶解し、さらに水酸化ナトリウム水溶液(水酸化ナトリウム16.6gと水40ml)を加えて攪拌した。その後、亜鉛(15.2g/0.22mol)を加え、超音波により脱気した。その後、超音波に掛けながら4時間還流した。その後、室温まで冷却し、さらに亜鉛(25.0g/0.36mol)、エタノール(90ml)、水酸化ナトリウム水溶液(水酸化ナトリウム16.6gと水40ml)を加え、再び超音波に掛けながら2時間還流した。
【0031】
反応溶液を吸引濾過し、濾液に含まれるヒドラゾトルエンを熱したベンゼンで抽出した。ベンゼンを除去し、ヒドラゾトルエン(6.23g/29.4mmol)を得た。
【0032】
・ヒドラゾトルエン
H−NMR(CDCl/TMS)δ=1.26(2H,s),2.42(6H,s),7.30(4H,d,J=8.9Hz),7.81(4H,d,J=8.9Hz)
IR:(KBr)ν=3334,3049,3021,2958,2869,1603,1505,749cm−1
m.p.:123.0〜126.7℃
収率:65%
(合成例2)
・上記式(1−3)で示される構造のヒドラゾベンゼン化合物(ヒドラゾアニソール)の合成
・上記式(1−6)で示される構造のヒドラゾベンゼン化合物(4,4’−ジブロモヒドラゾベンゼン)の合成
・上記式(1−7)で示される構造のヒドラゾベンゼン化合物(4−メトキシ−4’−ブロモヒドラゾベンゼン)の合成
4−ニトロアニソール(8.0g/0.52mmol)と4−ブロモニトロベンゼン(10.6g/0.52mmol)を300mlフラスコ中、エタノール(100ml)に溶解し、さらに水酸化ナトリウム水溶液(水酸化ナトリウム16.6gと水40ml)を加え攪拌した。その後、アルミニウム(15.2g0.22mol)を加え、超音波により脱気した。その後、超音波に掛けながら4時間還流した。その後、室温まで冷却し、さらにアルミニウム(25.0g/0.36mol),エタノール(90ml),水酸化ナトリウム水溶液(水酸化ナトリウム16.6gと水40ml)を加え、再び超音波に掛けながら2時間還流した。
【0033】
反応溶液を吸引濾過し、濾液に含まれるヒドラゾトルエンを熱したベンゼンで抽出した。ベンゼンを除去し、カラムクロマトグラフィー(SiO、100倍、ヘキサン:酢酸エチル=9:1)により精製し、ヒドラゾアニソール、4,4’−ジブロモヒドラゾベンゼン、4−メトキシ−4’−ブロモヒドラゾベンゼンを1:1:2の割合で得た。
【0034】
・ヒドラゾアニソール
H−NMR(CDCl/TMS)δ=1.18(2H,s),3.80(6H,s),6.92(4H,d,J=8.9Hz),7.80(4H,d,J=8.9Hz)
IR:(KBr)ν=3301,3084,3034,3014,2952,2835,1608,1503,1236,1031,806cm−1
m.p.:199.5〜202.6℃
収率:22%
・4,4’−ジブロモヒドラゾベンゼン
H−NMR(CDCl/TMS)δ=4.84(2H,s),6.72(4H,d,J=8.9Hz),7.34(4H,d,J=8.9Hz)
IR:(KBr)ν=3241,3070,1591,1069,823,809cm−1
収率:23%
・4−メトキシ−4’−ブロモヒドラゾベンゼン
H−NMR(CDCl/TMS)δ=3.77(3H,s),4.66(2H,bs)6.7〜6.8(6H,m,),7.33(2H,m)
IR:(KBr)ν=3330,2954,2835,1588,1230,1070,1033,824cm−1
m.p.225.2〜228.1℃
収率:46%
その他の上記式(1)で示される構造の4−,4’−位に置換基を有するヒドラゾベンゼン化合物も、合成例1、2と同様にして合成できる。
【0035】
【実施例】
以下に、上記式(1)で示される構造の4−,4’−位に置換基を有するヒドラゾベンゼン化合物から上記式(2)で示される構造のオルトベンジジン化合物を合成する実施例を示すが、本発明はこれら実施例に限定されるものではない。
【0036】
(実施例1)
・上記式(2−1)で示される構造のオルトベンジジン化合物(4,4’−ジメチルオルトベンジジン)の合成
上記式(1−1)で示される構造のヒドラゾベンゼン化合物(ヒドラゾトルエン)2.0g(9.42mmol)を100mlフラスコ中、アルゴン置換し、ヘキサン50ml(溶媒)に溶解し、攪拌した。そこに、非プロトン性のルイス酸性を示す反応剤としてPBr(3.77mmol/ml:0.4当量)を滴下し、1日攪拌した。その後、溶媒を除去し、炭酸水素ナトリウム水溶液でクエンチ、ジエチルエーテルで抽出をした。その後、抽出溶媒を除去し、カラムクロマトグラフィー(SiO、100倍、ヘキサン:酢酸エチル=9:1)により精製し、上記式(2−1)で示される構造のオルトベンジジン化合物(4,4’−ジメチルオルトベンジジン)を得た。
H−NMR(CDCl/TMS)δ=1.25(2H,s),2.64(6H,s),7.66(2H,d,J=8.9Hz),7.97(2H,s),8.11(2H,d,J=8.9Hz)
IR:(KBr)ν=3435,3051,2924,2853,1638,1514,1356,803cm−1
m.p.:242.1〜245.9℃
収率:71%
(実施例2〜10および参考例11)
実施例1において、出発原料を表1に示すヒドラゾベンゼン化合物に変更した以外は、実施例1と同様にして、表1に示すオルトベンジジン化合物を合成した。
【0037】
(実施例12〜16)
実施例1において、非プロトン性のルイス酸性を示す反応剤の種類・量および溶媒を表1に示すとおりに変更した以外は、それぞれ実施例1と同様にして、表1に示すオルトベンジジン化合物を合成した。
【0038】
実施例1〜10、参考例11および実施例12〜16の結果を表1に示す。
【0039】
【表1】
【0040】
(比較例1)
実施例1において、非プロトン性のルイス酸性を示す反応剤であるPBrを、プロトン性の酸である塩酸に変更した以外は、実施例1と同様にして反応させた。しかし、目的化合物である上記式(2−1)で示される構造のオルトベンジジン化合物(4,4’−ジメチルオルトベンジジン)は全く得られなかった。
【0041】
(比較例2)
3,3’−ジメチルビフェニル3.6g(19.8mmol)、ヨウ素4.0g(31.6mmol)、過ヨウ素酸1.8g(7.9mmol)、氷酢酸20ml、水5mlを、ジムロート型冷却管、温度計、攪拌機を装着した100ml三つ口フラスコに入れ、80℃で2時間過熱攪拌した。
【0042】
反応終了後、生成物をトルエンで抽出した後、有機層を10%チオ硫酸ナトリウム水溶液、10%炭酸水素ナトリウム水溶液、水の順で、有機層を洗浄した。
【0043】
その後、トルエンを留去し、カラムクロマトグラフィーを用いて、精製を行い、3,3’−ジメチル−6,6’−ヨードビフェニル1.2g(収率14.0%)を得た。
【0044】
次に、3,3’−ジメチル−6,6’−ヨードビフェニル1.2g(2.76mmol)、アセトアミド0.33g(5.52mmol)、銅紛0.88g(13.8mmol)、炭酸カリウム0.76g(5.52mmol)およびオルトジクロロベンゼン10mlを入れ、オイルバスにて、8時間加熱還流を行った(Ullmann反応)。
【0045】
放冷後、トルエン20mlを加えた後、濾過で触媒を除いた。
【0046】
さらに、得られた粗反応物にナトリウムメチキシドを加え、2時間加熱還流を行った。反応液を水に注いだ後、トルエンで抽出し、有機層を水洗した。その後、有機層を分取し、トルエンを濃縮した後、カラムクロマトグラフィーを用いて、目的物を分取し、上記式(2−1)で示される構造のオルトベンジジン化合物(4,4’−ジメチルオルトベンジジン)0.1gを得た(収率17.1%)。
【0047】
実施例ではいずれの場合も、上記式(2)で示される構造のオルトベンジジン化合物が収率良く得られているが、従来の方法(比較例1:ベンジジン転位法、比較例2:Ullmann反応による合成法)を使用した場合には、目的物が全く得られない、または、収率が極めて低いという結果であった。
【0048】
以上のことから、本発明の有用性は明らかである。
【0049】
【発明の効果】
本発明によれば、従来の製造法では合成が困難であったオルトベンジジン化合物を、容易かつ高収率で製造することができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an orthobenzidine compound having a specific structure.
[0002]
The orthobenzidine compound having a specific structure produced by the production method of the present invention includes an intermediate for pharmaceuticals, agricultural chemicals, an intermediate for pigments such as organic dyes and organic pigments, a catalyst for asymmetric synthesis, or an organic electroluminescent material. It is useful as an intermediate for organic photoconductive materials of organic electrophotographic photoreceptors in electrophotography.
[0003]
[Prior art]
As a method for synthesizing a benzidine compound from a hydrazobenzene compound, a method using a benzidine rearrangement (see Non-Patent Document 1) in which a hydrazobenzene compound is rearranged in the presence of a protonic acid such as hydrochloric acid is known.
[0004]
However, in this method, although a parabenzidine compound is obtained, an orthobenzidine compound is not obtained at all, or even if it is obtained, it is a very small amount. Also, benzidine rearrangement using the above-mentioned protonic acid as a catalyst, starting from a hydrazobenzene compound having a substituent introduced at the 4-, 4'-position (para-position of the nitrogen atom), which is the bonding position of the benzidine rearrangement, is performed. Even if it is applied, only a semizine compound in which a C—N bond is newly formed or an azo compound in which a hydrazobenzene compound is decomposed is formed, and an orthobenzidine compound which is the target compound of the present invention cannot be obtained at all.
[0005]
Further, as another method for obtaining an orthobenzidine compound, a method using a Suzuki reaction (Non-patent Document 2) for coupling an arylboronic acid compound and a halogenated aryl compound, or an iodinated aryl compound as a copper catalyst. A method of applying a coupling reaction to obtain a biphenyl compound such as the Ullmann reaction (Non-patent Document 3) heated at high temperature in the presence is also conceivable. However, a benzidine having an amino group in its structure, such as the target compound of the present invention. When synthesizing a compound, an orthobenzidine compound cannot be obtained because an arylamine reacted with an amino group is produced.
[0006]
Furthermore, after applying the above coupling reaction to obtain a nitro compound or phenol compound that can be a precursor compound of an orthobenzidine compound, a method of substituting it with an amino group is also conceivable, but it becomes a raw material for the coupling reaction. It is difficult to synthesize aryl boronic acid compounds and halogenated aryl compounds, and the method cannot be practically applied as a synthesis method.
[0007]
Furthermore, after introducing an iodine atom directly into the ortho position of the biphenyl compound, there is also a method of introducing an amino group using the Ullmann reaction, but the synthesis yield of the iodine compound as a raw material is low, and the Ullmann reaction itself Since the yield was low, the overall yield was extremely low, which was not practical.
[0008]
[Non-Patent Document 1]
Tai Organic Chemistry (Asakura Shoten: 1959 Vol. 16), p. 517-518
[Non-Patent Document 2]
TCL Mail (Tokyo Chemical Industry Co., Ltd .: 2000/1 No. 105), p. 18-22
[Non-Patent Document 3]
Tai Organic Chemistry (Asakura Shoten: 1959 Vol. 16), p. 510-513
[0009]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing an orthobenzidine compound, which has been difficult to synthesize by a conventional production method, easily and in a high yield.
[0010]
[Means for Solving the Problems]
In the present invention, a hydrazobenzene compound having a substituent at the 4-, 4′-position of the structure represented by the following formula (1) is rearranged in the presence of a reagent having aprotic Lewis acidity. A method for producing an orthobenzidine compound for synthesizing an orthobenzidine compound having a structure represented by the following formula (2) :
An orthobenzidine compound characterized in that the reactant is aluminum trichloride, aluminum tribromide, phosphorus trichloride, phosphorus tribromide, iron trichloride, iron tribromide, trimethylsilyl chloride or tri-tert-butyltin . It is a manufacturing method.
[0011]
[Outside 3]
[0012]
[Outside 4]
[0013]
(In the formulas (1) and (2), R 1 and R 2 are each independently an alkyl group having a substituent (provided that the substituent of the alkyl group having the substituent is an alkyl group, an alkoxy group, a nitro group) Group, a cyano group, or a halogen atom.) Or an unsubstituted alkyl group or an alkoxy group having a substituent (provided that the substituent of the alkoxy group having the substituent includes an alkyl group, an alkoxy group, a nitro group, A cyano group or a halogen atom.) Or an unsubstituted alkoxy group, or an aralkyl group having a substituent (however, the substituent of the aralkyl group having the substituent is an alkyl group, an alkoxy group, a nitro group, or a cyano group. , or a halogen atom.) or unsubstituted aralkyl group, an aryl group having a substituent (provided that location aryl groups having the substituent Group is an alkyl group, an alkoxy group, a nitro group, a cyano group, or a halogen atom.) Or unsubstituted aryl group, or a halogen atom, R 3 and R 4 are each indicates hydrogen atom It is.)
According to the present invention, an orthobenzidine compound having a substituent at the para-position of a nitrogen atom can be obtained with high selectivity and high yield. Although the reaction mechanism is not clear, 2 of the hydrazobenzene compound having the structure represented by the above formula (1) is attached to the central atom (metal atom, phosphorus atom, silicon atom, etc.) of the aprotic Lewis acid reactive agent. After the formation of an intermediate containing a highly distorted three-membered ring structure coordinated by a lone pair of nitrogen atoms, a rearrangement reaction was performed to form a more stable structure, and an ortho-bond formed It is believed that a benzidine compound is formed.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
In the above formulas (1) and (2), examples of the alkyl group represented by R 1 and R 2 include a methyl group, an ethyl group, an n-propyl group, and a t-butyl group. Examples of the alkoxy group include a methoxy group and an ethoxy group. Groups, propoxy groups, etc., aralkyl groups include benzyl groups, phenethyl groups, etc., aryl groups include phenyl groups, naphthyl groups, etc., halogen atoms include fluorine atoms, chlorine atoms, A bromine atom etc. are mentioned.
[0015]
In addition, the substituents that each of the above groups may have include alkyl groups such as methyl and ethyl groups, alkoxy groups such as methoxy and ethoxy, nitro groups, cyano groups, fluorine atoms, chlorine atoms, bromine And halogen atoms such as atoms.
[0016]
Specific examples of the hydrazobenzene compound having a substituent at the 4-, 4′-position of the structure represented by the above formula (1) are shown below, but the present invention is not limited to these specific examples ( However, the hydrazobenzene compound having a structure represented by the following formula (1-11) is a specific example of a hydrazobenzene compound having a substituent at the 4-, 4′-position of the structure represented by the above formula (1). No.)
[0017]
[Outside 5]
[0018]
[Outside 6]
[0019]
Next, specific examples of the orthobenzidine compound having the structure represented by the above formula (2) will be shown, but the present invention is not limited to these specific examples (however, the structure represented by the following formula (2-11)). The hydrazobenzene compound is not a specific example of an orthobenzidine compound having a structure represented by the above formula (2) .
[0020]
[Outside 7]
[0021]
[Outside 8]
[0022]
The reactant used in the production method of the present invention is not particularly limited as long as it exhibits aprotic Lewis acidity. In particular, a reactant containing a metal atom, phosphorus atom or silicon atom in its structure is preferred. Examples of such a reactive agent include aluminum trichloride, aluminum tribromide, phosphorus trichloride, phosphorus tribromide, iron trichloride, iron tribromide, trimethylsilyl chloride, tri-tert-butyltin and the like.
[0023]
In addition, the amount of the aprotic Lewis acid-reactive agent used is relative to the hydrazobenzene compound having a substituent at the 4-, 4′-position of the structure represented by the above formula (1) as the starting material. 0.01 to 10 equivalents, more preferably 0.05 to 5 equivalents, and even more preferably 0.1 to 2 equivalents.
[0024]
Although there is no limitation in particular about the solvent used for the manufacturing method of this invention, Aprotic solvents, such as toluene, hexane, acetonitrile, dimethylformamide, dimethyl sulfoxide, dichloromethane, chloroform, are preferable.
[0025]
Regarding reaction temperature, it is preferable to carry out in the range of -100-150 degreeC, and it is more preferable to react in the range of 10-50 degreeC from the point of handling.
[0026]
The production method of the present invention is a method that can be produced in air at normal pressure, but the production may be carried out under inert gasification such as nitrogen or argon.
[0027]
After completion of the reaction, the desired compound can be obtained by treating in a conventional manner.
[0028]
The hydrazobenzene compound having a substituent at the 4-, 4′-position of the structure represented by the above formula (1) is, for example, a nitrobenzene derivative having a desired substituent at the para-position as a raw material in an ethanol solvent, By reacting in the presence of a catalyst such as sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, zinc or aluminum, it can be obtained in good yield.
[0029]
A synthesis example of a hydrazobenzene compound having a substituent at the 4-, 4′-position of the structure represented by the above formula (1) is shown below.
[0030]
(Synthesis Example 1)
Synthesis of hydrazobenzene compound (hydrazotoluene) having the structure represented by the above formula (1-1) 4-Nitrotoluene (13.0 g / 94.8 mmol) was dissolved in ethanol (100 ml) in a 300 ml flask, and An aqueous sodium hydroxide solution (16.6 g of sodium hydroxide and 40 ml of water) was added and stirred. Then, zinc (15.2 g / 0.22 mol) was added and deaerated by ultrasonic waves. Then, it refluxed for 4 hours, applying an ultrasonic wave. Thereafter, the mixture was cooled to room temperature, zinc (25.0 g / 0.36 mol), ethanol (90 ml) and an aqueous sodium hydroxide solution (16.6 g of sodium hydroxide and 40 ml of water) were added, and the mixture was again subjected to ultrasonic waves for 2 hours. Refluxed.
[0031]
The reaction solution was subjected to suction filtration, and hydrazotoluene contained in the filtrate was extracted with hot benzene. Benzene was removed to obtain hydrazotoluene (6.23 g / 29.4 mmol).
[0032]
・ Hydrazotoluene
1 H-NMR (CDCl 3 / TMS) δ = 1.26 (2H, s), 2.42 (6H, s), 7.30 (4H, d, J = 8.9 Hz), 7.81 (4H , D, J = 8.9 Hz)
IR: (KBr) ν = 3334, 3049, 3021, 2958, 2869, 1603, 1505, 749 cm −1
m. p. : 123.0-126.7 ° C
Yield: 65%
(Synthesis Example 2)
Synthesis of hydrazobenzene compound (hydrazoanisole) having the structure represented by the above formula (1-3) Hydrazobenzene compound having a structure represented by the above formula (1-6) (4,4′-dibromohydrazo Synthesis of benzene) Synthesis of hydrazobenzene compound (4-methoxy-4′-bromohydrazobenzene) having the structure represented by the above formula (1-7) 4-nitroanisole (8.0 g / 0.52 mmol) and 4-Bromonitrobenzene (10.6 g / 0.52 mmol) was dissolved in ethanol (100 ml) in a 300 ml flask, and further an aqueous sodium hydroxide solution (16.6 g of sodium hydroxide and 40 ml of water) was added and stirred. Thereafter, aluminum (15.2 g 0.22 mol) was added and deaerated by ultrasonic waves. Then, it refluxed for 4 hours, applying an ultrasonic wave. Thereafter, the mixture was cooled to room temperature, and aluminum (25.0 g / 0.36 mol), ethanol (90 ml) and an aqueous sodium hydroxide solution (16.6 g of sodium hydroxide and 40 ml of water) were added, and the mixture was again subjected to ultrasonic waves for 2 hours. Refluxed.
[0033]
The reaction solution was subjected to suction filtration, and hydrazotoluene contained in the filtrate was extracted with hot benzene. Benzene was removed by column chromatography (SiO 2, 100-fold, hexane: ethyl acetate = 9: 1) to give hydrazo anisole, 4,4'-dibromo hydrazobenzene, 4-methoxy-4'-bromo Hydrazobenzene was obtained in a ratio of 1: 1: 2.
[0034]
・ Hydrazoanisole
1 H-NMR (CDCl 3 / TMS) δ = 1.18 (2H, s), 3.80 (6H, s), 6.92 (4H, d, J = 8.9 Hz), 7.80 (4H , D, J = 8.9 Hz)
IR: (KBr) ν = 3301, 3084, 3034, 3014, 2952, 2835, 1608, 1503, 1236, 1031, 806 cm −1
m. p. 199.5-202.6 ° C
Yield: 22%
・ 4,4'-dibromohydrazobenzene
1 H-NMR (CDCl 3 / TMS) δ = 4.84 (2H, s), 6.72 (4H, d, J = 8.9 Hz), 7.34 (4H, d, J = 8.9 Hz)
IR: (KBr) ν = 3241, 3070, 1591, 1069, 823, 809 cm −1
Yield: 23%
4-methoxy-4′-bromohydrazobenzene
1 H-NMR (CDCl 3 / TMS) δ = 3.77 (3H, s), 4.66 (2H, bs) 6.7 to 6.8 (6H, m,), 7.33 (2H, m )
IR: (KBr) ν = 3330, 2954, 2835, 1588, 1230, 1070, 1033, 824 cm −1
m. p. 225.2-228.1C
Yield: 46%
Other hydrazobenzene compounds having a substituent at the 4-, 4′-position of the structure represented by the above formula (1) can be synthesized in the same manner as in Synthesis Examples 1 and 2.
[0035]
【Example】
Examples of synthesizing an orthobenzidine compound having the structure represented by the above formula (2) from a hydrazobenzene compound having a substituent at the 4-, 4′-position of the structure represented by the above formula (1) are shown below. However, the present invention is not limited to these examples.
[0036]
Example 1
Synthesis of orthobenzidine compound (4,4′-dimethylorthobenzidine) having the structure represented by the above formula (2-1) Hydrazobenzene compound (hydrazotoluene) 2 having the structure represented by the above formula (1-1) 0.0 g (9.42 mmol) was substituted with argon in a 100 ml flask, dissolved in 50 ml of hexane (solvent), and stirred. There, PBr 3 as a reactant showing an aprotic Lewis acid: was added dropwise (3.77 mmol / ml 0.4 eq) and stirred for 1 day. Thereafter, the solvent was removed, quenched with an aqueous sodium hydrogen carbonate solution, and extracted with diethyl ether. Thereafter, the extraction solvent was removed, the column was purified by column chromatography (SiO 2 , 100 times, hexane: ethyl acetate = 9: 1), and the orthobenzidine compound (4, 4) having the structure represented by the above formula (2-1) was obtained. '-Dimethylorthobenzidine) was obtained.
1 H-NMR (CDCl 3 / TMS) δ = 1.25 (2H, s), 2.64 (6H, s), 7.66 (2H, d, J = 8.9 Hz), 7.97 (2H , S), 8.11 (2H, d, J = 8.9 Hz)
IR: (KBr) ν = 3435,3051,924,2853,1638,1514,1356,803 cm −1
m. p. : 242.1-245.9 ° C
Yield: 71%
(Examples 2 to 10 and Reference Example 11)
In Example 1, the orthobenzidine compound shown in Table 1 was synthesized in the same manner as in Example 1 except that the starting material was changed to the hydrazobenzene compound shown in Table 1.
[0037]
(Examples 12 to 16)
In Example 1, the orthobenzidine compound shown in Table 1 was changed in the same manner as in Example 1 except that the type and amount of the aprotic Lewis acid-reactive agent and the solvent were changed as shown in Table 1. Synthesized.
[0038]
Table 1 shows the results of Examples 1 to 10, Reference Example 11 and Examples 12 to 16.
[0039]
[Table 1]
[0040]
(Comparative Example 1)
In Example 1, the PBr 3 is a reactant showing an aprotic Lewis acid, except for changing the hydrochloride protic acid were reacted in the same manner as in Example 1. However, an orthobenzidine compound (4,4′-dimethylorthobenzidine) having a structure represented by the above formula (2-1) as the target compound was not obtained at all.
[0041]
(Comparative Example 2)
3.6 g (19.8 mmol) of 3,3′-dimethylbiphenyl, 4.0 g (31.6 mmol) of iodine, 1.8 g (7.9 mmol) of periodic acid, 20 ml of glacial acetic acid and 5 ml of water were added to a Dimroth condenser tube. Into a 100 ml three-necked flask equipped with a thermometer and a stirrer, the mixture was heated and stirred at 80 ° C. for 2 hours.
[0042]
After completion of the reaction, the product was extracted with toluene, and the organic layer was washed with a 10% sodium thiosulfate aqueous solution, a 10% sodium hydrogen carbonate aqueous solution and water in this order.
[0043]
Thereafter, toluene was distilled off and purification was performed using column chromatography to obtain 1.2 g (yield 14.0%) of 3,3′-dimethyl-6,6′-iodobiphenyl.
[0044]
Then, 3,3′-dimethyl-6,6′-iodobiphenyl 1.2 g (2.76 mmol), acetamide 0.33 g (5.52 mmol), copper powder 0.88 g (13.8 mmol), potassium carbonate 0 .76 g (5.52 mmol) and 10 ml of orthodichlorobenzene were added and heated under reflux in an oil bath for 8 hours (Ullmann reaction).
[0045]
After allowing to cool, 20 ml of toluene was added, and the catalyst was removed by filtration.
[0046]
Furthermore, sodium methoxide was added to the obtained crude reaction product, and the mixture was heated under reflux for 2 hours. The reaction solution was poured into water, extracted with toluene, and the organic layer was washed with water. Thereafter, the organic layer is separated, and toluene is concentrated, and then the target product is separated using column chromatography, and the orthobenzidine compound (4,4′-) having the structure represented by the above formula (2-1) is obtained. 0.1 g of dimethylorthobenzidine was obtained (yield 17.1%).
[0047]
In any case, the orthobenzidine compound having the structure represented by the above formula (2) is obtained in good yield in any case, but the conventional method (Comparative Example 1: benzidine rearrangement method, Comparative Example 2: Ullmann reaction) When the synthesis method) was used, the target product was not obtained at all, or the yield was extremely low.
[0048]
From the above, the usefulness of the present invention is clear.
[0049]
【The invention's effect】
According to the present invention, an orthobenzidine compound, which has been difficult to synthesize by a conventional production method, can be produced easily and with a high yield.

Claims (1)

下記式(1)で示される構造の4−,4’−位に置換基を有するヒドラゾベンゼン化合物を、非プロトン性のルイス酸性を示す反応剤の存在下で転位反応させることにより、下記式(2)で示される構造のオルトベンジジン化合物を合成するオルトベンジジン化合物の製造法であって、
該反応剤が、三塩化アルミニウム、三臭化アルミニウム、三塩化リン、三臭化リン、三塩化鉄、三臭化鉄、トリメチルシリルクロリドまたはトリ−tert−ブチルスズであることを特徴とするオルトベンジジン化合物の製造法。
【外1】
【外2】
(式(1)および(2)中、RおよびRは、それぞれ独立に、置換基を有するアルキル基(ただし、該置換基を有するアルキル基の置換基は、アルキル基、アルコキシ基、ニトロ基、シアノ基、または、ハロゲン原子である。)もしくは無置換のアルキル基、置換基を有するアルコキシ基(ただし、該置換基を有するアルコキシ基の置換基は、アルキル基、アルコキシ基、ニトロ基、シアノ基、または、ハロゲン原子である。)もしくは無置換のアルコキシ基、置換基を有するアラルキル基(ただし、該置換基を有するアラルキル基の置換基は、アルキル基、アルコキシ基、ニトロ基、シアノ基、または、ハロゲン原子である。)もしくは無置換のアラルキル基、置換基を有するアリール基(ただし、該置換基を有するアリール基の置換基は、アルキル基、アルコキシ基、ニトロ基、シアノ基、または、ハロゲン原子である。)もしくは無置換のアリール基、または、ハロゲン原子を示し、RおよびRは、それぞれ、水素原子を示す。
A hydrazobenzene compound having a substituent at the 4-, 4′-position of the structure represented by the following formula (1) is subjected to a rearrangement reaction in the presence of a reagent having aprotic Lewis acidity. A method for producing an orthobenzidine compound for synthesizing an orthobenzidine compound having the structure represented by (2),
An orthobenzidine compound characterized in that the reactant is aluminum trichloride, aluminum tribromide, phosphorus trichloride, phosphorus tribromide, iron trichloride, iron tribromide, trimethylsilyl chloride or tri-tert-butyltin. Manufacturing method.
[Outside 1]
[Outside 2]
(In the formulas (1) and (2), R 1 and R 2 are each independently an alkyl group having a substituent (however, the substituent of the alkyl group having the substituent is an alkyl group, an alkoxy group, a nitro group) Group, a cyano group, or a halogen atom) or an unsubstituted alkyl group or a substituted alkoxy group (provided that the substituent of the alkoxy group having a substituent includes an alkyl group, an alkoxy group, a nitro group, A cyano group or a halogen atom) or an unsubstituted alkoxy group or an aralkyl group having a substituent (however, the substituent of the aralkyl group having the substituent is an alkyl group, an alkoxy group, a nitro group or a cyano group) , or a halogen atom.) or unsubstituted aralkyl group, an aryl group having a substituent (provided that location aryl groups having the substituent Group is an alkyl group, an alkoxy group, a nitro group, a cyano group, or a halogen atom.) Or unsubstituted aryl group, or a halogen atom, R 3 and R 4 are each indicates hydrogen atom It is.)
JP2003055698A 2003-03-03 2003-03-03 Method for producing orthobenzidine compounds Expired - Fee Related JP4307108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003055698A JP4307108B2 (en) 2003-03-03 2003-03-03 Method for producing orthobenzidine compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003055698A JP4307108B2 (en) 2003-03-03 2003-03-03 Method for producing orthobenzidine compounds

Publications (2)

Publication Number Publication Date
JP2004262863A JP2004262863A (en) 2004-09-24
JP4307108B2 true JP4307108B2 (en) 2009-08-05

Family

ID=33119634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003055698A Expired - Fee Related JP4307108B2 (en) 2003-03-03 2003-03-03 Method for producing orthobenzidine compounds

Country Status (1)

Country Link
JP (1) JP4307108B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8030814B2 (en) 2002-07-10 2011-10-04 Danfoss Turbocor Compressors B.V. Device to relieve thrust load in a rotor-bearing system using permanent magnets
CN102321891A (en) * 2011-09-19 2012-01-18 北京化工大学 High-yield electrochemical method for synthesizing 2,2'-dichlorohydrazobenzene

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105384648B (en) * 2015-09-30 2017-12-29 常州市阳光药业有限公司 2,2 ' is double(Methoxyl group)The preparation method of 4,4 ' benzidines
CN111269129B (en) * 2020-02-19 2023-03-03 天津科技大学 Method for preparing 5,5 '-disubstituted-2, 2' -diaminobiphenyl and hydrochloride thereof by continuous flow oxidation coupling method
CN111574380B (en) * 2020-02-19 2022-09-09 天津科技大学 Method for preparing 5,5 '-disubstituted-2, 2' -diaminobiphenyl and hydrochloride thereof by reduction coupling method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8030814B2 (en) 2002-07-10 2011-10-04 Danfoss Turbocor Compressors B.V. Device to relieve thrust load in a rotor-bearing system using permanent magnets
CN102321891A (en) * 2011-09-19 2012-01-18 北京化工大学 High-yield electrochemical method for synthesizing 2,2'-dichlorohydrazobenzene

Also Published As

Publication number Publication date
JP2004262863A (en) 2004-09-24

Similar Documents

Publication Publication Date Title
JP4307108B2 (en) Method for producing orthobenzidine compounds
JP4467935B2 (en) Method for producing halogenated aromatic amine compound
KR20190097124A (en) Naphthobiscalcogenadiazole derivatives and preparation method thereof
JP5712481B2 (en) Method for producing aromatic difluoroacetate
JP2011006370A (en) Method for producing methylenebis(benzotriazolylphenol) compound
CN108689874B (en) Method for preparing 2-aryl malonamide and application thereof
JP5023683B2 (en) Process for producing benzofluorene derivative and intermediate thereof
US20040199002A1 (en) Process for producing(2-nitrophenyl)acetonitrile derivative and intermediate therefor
JP3002791B2 (en) Benzyl phenyl ketone derivative
US5874466A (en) Process for the manufacture of acetonylbenzamides
KR20070121787A (en) Method for producing nicotinic acid derivative or salt thereof
JP5036198B2 (en) Phthalimides containing fluorene skeleton and diamines derived therefrom
JP2003055285A (en) 4-tert-BUTOXY-4'-HALOGENOBIPHENYL, METHOD FOR PRODUCING THE SAME AND METHOD FOR PRODUCING 4-HALOGENO-4'- HYDROXYBIPHENYL
JP2003520840A (en) Synthesis of N4, N4'-diphenyl-N4, N4'-di-m-tolyl-biphenyl-4,4'-diamine from asymmetric amines
JP4032861B2 (en) Process for producing β-oxonitrile derivative or alkali metal salt thereof
US11993555B2 (en) Conjugated triene compound, and preparation and application thereof
JP2003171359A (en) Method for producing 2-nitrophenylacetonitrile derivative, and its synthetic intermediate
CA2502360C (en) Process for producing acetylene compound
TW201713626A (en) Aromatic compound production method
JP2706554B2 (en) 4-trifluoromethylaniline derivative and method for producing the same
JP4013772B2 (en) 2-Hydroxyimino-3-oxopropionitrile and process for producing the same
JP4194984B2 (en) Phenylnaphthylimidazole compound
JP3646223B2 (en) Method for producing aromatic compound by electrophilic reaction and aromatic compound
KR20240069893A (en) Novel method for preparing high purity 9-phenylcarbazole
US5969200A (en) Process for the manufacture of acetonylbenzamides

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees