JP4304668B2 - Metal fine particles and method for producing metal fine particles - Google Patents

Metal fine particles and method for producing metal fine particles Download PDF

Info

Publication number
JP4304668B2
JP4304668B2 JP2004041659A JP2004041659A JP4304668B2 JP 4304668 B2 JP4304668 B2 JP 4304668B2 JP 2004041659 A JP2004041659 A JP 2004041659A JP 2004041659 A JP2004041659 A JP 2004041659A JP 4304668 B2 JP4304668 B2 JP 4304668B2
Authority
JP
Japan
Prior art keywords
powder
fine particles
metal fine
carbon
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004041659A
Other languages
Japanese (ja)
Other versions
JP2005232514A (en
Inventor
久人 所
重男 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2004041659A priority Critical patent/JP4304668B2/en
Priority to US10/934,515 priority patent/US7285329B2/en
Priority to EP04023618A priority patent/EP1568427B1/en
Priority to DE602004010778T priority patent/DE602004010778T2/en
Priority to EP07005287A priority patent/EP1800774B1/en
Publication of JP2005232514A publication Critical patent/JP2005232514A/en
Priority to US11/681,059 priority patent/US7892316B2/en
Priority to US11/681,049 priority patent/US20070151417A1/en
Application granted granted Critical
Publication of JP4304668B2 publication Critical patent/JP4304668B2/en
Priority to US12/984,134 priority patent/US8323374B2/en
Priority to US12/984,204 priority patent/US8398741B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

磁気テープ、磁気記録ディスク等の磁気記録媒体や、電波吸収体、インダクタ、プリント基板等の電子デバイス(ヨークなどの軟磁性形状体)の原材料に用いる磁性金属粒子およびその製造方法に関する。   The present invention relates to a magnetic metal particle used as a raw material for a magnetic recording medium such as a magnetic tape and a magnetic recording disk, and an electronic device (soft magnetic shape body such as a yoke) such as a radio wave absorber, an inductor, and a printed board, and a method for producing the same.

電子機器の小型軽量化に伴い、電子デバイスを構成する原材料自体もナノサイズ化が要求されている。同時にデバイスの高性能化も実現しなければならない。例えば、磁気記録密度の向上を目的として、磁気テープに塗布する磁性粒子のナノサイズ化と磁化の向上が同時に要求される。   As electronic devices become smaller and lighter, the raw materials that make up electronic devices themselves are also required to be nanosized. At the same time, device performance must be improved. For example, for the purpose of improving the magnetic recording density, it is required to simultaneously increase the size of the magnetic particles applied to the magnetic tape and increase the magnetization.

ナノ磁性粒子の製法は、共沈法や水熱合成法などで代表される液相合成法が主流であった。上記液相法で得られるナノ磁性粒子はフェライトやマグネタイトなどの酸化物粒子であった。また、最近では金属有機物質の熱分解を利用した手法がとられており、例えばFe(CO)からFeのナノ粒子を合成するものがある。 The main method for producing nanomagnetic particles is a liquid phase synthesis method represented by a coprecipitation method or a hydrothermal synthesis method. The nanomagnetic particles obtained by the liquid phase method were oxide particles such as ferrite and magnetite. Recently, a technique using thermal decomposition of a metal organic substance has been taken, and for example, there is one that synthesizes Fe nanoparticles from Fe (CO) 5 .

金属の磁性粒子は酸化物に比べて磁化が大きいため、工業的利用への期待が大きい。しかし、金属粒子は容易に酸化するため、磁性が劣化したり粒子が激しく酸化して燃えてしまう、といった問題が生じ、乾燥粒子として取り扱うことが難しかった。そのため、フェライトやマグネタイトなどの酸化物粒子がより広く利用されてきた(特許文献1)。   Since magnetic particles of metal are larger in magnetization than oxides, there are high expectations for industrial use. However, since metal particles easily oxidize, problems such as deterioration of magnetism and violent oxidation and burning of particles occur, making it difficult to handle them as dry particles. Therefore, oxide particles such as ferrite and magnetite have been widely used (Patent Document 1).

粒径が1μm以下の金属粒子を乾燥粒子として取り扱う際、金属としての機能を損なわせないためには、粒子を直接大気(酸素)に触れさせないようにするため、粒子表面に被膜を付与することが不可欠である。そこで、金属粒子をグラファイトでコーティングする手法が報告されている(特許文献2)。また、窒化ほう素(BN)による金属粒子の被覆が挙げられる。   When handling metal particles with a particle size of 1 μm or less as dry particles, in order not to impair the metal function, a coating is applied to the particle surface to prevent the particles from directly contacting the atmosphere (oxygen). Is essential. Therefore, a technique for coating metal particles with graphite has been reported (Patent Document 2). In addition, coating of metal particles with boron nitride (BN) can be given.

上記被覆により、例えばFeのナノ粒子を安定に合成することが可能となった。一般にFeは常温・常圧下で体心立方構造のα相が安定であるが、非特許文献1にあるように、粒子サイズが75nmよりも微細化すると面心立方構造のγ相が常温・常圧下で安定に存在することが知られている。上記γ相は室温で常磁性を示すため、γ相の出現はFeの磁気特性低下の原因となる。微小γ−Fe粒子は単純冷却によってはα相へと変態せず、その変態は応力などの外力によって誘起される。   By the above coating, for example, Fe nanoparticles can be stably synthesized. In general, Fe has a stable body-centered cubic α-phase at room temperature and normal pressure. However, as described in Non-Patent Document 1, when the particle size is made finer than 75 nm, the face-centered cubic structure γ-phase becomes room temperature / normal. It is known to exist stably under pressure. Since the γ phase exhibits paramagnetism at room temperature, the appearance of the γ phase causes a decrease in Fe magnetic properties. The minute γ-Fe particles are not transformed into the α phase by simple cooling, and the transformation is induced by an external force such as stress.

特開2000−30920号公報(第9〜11頁、図2)JP 2000-30920 A (pages 9-11, FIG. 2) 特開平9−143502号公報(第3〜4頁、図5)JP-A-9-143502 (pages 3-4, FIG. 5) 「アクタ・メタラージカ 15 1967(Acta Metallurgica 15 1967)」1967年、p.1133Acta Metallurgica 15 1967 (1967), p. 1133

表面被覆された微粒子合成法により、1μm以下の金属粒子を合成することができる。しかし、金属Fe粒子が微細化すると面心立方構造を有する常磁性のγ相が析出するため、磁気特性が低下するという問題があった。本発明は上記γ相の析出を抑制するものである。   Metal particles having a size of 1 μm or less can be synthesized by a surface-coated fine particle synthesis method. However, when the metal Fe particles are made finer, a paramagnetic γ phase having a face-centered cubic structure is precipitated, so that there is a problem that the magnetic properties are deteriorated. The present invention suppresses the precipitation of the γ phase.

金属Feで構成される微粒子におけるγ相析出を抑制する方法を鋭意検討した結果、本発明に至った。   As a result of intensive studies on a method for suppressing γ-phase precipitation in fine particles composed of metallic Fe, the present invention has been achieved.

(1) 本発明の金属微粒子は、Feの酸化物を還元することにより得られた金属微粒子であって、α−Feを主組織とする金属粒子を有し、
前記金属粒子の表面は、ほう素、窒素、炭素から選ばれる少なくとも一つを主要元素として含む化合物で被覆されており、
平均粒径が1μm以下であることを特徴とする。
(1) The metal fine particles of the present invention are metal fine particles obtained by reducing an oxide of Fe, and have metal particles mainly composed of α-Fe,
The surface of the metal particles is coated with a compound containing at least one selected from boron, nitrogen, and carbon as a main element,
The average particle size is 1 μm or less.

以下、“ほう素、窒素、炭素から選ばれる少なくとも一つを主要元素として含む化合物”をB/C/N化合物と呼ぶ。この化合物には、例えばBNやBNCが含まれる。より好ましくは、前記平均粒径が0.1μm以下である金属微粒子とする。   Hereinafter, “a compound containing at least one selected from boron, nitrogen, and carbon as a main element” is referred to as a B / C / N compound. This compound includes, for example, BN and BNC. More preferably, the fine metal particles have an average particle diameter of 0.1 μm or less.

ここで、平均粒径とは、例えば、微粒子の粉末を試料として、電子顕微鏡写真を撮影して測定するものである。写真内で任意の面積内にある微粒子について各々の直径を測定して平均値を求める。すなわち、N個の微粒子について(N≧50個)、前記直径を測定し、平均直径=(測定した直径の総和)/Nとして表わす。写真に代えて、イメージを取得し、パソコンと画像処理ソフトを利用して直径を測定してもよい。Nを多くするのは、微粒子の断面が重心を通っている場合と通っていない場合を平均化して均す為である。さらに、個々の微粒子の粒径とは、例えば1個の微粒子について、観察している断面を見たときの外径に相当する。断面が円形でない場合には最大長さと最小長さの平均値を、その微粒子の粒径と見なす。   Here, the average particle diameter is measured, for example, by taking an electron micrograph using a fine powder as a sample. The average value is obtained by measuring the diameters of fine particles within an arbitrary area in the photograph. That is, for N fine particles (N ≧ 50 particles), the diameter is measured and expressed as average diameter = (total of measured diameters) / N. Instead of a photograph, an image may be acquired and the diameter may be measured using a personal computer and image processing software. The reason why N is increased is to average and smooth the case where the cross section of the fine particles passes through the center of gravity. Furthermore, the particle diameter of each fine particle corresponds to, for example, the outer diameter of a single fine particle when the observed cross section is viewed. When the cross section is not circular, the average value of the maximum length and the minimum length is regarded as the particle size of the fine particles.

(2) 上記(1)に記載の金属微粒子において、Feを主要元素とする他は、元素X(Xは次の元素から選択される少なくとも1種:Al,As,Be,Cr,Ga,Ge,Mo,P,Sb,Si,Sn,Ti,V,W,Zn)を1mass%以上且つ50mass%未満含むことを特徴とする。ここでmass%とは、本発明の金属微粒子の単位質量を100としたときに、その100に含まれる元素X1の量を百分率で表わしたものである。   (2) In the metal fine particles described in (1) above, except that Fe is a main element, element X (X is at least one selected from the following elements: Al, As, Be, Cr, Ga, Ge) , Mo, P, Sb, Si, Sn, Ti, V, W, Zn) is characterized by containing 1 mass% or more and less than 50 mass%. Here, “mass%” represents the amount of the element X1 contained in 100 as a percentage when the unit mass of the metal fine particles of the present invention is 100.

(3) 上記(2)に記載の金属微粒子において、X線回折パターンにおいて面心立方構造を有するγ−Feの(111)回折ピークと体心立方構造を有するα−Feの(110)回折ピークの強度比I(111)/I(110)が0.3以下であることを特徴とする。   (3) In the fine metal particles described in (2) above, (111) diffraction peak of γ-Fe having a face-centered cubic structure and (110) diffraction peak of α-Fe having a body-centered cubic structure in the X-ray diffraction pattern The intensity ratio I (111) / I (110) is 0.3 or less.

(4) 上記(2)に記載の金属微粒子において、飽和磁化が100Am/kg以上であることを特徴とする。ここで、飽和磁化≧100Am/kgという式は、飽和磁化≧100emu/gという式に相当する。 (4) The metal fine particles according to (2) above, wherein the saturation magnetization is 100 Am 2 / kg or more. Here, the equation of saturation magnetization ≧ 100 Am 2 / kg corresponds to the equation of saturation magnetization ≧ 100 emu / g.

(5) 本発明の金属微粒子の製造方法は、Feの酸化物粉末と、元素X(Xは次の元素から選択される少なくとも1種:Al,As,Be,Cr,Ga,Ge,Mo,P,Sb,Si,Sn,Ti,V,W,Zn)を含む化合物粉末または元素Xの単体と、ほう素若しくは炭素の少なくとも一つを主要元素として含む化合物粉末(但し、該化合物粉末には、ほう素若しくは炭素単体の粉末を含む)とを混合した粉末を、窒素を含む雰囲気中で熱処理することによって、Feの酸化物が還元されて、ほう素、窒素、炭素から選ばれる少なくとも一つを主要元素として含む化合物で被覆された金属微粒子が形成されるとともに、
前記金属微粒子において、前記元素XとFeが合金化して、X線回折パターンにおいて面心立方構造を有するγ−Feの(111)回折ピークと体心立方構造を有するα−Feの(110)回折ピークの強度比I(111)/I(110)が0.3以下であることを特徴とする。ここで、ほう素、窒素、炭素のから選ばれる少なくとも一つを主要元素として含む化合物は、B/C/N化合物と称する。ほう素、炭素の少なくとも一つを主要元素として含む化合物粉末の混合比は、より好ましくはほう素、炭素の少なくとも一つを主要元素として含む化合物粉末が上記化学量論比よりも過剰となることが好ましい。
(5) The method for producing metal fine particles of the present invention comprises an Fe oxide powder and an element X (X is at least one selected from the following elements: Al, As, Be, Cr, Ga, Ge, Mo, Compound powder containing P, Sb, Si, Sn, Ti, V, W, Zn) or a compound powder containing element X alone and at least one of boron or carbon as main elements (however, the compound powder includes At least one selected from boron, nitrogen, and carbon by heat-treating a powder mixed with boron or a simple carbon powder in an atmosphere containing nitrogen to reduce the oxide of Fe. In addition to the formation of fine metal particles coated with a compound containing
In the metal fine particles, the elements X and Fe are alloyed, and the (111) diffraction peak of γ-Fe having a face-centered cubic structure and the (110) diffraction of α-Fe having a body-centered cubic structure in the X-ray diffraction pattern. The peak intensity ratio I (111) / I (110) is 0.3 or less . Here, a compound containing at least one selected from boron, nitrogen, and carbon as a main element is referred to as a B / C / N compound. The mixing ratio of the compound powder containing at least one of boron and carbon as the main element is more preferably the compound powder containing at least one of boron and carbon as the main element is more than the stoichiometric ratio. Is preferred.

(6) 上記(5)に記載の金属微粒子の製造方法において、前記混合は機械的解砕を加えながら混合することを特徴とする。   (6) In the method for producing metal fine particles according to (5), the mixing is performed while mechanically pulverizing.

(7) 上記(5)に記載の金属微粒子の製造方法において、前記熱処理は800℃以上の温度で熱処理されることを特徴とする。   (7) In the method for producing metal fine particles according to (5), the heat treatment is performed at a temperature of 800 ° C. or higher.

本発明の金属微粒子は、上記(5)の製造方法で製造される金属微粒子であって、前記金属粒子の表面は、ほう素、窒素、炭素の少なくとも一つを主要元素として含む化合物(以下、B/C/N化合物)で被覆されており、平均粒径が1μm以下であることを特徴とする金属超微粒子である。   The metal fine particles of the present invention are metal fine particles produced by the production method of (5) above, and the surface of the metal particles is a compound containing at least one of boron, nitrogen, and carbon as a main element (hereinafter, B / C / N compound), and an ultrafine metal particle having an average particle diameter of 1 μm or less.

更に、本発明の金属微粒子は、上記(5)の製造方法で製造される金属微粒子であって、X線回折パターンにおいて面心立方構造を有するγ−Feの(111)回折ピークと体心立方構造を有するα−Feの(110)回折ピークの強度比I(111)/I(110)が0.3以下であることを特徴とする金属超微粒子であり、常磁性成分であるγ−Fe相の析出を抑制した金属微粒子である。   Furthermore, the metal fine particles of the present invention are metal fine particles produced by the production method of (5) above, and the (111) diffraction peak of γ-Fe having a face-centered cubic structure in the X-ray diffraction pattern and the body-centered cubic. Γ-Fe, which is an ultrafine metal particle characterized in that the intensity ratio I (111) / I (110) of the (110) diffraction peak of α-Fe having a structure is 0.3 or less It is a metal fine particle which suppressed phase precipitation.

本発明によりγ相の析出を抑制し、耐酸化性に優れ、なおかつ良好な磁気特性を有する金属微粒子を得ることが出来る。   According to the present invention, it is possible to obtain metal fine particles that suppress the precipitation of the γ phase, have excellent oxidation resistance, and have good magnetic properties.

上記(1)の本発明は金属微粒子の合成方法および金属微粒子の被覆方法に相当する。上記製法において用いられるFeの酸化物粉末は、目標とする金属微粒子の粒径に合わせてその粒径を自由に選択することができる。実用的には1〜1000nmの範囲が好適である。Feの酸化物粉末とは、例えばFe、Fe、FeOが挙げられる。
上記製法において用いられる元素X(Xは次の元素から選択される少なくとも1種:Al,As,Be,Cr,Ga,Ge,Mo,P,Sb,Si,Sn,Ti,V,W,Zn)を含む化合物粉末は、目標とする金属微粒子の粒径に合わせてその粒径を自由に選択することができる。実用的には1〜10000nmの範囲が好ましい。なお、本明細書では、1〜10000nmの範囲とは、1nm以上且つ10000nmの範囲内であることに相当する。
The present invention (1) corresponds to a method for synthesizing metal fine particles and a method for coating metal fine particles. The particle size of the Fe oxide powder used in the above production method can be freely selected according to the target particle size of the metal fine particles. Practically, the range of 1 to 1000 nm is preferable. Examples of the Fe oxide powder include Fe 2 O 3 , Fe 3 O 4 , and FeO.
Element X (X is at least one selected from the following elements: Al, As, Be, Cr, Ga, Ge, Mo, P, Sb, Si, Sn, Ti, V, W, Zn used in the above manufacturing method ) Can be freely selected according to the target particle size of the metal fine particles. Practically, the range of 1 to 10,000 nm is preferable. In the present specification, the range of 1 to 10000 nm corresponds to the range of 1 nm or more and 10,000 nm.

元素Xは、Feと合金化した場合に1000℃以上の高温でもα相が安定となる元素から選ばれるのが好ましく、Al,As,Be,Cr,Ga,Ge,Mo,P,Sb,Si,Sn,Ti,V,W,Znの少なくとも一つを含むことが好ましい。元素Xを含む化合物粉末は、最終的に金属微粒子とした時に元素Xが1〜50mass%の範囲で含まれることがγ相の抑制に好適である。元素Xを添加することによりα−Fe相の微粒子が生成し、X線回折パターンにおいて面心立方構造を有するγ−Feの(111)回折ピークと体心立方構造を有するα−Feの(110)回折ピークの強度比I(111)/I(110)が0.3以下となる。   The element X is preferably selected from elements that can stabilize the α phase even at a high temperature of 1000 ° C. or higher when alloyed with Fe. Al, As, Be, Cr, Ga, Ge, Mo, P, Sb, Si , Sn, Ti, V, W, and Zn. When the compound powder containing the element X is finally made into metal fine particles, the element X is preferably contained in the range of 1 to 50 mass% in order to suppress the γ phase. By adding the element X, α-Fe phase fine particles are formed, and the (111) diffraction peak of γ-Fe having a face-centered cubic structure and (110) of α-Fe having a body-centered cubic structure in the X-ray diffraction pattern. ) The diffraction peak intensity ratio I (111) / I (110) is 0.3 or less.

元素Xを含む化合物は、元素X単体であっても構わないが、炭化物(X−C)、ほう化物(X−B)、窒化物(X−N)、酸化物(X−O)であっても構わない。特にX−Oの場合は熱処理中に後述の炭素、ホウ素を含む化合物粉末によって還元され得ることが好ましい。   The compound containing element X may be element X alone, but is carbide (X-C), boride (X-B), nitride (X-N), or oxide (X-O). It doesn't matter. In particular, in the case of X-O, it is preferable that it can be reduced by a compound powder containing carbon and boron described later during the heat treatment.

ほう素、炭素の少なくとも一つを主要元素として含む化合物粉末の粒径は1nm〜1mmの範囲が好ましく、より還元反応を効率的に行なうためには1nm〜0.1mmの範囲が好ましい。   The particle size of the compound powder containing at least one of boron and carbon as a main element is preferably in the range of 1 nm to 1 mm, and more preferably in the range of 1 nm to 0.1 mm for more efficient reduction reaction.

上記Feの酸化物の粉末と元素X(Xは次の元素から選ばれる少なくとも1種:Al,As,Be,Cr,Ga,Ge,Mo,P,Sb,Si,Sn,Ti,V,W,Zn)を含む化合物粉末、およびほう素、炭素の少なくとも一つを主要元素として含む化合物粉末との混合には、乳鉢、スターラー、V字型ミキサー、ボールミル、振動ミル、その他一般的な攪拌機の中から選択できる。粉末の凝集を回避し、より均一に混合するには有機溶媒や水を用いた湿式混合が好ましい。   Powder of Fe oxide and element X (X is at least one selected from the following elements: Al, As, Be, Cr, Ga, Ge, Mo, P, Sb, Si, Sn, Ti, V, W , Zn) and a compound powder containing at least one of boron and carbon as a main element are mixed with a mortar, a stirrer, a V-shaped mixer, a ball mill, a vibration mill, and other general stirrers. You can choose from. In order to avoid aggregation of the powder and to mix more uniformly, wet mixing using an organic solvent or water is preferable.

ほう素、炭素の少なくとも一つを主要元素として含む化合物粉末の混合比は、Feの酸化物を還元する化学量論比近傍が好ましく、より好ましくはほう素、炭素の少なくとも一つを主要元素として含む化合物粉末が上記化学量論比よりも過剰となることが好ましい。ほう素、炭素の少なくとも一つを主要元素として含む化合物粉末が不足すると、熱処理中にFeの酸化物粉末が十分に還元されないだけでなく、Feの酸化物粉末が焼結してしまい、最終的にバルク化してしまうので適さない。   The mixing ratio of the compound powder containing at least one of boron and carbon as a main element is preferably near the stoichiometric ratio for reducing the oxide of Fe, more preferably at least one of boron and carbon as the main element. It is preferable that the compound powder to be included is in excess of the stoichiometric ratio. If the compound powder containing at least one of boron and carbon as a main element is insufficient, not only the Fe oxide powder is not sufficiently reduced during the heat treatment, but also the Fe oxide powder is sintered. It is not suitable because it becomes bulky.

熱処理時の雰囲気は非酸化性雰囲気が好ましい。例えばAr,Heなどの不活性ガスやN、CO、NHなどを使用することができるが、これらに限定されない。また熱処理温度および時間は還元反応が十分進行するに足る条件であることが好ましい。 The atmosphere during the heat treatment is preferably a non-oxidizing atmosphere. For example, an inert gas such as Ar or He, N 2 , CO 2 , NH 3, or the like can be used, but is not limited thereto. The heat treatment temperature and time are preferably conditions sufficient for the reduction reaction to proceed sufficiently.

上記製造方法により、Feの酸化物を還元することにより得られた金属粒子であって、前記金属粒子の表面はほう素、窒素、炭素の少なくとも一つを主要元素として含む化合物(以下、B/C/N化合物)で被覆されており、平均粒径が1μm以下であることを特徴とする金属微粒子を得ることができる。   Metal particles obtained by reducing an oxide of Fe by the above-described production method, wherein the surface of the metal particles includes at least one of boron, nitrogen, and carbon as a main element (hereinafter referred to as B / It is possible to obtain metal fine particles characterized by being coated with a (C / N compound) and having an average particle size of 1 μm or less.

(実施例1)
平均粒径0.03μmのα−Fe粉73gと平均粒径20μmのGe粉2.7gおよび平均粒径0.02μmのカーボンブラック粉24.3gをそれぞれ秤量し、ボールミル混合機にて16時間混合した。上記配合では、質量比でFe:Ge=95:5となる。得られた混合粉をアルミナボートに適量充填し、窒素ガス中にて1000℃×2時間の熱処理を行なった。室温まで冷却した後にアルミナボートを取り出し、熱処理された試料粉末を回収した。
Example 1
73 g of α-Fe 2 O 3 powder having an average particle diameter of 0.03 μm, 2.7 g of Ge powder having an average particle diameter of 20 μm, and 24.3 g of carbon black powder having an average particle diameter of 0.02 μm were weighed and mixed in a ball mill mixer. Mixed for 16 hours. In the above formulation, the mass ratio is Fe: Ge = 95: 5. An appropriate amount of the obtained mixed powder was filled in an alumina boat, and heat treatment was performed at 1000 ° C. for 2 hours in nitrogen gas. After cooling to room temperature, the alumina boat was taken out and the heat-treated sample powder was collected.

上記試料粉末のX線回折パターンを図1に示す。リガク製解析ソフト「Jade,ver.5」にて解析すると、図1の回折パターンは面心立方構造のγ−Fe(111)と体心立方構造のα−Fe(110)に同定された。図1のグラフの横軸は回折の2θ(°)に相当し、縦軸はIntensity即ち回折の強度I(但し、単位(a.u.)は相対値)に相当する。各回折ピーク強度の比(I(111)/I(110))を表1に示す。また、半値幅より求めたα−Feの平均粒径は92nmであった。   The X-ray diffraction pattern of the sample powder is shown in FIG. When analyzed by analysis software “Jade, ver. 5” manufactured by Rigaku, the diffraction patterns in FIG. 1 were identified as γ-Fe (111) having a face-centered cubic structure and α-Fe (110) having a body-centered cubic structure. The horizontal axis of the graph in FIG. 1 corresponds to 2θ (°) of diffraction, and the vertical axis corresponds to intensity, that is, the intensity of diffraction I (where unit (au) is a relative value). Table 1 shows the ratio of the diffraction peak intensities (I (111) / I (110)). Moreover, the average particle diameter of α-Fe obtained from the half width was 92 nm.

上記粉末試料の磁気特性をVSM(振動型磁力計)により測定した結果を表1に示す。後述する比較例に比べてピーク強度は小さく、高い飽和磁化が得られている。   Table 1 shows the results of measuring the magnetic properties of the powder sample with a VSM (vibrating magnetometer). Compared to a comparative example described later, the peak intensity is small, and high saturation magnetization is obtained.

(実施例2)
Geの代わりにAlを用いた以外は実施例1と同様に試料粉末を作製した。上記試料粉末のX線回折パターンを図1に示す。リガク製解析ソフト「Jade,ver.5」にて解析すると、図1の回折パターンは面心立方構造のγ−Fe(111)と体心立方構造のα−Fe(110)に同定された。各回折ピーク強度の比および半値幅より求めたα−Feの平均粒径を表1に示す。
(Example 2)
A sample powder was prepared in the same manner as in Example 1 except that Al was used instead of Ge. The X-ray diffraction pattern of the sample powder is shown in FIG. When analyzed by analysis software “Jade, ver. 5” manufactured by Rigaku, the diffraction patterns in FIG. 1 were identified as γ-Fe (111) having a face-centered cubic structure and α-Fe (110) having a body-centered cubic structure. Table 1 shows the average particle diameter of α-Fe obtained from the ratio of each diffraction peak intensity and the half-value width.

また、VSMにより測定した上記試料粉末の磁気特性を表1に示す。後述する比較例に比べてピーク強度は小さく、高い飽和磁化が得られている。   Table 1 shows the magnetic characteristics of the sample powder measured by VSM. Compared to a comparative example described later, the peak intensity is small, and high saturation magnetization is obtained.

(実施例3)
平均粒径0.03μmのα−Fe粉73gと平均粒径20μmの炭化バナジウム(VC)粉3.8gおよび平均粒径0.02μmのカーボンブラック粉23.2gをそれぞれ秤量し、ボールミル混合機にて16時間混合した。上記配合では、質量比でFe:V=95:5となる。得られた混合粉をアルミナボートに適量充填し、窒素ガス中にて1000℃×2時間の熱処理を行なった。室温まで冷却した後にアルミナボートを取り出し、熱処理された試料粉末を回収した。
(Example 3)
73 g of α-Fe 2 O 3 powder having an average particle size of 0.03 μm, 3.8 g of vanadium carbide (VC) powder having an average particle size of 20 μm, and 23.2 g of carbon black powder having an average particle size of 0.02 μm were weighed respectively. It mixed for 16 hours with the mixer. In the above formulation, the mass ratio is Fe: V = 95: 5. An appropriate amount of the obtained mixed powder was filled in an alumina boat, and heat treatment was performed at 1000 ° C. for 2 hours in nitrogen gas. After cooling to room temperature, the alumina boat was taken out and the heat-treated sample powder was collected.

上記試料粉末のX線回折パターンを図1に示す。また、各回折ピーク強度の比およびα−Feの平均粒径を表1に示す。また、VSMにより測定した上記試料粉末の磁気特性を表1に示す。後述する比較例に比べてピーク強度は小さく、高い飽和磁化が得られている。   The X-ray diffraction pattern of the sample powder is shown in FIG. Table 1 shows the ratio of the diffraction peak intensities and the average particle diameter of α-Fe. Table 1 shows the magnetic characteristics of the sample powder measured by VSM. Compared to a comparative example described later, the peak intensity is small, and high saturation magnetization is obtained.

(比較例1)
元素Xを含む化合物は添加せずに、平均粒径0.03μmのα−Fe粉75gと平均粒径0.02μmのカーボンブラック粉25gをそれぞれ秤量し、ボールミル混合機にて16時間混合した。得られた混合粉をアルミナボートに適量充填し、窒素ガス中にて1000℃×2時間の熱処理を行なった。室温まで冷却した後にアルミナボートを取り出し、熱処理された試料粉末を回収した。
(Comparative Example 1)
Without adding the compound containing the element X, 75 g of α-Fe 2 O 3 powder having an average particle size of 0.03 μm and 25 g of carbon black powder having an average particle size of 0.02 μm were weighed, and 16 hours in a ball mill mixer. Mixed. An appropriate amount of the obtained mixed powder was filled in an alumina boat, and heat treatment was performed at 1000 ° C. for 2 hours in nitrogen gas. After cooling to room temperature, the alumina boat was taken out and the heat-treated sample powder was collected.

上記試料粉末のX線回折パターンを図1に示す。また実施例と同様に得られた強度比(I(111)/I(110))、平均粒径、および磁気特性を表1に示す。実施例1〜3に比べてI(111)ピーク強度が大きく、飽和磁化が低いことが分かる。   The X-ray diffraction pattern of the sample powder is shown in FIG. Table 1 shows the intensity ratio (I (111) / I (110)), average particle diameter, and magnetic properties obtained in the same manner as in the examples. It can be seen that the I (111) peak intensity is large and the saturation magnetization is low compared to Examples 1-3.

Figure 0004304668
Figure 0004304668

本発明は、磁気テープ、磁気記録ディスク等の磁気記録媒体や、電波吸収体、インダクタ、プリント基板等の電子デバイス(ヨークなどの軟磁性形状体)の原材料に用いる磁性金属粒子およびその製造方法として利用することが出来る。   The present invention relates to magnetic metal particles used as raw materials for magnetic recording media such as magnetic tapes and magnetic recording disks, and electronic devices (soft magnetic shapes such as yokes) such as radio wave absorbers, inductors and printed circuit boards, and methods for producing the same. It can be used.

試料粉末のX線回折パターンを示すグラフである。It is a graph which shows the X-ray-diffraction pattern of sample powder.

Claims (2)

Feの酸化物粉末と元素X(Xは次の元素から選ばれる少なくとも1種:Al,As,Be,Cr,Ga,Ge,Mo,P,Sb,Si,Sn,Ti,V,W,Zn)を含む化合物粉末または元素Xの単体と、ほう素若しくは炭素の少なくとも一つを主要元素として含む化合物粉末(但し、該化合物粉末には、ほう素若しくは炭素単体の粉末を含む)とを混合した粉末を、窒素を含む雰囲気中で熱処理することによって、Feの酸化物が還元されて、ほう素、窒素、炭素から選ばれる少なくとも一つを主要元素として含む化合物で被覆された金属微粒子が形成されるとともに、
前記金属微粒子において、前記元素XとFeが合金化して、X線回折パターンにおいて面心立方構造を有するγ−Feの(111)回折ピークと体心立方構造を有するα−Feの(110)回折ピークの強度比I(111)/I(110)が0.3以下であることを特徴とする金属微粒子の製造方法。
Fe oxide powder and element X (X is at least one selected from the following elements: Al, As, Be, Cr, Ga, Ge, Mo, P, Sb, Si, Sn, Ti, V, W, Zn ) and single compound powder or elements X including, boron Motowaka Shikuwa compound powder containing at least one as a main element of carbon (where, the said compound powder, boric Motowaka Shikuwa containing carbon single powder) and were mixed By heat-treating the powder in an atmosphere containing nitrogen, the Fe oxide is reduced to form fine metal particles coated with a compound containing at least one selected from boron, nitrogen, and carbon as a main element. And
In the metal fine particles, the elements X and Fe are alloyed, and the (111) diffraction peak of γ-Fe having a face-centered cubic structure and the (110) diffraction of α-Fe having a body-centered cubic structure in the X-ray diffraction pattern. A method for producing metal fine particles, wherein the peak intensity ratio I (111) / I (110) is 0.3 or less .
前記ほう素若しくは炭素の少なくとも一つを主要元素として含む化合物粉末の混合比が、前記Feの酸化物を還元する化学量論比よりも過剰であることを特徴とする請求項1に記載の金属微粒子の製造方法。2. The metal according to claim 1, wherein a mixing ratio of the compound powder containing at least one of boron and carbon as a main element is more than a stoichiometric ratio for reducing the Fe oxide. A method for producing fine particles.
JP2004041659A 2004-02-18 2004-02-18 Metal fine particles and method for producing metal fine particles Expired - Fee Related JP4304668B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2004041659A JP4304668B2 (en) 2004-02-18 2004-02-18 Metal fine particles and method for producing metal fine particles
US10/934,515 US7285329B2 (en) 2004-02-18 2004-09-07 Fine composite metal particles and their production method, micro-bodies, and magnetic beads
DE602004010778T DE602004010778T2 (en) 2004-02-18 2004-10-04 Process for producing fine metal composite particles
EP07005287A EP1800774B1 (en) 2004-02-18 2004-10-04 Fine composite metal particles and magnetic beads
EP04023618A EP1568427B1 (en) 2004-02-18 2004-10-04 Production method of fine composite metal particles
US11/681,059 US7892316B2 (en) 2004-02-18 2007-03-01 Fine composite metal particles and their production method, micro-bodies, and magnetic beads
US11/681,049 US20070151417A1 (en) 2004-02-18 2007-03-01 Fine composite metal particles and their production method, micro-bodies, and magnetic beads
US12/984,134 US8323374B2 (en) 2004-02-18 2011-01-04 Fine composite metal particles and their production method, micro-bodies, and magnetic beads
US12/984,204 US8398741B2 (en) 2004-02-18 2011-01-04 Fine composite metal particles and their production method, micro-bodies, and magnetic beads

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004041659A JP4304668B2 (en) 2004-02-18 2004-02-18 Metal fine particles and method for producing metal fine particles

Publications (2)

Publication Number Publication Date
JP2005232514A JP2005232514A (en) 2005-09-02
JP4304668B2 true JP4304668B2 (en) 2009-07-29

Family

ID=35015770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004041659A Expired - Fee Related JP4304668B2 (en) 2004-02-18 2004-02-18 Metal fine particles and method for producing metal fine particles

Country Status (1)

Country Link
JP (1) JP4304668B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5168637B2 (en) * 2008-04-11 2013-03-21 日立金属株式会社 Metal magnetic fine particles and production method thereof, dust core
US8840800B2 (en) * 2011-08-31 2014-09-23 Kabushiki Kaisha Toshiba Magnetic material, method for producing magnetic material, and inductor element
JP2014192454A (en) * 2013-03-28 2014-10-06 Hitachi Metals Ltd Manufacturing method of composite coated soft magnetic metal powder, composite coated soft magnetic metal powder, and powder magnetic core using the same
JP6529802B2 (en) * 2015-03-25 2019-06-12 Jx金属株式会社 Arsenic storage method
CN116169275B (en) * 2023-04-25 2023-07-07 北京科技大学 Germanium-coated silica composite material and preparation method and application thereof

Also Published As

Publication number Publication date
JP2005232514A (en) 2005-09-02

Similar Documents

Publication Publication Date Title
JP4895151B2 (en) Iron-based nano-sized particles and method for producing the same
Salavati-Niasari et al. Preparation of cobalt nanoparticles from [bis (salicylidene) cobalt (II)]–oleylamine complex by thermal decomposition
JP4560784B2 (en) Fine metal particles, method for producing the same, and magnetic beads
EP1568427B1 (en) Production method of fine composite metal particles
JP5359905B2 (en) Fine metal particles, method for producing the same, and magnetic beads
JP6851448B2 (en) Heat treatment method for soft magnetic powder
JP4758858B2 (en) Metallic magnetic powder for magnetic recording medium and method for producing the same
JP5732945B2 (en) Fe-Ni alloy powder
JP5556756B2 (en) Iron-based nano-sized particles and method for producing the same
JP5168637B2 (en) Metal magnetic fine particles and production method thereof, dust core
JP4766276B2 (en) Coated fine metal particles and method for producing the same
JP2007046074A5 (en)
JP2007046074A (en) Fine metal particle and manufacturing method therefor
JP2008081818A (en) Method for producing precursor powder of nickel-ferroalloy nanoparticle, precursor powder of nickel-ferroalloy nanoparticle, method for producing nickel-ferroalloy nanoparticle, and nickel-ferroalloy nanoparticle
JP4288674B2 (en) Method for producing magnetic metal fine particles and magnetic metal fine particles
JP4304668B2 (en) Metal fine particles and method for producing metal fine particles
JP4811658B2 (en) Coated metal fine particles and production method thereof,
JP2012156438A (en) Magnetic particle, method of manufacturing the same, magnetic powder for magnetic recording, and magnetic recording medium
JP2004281846A (en) High-frequency magnetic material, high-frequency magnetic part using the same, and method for manufacturing the same
JP4775713B2 (en) Coated fine metal powder and magnetic beads
JP2008069431A (en) Method for producing magnetic particle, and magnetic particle
JP4444191B2 (en) High frequency magnetic material, high frequency magnetic device, and method of manufacturing high frequency magnetic material
JP2005281786A (en) Magnetic metal particle and production method therefor
Kim et al. Synthesis and characterization of crystalline FeCo nanoparticles
JP2009114505A (en) Magnetite-iron composite powder and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090416

R150 Certificate of patent or registration of utility model

Ref document number: 4304668

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees